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Availability: I can always find a 
station with at least one bike 
in a radius of  500 meters

Spread: after 10 time 
units, there exists a 
location lʹ at a certain 
distance from location l 
where the number of 
infected individuals is 
more than 50  



Reliability: we can always  find 
a path of sensors such that all 
sensors have a battery level 
greater than 0.5

Spots: regions with low 
density of protein A are 
always surrounded by 
regions with high level of 
protein B  



How to specify such spatio-temporal 
behaviours in a formal and 

human-understandable language ?



How to monitor their onset efficiently?



Part 1 :  
• Signal Temporal Logic (STL)
• Space Model and traces
• Spatio- Temporal Reach and Escape Logic (STREL)

Part 2: 
• Monitoring 
• Applicability to different scenarios



Introduction SSTL TSTL STREL

Monitoring Techinique
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Robust Monitoring
A robust STL monitor is a transducer that transform x into ��(x, .)
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Bool. sat

��(x, ·)/��(x, ·)

In practice
� Trace: time words over alphabet R, linear interpolation

Input: x(·) � (ti , x(ti))i�N 0utput: ��(x, ·) � (rj , z(rj))j�N
� Continuity, and piecewise a�ne property preserved

Alexandre Donzé Robust Monitoring of STL EECS144 Fall 2013 20 / 52
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Spatio-Temporal Monitoring

INPUTS

Spatial Configuration

Sp-TemporalTrajectory

Specification

F[0,T ]�1S[0,d]�2

MONITORING
ALGORITHM

OUTPUTS
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SSTL Syntax

' ∶= µ � ¬' � '1 ∧'2 � '1 U[t1,t2] '2 � �[d1,d2]' � '1 �[d1,d2] '2

In addition F[t1,t2]' ∶= U[t1,t2]', G[t1,t2]' ∶= ¬F[t1,t2]¬', �'[d1,d2] ∶= ¬�¬[d1,d2] '.



Running Example: Wireless Sensor Network



Space Model, Signal and Traces



Spatial Configuration

We consider a discrete space described as a weighted (direct) graph

Reasons:

• many applications, like bike sharing systems, smart grid and sensor 
networks are naturally framed in a discrete spatial structure 

• in many circumstances continuous space is abstracted as a grid or as a 
mesh, e.g. numerical integration of PDEs 



Space Model   ! = ⟨$,&⟩
– L is a set of nodes that we call locations; 

– ! ⊆ # ×ℝ × # is a proximity function associating a label & ∈ ℝ to 
distinct pair ℓ!, ℓ" ∈ # . If (ℓ!, &, ℓ") ∈ !, it means that there is an 
edge from ℓ! to ℓ" with weight & ∈ ℝ

&
ℓ!

ℓ"

ℓ#



Example



Route    ( = ℓ!ℓ"ℓ#…
It is a infinite sequence s.t. ∀- ≥ 0 ∃ & 1. 3. ℓ$ , &, ℓ$%! ∈ !

ℓ&ℓ!ℓ"ℓ!… is a route

ℓ&ℓ!ℓ"ℓ#… is a not route

5 - to denote the - − 3ℎ node 5
5(ℓ) to denote the first occurrence of ℓ ∈ 5

ℓ&
ℓ!

ℓ" ℓ#



Route Distance    +$%[-]
The distance 8'

([-] up to index - is:
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Definition 3 (Route Distance
5
). Let S = �L,W�, ⌧ a route in S , the distance df⌧ [i]

up-to index i is:

df⌧ [i] =
�������
0 i = 0
f(df⌧[1..][i − 1],w) (i > 0) and ⌧[0] w� ⌧[1]

Given a location ` ∈ L, the distance over ⌧ up-to ` is then d⌧ [`] = df⌧ [⌧(`)] if ` ∈ ⌧ , or∞ otherwise.

Considering again the sensor example, we can be interested in different types of dis-
tance. For example we can count the number of hops, simply using the function hops
defined as hops(v,w) ∶= v + 1 and in this case dhops⌧ [i] = i.We can also consider
the distances with respect the weighted label w in the edges, in that case we have
weight(v,w) = v + w and dweight

⌧ [i] is the sum the weights in the edges of the route
until the i-th node `i.

Definition 4 (Location Distance). The distance between two locations `1 and `2 is
obtained by choosing the distance values along all possible routes starting from `1 and
ending in `2:

dS[`1, `2] =min{d⌧ [`2]�⌧ ∈ Routes(S, `1)}.
In the sensor network example, the distance between two locations `1 and `2, will be
the minimum hop-length or weight-length over all paths connecting `1 and `2 for the
hops or weight distance function respectively.

