


Limiti di sensibilita (approssimati) di tecniche NDT



Fatigue limit diagrams
Although the Wohler curve is suitable for the evaluation of
, 1t is not informative for the engineer. For
example, a Wohler curve only applies to a certain mean stress.
With dynamically loaded components, however, the mean
stress often changes in practice, which in turn infuences the
fatigue strength. In order to show the infuence of the mean
stress on the fatigue strength, many further curves for the most
different mean stresses would have to be included in the
stress-cycle diagram. The clarity would suffer greatly from
this. For this reason, special diagrams are used to illustrate the

infuence of the mean stress in a clearer way.



Haigh Diagram yield strength 0;,

In the fatigue limit diagram according to, .~ ol
Haigh, the bearable stress amplitude is
applied directly against the mean stress.
Such a Haigh diagram is also referred to as
a Goodman diagram. The intersection of
the curve with the wvertical axis
corresponds to the alternating fatigue limit mean stress
Oofa , since the mean stress there is zero

(stress ratio R = —1).

stress amplitude

tensile strength

The intersection of the curve with the horizontal axis, however, can be interpreted
as ultimate tensile strength o, , since the specimen would theoretically fracture
without an existing stress amplitude, i.e. solely due to the applied mean stress
(stress ratio R =1).

The Haigh curve (“fatigue limit curve”) runs between these aforementioned points.
Below the fatigue limit curve are the permissible stress amplitudes for a given
mean stress. To simplify the construction of the diagram, the Haigh curve is
approached by a straight line, the so-called Goodman line. This approximation

results in a kind of “natural safety factor”, as the Goodman line runs below the
Haigh curve.



Especially with high mean stresses, however, the Haigh curve
or Goodman line is only of theoretical significance, as the
yield point is already exceeded in this range, resulting in

unacceptable plastic

deformations.

The practical limit

therefore does not extend up to the tensile strength o, but

rather only the to yield strength o,

In principle, the sum of mean
stress and stress amplitude
must never exceed the value of
the yield strength. Based on the
yield strength value, the stress
amplitude can theoretically be
increased to the same extent as
the mean stress is reduced. For
this reason, an additional
limitation is a straight line
under an angle of 45°, which is
also referred to as the yield line.
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In practice, therefore, only
knowledge of the alternating fatigue
limit ofa, the tensile strength 6« and
the yield strength oy (or the o"set

yield strength) is sufficient to
produce a simplified Haigh diagram.



To facilitate reading the fatigue limit for a given stress ratio R,
selected stress ratios are often included in the diagram.
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Extension of the Haigh diagram for compressive mean
stresses

In principle, the Haigh diagram can also be extended to
negative mean stresses and thus the fatigue limits for
compressive loads can be shown. The compressive yield
strength o, is then used as the limiting value for the mean
stress. This value is entered on both axes in the same way as
for tensile stress and then connected to each other by a
straight line. The extrapolation of the Goodman straight limits
the area. Whether this extrapolation of the Goodman line is
always permissible, however, must be checked separately! For
a conservative estimation, this line segment can also be

assumed to be horizontal in first approximation.
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Note, that due to the effect of “crack closing”, fatigue limits
for compressive loadings are in general higher than for
tensile loadings.
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Haigh e Goodman-Smith diagrams

The pairs of values o, o0, to which a certain life N;
corresponds, can be represented on a plane having the value
o, on the abscissa and the value o, on the ordinate. The
starting point is always the value o, = o; for o, = 0 which
comes from the Wohler diagram.
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Fig.16.2 - Diagrammi di Haigh sperimentale e semplificato. Fig.16.3 - Costruzione del Diagramma di Haigh semplificato.



The stress o; is the fatigue strength for the life N of the real
element which takes into account all the effects related to
finish, gradient and dimensions. In the case of infinite life, of
course O; = 0y. It is observed that the experimental points can
be interpolated from a curve which is called the Haigh
diagram. Since the realization of diagrams of this type for
various values of N; requires an excessive amount of
experimental data, simplified representation methods have
been proposed that can be carried out by the simple
knowledge of the corresponding oy, of the yield stress o, and

of the failure stress o,



The construction of the diagram is carried out in the following
steps:

1.

