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For the spherical triangle we have to use the equations
in (2.7), which are now simply:
sin Bsina =sinb
cos Bsina
=cosbsinc,

cosa=cosbcosc.

The first equation gives the sine of B:
sin B=sinb/sina .

Dividing the second equation by the third one, we get
the cosine of B:

cos B=tanc/tana.

And the tangent is obtained by dividing the first equation
by the second one:

tan B =tanb/sinc .

The third equation is the equivalent of the Pythagorean
theorem for rectangular triangles.

Example 2.2 The Coordinates of New York City

The geographic coordinates are 41° north and 74° west
of Greenwich, or ¢ = +41°, A = —74°. In time units,
the longitude would be 74/15h =4 h 56 min west of
Greenwich. The geocentric latitude is obtained from

tan ¢’ bzt ) 6,356,752 2tan41°
n = —taingpg=| —
a? 6,378,137

=0.86347 = ¢ =40°48'34".

The geocentric latitude is 11’ 26” less than the
geographic latitude.

Example 2.3 | The angular separafion of two objects
in the sky is quite different from their coordinate differ-

ence.

Suppose the coordinates of a star A are «; = 10h, §; =
70° and those of another star B, @y = 11 h, §, = 80°.

Using the Pythagorean theorem for plane triangles,
we would get

(15°)2+(10°)2 = 18° . <5—
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But if e use the third equation in (2.7), we get
p Sl dadd

coSd = cos(a; —ap)
—r———————

x sin(90° — 8;) sin(90° — 8,) \ 2
~+c0s(90° — 81) cos(90° — 85) A
= cos(a] —a2) COs 81 COS 87
~+sin 81 sin & 81
= cos 15° cos 70° cos 80°
+ sin 70° sin 80° ‘
=0.983,

which yields d = 10.6°. The figure shows why the result
obtained frommagorean theorem is so far from
being correct: hour circles (circles with o = constant)
approach each other towards the poles and their angu-
lar separation becomes smaller, though the coordinate
difference remains the same.

Example 2.4 Find the altitude and azimuth of the
Moon in Helsinki at midnight at the beginning of 1996.

The right ascension is ¢« =2h 55min 7s =2.9186h
and declination § = 14° 42’ =14.70°, the sidereal
time is ® =6h 19min 26s =6.3239h and latitude
¢ =60.16°.

The hour angle is h = @ — o = 3.4053 h = 51.08°.
Next we apply the equations in (2.16):

sin A cos a = sin 51.08° cos 14.70° = 0.7526 ,
cos A cos a = cos 51.08° cos 14.70° sin 60.16°
—sin 14.70° cos 60.16°
=0.4008 ,
sina = cos 51.08° cos 14.70° cos 60.16°
+sin 14.70° sin 60.16°

Thus the altitude is a = 31.5°. To find the azimuth we
have to compute its sine and cosine:

sin A =0.8827, cosA=0.4701.

Hence the azimuth is A =62.0°. The Moon is in the
southwest, 31.5 degrees above the horizon. Actually,
this would be the direction if the Moon were infinitely
distant.

e

d =\ 152, contas +(1¢)
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2.16 Examples

Example 2.5 Find the top tric place of the Moon
in the case of the previous example:

The geocentric distance of the Moon at that time is
R = 62.58 equatorial radii of the Earth. Forsimplicity,
we can assume that the Earth is spherical.

We set up a rectangular coordinate frame in such
a way that the z axis points towards the celestialpole
and the observing site is in the xz plane. When the radius
of the Earth is used as the unit of distance, the radius
vector of the observing site is

cos ¢ 0.4976
ro = 0 = 0
sin ¢ 0.8674

The radius vector of the Moon is

cosdcosh 0.6077
r=R| —cosésinh | =62.58 | —0.7526
sin 8 0.2538

The topocentric place of the Moon is

37.53
—47.10
15.02

=r—ry=

We divide this vector by its length 62.07 to get the unit
vector e pointing to the direction of the Moon. This can
be expressed in terms of the topocentric coordinates
8 and h':

0.6047 cos & cos i’
e=1] —0.7588 | = | —cosé’sink’ | ,
0.2420 sin &’

which gives 8’ = 14.00° and A’ = 51.45°. Next we can
calculate the altitude and azimuth as in the previous
example, and we get a = 30.7°, A = 61.9°.

