PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2012/2013

12 giugno 2013

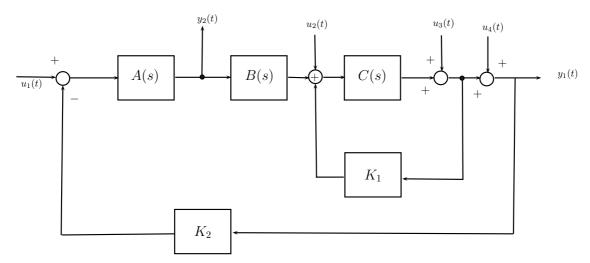
nome e cognome: numero di matricola: prova d'esame da CFU : ☐6 CFU	□9 CFU		
Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi. La chiarezza e precisione nelle risposte sarà oggetto di valutazione.			

IMPORTANTE: coloro i quali sostengono la prova d'esame corrispondente a 6 CFU devono risolvere soltanto gli esercizi della PARTE 1 e barrare la PARTE 2.

Chi invece sostiene la prova d'esame corrispondente a 9 CFU deve risolvere sia gli esercizi di PARTE 1 che gli esercizi di PARTE 2.

PARTE 1:		

Si faccia riferimento alla figura



dove A(s), B(s) e C(s) sono funzioni di trasferimento strettamente proprie e K_1 e K_2 numeri reali.

Domanda 1.1. Si calcoli la funzione di trasferimento del sistema tra l'ingresso u_2 e l'uscita y_1 .

Domanda 1.2. Si calcoli la funzione di trasferimento del sistema tra l'ingresso u_3 e l'uscita y_1 .

Domanda 1.3. Si dica (motivando la risposta) se fra i blocchi A(s), B(s), C(s) ce n'è uno (o più di uno) la cui instabilità comporta necessariamente l'instabilità del sistema complessivo.

Si consideri il sistema non lineare a tempo continuo descritto dalle equazioni di stato seguenti:

$$\begin{cases} \dot{x}_1(t) &= \frac{\alpha}{2} - x_1(t) + u(t) \\ \dot{x}_2(t) &= x_3(t) \\ \dot{x}_3(t) &= 1 - \frac{\alpha}{x_1(t)} - x_3(t) \\ y(t) &= x_2(t) \end{cases}$$

dove $\alpha > 0$.

Domanda 2.1. Si dimostri che l'unico ingresso **costante** per il quale vi può essere equilibrio è $u(t) = \bar{u} = \frac{\alpha}{2}, \forall t \geq 0$.

Domanda 2.2.

Si dimostri che in corrispondenza dell'ingresso costante $u(t) = \bar{u} = \frac{\alpha}{2}, \forall t \geq 0$ il sistema ammette infiniti stati (e corrispondenti uscite) di equilibrio e li si determinino.

Si consideri un generico sistema dinamico lineare a tempo continuo, con ingresso scalare u(t) ed uscita scalare y(t), descritto dalla funzione di trasferimento G(s):

$$Y(s) = G(s) U(s)$$

Domanda 3.1. Per $G(s) = \frac{s-2}{s^2+3s+2}$ e per u(t) = 1(t-2) si dica, motivando la risposta, se l'uscita ammette un valore di regime e in caso affermativo lo si calcoli. Si assumano condizioni iniziali nulle.

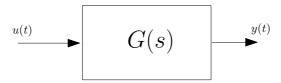
Domanda 3.2. Sempre per $G(s) = \frac{s-2}{s^2+3s+2}$ si determini l'andamento nel tempo dell'uscita y(t) a partire da condizioni iniziali nulle, a fronte dell'ingresso $u(t) = e^{2t}1(t)$.

Domanda 3.3. Si dimostri che nel caso in cui G(s) sia una **generica** funzione di trasferimento asintoticamente stabile avente uno zero in $s = \alpha > 0$, l'uscita a regime è nulla a fronte dell'ingresso esponenzialmente divergente $u(t) = e^{\alpha t} 1(t)$.

