The Non-Homogeneous Wave Equation

The wave equation, with sources, has the general form

V2P(r, 1) — C—12§—t22\1'(r,t) ) A

Solutions to the homogeneous wave equation,

2
V2Po(r,t) — C%%\Po(r,t) =0

have the following solution:

Yo(r,t) = h(t)¥o(r)
Separating the variables and letting the separation constant be (ik)? where k is real :

Vz‘Po(r) _ 1 82 i
¥o(r)  c2h(t) ot? h(® = (ik)*

and
VZ‘Po(r) + kZ\Po(r) =0
82
Wh(t) + kZCZh(t) =0

Where we define:

kek =kZ+kZ+k3
k2¢2 = @2
note that there are three separation constants and k is a vector.

V2P(r,t) - C—lzg—tzz\y(r,t) -0

[—kz ; Cg—j J‘P(r,t) _0

A solution to the homogeneous wave equation can be written as follows, where one sums
over all values of the separation constant, k:
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Wo(r,t) = Za(k) exp(i[k « r — wt])
k

where for each k,
k2¢c2 = 2
Note that Wo(r) = Cexp(i[k - r]) is the solution to the Helmholtz equation (where k? is
specified) in Cartesian coordinates In the present case, k is an (arbitrary) separation constant

and must be summed over. If one assumes the general case with continuous values of the
separation constant, k and the solution is normalized with .—1— we have the general solution:

@2n)*
Yo(r,t) = (271”4 ”“ 218w — |ke]w (K, @) exp(i[k - r — wt]) d3kdew o1
_ 1 _
- (27[)3 j-”j w(k,)exp(ifk - r —|kc[t]) d3k

This form for the solution is the Fourier expansion of the space-time solution, Wo(r,t).

For the non-homogeneous differential equation k?c? = w? is not required and one must
make a four-dimensional Fourier expansion:

Po(r,t) = (27104 [[[] wk.o)exp(ilk - r - wt]) d°kda B2

. Similarly, one can expand the (non-homogeneous) source term as follows:

F(rt) = (271[)4 ][] f< ) expilk - r - at]) dkdeo

where we use the relationship

_;L_ * —iuv —
50 j_we dv = o(u)

c ilker— @ 3 -

)’ ”” exp(i[k-r—“£ct])dkd(w/c) = c5(r)s(ct)
Note the product of two Dirac delta functions, and that the first delta function, 6(r) is three

dimensional and

s(ct) = ﬁw)
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The Fourier transform of our non-homogeneous wave Eq. (49) converts it into an algebraic
equation.

[Vz_c_lzgtzz (2) —L [[[] vk @)expik - r - ot]) d*kde
(2 ) ifk - r - ot]) d°kdo
or
[[[[vk o)z - —¥> ~ f(k, @)]exp(ilk - 1 — t]) dkde =

”H[V/(k,a})(—k K+ ?) —f(k, )] exp(i[K - r — ot]) d*kde = 0.

Since each exp(i[k - r — wt]) is linearly independent, the coefficients must all be zero.
Hence the solution for the expansion coefficients, w (K, ®) can be done algebraically:

f(k,o)

Vo) = e i)

The problem is now reduced to taking the inverse transform. There is at least one
difficulty. The integrand will have singularities at @ = *c|k|. To understand the source of this
difficulty and to determine how it is handled we consider first the Green’s function for the
wave equation. That is, the case where F(r,t) = §®(r —r')s(t -t").

The Green’s Function for the Non-Homogeneous Wave
Equation

The Green’s function is a function of two space-time points, (r,t) and (r',t") so we write it
G(r,r',t,t'):

VZG(rrtt)—— 2G(rrtt)—é(r—r)é(t t). D

ot

It is easy to see that in the above differential equation (by shifting the origin of the
coordinate system to r' and the time by t') one could change to the following variables without
altering the equation

" /

r"=r-r
t =t-t
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V"2G(r",0,t",0) - %—85 (r'",0,t"0) = 6(r") 5(t").

and we have shown that
G(r,r't,t'") =G(r-r',t-t)

Using the Fourier expansion for the Green’s function,
G(r,r't,t") =

(2 X i[k 1) —ot)])d3kdo.