On the «X (Oeqia)» axis, the yield stress for traction o, the
yield stress for compression o, and the failure o, are
recorded. On the «y (Ouyemata)? @xis, both o, and the value
of alternating stress o;, corresponding to the Nf cycles, are
reported (from the Wohler curve)

a line (1) is drawn from O,jermata = Osc tO Omedia = Tsc fOT
average compressive stresses,

a line (2) is drawn from O jemata = Os t0 Opegia = O fOr mean
tensile stresses,

a horizontal line (3) is drawn from O jemata = O fOr average
compressive stresses,

a line (4) is drawn from O o nata = Of tO Opegia = O, fOr mean
tensile stresses.

The resulting limit curve is the broken line



Smith diagram

In such a Smith diagram, the minimum stress o,,, and the
maximum stress o,,,, are plotted against the mean stress o,, .
Based on fundamental considerations, certain fixed points
arise again.

With a mean stress of 0,, = 0, the
alternating fatigue limit oy, of the
material is obtained, so that the
value of the maximum stress is +o,
and the minimum stress is -0y,
Another fixed point results when
the mean stress just reaches the
ultimate tensile strength (0,, = 0, ).
In this case, the material can no
longer withstand stress amplitude, .,V
as otherwise the tensile strength
would be exceeded. mean stiess o

and minimum stress o,,;,

tensile strength

maximum stress o,,,,
o
2

alternating fatigue limit




For practical reasons, there is
also an additional limitation,
since so far the diagram only
takes into account the fracture
criterion. Usually, however,
inadmissible deformations
which occur at stresses above
the yield point are decisive.
Therefore, the Goodman lines
only run up to the maximum
value of the yield strength.
This applies to both the
maximum stress (point A) and
the mean stress (point B),
since of course the mean
stress must not exceed the
yield point too.

S
L
'
|
|
|
|
|
|
|
|
|
N

tensile strength

B e e e e e e e e e e e e oo ot

o

maximum stress og,,,, and minimum stress o,,;,
+
=
Q

alternating fatigue limit

=

mean stress o,,



Alternatively, it is possible to represent the values 0., O
and 0O.,;, which correspond to a certain life N; on a plane
having the value o, on the abscissa and the values o,,,, and
Omin ON the ordinate. The curves interpolating the
experimental results constitute the Goodman-Smith diagram.
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Fig.16.4 - Costruzione del diagramma di Goodman-Smith: (a) i passi da 1 a 3, (b) passida 4 a 5, (c) esempio.



Extension of the Haigh diagram for compressive mean stresses

Instead of limiting the
maximum stress by the tensile
yield strength, the compressive
yield strength o, is used to
limit the minimum stress
(point D). The mean stress is
also limited by the
compressive yield strength
(point E). The symmetrical
distribution of the minimum
and maximum stress values
around the mean stress is
again obtained by mirroring
the point D around the mean
stress line (point F).
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Resistenza a cicli di ampiezza variabile:
regola di Miner

Se n, & il numero di cicli di ; /S‘” g
sc.err?ia.mpiezza -Sl, n, il numero N THm /a .
di cicli ad ampiezza 5, ed N,, il \ AAAMAARAARAALARAARADE
N, sono i numeri dei cicli che M L oo
portano al collasso con uqu 1 |
ampiezze S; e S, " ntoyces "2 cycles =

rispettivamente, la condizione
di collasso e

Fig.10.1: A simple Variable-Amplitude load sequence with two blocks of cycles.
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Limiti della regola di Miner
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Per la regola di Miner, se n;<N; e w /"
6,<c; (limite di fatica), poiché in tal. ™|

caso N,=, ne segue che n,/N,=0 per
qualsiasi n, e quindi non si verifica
mai la rottura del pezzo.
Questo e sbagliato, perché se per -

o<c; non si ha rottura, cio e dovuto . sl sl il ol
al fatto che tensioni inferiori a oy e
non sono in grado di innescare la - P

fessura. Ma se o;>c; la fessura puo
essere attivata ed 1 cicli di ampiezza A

S, possono portare il pezzo a W |
rottura. — -
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Influenza dell’ordine di applicazione
del carico
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L’ordine di applicazione dei cicli ha influenza sulla vita a fatica
del pezzo. Se un pezzo e soggetto a n, cicli di ampiezza c; e poi
a cicli di ampiezza c,>c; e dopo n, cicli raggiunge la rottura, lo
stesso pezzo, soggetto prima ad n, cicli di ampiezza o, e quindi
a cicli di ampiezza o; raggiungera il collasso dopo un numero
di cicli > n;.