Si consideri il sistema dinamico a tempo continuo descritto dalla funzione di trasferimento seguente:

$$G(s) = 10 \cdot \frac{(4+0.1\,s+s^2)}{(10+101\,s+10\,s^2)}$$

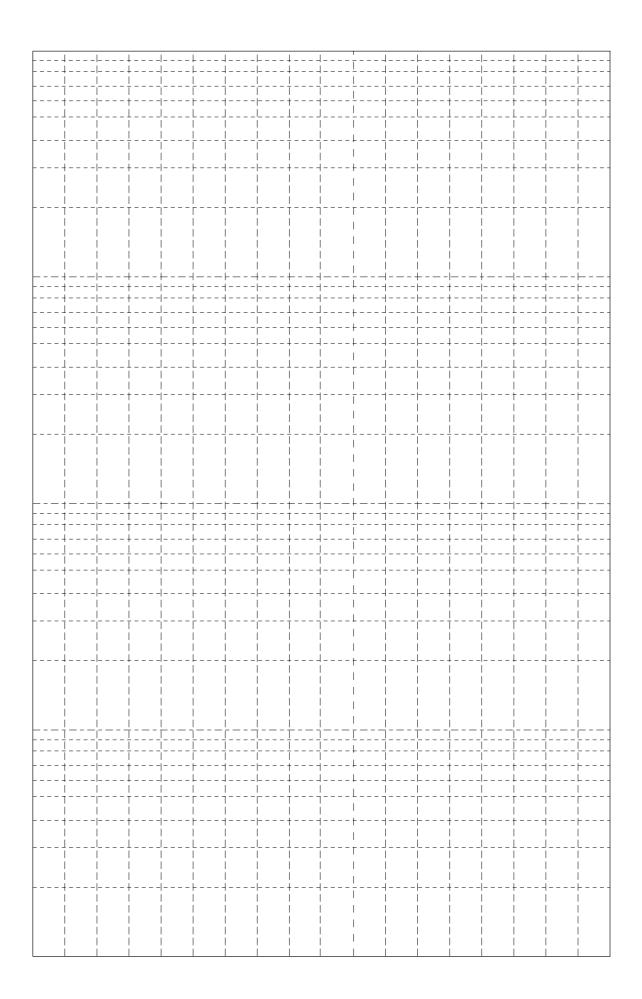
Domanda 4.1. Si traccino i diagrammi asintotici di Bode della risposta in frequenza del sistema, utilizzando la carta semi-logaritmica a disposizione nella pagina seguente.



Domanda 4.2. Sfruttando il teorema della risposta in frequenza, si determini l'espressione analitica della risposta a regime $y_{\text{regime}}(t)$ del sistema descritto dalla funzione di trasferimento G(s), nei seguenti casi, in cui il segnale d'ingresso è:

- 1. $u(t) = \cos(2t) \cdot 1(t)$
- 2. $u(t) = 2 \cdot \sin(10t) \cdot 1(t)$
- 3. u(t) = 1(t)

NB: non è necessario aver risposto alla precedente domanda 4.1 per poter rispondere alla domanda 4.2.