For the solution to the Green’s function, the source term can be written
F(r,t) =6®r-r")st-t)

~t)]) d*kdw

One can find the g(k, w, r’,t") (the Fourier transform of G(r, r’,t,t")) using the same
method as above, where in the integrand we factor out the exponential in r and t.

J[[Jtotk o, t)v2 - = atz)—e><|0(—l[k r' — ot'])]exp(i[k - r - ot]) d*kdo = 0

”” gk, 1)k - K+ Ly @) _exp( —i[k - r' - ot'])]exp(ilk - T - ot]) d®kdo = 0

exp( —i[k-r' —ot'])

k.o, r't) =
gk, 1 1) K2 + (wlc)?

In terms of space-time coordinates, then the Green’s function for the wave equation is
given explicitly intermsof r —r" and t — t'.

/ / = exp(i[k(r-r") -ot-t)])
G(r—rt—t) = HH T Ty devd3k

To find G(r —r’,t —t") all one needs to do is carry out the integrations. First we shall do
the first integration over o using a contour. integration and making use of the singularities at
o = *ck (or k = tw/c). How these singularities are handled depends on the boundary
conditions in time, t —t’, imposed on the system. They give rise to causality conditions. The
basic approach involves the Cauchy’s Residue Theorem.
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More about the Cauchy’s Residue Theorem

Assume an analytic function F(z), z = x + iy, has an m™ order pole at z = z,. A function,
F(z), has an m" order pole at z = z, if in the neighborhood of z, it has an expansion

F2) = D anz—20)™"
n=0

Then if F(z) is integrated counter-clockwise around a contour enclosing z, we obtain the
residue of F(z) at z = zo,

F(z)dz = 2xi res(zo)

§counter clockwise

In the case of an m™ order pole

res(zop) =

1 [ d™*{(z-20)"F(2)} }
(m-1)! dzm-? 20

Note that the residue is always the coefficient, am-1(zo), of the simple pole term in the
expansion of F(z2)

_ a@) | ai) res(z,)  an
R S L L S ERM IR

No other term contributes to the contour integral.
The only term which contributes to the integral is the simple pole term!
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The o integral’s integrand has two first order poles but it is an integral along the real ®
axis.

Gr-r,t-t) =

(2 )4 m exp(ik - (r l’))dak
J+ooc|: exp(—la)(t—t ) exp((-lo(t—t')) :| o

w +ck w —ck

In order to apply Cauchy’s theorem we must have a closed path, so we write G as follows,

_ exp-io(t-t')) . exp(-io(t-t))
G= III f(k) d3k|:§c|osed w? — (Ck)2 dev jsemi—circle ®® — (Ck)2 do :|

We will try to close the path with a semi-circle, with infinite radius, in either the upper half
complex o plane or the lower complex o half plane. The denominator will cause the integrand
to vanish, on either semi-circle, as |o| for large || if the numerator is well behaved. It
suffices to check the numerator on the imaginary w axis, i.e., for ® = iIm®. The value is
determined by the exponential

exp[-io(t—t")] = exp[Imo(t—t)]

This diverges for |Imw| - « if Imw(t—t') > 0 and vanishes exponentially with Im® for
Ima(t-t") < 0.

For t < t" we will close the path in the upper half complex w plane where Im® > 0
while for t > t’ the path will be closed in the lower half complex o plane where .Imw < 0

We now know how to close the path of integration but because the poles lie on the real axis
the integral is not well-defined. That is, it is an improper integral. The ambiguity provides the
freedom to impose temporal boundary conditions on the Green’s function. One approach
distorts the path so that it avoids the poles. It that case there are four possible paths. The
pertinent paths for our problems are shown in Figure 1.
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—ck -~ "l:Ck

Figure 1.

Figure 1. shows the Location and direction of the contours Cr and Ca relative to the real o
axis (center line) Contour Cr is completed below the real axis and contour C» is completed
above the real axis so that in each case the poles at +ck are inside the closed contour. It suffices
to first consider the  or angular frequency part of the integrand.

I(C, k) _ §C|: exp(—lo(t—1")) exp(( |CO(t -t )) :| .