2.2 Signal, Trace and Dynamic Models

We assume to have piecewise constant temporal signal ⌫ = [(t0, d0), . . . , (tn, dn)]
with ti ∈ T = [0, T ] ⊆ R≥0 a time domain and di ∈ D. Different kinds of signals can be
considered: signals with D = {true, false} are called Boolean signals; with D = R∞
are called real-valued or quantitative signals, signal with D = Z are integer signals. We
use T (⌫) to denote the sequence of (t0, . . . , tn) of time steps in ⌫.

Definition 5 (Spatio-temporal signal). Let S = �L,W� be a space model and T =[0, T ] a time domain, a spatio-temporal signal is a function

� ∶ L→ T→D

that associates a temporal signal �(`) = ⌫ at each location. We use �@t to denote the
spatial signal at time t, i.e. the signal s such that s(`) = �(`)(t), for any ` ∈ L.

Definition 6 (Spatio-Temporal Trace). Let S = �L,W� be a space model, a spatio-
temporal trace is a function �x ∶ L→ T→Dn

such that for any ` ∈ L yields a vector of temporal signals �x(`) = (⌫1, . . . , ⌫n). Note
that this means that a spatio-temporal trace is composed by a set of spatio-temporal
signals. In the rest of the paper we will use �x(`, t) to denote �x(`)(t).

5 We restrict here only to the tropical semiring, a more general definition can be found in [13].

8'
( ℓ = 8'

([5 ℓ ]



Route Distance    +$%[-]

&<-=ℎ3(>, ?) = > + ?

ℎAB1(>, ?) = > + 1

8ℓ!ℓ"ℓ#..
+,$-./ 2 = weight(8ℓ"ℓ#..

+,$-./ 1 , 4) =  8ℓ"ℓ#
+,$-./ 1 + 4 = …

= weight(8ℓ#..
+,$-./ 0 , 2) + 4 = 6 
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Location Distance    +&% ℓ' , ℓ(
)!" ℓ# , ℓ$ = min )% ℓ$ 0 ∈ 234567(9, ℓ#)}

81
.023 ℓ&, ℓ" = 2

ℓ0
ℓ!

ℓ" ℓ#



Location Distance

)!" ℓ# , ℓ$ = min )% ℓ$ 0 ∈ 234567(9, ℓ#)}
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Signal and Trace

Spatio-Temporal Signals       E: # → H → I

Spatio-Temporal Trace  J: # → H → I4

>(ℓ) = (K5 , K6 )

>(ℓ, 3) = (K5(3) , K6(3) )



Dynamic Spatial Model 

3$ , L$ for - = 1,… , P and L 3 = L$∀3 ∈ [3$ , 3$%!)



STREL



Spatio- Temporal Reach and Escape Logic (STREL)

It is an extension of the Signal Temporal Logic with a number of 
spatial modal operators 

In addition, we can derive: 
• The disjunction operator: ∨
• the temporal operators: "!, $!, %!, H"
• the spatial operators: somewhere,  everywhere and surround  

8 L. Nenzi et al.

dense-semantics of the Metric Interval Temporal Logic (MITL) [5] with a set
of parametrised numerical predicates playing the role of atomic proposition µ,
these are inequality of the form (g(ν1, . . . ,νn) ≥ 0), for g ∶ Rn → R. Considering
our wireless sensor network, example of atomic propositions are: vB > 0.5, i.e.
the level of the battery should be greater than 0.5, or vT < 30, i.e. the value of
temperature should be less than 30○.

The syntax of STREL is given by

Definition 8 (STREL Syntax)

ϕ ∶= true ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 UI ϕ2 ∣ ϕ1 SI ϕ2 ∣ ϕ1Rf
d ϕ2 ∣ Ef

d ϕ

where true is the Boolean true constant, µ is an atomic predicate (AP ), negation¬ and conjunction ∧ are the standard Boolean connectives, the temporal modal-
ities are the until (UI) and the since (SI), where I is a non singular positive
real interval, while reachability (Rf

d) and the escape (Ef
d ) are the spatial opera-

tors, with f a Distance Function described in the previous section (e.g. the hops
function) and d a non singular positive real interval. Both I and d can be infinite
intervals, in case of using all R∞≥0 the interval can be omitted. In addition, we
can derive the disjunction operator (∨), the future eventually (FI) and always
(GI) operators and the past once (OI) and historically (HI). We can derive also
three other spatial operators: the somewhere, the everywhere and the surround.
Below, we describe in detail the semantics of the spatial operators, we will see
the temporal operators directly in the next Sections within the case studies, for
more detail about temporal operators of STL we refer the reader to [34,36,57].