Si faccia riferimento allo schema a blocchi seguente

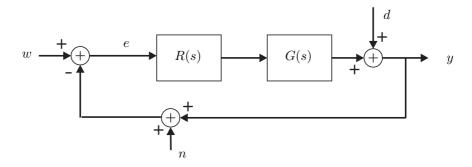
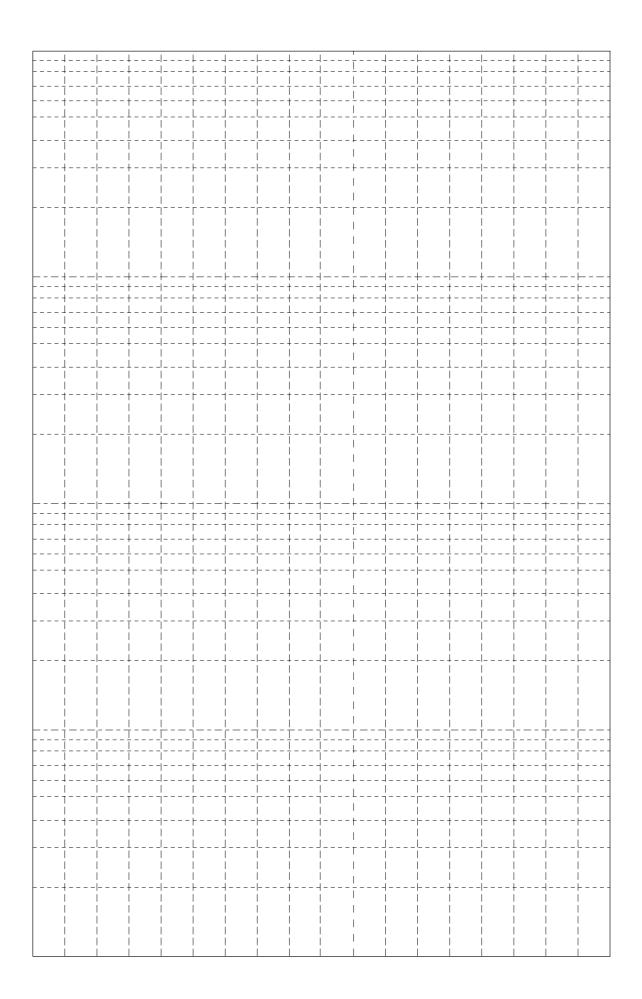


Figura 1: Progetto di un regolatore.

dove
$$G(s) = \frac{1 + \frac{1}{10} s}{(1+s)(1+10 s)}$$

Domanda 5.1. Ponendo d(t) = 0 e n(t) = 0 per ogni $t \ge 0$ e utilizzando i diagrammi asintotici di Bode (si usi, eventualmente, la carta logaritmica alla pagina seguente), si progetti un regolatore R(s) fisicamente realizzabile tale da soddisfare le seguenti specifiche:

- tempo d'assestamento al 1% nella risposta allo scalino unitario (a ciclo chiuso) non superiore a 10 s: $t_{a~1\%} \leq 10$ s;
- errore a regime nella risposta allo scalino unitario (a ciclo chiuso) inferiore a 1%;
- margine di fase non inferiore a 40°: $\varphi_m \ge 40^\circ$.



Domanda 5.2.

Si supponga ora R(s) = 1, facendo sempre riferimento allo schema a blocchi di figura 1. Che cosa si può dire, facendo uso di questo regolatore, della stabilità a ciclo chiuso del sistema? È applicabile il criterio di Bode?

Motivare le risposte.

 ${\bf NB}$: non è necessario aver risposto alla precedente domanda 5.1 per poter rispondere alla domanda 5.2.

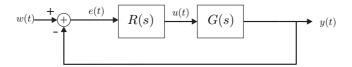
PARTE 2:

Si consideri la funzione di trasferimento

$$G(s) = \frac{4 + s^2}{s(1+s)^2}$$

Domanda 6.1. Tracciare il luogo delle radici diretto (LD) per il sistema descritto dalla FdT G(s), individuando

- eventuali asintoti e centroide;
- punti critici;
- eventuali intersezioni con gli assi (asse reale, asse immaginario) dei rami del luogo LD.