Another way to find the altitude is to take the scalar
product of the vectors e and ry, which gives the cosine
of the zenith distance:

cosz=e-ry=0.6047 x 0.4976 +0.2420 x 0.8674
=0.5108,

whence z = 59.3° and @ = 90° — z = 30.7°. We see that
this is 0.8° less than the geocentric altitude; i.e. the
difference is more than the apparent diameter of the
Moon. |

1l

}Example 2.6 l The coorrjginates of Arcturus are o =

141 15.7 min, § = 19°(11")Find the sidereal time at the
moment Arcturus rises Or sets in Boston (¢ = 42° 19).
Neglecting refraction, we get

QM—%QQC; oL~ 0O
cos(f)= — tan 19° 11’ tan 42° 19/
= —0.348 x0.910 = —0.317.

~

e —

Hence, h = +108.47° =7 h 14 min. The more accurate

result is

cosh = —tan19° 11’ tan42° 19’
sin 35’
~ cos19° 11 cos 42°19/
= —0.331,

whence 4 = £109.35° = 7h 17 min. The plus and mi-
nus signs correspond to setting ant rising, respectively.
When Arcturus rises, the sidereal time is

O =a+h=14h16min—7h 17 min
=6h 59 min

and when it sets, the sidereal time is

® =14h 16 min+7h 17 min
=21h33min.

Note that the result is independent of the date: a star
rises and sets at the same sidereal time every day.

‘ Example 2.7 l The proper motion of Aldebaran is u =
S .
0.20”/a and parallax = = 0.048". The spectral line of

iron at A = 440.5 nm is displaced 0.079 nm towards the

< = 7 Cpc]
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red. What are the radial and tangential velocities and
the total velocity?
The radial velocity is found from

V-
s -

Al U
L ¢ <.
0.079 g 4
= =54
= v 1205 3x10°m/s=5.4%x10"m/s
=54km/s.

The tangential velocity is now given by (2.40), since
i and 7 are in correct units:

4.74 % 0.20

vw=4T4ur =4.74u /7 = 0.043

=20km/s .

The total velocity is

v=1/v24v? = /542 4+ 202 km/s = 58 km/s .

Example 2.8 Find the local time in Paris (longitude
A =2°)at 12:00.

Local time coincides with the zonal time along the
meridian 15° east of Greenwich. Longitude difference
15° —2°=13° equals (13°/15°) x 60 min = 52 min-
utes. The local time is 52 minutes less than the official
time, or 11:08. This is mean solar time. To find the
true solar time, we must add the equation of time. In
early February, E.T. = —14 min and the true solar time
is 11:08 — 14 min = 10:54. At the beginning of Novem-
ber, ET = +16 min and the solar time would be 11:24.
Since —14 min and +16 min are the extreme values of
E.T., the true solar time is in the range 10:54-11:24,
the exact time depending on the day of the year. Dur-
ing daylight saving time, we must still subtract one hour
from these times.

Example 2.9 Estimating Sidereal Time

Since the sidereal time is the hour angle of the vernal
equinox V, it is Oh when V' culminates or transits the
south meridian. At the moment of the vernal equinox,
the Sun is in the direction of V and thus culminates at
the same time as V. So the sidereal time at 12:00 local
solar time is 0:00, and at the time of the vernal equinox,
we have

®=T+12h,

434 X upuks Ol pon Tl

where T is the local solar time. This is accurate within
a couple of minutes. Since the sidereal time runs about
4 minutes fast a day, the sidereal time, n days after the
vernal equinox, is

O~T+12h+n x4 min.

At autumnal equinox V' culminates at 0:00 local time,
and sidereal and solar times are equal.

Let us try to find the sidereal time in Paris on April
15 at 22:00, Central European standard time (=23:00
daylight saving time). The vernal equinox occurs on the
average on March 21; thus the time elapsed since the
equinox is 10+ 15 = 25 days. Neglecting the equation
of time, the local time T is 52 minutes less than the
zonal time. Hence

®=T+12h+n x4 min
=21h8min+12h+25 x4 min
=34h 48 min = 10h 48 min .

The time of the vernal equinox can vary about one
day in either direction from the average. Therefore the
accuracy of the result is roughly 5 min.

Example 2.10 Find the rising time of Arcturus in
Boston on January 10.