3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S,x, #, t) ⊧ ϕ, with the
meaning that the spatio-temporal trace x in location # at time t with spatial
model S, satisfies the formula ϕ and a quantitative semantics, ρ(ϕ,S,x, #, t),
that can be used to measure the quantitative level of satisfaction of a formula
for a given trajectory. The function ρ is also called the robustness function.
The robustness is compatible with the Boolean semantics since it satisfies the
soundness property: if ρ(ϕ,S,x, #, t) > 0 then (S,x, #, t) ⊧⊧ ϕ; if ρ(ϕ,S,x, #, t) <
0 then (S,x, #, t) /⊧ ϕ. Furthermore it satisfies also the correctness property,
which shows that x measures how robust is the satisfaction of a trajectory with
respect to perturbations. We refer the reader to [36] for more details.
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Reach: 
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3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S, �x, `, t) � ', with the mean-
ing that the spatio-temporal trace �x in location ` at time t with spatial model S , sat-
isfies the formula ' and a quantitative semantics, ⇢(',S, �x, `, t), that can be used to
measure the quantitative level of satisfaction of a formula for a given trajectory. The
function ⇢ is also called the robustness function. The robustness is compatible with the
Boolean semantics since it satisfies the soundness property: if ⇢(',S, �x, `, t) > 0 then(S, �x, `, t) � '; if ⇢(',S, �x, `, t) < 0 then (S, �x, `, t) �� '. Furthermore it satisfies also
the correctness property, which shows that �x measures how robust is the satisfaction of
a trajectory with respect to perturbations. We refer the reader to [36] for more details.

Fig. 4. Example of spatial properties. `3 satisfies yellowRhops[1,4]pink while `4 does not. `9 satisfies
Ehops[3,∞]orange while `10 does not. `1 satisfies �hops[3,5]pink and �hops[2,3]yellow. All green points
satisfy green �hops[0,100] blue. `43 (the green point in the middle with a boild red circle) is the only
location that satisfies green �hops[2,3] blue. The letters inside the nodes indicate the color and the
numbers indicate the enumeration of the locations.

Reach The quantitative semantics of the reach operator is: ⇢('1Rf[d1,d2]'2,S, �x, `, t) =
= max

⌧∈Routes(S(t),`) max
`′∈⌧ ∶�df

⌧ [`′]∈[d1,d2]�
(min(⇢('2,S, �x, `′, t), min

j<⌧(`′)⇢('1,S, �x, ⌧[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and considering
the Boolean satisfaction instead or ⇢. (S, �x, `, t), a spatio-temporal trace �x, in location
`, at time t, with a (dynamic) spatial model S , satisfies '1 Rf[d1,d2] '2 iff it satisfies
'2 in a location `′ reachable from ` through a route ⌧ , with a length df⌧ [`′] ∈ [d1, d2],

L , >⃗ , ℓ, 3 satisfies                              iff it satisfies R" in a location ℓ′
reachable from ℓ through a route τ, with a length 8'

( ℓ7 ∈ [8!, 8"] and such 
that 5[0] = ℓ and all its elements with index less than 5(ℓ′) satisfy R!

8 Laura Nenzi, Ezio Bartocci, Luca Bortolussi, Michele Loreti, and Ennio Visconti

3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S, �x, `, t) � ', with the mean-
ing that the spatio-temporal trace �x in location ` at time t with spatial model S , sat-
isfies the formula ' and a quantitative semantics, ⇢(',S, �x, `, t), that can be used to
measure the quantitative level of satisfaction of a formula for a given trajectory. The
function ⇢ is also called the robustness function. The robustness is compatible with the
Boolean semantics since it satisfies the soundness property: if ⇢(',S, �x, `, t) > 0 then(S, �x, `, t) � '; if ⇢(',S, �x, `, t) < 0 then (S, �x, `, t) �� '. Furthermore it satisfies also
the correctness property, which shows that �x measures how robust is the satisfaction of
a trajectory with respect to perturbations. We refer the reader to [36] for more details.