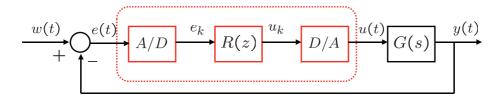
Il regolatore a tempo continuo descritto dalla FdT

$$R(s) = 25 \cdot \frac{(1+s)}{s(1+0.5 s)}$$

permette di ottenere, controllando un opportuno processo G(s) [di cui, per lo svolgimento dell'esercizio non è necessario conoscere l'espressione], le prestazioni seguenti:

- pulsazione di modulo unitario ad anello aperto: $\omega_c = 8.9 \text{ rad/s};$
- margine di fase $\varphi_m = 59^\circ$

Domanda 7.1



Facendo uso della **trasformata di "Tustin"** ottenere un regolatore a segnali campionati R(z), scegliendo opportunamente il periodo di campionamento, in modo da garantire il rispetto del teorema fondamentale del campionamento e da stimare per la diminuzione del margine di fase il valore massimo di

$$|\delta_{\varphi}| \leq 14^{\circ}$$

Motivare le scelte fatte.

f(t)	F(s)
$\delta(t)$	1
1(t)	$\frac{1}{s}$
$t\cdot 1(t)$	$\frac{1}{s^2}$
$t^2 \cdot 1(t)$	$\frac{2}{s^3}$
$e^{\alpha t} \cdot 1(t)$	$\frac{1}{s-\alpha}$
$t \cdot e^{\alpha t} \cdot 1(t)$	$\frac{1}{(s-\alpha)^2}$
$\sin\left(\omegat\right)\cdot 1(t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos{(\omega t)} \cdot 1(t)$	$\frac{s}{s^2 + \omega^2}$
$t \cdot \sin\left(\omega t\right) \cdot 1(t)$	$\frac{2\omegas}{\left(s^2+\omega^2\right)^2}$
$t \cdot \cos{(\omega t)} \cdot 1(t)$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$
$e^{\sigma t} \cdot \sin(\omega t) \cdot 1(t)$	$\frac{\omega}{\left(s-\sigma\right)^2+\omega^2}$
$e^{\sigma t} \cdot \cos(\omega t) \cdot 1(t)$	$\frac{s-\sigma}{\left(s-\sigma\right)^2+\omega^2}$
$t \cdot e^{\sigma t} \cdot \sin\left(\omega t\right) \cdot 1(t)$	$\frac{2\omega(s-\sigma)}{\left[\left(s-\sigma\right)^2+\omega^2\right]^2}$
$t \cdot e^{\sigma t} \cdot \cos\left(\omega t\right) \cdot 1(t)$	$\frac{(s-\sigma)^2 - \omega^2}{\left[(s-\sigma)^2 + \omega^2\right]^2}$

Tabella 1: Segnali e corrispondenti trasformate di Laplace

¢(1)	TI()
f(k)	F(z)
$\delta(k)$	1
1(k)	$\frac{z}{z-1}$
$k \cdot 1(k)$	$\frac{z}{\left(z-1\right)^2}$
$k^2 \cdot 1(k)$	$\frac{z\left(z+1\right)}{\left(z-1\right)^{3}}$
$a^k \cdot 1(k)$	$\frac{z}{z-a}$
$k \cdot a^k \cdot 1(k)$	$\frac{az}{\left(z-a\right)^2}$
$\sin{(\omega k)} \cdot 1(k)$	$\frac{z\sin\omega}{z^2 - 2z\cos\omega + 1}$
$\cos{(\omega k)} \cdot 1(k)$	$\frac{z^2 - z \cos \omega}{z^2 - 2z \cos \omega + 1}$
$a^k \cdot \sin(\omega k) \cdot 1(k)$	$\frac{a z \sin \omega}{z^2 - 2 a z \cos \omega + a^2}$
$a^k \cdot \cos(\omega k) \cdot 1(k)$	$\frac{z^2 - az\cos\omega}{z^2 - 2az\cos\omega + a^2}$
$\frac{k(k-1)}{2} \cdot 1(k-2)$	$\frac{z}{(z-1)^3}$
$\frac{k(k-1)}{2} \cdot a^{k-2} \cdot 1(k-2)$	$\frac{z}{(z-a)^3}$

Tabella 2: Segnali e corrispondenti Z-trasformate