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Modelling other random processes

- Fractals & Diffusion Limited Aggregates
- Percolation
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Diffusion Limited Aggregation

Electrodeposition:
cluster grown from a copper sulfate solution in an 
electrodeposition cell

Dielectric breakdown:
High voltage dielectric breakdown within a block of 
plexiglas

Several examples of formation of natural patterns showing common features:

These common features that can be captured by very simple models:
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Diffusion Limited Aggregation
• simple model of FRACTALS GROWTH,  initially proposed for 

irreversible colloidal aggregation, although it was quickly realized that the 
model is very widely applicable.

• by T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981)

REAL IMAGE (Atomic Field 
Microscopy) of a gold colloid 
of about 15 nm over a gel 
substrate

SIMULATION 
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DLA: algorithm
* Start with an immobile seed on 
the plane

* A walker is then launched from a 
random position far away and is 
allowed to diffuse

* If it touches the seed, it is 
immobilized instantly and becomes 
part of the aggregate

* We then launch similar walkers 
one-by-one and each of them 
stops upon hitting the cluster

* After launching a few hundred 
particles, a cluster with intricate 
branch structures results 

seed

a walker
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DLA: algorithm - details

• We launch walkers from a “launching circle” which 
inscribes the cluster

• They are discarded if they wander too far and go 
beyond a “killing circle”

• The diffusion is simulated by successive displacements in 
independent random directions

• At every step, the walker which would aggregate is 
checked to detect any overlapping with the particles on 
the cluster
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DLA: results

DLA: results

(mass M of the cluster = 
number of particles N)

lnN ∝ ln r

⇓

N ∝ rk

r
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DLA: interesting quantities
• in a “normal” 2D object: 

• FRACTAL DIMENSION: the number of 
particles       with respect to the maximum 
distance     of a particle of the cluster from 
its center of mass is                  , with  N ∝ r

Df

N

r

N ∝ r
2

1 < Df < 2
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DLA: algorithm - details II
• the simplest DLA models: diffusion on a 

lattice. On a square lattice, 4 adjacent 
sites are available for the diffusing particle to 
stick

• modification: the particle will stick with 
certain probability (the “sticking coefficient”) 
- to simulate somehow the surface tension

• another modification: with a sort of 
Brownian diffusion in the continuum
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DLA: results

DLA: results

Diffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html

3 of 9 23-11-2005 1:13

to see differences.

Although diffusion limited aggregation1 is a model for crystal growth, it is not necessarily an 
accurate one; it only works in certain limits. The first problem is that diffusion limited aggregation

does not include the effects of surface tension2; one way to include this feature would be to make 
a particle stick with a probability (different from one), called the sticking coefficient. I have included
this effect in my calculations. Another problem with diffusion-limited aggregation as a model for
crystal growth is that particles (or small hunks) cannot detach. Also diffusion-limited aggregation

only simulates the zero-density limit2 since the growth happens one particle at a time, rather than 
with bits containing a few or more particles. A way to fix this problem is to allow multiple
aggregates that also diffuse and break up.
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DLA: results

DLA: resultsDiffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html

4 of 9 23-11-2005 1:13

Figure 1. Aggregate on a square lattice with a sticking coefficient of 1.0

Figure 2. Aggregate on a square lattice with a sticking coefficient of 0.5

Diffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html

4 of 9 23-11-2005 1:13

Figure 1. Aggregate on a square lattice with a sticking coefficient of 1.0

Figure 2. Aggregate on a square lattice with a sticking coefficient of 0.5

Diffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html
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Figure 3. Aggregate on a square lattice with a sticking coefficient of 0.1

Figure 4. Aggregate on a square lattice with a sticking coefficient of 0.01

Diffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html

5 of 9 23-11-2005 1:13

Figure 3. Aggregate on a square lattice with a sticking coefficient of 0.1

Figure 4. Aggregate on a square lattice with a sticking coefficient of 0.01

Df → 2

as the sticking coeff. → 0
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Models of surface growth

modello
di Eden

modello di 
deposizione 
casuale

modello di 
deposizione 
balistica

see e.g.  Barabasi & Stanley, Fractal concepts in surface growth, Cambridge University Press
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Models of surface growth
The Eden model - algorithm:

Interesting quantities: 

Average height: 

Roughness:



Percolation
geometric connectivity in a stochastic system;
modeling threshold and transition phenomena

existence of a critical  occupation fraction Pc above which spanning 
clusters occur (in nature: mixtures of conducting/insulating spheres...; 
resistor networks..)  14



Percolation
- metal/insulator threshold behavior in resistor networks 
(discrete percolation) and in alloys (continuous percolation)

Other examples:
- fluid adsorption in a porous medium 
- spreading of a disease in a population
- spreading of a forest fire...
- liquid/glass transition...
- ...
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Percolation

L = 8    p = 0.25 L = 8    p = 0.50 L = 8    p = 0.60

Definitions:
p: occupation probability of each identity (site, bond)
Cluster:  group of identities (sites, bonds,...) connected by 
nearest neighboring bonds
Percolating clusters:  connecting two boundaries

which is the critical percolation threshold pc ?

Example of site percolation on a lattice:
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Percolation threshold

Percolazione 
verticale

Percolazione 
verticale

Percolazione 
orizzontale

Percolazione in 
entrambe le direzioni

Connection along one
fixed direction

Connection along one
(any, horizontal or vertical)
direction

Connection
in all directions

pc depends on the criteria (different possible):
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Percolation threshold
pc depends on the criteria (different possible):
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Monte Carlo approach

do i,j=1,L
r(i,j)=random(seed)
if r(i,j) < p then index (i,j) = -1
if r(i,j) > p then index (i,j) = 0

end do

use some algorithm 
of cluster labelling to identify  

the different clusters

fix L => Lattice 
description

fix p => Site (or bond) 
filling accordingly

Identification and 
characterization of the 
clusters

generation of many 
configurations for each p

data analysis;
account for size effect (vary L)! 
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Results
for different percolation criteria and different size
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Results
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Results
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Results
other interesting quantities
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Cluster labeling

L = 8    p = 0.25 L = 8    p = 0.50 L = 8    p = 0.60

The (non trivial) part of the model:
choose a smart algorithm to identify and label the clusters

made of adjacent occupied sites
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Hoshen- Kopelman algorithm for clusters labelling
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(1):  span all the cells 
(here:  left => right
and bottom => up) 
and start labeling

(2):  attribute the minimum cluster label 
to cells neighboring to different clusters

(3): refine labeling

Cluster labelling
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Modello di Percolazione Dinamica delle Fluttuazioni di Conduttività
nel Silicio Amorfo Idrogenato

L.M. Lust e J. Kakalios, Phys. Rev. Lett. 75, 11 (1995)

Fluttuazioni di conduttività nel silicio amorfo idrogenato (a-Si:H) sono simulate utilizzando
un modello dinamico di diffusione di resistenze in un reticolo in condizioni di soglia di

percolazione. Una frazione di siti di reticolo è designata come una trappola tale per cui quando
un resistore diffonde in una di esse, rimane localizzato per un periodo finito di tempo.  

Fluttuazioni di conduttività
misurate sperimentalmente

Fluttuazioni di tipo “telegrafico”

Film di silicio
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A model of a-Si:H from
https://doi.org/10.1016/j.commatsci.2018.08.027

Example of application 
in solid state physics

Dynamical Percolation Model of Conductance Fluctuations in Hydrogenated Amorphous Silicon

https://doi.org/10.1016/j.commatsci.2018.08.027


Risultato sperimentale Risultato simulato

Rete casuale di resistenze
con P ~ PC (fisso)

Configurazione dopo
un riarrangiamento
casuale dei legami

Diffusione H: Creazione/distruzione
canali di conduttività
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Percolation on different lattices

 28