Fig. 4. Example of spatial properties. `3 satisfies yellowRhops[1,4]pink while `4 does not. `9 satisfies
Ehops[3,∞]orange while `10 does not. `1 satisfies �hops[3,5]pink and �hops[2,3]yellow. All green points
satisfy green �hops[0,100] blue. `43 (the green point in the middle with a boild red circle) is the only
location that satisfies green �hops[2,3] blue. The letters inside the nodes indicate the color and the
numbers indicate the enumeration of the locations.
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The Boolean semantics can be derived substituting min,max with ∨,∧ and considering
the Boolean satisfaction instead or ⇢. (S, �x, `, t), a spatio-temporal trace �x, in location
`, at time t, with a (dynamic) spatial model S , satisfies '1 Rf[d1,d2] '2 iff it satisfies
'2 in a location `′ reachable from ` through a route ⌧ , with a length df⌧ [`′] ∈ [d1, d2],
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Fig. 4. Example of spatial properties. !3 satisfies yellowRhops[1,4]pink while !4 does not.

!9 satisfies Ehops[3,∞]orange while !10 does not. !1 satisfies !hops[3,5]pink and !hops[2,3]yellow. All

green points satisfy green ⊚hops[0,100] blue. !43 (the green point in the middle with a boild

red circle) is the only location that satisfies green ⊚hops[2,3] blue. The letters inside the
nodes indicate the color and the numbers indicate the enumeration of the locations.
(Color figure online)

Reach. The quantitative semantics of the reach operator is: ρ(ϕ1 Rf[d1,d2] ϕ2,S,x, #, t) =
= max

τ∈Routes(S(t),") max
"′∈τ ∶(df

τ ["′]∈[d1,d2])
(min(ρ(ϕ2,S,x, #′, t), min

j<τ("′)ρ(ϕ1,S,x, τ[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, #, t), a spatio-temporal
trace x, in location #, at time t, with a (dynamic) spatial model S, satisfies
ϕ1Rf[d1,d2] ϕ2 iff it satisfies ϕ2 in a location #′ reachable from # through a route
τ , with a length df

τ [#′] ∈ [d1, d2], and such that τ[0] = # and all its elements with
index less than τ(#′) satisfy ϕ1. Practically, the reach operator φ1Rf[d1,d2]φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location #3 (meaning the
trajectory x at time t in position #3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops[1,4]pink. Indeed, there exists a route τ = #3#13#14#17#35 such that
dhops

τ [#35] = 4, where τ[0] = #3, #35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for exam-
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Fig. 4. Example of spatial properties. !3 satisfies yellowRhops[1,4]pink while !4 does not.

!9 satisfies Ehops[3,∞]orange while !10 does not. !1 satisfies !hops[3,5]pink and !hops[2,3]yellow. All

green points satisfy green ⊚hops[0,100] blue. !43 (the green point in the middle with a boild

red circle) is the only location that satisfies green ⊚hops[2,3] blue. The letters inside the
nodes indicate the color and the numbers indicate the enumeration of the locations.
(Color figure online)

Reach. The quantitative semantics of the reach operator is: ρ(ϕ1 Rf[d1,d2] ϕ2,S,x, #, t) =
= max

τ∈Routes(S(t),") max
"′∈τ ∶(df

τ ["′]∈[d1,d2])
(min(ρ(ϕ2,S,x, #′, t), min

j<τ("′)ρ(ϕ1,S,x, τ[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, #, t), a spatio-temporal
trace x, in location #, at time t, with a (dynamic) spatial model S, satisfies
ϕ1Rf[d1,d2] ϕ2 iff it satisfies ϕ2 in a location #′ reachable from # through a route
τ , with a length df

τ [#′] ∈ [d1, d2], and such that τ[0] = # and all its elements with
index less than τ(#′) satisfy ϕ1. Practically, the reach operator φ1Rf[d1,d2]φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location #3 (meaning the
trajectory x at time t in position #3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops[1,4]pink. Indeed, there exists a route τ = #3#13#14#17#35 such that
dhops

τ [#35] = 4, where τ[0] = #3, #35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for exam-

A
ut

ho
r P

ro
of

Monitoring Spatio-Temporal Properties (Invited Tutorial) 9

Fig. 4. Example of spatial properties. !3 satisfies yellowRhops[1,4]pink while !4 does not.
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green points satisfy green ⊚hops[0,100] blue. !43 (the green point in the middle with a boild

red circle) is the only location that satisfies green ⊚hops[2,3] blue. The letters inside the
nodes indicate the color and the numbers indicate the enumeration of the locations.
(Color figure online)

Reach. The quantitative semantics of the reach operator is: ρ(ϕ1 Rf[d1,d2] ϕ2,S,x, #, t) =
= max