Questo e dovuto agli effetti positivi delle tensioni plastiche
residue.



The phenomenon of
crack closure was first
discovered by Elber in
1970. The crack closure
effect helps explain a
wide range of fatigue
data, and is especially
important in the
understanding of the
effect of stress ratio (less
closure at higher stress
ratio) and short cracks
(less closure than long
cracks for the same cyclic
stress intensity

"

(a) Plasticity-induced closure.

(b) Roughness-induced closure.
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(¢) Oxide-induced closure.
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(d) Clesure induced by a viscous fluid.
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(¢) Transformation-induced closure.

FIGURE 10.5 Fatigue crack closure mechanisms
in metals [14).



EXAMPLE 10.1

Derive an expression for the number of stress cycles required to grow a semicircular
surface crack from an initial radius a, to a final size ag, assuming the Paris-Erdogan

equation describes the growth rate. Assume that as is small compared to plate dimen-
sions, and that the stress amplitude, A0, is constant.

Solution: ‘The stress intensity amplitude for a semicircular surface crack in an infinite
plate (Fig. 2.19) can be approximated by

ax w12 4o\ = 0663 40V m

V 2.464

If we neglect the ¢ dependence of A,. Substituting this expression into Eq. (10.5)
gives

% . c(o.ooua)"' (x a)n2

which can be integrated 1o determine fatigue life:

a

1
N= Ia""’z da
c (o.ooa‘l: A o)'" o

ag!"m/2 . ad-m/2

j c (% . l)(O.“S‘J: ao)"

Closed-form integration is possible in this case because the K expression is rela-
tively simple. In most instances, numerical integration is required.

(form=2)




A

Si determini la durata della piastra
mostrata in figura sapendo che
presenta una cricca centrale
passante e che € sollecitata da un
carico ciclico F.

F . =0kN
F,.=300kN
w =100 mm
2a =2 mm
B=10mm

og = 1800 MPa

K, =57 MPa m”

Coefficienti legge di Paris:
C=23310"
n=3




Dati: a0 w b Kic DeltaS SigmaY
0.001 0.1 0.01 57 300 1800
Coeff. Paris: C n DeltaK0
2.33E-11 3 2.7
Parametri: Deltaa
0.0005
Sigma limite:

a am Y DeltaK paris DeltaN Ntot a frattura |a coll. plast.
0.0010 1.7729 16.8189 0

0.0015 0.0013 1.7731 18.8067 1.55E-07 3226 3226 909.25 1777.50
0.0020 0.0018 1.7738 22.2606 2.57E-07 1945 5171 768.17 1768.50
0.0025 0.0023 1.7746 25.2536 3.75E-07 1332 6504 677.13 1759.50
0.0030 0.0028 1.7757 27.9362 5.08E-07 984 7488 612.11 1750.50
0.0035 0.0033 1.7771 30.3924 6.54E-07 764 8253 562.64 1741.50
0.0040 0.0038 1.7786 32.6750 8.13E-07 615 8868 523.34 1732.50
0.0045 0.0043 1.7804 34.8197 9.84E-07 508 9376 491.10 1723.50
0.0050 0.0048 1.7824 36.8522 1.17E-06 429 9805 464.02 1714.50
0.0055 0.0053 1.7846 38.7915 1.36E-06 368 10172 440.82 1705.50
0.0060 0.0058 1.7870 40.6524 1.57E-06 319 10492 420.64 1696.50
0.0065 0.0063 1.7897 42.4466 1.78E-06 281 10772 402.86 1687.50
0.0070 0.0068 1.7926 44 .1836 2.01E-06 249 11021 387.02 1678.50
0.0075 0.0073 1.7958 45.8712 2.25E-06 222 11244 372.78 1669.50
0.0080 0.0078 1.7992 47.5161 2.50E-06 200 11444 359.88 1660.50
0.0085 0.0083 1.8028 49.1239 2.76E-06 181 11625 348.10 1651.50
0.0090 0.0088 1.8067 50.6994 3.04E-06 165 11789 337.28 1642.50
0.0095 0.0093 1.8108 52.2469 3.32E-06 150 11940 327.29 1633.50
0.0100 0.0098 1.8152 53.7702 3.62E-06 138 12078 318.02 1624.50
0.0105 0.0103 1.8198 55.2725 3.93E-06 127 12205 309.38 1615.50
0.0110 0.0108 1.8247 56.7570 4.26E-06 117 12322 301.28 1606.50
0.0115 0.0113 1.8299 58.2263 4.60E-06 109 12431 1597.50
0.0120 0.0118 1.8353 59.6831 4.95E-06 101 12532 1588.50