W+ ck o —ck

Note path is not counterclockwise, so
Z we must multiply the residue by -1.

where C is the path of integration. If the path Cr in Figure 1 is used we obtain
I(CRr,k) = -27i®(t — t')[res(—ck) — res(+ck)]
= -27i0(t — t")[exp(-i(—ck)(t — t")) — exp((—ick(t —t"))]
= 470t —t') sin(ck(t —t)).

The Green’s function obtained with this path choice will be labelled Gr.

e _ k- _ /
Gr(r—r',t—t) = O(t - (24”)3 [ exp(l (r ™)) Sin(ok(t - t')d%

Now we do the k integration in spherical k space, letting (r — r") be along the 2 direction:
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Note path is not counterclockwise, so we must multiply the residue by -1.
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[ 22U 1190500 it - 1)) Kedkgicl(- cos01)

R =O(—t) -

(2 )3-

_ot-t) (—20772)72 jll eXp('k| ") gin(ek(t - t'))k2dkdu

- exp(|k|r— r'|) —exp(=ikjr—r’
(2 )2 Jo ik?|r —r'|

exp(ik|r — r'])sin(ck(t —t"))dk

=0O(t-t) ) sin(ck(t — t")k2dk

= 61-1) i(2r)? |r r'l Jloo

=0(t-t) exp(ik|r — r'|)[exp(ick(t —t")) — exp(—ick(t —t"))]dk

2(2n)2|r —r| -[_oo

" [exp(iK[Jr = F'[+c(t — t)]) — exp(iK[|r — r'|-c(t — t)])]dk

—Ot-t)—=FC
- ot t)2(27r)2|r—r’| I_w

Retarded Green’s function:

Finally, we have :

Gr(r-r',t-t) = Ot —tH[o(r—r'l+ct-t)) —o(r—rl-—ct-t))] |CGR

(47r)|r r

- m Ot —ths(r — r'l-c(t - t'))

In the last step the additional term involving 5(Jr — r'| + c(t — t')) was dropped since the
argument of this delta function could not vanish for t > t'. The Green’s function G is called
the retarded Green’s function. It gives a disturbance (created at time t') propagating outward
from a source point r'. The condition (t —t’) > 0 is often interpreted as a causality condition.
That is, the disturbance is detected at a time, t, which must be larger than the creation time, t',
at the source. The Green’s function is also called a propagator as it "propagates” the
disturbance from point (r',t") to the point (r,t) within the integral expression for the solution
to the wave equation
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Advanced Green’s Function:

The Green’s function obtained using the path C, is similar, but correspondsto t < t’. Note
that one must repeat all the steps leading to Eq. (67b), but use the contour Ca, rather than Cg.

I(Ca,k) = 27iO(t' — t)[res(—ck) — res(+ck)]
= 2miO(t’ — t)[exp(—i(-ck)(t —t")) — exp((—ick(t —t'))]
= —ArO(t' —t')sin(ck(t' —t)).

Finally, we have :
Ga(r—r',t—t') = WM@(V “OB(r - rlrct—t) —8(r—r'l<t-t)] |GA
= Gl e O - VI8 - et 1) 4l — rre(t b))
- Wrc_r/@(t' —)5(r - r'|-c(t’ - t))

This is the advanced Green’s function and corresponds to the time reversed retarded
Green’s function. The interpretation of this Green’s function is that the disturbance is
‘converging on its source’
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Green’s

Function Solution to Wave Equation

Given

Use the wave
equations to
evaluate this.

One can write:

This expressions in A3 can also be written in terms of ”surface” integrals as follows:

ffovcr

- jd(ct/) m V'[P EVG( Ft ) — G(r rt )V, t)]d3x!