In Example 2.6 we found the sidereal time of this event,
® = 6h 59 min. Since we do not know the year, we
use the rough method of Example 2.9. The time be-
tween January 1 and vernal equinox (March 21) is about
70 days. Thus the sidereal time on January 1 is

O~T+12h—70x4min=T+7h 20 min,
from which

T =0 —-7h20min =6h 59 min— 7 h 20 min
=30h 59 min—7h 20 min =23 h 39 min.

The longitude of Boston is 71° W, and the Eastern stan-
dard time is (4°/15°) x 60 min = 16 minutes less, or
23:23.

Example 2.11 Find the sidereal time in Helsinki on
April 15, 1982 at 20:00 UT.
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The Julian date is J = 2,445,074.5 and
7= 2,445,074.5—-2,451,545.0
B 36,525
= —0.1771526.

Next, we use (2.47) to find the sidereal time at O UT:

®p = —1,506,521.0s = —418h 28 min41s
=13h 31 min 19s.

Since the sidereal time runs 3 min 57 s fast a day as
compared to the solar time, the difference in 20 hours
will be

20 , .
— x3min57s=3min 17s,
24

and the sidereal time at 20 UT willbe 13 h31 min 19 s+
20h 3 min 17 s =33 h 34 min 36 s = 9 h 34 min 365s.

At the same time (at 22:00 Finnish time, 23:00 day-
light saving time) in Helsinki the sidereal time is ahead
of this by the amount corresponding to the longitude
of Helsinki, 25°, i.e. 1 h 40 min 00 s. Thus the sidereal
time is 11 h 14 min 365s.

2.17 Exercises

Exercise 2.1 Find the distance between Helsinki and
Seattle along the shortest route. Where is the northern-
most point of the route, and what is its distance from the
North Pole? The longitude of Helsinki is 25°E and lati-
tude 60°; the longitude of Seattle is 122°W and latitude
48°. Assume that the radius of the Earth is 6370 km.

Exercise 2.2 A star crosses the south meridian at an

(\ altitude of 85°, and the north meridian at 45°. Find the

declination of the star and the latitude of the observer.

I'e ] T
Lot ) ,
Exercise2.3| Where are the following statements true?

a) Castor (o Gem, declination § = 31°53) is circumpo-
lar.

b) Betelgeuze (o Ori, § = 7° 24’) culminates at zenith.

¢) aCen (§ = —60° 50') rises to an altitude of 30°.

Exercise 2.4 In his Old Man and the Sea Hemingway

wrote:
It was dark now as it becomes dark quickly after
the Sun sets in September. He lay against the
worn wood of the bow and rested all that he
could. The first stars were out. He did not know
the name of Rigel but he saw it and knew soon
they would all be out and he would have all his
distant friends.

How was Hemingway’s astronomy?

Exercise 2.5 The right ascension of the Sun on June 1,
1983, was 4 h 35 min and declination 22° 00’. Find the
ecliptic longitude and latitude of the Sun and the Earth.

Exercise 2.6 Show that on the Arctic Circle the Sun

a) rises at the same sidereal time @y between Decem-
ber 22 and June 22,

b) sets at the same sidereal time ®( between June 22
and December 22.

What is ©y?

Exercise 2.7 Derive the equations (2.24), which give
the galactic coordinates as functions of the ecliptic
coordinates.

Exercise 2.8 The coordinates of Sirius for the epoch
1900.0 were a =6h 40min 45s, §=—16° 35,
and the components of its proper motion were
o = —0.037 s/a, us = —1.12"a~!. Find the coordi-
nates of Sirius for 2000.0. The precession must also be
taken into account.

Exercise 2.9 The parallax of Sirius is 0.375” and
radial velocity —8 km/s.

a) What are the tangential and total velocities of Sirius?
(See also the previous exercise.)

b) When will Sirius be closest to the Sun?

¢) What will its proper motion and parallax be then?
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the vernal equinox measured along the equator. This
angle is the right ascension o (or R.A.) of the object,
measured counterclockwise from V.

Since declination and right ascension are indepen-
dent of the position of the observer and the motions of
the Earth, they can be used in star maps and catalogues.
As will be explained later, in many telescopes one of the
axes (the hour axis) is parallel to the rotation axis of the
Earth. The other axis (declination axis) is perpendicular
to the hour axis. Declinations can be read immediately
on the declination dial of the telescope. But the zero
point of the right ascension seems to move in the sky,
due to the diurnal rotation of the Earth. So we cannot
use the right ascension to find an object unless we know
the direction of the vernal equinox.