τ∈Routes(S(t),") max
"′∈τ ∶(df

τ ["′]∈[d1,d2])
(min(ρ(ϕ2,S,x, #′, t), min

j<τ("′)ρ(ϕ1,S,x, τ[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, #, t), a spatio-temporal
trace x, in location #, at time t, with a (dynamic) spatial model S, satisfies
ϕ1Rf[d1,d2] ϕ2 iff it satisfies ϕ2 in a location #′ reachable from # through a route
τ , with a length df

τ [#′] ∈ [d1, d2], and such that τ[0] = # and all its elements with
index less than τ(#′) satisfy ϕ1. Practically, the reach operator φ1Rf[d1,d2]φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location #3 (meaning the
trajectory x at time t in position #3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops[1,4]pink. Indeed, there exists a route τ = #3#13#14#17#35 such that
dhops

τ [#35] = 4, where τ[0] = #3, #35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for exam-
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L , >⃗ , ℓ, 3 satisfies  if and only there exists a route τ and a 

location ℓ7 ∈ 5 such that 5 0 = ℓ, 81
( 5 0 , ℓ7 ∈ 8! , 8" and all 

elements 5[0], … 5[T] (with 5(U′) = T) satisfy R
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and such that ⌧[0] = ` and all its elements with index less than ⌧(`′) satisfy '1. Prac-
tically, the reach operator �1Rf[d1,d2]�2 describes the behaviour of reaching a location
satisfying property �2 passing only through locations that satisfy �1, and such that
the distance from the initial location and the final one is greater than d1 and less than
d2. In Figure 4, we report an example of reachability property, considering f as the
hops function described in the previous section. In the graph, the location `3 (mean-
ing the trajectory �x at time t in position `3 with spatial model S(t) as in the figure)
satisfies yellowRhops[1,4]pink. Indeed, there exists a route ⌧ = `3`13`14`17`35 such that
dhops⌧ [`35] = 4, where ⌧[0] = `3, `35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for example,
the location `4 does not satisfy the property because it does not satisfies the distance
constraint.

Escape The quantitative semantics of the escape operator is:

⇢(Ef[d1,d2]',S, �x, `, t) = max
⌧∈Routes(S(t),`) max

`′∈⌧ ∶�dfS(t)[`,`′]∈[d1,d2]�
min

i≤⌧(`′)⇢(',S, �x, ⌧[i], t).
The Boolean semantics can be derived substituting min,max with ∨,∧, and consid-
ering the Boolean satisfaction instead of ⇢. (S, �x, `, t), a spatio-temporal trace �x, in
location `, at time t, with a (dynamic) spatial model S , satisfies Ef[d1,d2] ' if and only
if there exists a route ⌧ and a location `′ ∈ ⌧ such that ⌧[0] = `, dS[⌧[0], `′] ∈ [d1, d2]
and all elements ⌧[0], ...⌧[k] (with ⌧(`′) = k) satisfy '. Practically, the escape oper-
ator Ef[d1,d2]� describes the possibility of escaping from a certain region passing only
through locations that satisfy �, via a route with a distance that belongs to the interval
d.

In Fig 4, we report an example of escape property. In the graph, the location `9
satisfies Ehops[3,∞]orange. Indeed, there exists a route ⌧ = `9`10`11`12 such that ⌧[0] = `9,

⌧[3] = `12, dhopsS [`9, `12] = 3 and all elements ⌧[0], ⌧[1], ⌧[2], ⌧[3] satisfy the orange
property. Note that the route `10`11`12 is not a good route to satisfy the property because
the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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and such that ⌧[0] = ` and all its elements with index less than ⌧(`′) satisfy '1. Prac-
tically, the reach operator �1Rf[d1,d2]�2 describes the behaviour of reaching a location
satisfying property �2 passing only through locations that satisfy �1, and such that
the distance from the initial location and the final one is greater than d1 and less than
d2. In Figure 4, we report an example of reachability property, considering f as the
hops function described in the previous section. In the graph, the location `3 (mean-
ing the trajectory �x at time t in position `3 with spatial model S(t) as in the figure)
satisfies yellowRhops[1,4]pink. Indeed, there exists a route ⌧ = `3`13`14`17`35 such that
dhops⌧ [`35] = 4, where ⌧[0] = `3, `35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for example,
the location `4 does not satisfy the property because it does not satisfies the distance
constraint.