SICi

If we want the solution for all space, and both ¥(r',t') and G(r,r';t,t') — > 0 at r/ —> o

[vz - C—lzg—tzz }P(r,t) — F(rb)

Lw(r,t) = F(r,t)

[vz—c—lzﬁ}e(r Ft ) = 5(r— st —t)

Lo, r:tt) = s(r—r)st-t)

1] ‘P(r/’t’)[v/z - %aa_ JG(F, r';t,t)d%d(ct’)
- [[[f strrint| ve - &L Jrertydxdcer)
= [[[] war )80 = s - thdxdeet) - [[[] G bt R, t)dxd(et')
=t - [[[[ e ritt)ra tydxdet)

tV2G(r,r';t,t') — G(r,r';t,t")V2¥(r',t")]d3x'd(ct")

‘P(r tOVG(r,r';t,t") — G(r, r';t,tHVP(r',t")] -

at least like % then the surface integrals vanish.

vi-23
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Use the wave
equations to evaluate this.
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[11 \P(r’,t’)[—%aa—}G(r rtt)d3xd(ct) ABb

-[lff e[ - at/z 7 P OHExden)
”J.U Bt [P(r', t) G(r r’;tt') — G(r,r'; tt) ‘P(r t)]d(ct):|

| ENC's)

I [rven—=Seen i) - et 22 \P(rt)]:|t>_ 4oy

a) Causality (via the Retarded Green’s function) provides a means of evaluating the t/—o00
limit:

G(r,r';t,t') = 0fort <t' (violates Causality as t/—>c0)

at,G(rr t,t')=0fort <t

b) Intial conditions provide a means of evaluating the t'—>—00 (one usually assumes the
source is turned on at, say, t' = O::

Y(r',t') =0 at t' = —o (no signal before source is turned on)
('t =0 att' =

a t/ ( )

With these boundary conditions both the spatial and time ”surface” terms vanish and we

have:

P(r,t) ”” G(r,r';t, tF(r', t)d3x'd(ct’) = 0

and

Y(r,t) = ”” G(r,r’:t,t )F(r',t")d3x'd(ct)) A6

Note that if a homogeneous background wave (not due to the source) exists, one could
superimpose it onto our solution without any loss of generality. Usually this is not considered
part of the problem.
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Using the Green’s Function to find the Solution to the Wave

Equation:
Example 1.
2 _ La_z - _i iot _3%) — 5
[v 12 ]xp(r,t) el [5(r —a2) — 5(r +a2)]
1. 1
Y(r,t), ., — T ‘P(r ..., — =
The Green’s function solution is given by
w(r,t) = [[[[ Gatr—r t-t)F(r' t)dr'dt A7

[[[ ot -t)—=C—5(r — r'| - c(t — t'))F(r',t)d3r'dt’
JOtt-t) = rralr=r| - et~ t)FE Odrd

[[[ot-t)—=C—Ls(t-[t-
-[ ( )47r|r—r/| c ( [

[ It |I’—I’/| 1 3y
I_JF(r,t c 47r|r—r’|d r

Irl

)F(r’,t’)d‘*r’dﬂ

(0 = [[[ el s(r-a) - 3(r'+a)) =L

|r+az|)

__9 o [r—az| _exn(im(t —
= T [exp(la)(t < )|r—a2| exp(in(t |r+az|}

Normally the Green’s function solution would have ”surface integral terms” evaluated at

r' = o and att’ = too. They would be of the form:
* / / / ! 8 a
Lo d(ct') ”rgw[w G- GV'Y] - dS +m dv'[¥ 06 - 60,

The surface integrals do not contribute since both the solution and the Green’s function
vanish as r' - oo .The time derivatives att' = c. do not appear because of the ®(t —t') in the
Green’s function and at t' = —oo one assumes that there is no time derivative of the source
signal in the Green’s function, and no time derivative of the "wave” function, ¥. Thet' = o
boundary condition has been taken care of by our choice of contour. In most applications of
the Green’s function the disturbance is assumed to take place neart' = 0 and to "turn off” at
t' << oo In this case one can see that the boundary conditions in time are automatically taken
care of.
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Generally one wants to find E(r,t) and B(r,t), but in practice it is easier to find A(r,t)

Maxwell’s Equations

and ¢(r, t).first and then determine E(r,t) and B(r,t) from the following:

B=VxA

E=-Vg- L %‘t\

vi~2Lé

Since the above defines A uniquely, one has to supply another condition on A. There are
two commonly used choices or gauges:

Lorentz Gauge
VA + li¢(r,t) -0

V2¢(r,t) - —2 at2 d)(r t) = —p(r,t)/eo S.I. units

VZA(r,t) — = 2= A(r t) = —poJ(r,t) S.I. units

8

Coulomb/Radiation Gauge

V.A(r,t)=0
V2¢(r t) = —p(r,t)/eo

V2A(r,t) — A(r t) = —uodi(r,t)

2 atZ
J=J;+J
V-Jt=0;, Vx.J;=0

In the Lorentz gauge:

A = =[[[ Gar- r/’t—t/)NoJ(r',t')/d:*r/dt’
= HO_',H@)(t—t) | |6(|r—lr | —c(t—1))I(r',t")d3r'dt’
— Ho ... .” Ot -t ) Ar|r — —— /l %5(1:, - [t- Ir- r | ])J(l’ t' )d3r dt’
— [ / |r_r| 1 /
“ao fffa(re- ) e

A8

A9

Al0
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Example: A single frequency current density source

Ji(r,t) = J(r)exp(—imot)

_ Ho Iy Ir—r| 1 3¢
A = &2 mJ(r,t - >|r—r’|d r
Ho ! : |r_r,| 1 3¢/
E”J'J(r)exp[—lwo(t— c )} |r—r/|d r
_ Ho_ it / io|r — | 1 3
= e ”.[J(r)exp[ e ):| |r—r/|d r

_ Ho -iwt ny EXPlikor — [T 15 . _ g
o [ S,

_ Mo gt N EXPlikolr =] 5.\ w0
At = 48 '[J'J'J(r) ] d3r’; ko = ¢ All

Using the expansion for the Helmholtz Equation Green’s function we have

) 0
= D> Arikjy(kr Ohi(kr)YP(O', ) Y16, )

— =
Ir=ri =0 m=—(

eik|r—r/|

and finally we have the multipole expansion of the vector potential, A:

© [
A1) = ikuoe 10t 3" 3 j j j I(r)jo(krh(kr=)YP (@', ') YP(8, §)d3r' AL2

(=0 m=-(

Since the source current is localized near r' = 0,the jy(kr') can be used in the integral and

the solution for r > r' is given by:
A(r,t) = Ag(r)e 1ol

o |
Ao(r) = ko 3 D [ig(kn) + ing(kn)]Y g, (6,9) [[] Jo(rip(kr' )Y (0, ¢)"rPdex'dr
(=0 m=-{

where k = ko = 9. and J(r') = Jy(r")

Approximating jy(kr") with the form near r' = 0:
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Jokr) =

1 0
(20 + 1)!! (kr

N

Ao(r) ~ Kkuo onzmz_:g ij(kr) — ng(kr)1Y ;. (0,6) mJo(r )kﬁmr’mvgm(e’,qs’)*dQ’dr’.

kr = wol r _ _Tr

~ I
C ~ c2nf 2712~ A

In the ‘near field’ region, kr < 1 = r < A, and Ao(r) is approximated by letting:

[ijg(kr) —ny(kr)] = —ng(kr) = _%:\

Note: r' (source) is closeto O and lessthanrand r < 2 :‘r‘;tifseiﬁ;:a‘ﬁ;"gfv‘; .
@l -1 N
Ao(r) ~ Kio ZZ o )03] (n(0.) []] 300Kt (20i1)n Uy (@ ¢y ddr AL

o 0,
— kuOZZ r1+ Y (60,6) IIIJO(F mﬂ@ﬁygm(e/’(p/)*dgldr/. roe!

0=0 m=-

In the “far field’ region, kr > 1 and r > A, the radiation form for Ao(r) is

approximated using
i I
- exp| I( kr— =~
[ijg(kr) — ny(kn)] = [ ( e 2 )J

Note: r' (source) is closeto 0 and lessthanrand r > A >
v

i(kr— Lz
Ao(r) ~ kquZ e k! EXP['(kLr 2 )}Yom((%qﬁ)mJo(r/)r’MYom(@’,¢’)*d§2’dr’

+1)H

This can be evaluated term by term. When kd < 1 the series is generally dominated by the
lowest non-zero term. It is also a useful expression if Jo(r) is described by a superposition of
one or two spherical harmonics.