Example 9.1 A high-strength steel string has a miniature round surface
crack of 0.09 mm deep and a outer diameter of 1.08 mm. The string is subjected
to a repeated fluctuating load (T min = 0, OTmax > 0 at a stress ratio R = 0. The
threshold stress intensity factor is AKy, = 5 M Pay/m, and the crack growth
rate equation is given by

C - — O
dN (Mlo cycles ) (BK)

Determine a) the threshold stress Aoyn the string can tolerate without crack
growth, b) the maximum applied stress range Aa and c) the maximum (critical)
crack size for a fatigue life of N = 10* cycles. Use the following steel properties:
Kic =25 MPaym and 0,5 = 795 M Pa.



Solution: It is assumed that the plastic-zone with a cyclic range AK is
smaller than that for K; applied monotonically, and that the surface crack can
be treated as a single-edge crack configuration. Note that N, = 0 since a,

already exists. Data:

a) From egs. (3.56),

D—-d

d = D-2a=108mm—-2(0.09 mm)=0.90 mm
d D
5 = 0.8333 and 7= 1.20

Thus, eqgs. (3.54) and (9.5) yield respectively

o = 3B[5e543(5) -5 (5) + 2 () e

a = f(d/D)=1.1989

Ay = Ko _ 5 MPaym = 248.02 M Pa

a/Tay  (1.1089) /x (0.00210-3 m)
A(Tmin < A(Tth




N a da
dN=/ %
/N.. 0, A(AK)

2
1

Qe = — (El—q) Ao?
™\ «

2a a \™/?!
N=No= A(n - 2) (alo)™ (17/2) [(a_o) '1]

Substituting eq. (9.17) along with a = a. into (9.16) yields an important
expression for determining the stress range Ao when the final crack size is
unknown

Cr(Ac)* + Co(A0) > = C3=0

Ci = A(n=2)(N-N,)(Kic)"

o - 2 (K_)

™ 84

n/2 n
e (1 K
03 = 2((1,)1 /2 (;F) (—-'"-;C>



b) Use eq. (9.19) and subsequently (9.18) to get

—4 7 4
C, = (5:1:10"14 Mgcle..:n ) (4 —2) (104 cycles) (25 %V-\/ﬁ)
Ci = 3.9063x107*m

2 (Kic\®_ 2 (2 MPaym\*® .

4/2 4

_ —3_y1-4/2 (1 25 M Pa\/m
Cs = 2(0.092107° m) (w) ( 71950
C; = 4.2571x10° MPa*m

3.9063 x 1074Ac? + 276.82A0°% —4.2571 x 108 =0

Solving the above biquadratic equation yields four roots. The positive root is

Ao = 864.93 MPa
Omax = QAo =286493 MPa since ounin=20
7 max é Oys



b) The critical crack size is calculated from eq. (9.17)

(9.17)

1 [Kiel?, ., 1 25 M Pa/m
a, = — |—| Ao ™=~
Q 7 [ (1.1989) (864.93 M Pa)
a. = 0.185 mm = 2.056a,

Aa = a.—a, = 0.095 mm

Therefore, Aa = 0.095 mm represents 5.56% increment at a maximum fluc-
tuating stress Omax ~ Tys for a fatigue life of 104 cycles.