Since the south meridian is a well-defined line in
the sky, we use it to establish a local coordinate cor-
responding to the right ascension. The hour angle is
measured clockwise from the meridian. The hour angle
of an object is not a constant, but grows at a steady rate,
due to the Earth’s rotation. The hour angle of the ver-
nal equinox is called the sidereal time ©. Figure 2.11

shows that for any object,
®O=h+a, (2.11)

where h is the object’s hour angle and « its right
ascension.

Celestial pole

Fig.2.11. The sidereal time © (the hour angle of the vernal
equinox) equals the hour angle plus right ascension of any
object

Since hour angle and sidereal time change with time
at a constant rate, it is practical to express them in
units of time. Also the closely related right ascen-
sion is customarily given in time units. Thus 24 hours
equals 360 degrees, 1 hour = 15 degrees, 1 minute of
time = 15 minutes of arc, and so on. All these quantities
are in the range [0 h, 24 h).

In practice, the sidereal time can be readily de-
termined by pointing the telescope to an easily
recognisable star and reading its hour angle on the hour
angle dial of the telescope. The right ascension found
in a catalogue is then added to the hour angle, giving
the sidereal time at the moment of observation. For any
other time, the sidereal time can be evaluated by adding
the time elapsed since the observation. If we want to
be accurate, we have to use a sidereal clock to measure
time intervals. A sidereal clock runs 3 min 56.56 s fast
a day as compared with an ordinary solar time clock:

24 h solar time
=24 h 3 min 56.56 s sidereal time .

The reason for this is the orbital motion of the Earth:
stars seem to move faster than the Sun across the sky;
hence, a sidereal clock must run faster. (This is further
discussed in Sect. 2.13.)

Transformations between the horizontal and equa-
torial frames are easily obtained from spherical

(2.12)

Tt Z
7 800\ ‘%u
Yo 4\\
E

Fig.2.12. The nautical triangle for deriving transformations
between the horizontal and equatorial frames
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2.5 The Equatorial System

trigonometry. Comparing Figs. 2.6 and 2.12, we find
that we must make the following substitutions into (2.5):

Y=90°—-A,
v =90°—h, Xx=90°—-¢.
The angle ¢ in the last equation is the altitude of the

celestial pole, or the latitude of the observer. Making
the substitutions, we get

6=a,

2.13
o —s. (2.13)

sinhcosd =sinAcosa,
coshcosd =cos Acosasing+sinacos¢, (2.14)
sind = —cos Acosacos¢-+sinasing .
The inverse transformation is obtained by substitut-
ing

Yv=90°—h, 6=94, (2.15)
Y =90°-A, 0 =a, x=-(90°—¢),
whence

sin Acosa=sinhcos?d,

cos Acosa=coshcosdsing—sindcos¢p, (2.16)

sina=coshcos§cos¢+sindsing .

Since the altitude and declination are in the range
[—90°, +90°], it suffices to know the sine of one of
these angles to determine the other angle unambigu-
ously. Azimuth and right ascension, however, can have
any value from 0° to 360° (or from Oh to 24 h), and
to solve for them, we have to know both the sine and
cosine to choose the correct quadrant.

The altitude of an object is greatest when it is on
the south meridian (the great circle arc between the
celestial poles containing the zenith). At that moment
(called upper culmination, or transit) its hour angle is
0 h. At the lower culmination the hour angleis A =12 h.
When i = 0h, we get from the last equation in (2.16)

sina = cos§ cos ¢ +sindsin ¢
=cos(¢p—8) =sin(90° — ¢ +6) .

Thus the altitude at the upper culmination is

90°—¢ 44, if the object culminates
o = south of zenith , @17
90°+¢—4, if the object culminates

north of zenith .

|19

Fig. 2.13. The altitude of a circumpolar star at upper and lower
culmination

The altitude is positive for objects with § > ¢ —90°.
Objects with declinations less than ¢ — 90° can never be
seen at the latitude ¢. On the other hand, when 2 =12h
we have

sina = — cos § cos ¢+ sin § sin ¢
= —cos(6+¢) =sin(§ + ¢ —90°) ,
and the altitude at the lower culmination is

min = 8+ ¢ —90° . (2.18)

Stars with § > 90° — ¢ will never set. For example, in
Helsinki (¢ =~ 60°), all stars with a declination higher
than 30° are such circumpolar stars. And stars with
a declination less than —30° can never be observed
there.