Al
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Note extent of source limits integration over r'.
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More general time dependence

In this section we consider the potentials generated by a moving charge located at R(t).
The charge and current densities are

p(r,t) = 48(r—R())
(1) = g5(r—R)| LR |

These can be used to obtain the potentials, at r and time t (Gaussian units) from:
V- A(r ) + liqﬁ(r,t) -0 A8Db

V24(r,t) - —2 at2 2 3(r,t) = —4rp(r,tleo

V2A(r,t) — L atz DAY = —AZ3(r,1)

At = 4 ”ﬁ@(t
¢<rt>—qjﬂj®(t—t)

5(|r r|-c(t— t)) - R()S(r-R(t))d*r'dt

5(|r r'|—c(t—t))o(r'-R(t"))d3r'dt".

The r' integrations can be done first, using 5(r'-R(t')):

9 _ eft 3
A(rt) = f|r G Olt,R(t)5(|r R(t)'| - c(t—t))dt;

oty =q| | S(Ir - R(t)| - c(t — t'))dt’

r—R(t/)|

Finally, the t" integration for ¢(r,t) can be done with the §(Jr - R(t")| — c(t —t')):

_ c ot —to) !
o(r,t) = QJ Ir— R(t/)| |i [r—R(t) —C(t—t/)]|t’=to &

1
IF—R(to)I | I = R+l

where t, represents the values of t' < t for WhICh
r-R(t)|-ct-t)=0
(r—=R(")) - (r=R(t')) = c?(t-t)2

Similarly
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=R [ [[r —RE) |+ cllecy
As alspecial case, if R(t) = votlone obtains t, as follows:
(r=vot") « (r —vot') = c2(t-t")2 = W?
(Ro —be(t' —1)) « (Ro—be(t' —1)) = c2(t-t)2=W; b=

Art) = &

(RQ - bW) . (Ro_bW) - W2, Ro =r —Vot
with solution
RZ
Wi =792b«Ro[1+[1+ —2_— 142 = ¢t —ct,,
TP Rl R 77 ’
where
2 1
A YA

Only one value of W, > 0 satisfies causality. The solution for R(t') = v,t' is (after some
algebra)

o(r,t) == a 1 where 2 Ro _ cos0:

|r—Vot| ) ,1_b28|n29 bRQ

__aq . Vo

In order to calculate the fields in the general case for R(t") one needs a relationship

between the derivatives with respect to r and t and the derivative with respect to t'. We begin
with the equality c(t—t') = |r — R(t")|.
r-R(t)

i . N — - T !
dt/ |r R(t )l - |r _ R(t/)| U(t )a

where u(t') = g—tR

Y- 30
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Equations

Relativistic four vector notation: Covariant form for Maxwell’s

Under a Lorentz transformation, Lo,
x'" = Lyx¥ with the following choice of metric tensor

O = [LL]w = 8, for u,v = 1,2,3
dov = 0,0 Otherwise.
X* = (ct,r) u=0,123

=(ct—r)
a _(C at V)
o= (g at V)

2
don =1 0% w2
c? ot
The vector potential is a four vector (transforms under Lorentz transformation as a four
vector),

= (o(r,1),A)
AI—‘ = (¢(r’t)1_A)1
A,'u = AH — OHA e__gauge transformation on A

= (4(r) - L), A+ VA)
= (@' DA
A, = A, — A

- 1 oA
= (00 -4+, -A-va)

Eqg. 31 (the Lorentz gauge condition) becomes
OuA'" = 0,A* — 0,0

_ 10
= T§¢(r,t)+V-A—6#8“A

=0
Note that the general condition on A Which ensures the Lorentz gauge is

OO A = —VZA(r,t) + = A(r t) = V.A(rt) + c pr ¢(r t), =

2 atZ
Finally,
4dr
LAV — v
a'ua A C J Where This box contains all of Maxwells
Jv = (Cp, J) equations (both wave equations

K with sources). Note four-vector
Conservation Of Charge iS given by notation for the current density.

RS

R6a
R6b
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gauge transformation on A
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This box contains all of Maxwells equations (both wave equations with sources).  Note four-vector notation for the current density.
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