Escape The quantitative semantics of the escape operator is:

⇢(Ef[d1,d2]',S, �x, `, t) = max
⌧∈Routes(S(t),`) max

`′∈⌧ ∶�dfS(t)[`,`′]∈[d1,d2]�
min

i≤⌧(`′)⇢(',S, �x, ⌧[i], t).
The Boolean semantics can be derived substituting min,max with ∨,∧, and consid-
ering the Boolean satisfaction instead of ⇢. (S, �x, `, t), a spatio-temporal trace �x, in
location `, at time t, with a (dynamic) spatial model S , satisfies Ef[d1,d2] ' if and only
if there exists a route ⌧ and a location `′ ∈ ⌧ such that ⌧[0] = `, dS[⌧[0], `′] ∈ [d1, d2]
and all elements ⌧[0], ...⌧[k] (with ⌧(`′) = k) satisfy '. Practically, the escape oper-
ator Ef[d1,d2]� describes the possibility of escaping from a certain region passing only
through locations that satisfy �, via a route with a distance that belongs to the interval
d.

In Fig 4, we report an example of escape property. In the graph, the location `9
satisfies Ehops[3,∞]orange. Indeed, there exists a route ⌧ = `9`10`11`12 such that ⌧[0] = `9,

⌧[3] = `12, dhopsS [`9, `12] = 3 and all elements ⌧[0], ⌧[1], ⌧[2], ⌧[3] satisfy the orange
property. Note that the route `10`11`12 is not a good route to satisfy the property because
the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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Fig. 4. Example of spatial properties. !3 satisfies yellowRhops[1,4]pink while !4 does not.

!9 satisfies Ehops[3,∞]orange while !10 does not. !1 satisfies !hops[3,5]pink and !hops[2,3]yellow. All

green points satisfy green ⊚hops[0,100] blue. !43 (the green point in the middle with a boild

red circle) is the only location that satisfies green ⊚hops[2,3] blue. The letters inside the
nodes indicate the color and the numbers indicate the enumeration of the locations.
(Color figure online)

Reach. The quantitative semantics of the reach operator is: ρ(ϕ1 Rf[d1,d2] ϕ2,S,x, #, t) =
= max

τ∈Routes(S(t),") max
"′∈τ ∶(df

τ ["′]∈[d1,d2])
(min(ρ(ϕ2,S,x, #′, t), min

j<τ("′)ρ(ϕ1,S,x, τ[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, #, t), a spatio-temporal
trace x, in location #, at time t, with a (dynamic) spatial model S, satisfies
ϕ1Rf[d1,d2] ϕ2 iff it satisfies ϕ2 in a location #′ reachable from # through a route
τ , with a length df

τ [#′] ∈ [d1, d2], and such that τ[0] = # and all its elements with
index less than τ(#′) satisfy ϕ1. Practically, the reach operator φ1Rf[d1,d2]φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location #3 (meaning the
trajectory x at time t in position #3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops[1,4]pink. Indeed, there exists a route τ = #3#13#14#17#35 such that
dhops

τ [#35] = 4, where τ[0] = #3, #35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for exam-
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ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that

τ[0] = !9, τ[3] = !12, dhops
S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
satisfy the property because the distance dhops

S [!10, !12] = 2.
Now we describe the other three derived operators.

Somewhere. $f[d1,d2]ϕ ∶= trueRf[d1,d2]ϕ holds for (S,x, !, t) iff there exists a
location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that

τ[0] = !9, τ[3] = !12, dhops
S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
satisfy the property because the distance dhops

S [!10, !12] = 2.
Now we describe the other three derived operators.

Somewhere. $f[d1,d2]ϕ ∶= trueRf[d1,d2]ϕ holds for (S,x, !, t) iff there exists a
location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that

τ[0] = !9, τ[3] = !12, dhops
S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
satisfy the property because the distance dhops

S [!10, !12] = 2.
Now we describe the other three derived operators.

Somewhere. $f[d1,d2]ϕ ∶= trueRf[d1,d2]ϕ holds for (S,x, !, t) iff there exists a
location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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and such that ⌧[0] = ` and all its elements with index less than ⌧(`′) satisfy '1. Prac-
tically, the reach operator �1Rf[d1,d2]�2 describes the behaviour of reaching a location
satisfying property �2 passing only through locations that satisfy �1, and such that
the distance from the initial location and the final one is greater than d1 and less than
d2. In Figure 4, we report an example of reachability property, considering f as the
hops function described in the previous section. In the graph, the location `3 (mean-
ing the trajectory �x at time t in position `3 with spatial model S(t) as in the figure)
satisfies yellowRhops[1,4]pink. Indeed, there exists a route ⌧ = `3`13`14`17`35 such that
dhops⌧ [`35] = 4, where ⌧[0] = `3, `35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for example,
the location `4 does not satisfy the property because it does not satisfies the distance
constraint.

