clc clear all close all % Initialization l = 0.1; y = 0; x = -0.5; theta = -30 *pi/180; % Heading - P controller % ------------------------ Kheading_p = 0.2; Kheading_d = 0.0; Kheading_i = 0.1; headingError_prev = 0; integralHeading = 0; dphi = 0; % Forward motion - PD controller % ------------------------ v = 0.0; dv = 0; Kforward_p = 1; Kforward_d = 0.5; Kforward_i = 0.1; distanceError_prev = 0; integralForward = 0; % Square trajectory R = 1; x0 = 1; y0 = 0; zeta = pi; dzeta = -0.2; aheadzeta = -pi/20; % Simulation dt = 0.1; t_end = 30; t = 0; t_array = 0:dt:t_end; nSteps = numel(t_array); % Initialize results array xs = zeros(nSteps,1); ys = zeros(nSteps,1); vRs = zeros(nSteps,1); vLs = zeros(nSteps,1); headingError_array = zeros(nSteps,1); distanceError_array = zeros(nSteps,1); wLcoords = zeros(nSteps,2); wRcoords = zeros(nSteps,2); for ii = 1:nSteps % We need to correct the angle theta so it stays between -pi and +pi to % avoid errors. if theta < - pi theta = theta + 2*pi; end if theta > + pi theta = theta - 2*pi; end % Square trajectory % --------------------------------------------------------------------- Q = [x0; y0] + R*[cos(zeta); sin(zeta)] * min(abs(1/cos(zeta)),abs(1/sin(zeta))); Qahead = [x0; y0] + R*[cos(zeta + aheadzeta); sin(zeta + aheadzeta)] * min(abs(1/cos(zeta + aheadzeta)),abs(1/sin(zeta + aheadzeta))); % CONTROL % ===================================================================== % Forward drive control % --------------------------------------------------------------------- % Calculate the error as the normal distance from the wheelbase to the % point Q on the trajectory. % Calculate the distance in local frame OQ_loc = [cos(theta) sin(theta); -sin(theta) cos(theta)]*(Q-[x;y]); distanceError = OQ_loc(1); % Get the x value in the local frame % Calculate the derivative, and integral errors derivativeForward = (distanceError - distanceError_prev)/dt; integralForward = integralForward + distanceError * dt; % Calculate the velocity control of the PID velocityError = Kforward_p * distanceError + Kforward_d * derivativeForward + Kforward_i * integralForward; vcontrolled = velocityError; distanceError_prev = distanceError; % Heading control % --------------------------------------------------------------------- % The error is the angular difference between the orientation of the % robot and the desired heading direction (both in world frame) desiredHeading = atan2(Qahead(2)-y, Qahead(1)-x); headingError = desiredHeading - theta; % We need to correct the angle headingError so it stays between -pi and % +pi to avoid errors. if headingError > pi headingError = headingError - 2*pi; end if headingError < -pi headingError = headingError + 2*pi; end % Calculate the derivative, and integral errors derivativeHeading = (headingError - headingError_prev)/dt; integralHeading = integralHeading + headingError * dt; % Calculate the heading control of the PID delta = Kheading_p * headingError + Kheading_d * derivativeHeading + Kheading_i * integralHeading; % Control the velocity vector % --------------------------------------------------------------------- % Now we can apply the base velocity v and the delta velocity to the % wheels. The composition of the two velocities (v and delta) produces % the motion of the robot, in the correct direction. v_R = v + delta; v_L = v - delta; headingError_prev = headingError; % KINEMATICS MODEL % ===================================================================== dq = [1/2*cos(theta) ; 1/2*sin(theta) ; 1/(2*l)] * v_R + ... [1/2*cos(theta) ; 1/2*sin(theta) ; -1/(2*l)] * v_L; dx = dq(1); dy = dq(2); dtheta = dq(3); % Time integration % --------------------------------------------------------------------- x = x + dx*dt; y = y + dy*dt; theta = theta + dtheta*dt; zeta = zeta + dzeta*dt; v = vcontrolled; % Calculate position of wheels % --------------------------------------------------------------------- xwL = x + l*cos(theta+pi/2); ywL = y + l*sin(theta+pi/2); xwR = x + l*cos(theta-pi/2); ywR = y + l*sin(theta-pi/2); % Save in array % --------------------------------------------------------------------- xs(ii) = x; ys(ii) = y; vRs(ii) = v_R; vLs(ii) = v_L; wLcoords(ii,:) = [xwL ywL]; wRcoords(ii,:) = [xwR ywR]; headingError_array(ii) = headingError; distanceError_array(ii) = distanceError; % Plot % --------------------------------------------------------------------- if mod(ii,1) == 0 cla x2 = x + l*cos(theta); % "fictional" front of the robot y2 = y + l*sin(theta); plot([x x2],[y y2],'lineWidth',2,'color',[0 0.4470 0.7410]); % Plots the robot body hold on; plot(Q(1),Q(2),'ok'); % Plots the target point plot(Qahead(1),Qahead(2),'ok'); % Plots the target point plot([x Qahead(1)],[y Qahead(2)],'-k'); % Plots line to the target point plot([xwR xwL],[ywR ywL],'lineWidth',2,'color',[0 0.4470 0.7410]); % Plots the wheel axis plot(xs(1:ii),ys(1:ii),'color',[0.8500 0.3250 0.0980]); % Plots the robot trajectory plot(wLcoords(1:ii,1),wLcoords(1:ii,2),'color',[0.9290 0.6940 0.1250]); % Plot the left wheel trajectory plot(wRcoords(1:ii,1),wRcoords(1:ii,2),'color',[0.9290 0.6940 0.1250]); % Plot the right wheel trajectory plot([x0-R x0+R x0+R x0-R x0-R],[y0+R y0+R y0-R y0-R y0+R],':b'); % Plot desired square path xlim([-1.0 2.5]) ylim([-1.5 1.5]) t = t_array(ii); title(sprintf('Time: %.f s',t)) daspect([1 1 1]) drawnow end end figure plot(t_array, headingError_array); hold on plot(t_array, distanceError_array); xlabel('Time [s]') grid on title('Error');