We shall now study briefly how the (e, 6) frame can
be established by observations. Suppose we observe
a circumpolar star at its upper and lower culmination
(Fig.2.13). At the upper transit, its altitude iS amax =
90° — ¢+ & and at the lower transit, ay;, = 8 + ¢ —90°.
Eliminating the latitude, we get

1
5= E(amin + Gmax) - (2.19)

Thus we get the same value for the declination, inde-
pendent of the observer’s location. Therefore we can
use it as one of the absolute coordinates. From the same
observations, we can also determine the direction of the
celestial pole as well as the latitude of the observer. Af-
ter these preparations, we can find the declination of
any object by measuring its distance from the pole.
The equator can be now defined as the great circle
all of whose points are at a distance of 90° from the



Fig. 2.14. The altitude of a circumr
upper and lower culmination
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pole. The zero point of the second coordinate (right
ascension) can then be defined as the point where the
Sun seems to cross the equator from south to north.

In practice the situation is more complicated, since
the direction of Earth’s rotation axis changes due to per-
turbations. Therefore the equatorial coordinate frame is
nowadays defined using certain standard objects the po-
sitions of which are known very accurately. The best
accuracy is achieved by using the most distant objects,
quasars (Sect. 18.7), which remain in the same direction
over very long intervals of time.

@Rising and Setting Times)

From the last equation (2.16), we find the hour angle 2
of an object at the moment its altitude is a:

A sina
‘| cosh=-—tanétangp+ ——.
cos dcos ¢

This equation can be used for computing rising and

(2.20)

setting times. Then a =0 and the hour angles cor-

résponding to rising ‘and sefting times are obtained

from O,Q;T%F’F\'Q, - ¢
h=—tané - B
cos tan tanL Q&Tof Cadlin

If the right ascension « is known, we can use (2.11)
to compute the sidereal time @. (Later, in Sect.2.14,
we shall study how to transform the sidereal time to
ordinary time.)

If higher accuracy is needed, we have to correct for
the refraction of light caused by the atmosphere of the
Earth (see Sect. 2.9). In that case, we must use a small
negative value for a in (2.20). This value, the horizontal
refraction, is about —34/.

The rising and setting times of the Sun given in al-
manacs refer to the time when the upper edge of the
Solar disk just touches the horizon. To compute these
times, we must set a = —50' (= —34'—16").

Also for the Moon almanacs give rising and setting
times of the upper edge of the disk. Since the distance
of the Moon varies considerably, we cannot use any
constant value for the radius of the Moon, but it has to
be calculated separately each time. The Moon is also so
close that its direction with respect to the background
stars varies due to the rotation of the Earth. Thus the
rising and setting times of the Moon are defined as the

(2.21)

&, A olkwe e O
é/. W dedlimamiome o QM(\SX)(]‘Q S

instants when the altitude of the Moon is —34' —s + 7,
where s is the apparent radius (15.5” on the average) and
7 the parallax (57 on the average). The latter quantity
is explained in Sect. 2.9.

Finding the rising and setting times of the Sun, plan-
ets and especially the Moon is complicated by their
motion with respect to the stars. We can use, for exam-
ple, the coordinates for the noon to calculate estimates
for the rising and setting times, which can then be used to
interpolate more accurate coordinates for the rising and
setting times. When these coordinates are used to com-
pute new times a pretty good accuracy can be obtained.
The iteration can be repeated if even higher precision is
required.

2.7 The Ecliptic System

The orbital plane of the Earth, the ecliptic, is the refer-
ence plane of another important coordinate frame. The
ecliptic can also be defined as the great circle on the
celestial sphere described by the Sun in the course of
one year. This frame is used mainly for planets and other
bodies of the solar system. The orientation of the Earth’s
equatorial plane remains invariant, unaffected by an-
nual motion. In spring, the Sun appears to move from
the southern hemisphere to the northern one (Fig. 2.14).
The time of this remarkable event as well as the direc-
tion to the Sun at that moment are called the vernal
equinox. At the vernal equinox, the Sun’s right ascen-
sion and declination are zero. The equatorial and ecliptic

Autumnal equinox

Summer
solstice

Winter
solstice

equinox Ecliptic

Fig.2.14. The ecliptic geocentric (A, 8) and heliocentric
(A, B) coordinates are equal only if the object is very far
away. The geocentric coordinates depend also on the Earth’s
position in its orbit
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