Escape The quantitative semantics of the escape operator is:

⇢(Ef[d1,d2]',S, �x, `, t) = max
⌧∈Routes(S(t),`) max

`′∈⌧ ∶�dfS(t)[`,`′]∈[d1,d2]�
min

i≤⌧(`′)⇢(',S, �x, ⌧[i], t).
The Boolean semantics can be derived substituting min,max with ∨,∧, and consid-
ering the Boolean satisfaction instead of ⇢. (S, �x, `, t), a spatio-temporal trace �x, in
location `, at time t, with a (dynamic) spatial model S , satisfies Ef[d1,d2] ' if and only
if there exists a route ⌧ and a location `′ ∈ ⌧ such that ⌧[0] = `, dS[⌧[0], `′] ∈ [d1, d2]
and all elements ⌧[0], ...⌧[k] (with ⌧(`′) = k) satisfy '. Practically, the escape oper-
ator Ef[d1,d2]� describes the possibility of escaping from a certain region passing only
through locations that satisfy �, via a route with a distance that belongs to the interval
d.

In Fig 4, we report an example of escape property. In the graph, the location `9
satisfies Ehops[3,∞]orange. Indeed, there exists a route ⌧ = `9`10`11`12 such that ⌧[0] = `9,

⌧[3] = `12, dhopsS [`9, `12] = 3 and all elements ⌧[0], ⌧[1], ⌧[2], ⌧[3] satisfy the orange
property. Note that the route `10`11`12 is not a good route to satisfy the property because
the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that

τ[0] = !9, τ[3] = !12, dhops
S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
satisfy the property because the distance dhops

S [!10, !12] = 2.
Now we describe the other three derived operators.

Somewhere. $f[d1,d2]ϕ ∶= trueRf[d1,d2]ϕ holds for (S,x, !, t) iff there exists a
location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that
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S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
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S [!10, !12] = 2.
Now we describe the other three derived operators.
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where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.
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!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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and such that ⌧[0] = ` and all its elements with index less than ⌧(`′) satisfy '1. Prac-
tically, the reach operator �1Rf[d1,d2]�2 describes the behaviour of reaching a location
satisfying property �2 passing only through locations that satisfy �1, and such that
the distance from the initial location and the final one is greater than d1 and less than
d2. In Figure 4, we report an example of reachability property, considering f as the
hops function described in the previous section. In the graph, the location `3 (mean-
ing the trajectory �x at time t in position `3 with spatial model S(t) as in the figure)
satisfies yellowRhops[1,4]pink. Indeed, there exists a route ⌧ = `3`13`14`17`35 such that
dhops⌧ [`35] = 4, where ⌧[0] = `3, `35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for example,
the location `4 does not satisfy the property because it does not satisfies the distance
constraint.

Escape The quantitative semantics of the escape operator is:

⇢(Ef[d1,d2]',S, �x, `, t) = max
⌧∈Routes(S(t),`) max

`′∈⌧ ∶�dfS(t)[`,`′]∈[d1,d2]�
min

i≤⌧(`′)⇢(',S, �x, ⌧[i], t).
The Boolean semantics can be derived substituting min,max with ∨,∧, and consid-
ering the Boolean satisfaction instead of ⇢. (S, �x, `, t), a spatio-temporal trace �x, in
location `, at time t, with a (dynamic) spatial model S , satisfies Ef[d1,d2] ' if and only
if there exists a route ⌧ and a location `′ ∈ ⌧ such that ⌧[0] = `, dS[⌧[0], `′] ∈ [d1, d2]
and all elements ⌧[0], ...⌧[k] (with ⌧(`′) = k) satisfy '. Practically, the escape oper-
ator Ef[d1,d2]� describes the possibility of escaping from a certain region passing only
through locations that satisfy �, via a route with a distance that belongs to the interval
d.

In Fig 4, we report an example of escape property. In the graph, the location `9
satisfies Ehops[3,∞]orange. Indeed, there exists a route ⌧ = `9`10`11`12 such that ⌧[0] = `9,

⌧[3] = `12, dhopsS [`9, `12] = 3 and all elements ⌧[0], ⌧[1], ⌧[2], ⌧[3] satisfy the orange
property. Note that the route `10`11`12 is not a good route to satisfy the property because
the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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distance constraint.
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a route with a distance that belongs to the interval d.
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satisfy the property because the distance dhops

S [!10, !12] = 2.
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where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.
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region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green

A
ut

ho
r 

Pr
oo

f

L , >⃗ , ℓ, 3 iff there exists a R!-region that contains ℓ, all locations 

in that region satisfies R! and are reachable from ℓ via a path with 

length less than 8" . 

All the locations that do not belong to the R!-region but are 

directly connected to a location of that region must satisfy R" and 

be reached from ℓ via a path with length in the interval [d!, 8"]. 



Surround: 

G

G

G
G

G
G

G

B

G G

B
20

22

B

B

B

B B

B

B

B

B B

23 24
25

272829
30

31

32

39

33

40

41

42
43 44

45

464748

49 50

10 L. Nenzi et al.

ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that

τ[0] = !9, τ[3] = !12, dhops
S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
satisfy the property because the distance dhops

S [!10, !12] = 2.
Now we describe the other three derived operators.

Somewhere. $f[d1,d2]ϕ ∶= trueRf[d1,d2]ϕ holds for (S,x, !, t) iff there exists a
location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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point we can find a region that contains the point, such that all its points are
green and all the points connected with an element that belongs to the region
are blue and satisfy the metric constraint. Instead, the property green⊚hops[2,3] blue

is satisfied only by location !43 (the location with a bold red circle), indeed !43 is
the only location for which there exists a region (the green region) such that all
its elements are at a distance less than 3 from !43 and satisfy the green property;
and all the locations directly connected with the green region are at a distance
between 2 and 3 from !43 and satisfy the blue property.

3.2 Offline Monitoring Algorithm

At the moment the logic supports only offline monitoring. The monitor takes as
inputs a static or dynamic spatial model S, a trace x and a formula φ and returns
the spatio-temporal signal σ representing the monitoring of φ, a Boolean spatio-
temporal signal for the Boolean Semantics and a real-value spatio-temporal sig-
nal for the quantitative one. The monitor of the whole trace corresponds to σ@0,
i.e. the spatial Boolean or real-value signal at time zero. This means that the
monitor of the whole trace corresponds to the evaluation at time t = 0 in each
point in space: (S,x, !) ⊧ ϕ iff (S,x, !,0) ⊧ ϕ and ρ(ϕ,S,x, !) ∶= ρ(ϕ,S,x, !,0).
We made this choice because we assume no privilege direction or location so we
cannot consider a zero location as for the time.

Like in STL, monitoring of temporal operators is linear in the length of the
signal times the number of locations in the spatial model. This because the mon-
itoring procedure is performed at each location by using the same (linear) algo-
rithm proposed in [36]. Monitoring of spatial properties is more expensive. These
algorithms, formally described in [13], are based on a variations of the classical
Floyd-Warshall algorithm. The number of operations to perform is polynomial
on the size of the model times the length of the signal.

3.3 Application to Stochastic Systems

The analysis of spatio-temporal properties can be applied also on stochastic
systems considering methodologies as Statistical Model Checking [74] (SMC).
SMC combines simulation of the stochastic model (i.e. an algorithm that samples
traces according to the probability distribution of the model in the Skorokhod
space) with a monitoring routine for the property φ. Stochastic systems induce
a probability measure on the space of all possible traces (i.e. on the so-called
Skorokhod space, the space of càdlàg functions, which are piecewise continuous
functions of time, taking real values). If we define a stochastic process M =(T ,A, µ), where T is a trajectory space and µ is a probability measure on a
σ-algebra A of T , a quantity for measuring how a certain STREL formula ϕ
is satisfied by M is the satisfaction probability S(ϕ, t), i.e. the probability that
a trajectory generated by the stochastic process M satisfies the formula ϕ at
the time t: E[s(ϕ, ξ, t)] = ∫ξ∈T s(ϕ, ξ, t)dµ(ξ) where s(ϕ, ξ, t) = 1 if (ξ, t) ⊧ ϕ
and 0 otherwise. The quantitative counterpart of the satisfaction probability is
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SSTL Syntax

' ∶= µ � ¬' � '1 ∧'2 � '1 U[t1,t2] '2 � �[d1,d2]' � '1 �[d1,d2] '2

In addition F[t1,t2]' ∶= U[t1,t2]', G[t1,t2]' ∶= ¬F[t1,t2]¬', �'[d1,d2] ∶= ¬�¬[d1,d2] '.
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Computational consideration

• Temporal operators: like in STL monitoring [1] is linear in the length of 
the signal times the number of locations in the spatial model. 

• Spatial properties are more expensive, they are based on a variations 
of the classical Floyd-Warshall algorithm. 
The number of operations to perform is quadratic for the reach 
operator and cubic for the escape

[1] O. Maler, T. Ferrére, and D. Nickovic. Efficient Robust Monitoring for STL. In Proc.CAV 2010


