
The Non-Homogeneous Wave Equation

The wave equation, with sources, has the general form

∇2r, t − 1
c2
∂2

∂t2 r, t  Fr, t     A

Solutions to the homogeneous wave equation,

∇20r, t − 1
c2
∂2

∂t2 0r, t  0

have the following solution:

0r, t  ht0r

Separating the variables and letting the separation constant be ik2 where k is real :

∇20r
0r

 1
c2ht

∂2

∂t2 ht  ik2

and

∇20r  k20r  0

∂2

∂t2 ht  k2c2ht  0

Where we define:

k  k  kx
2  kx

2  k2
2

k2c2  2

note that there are three separation constants and k is a vector.

∇2r, t − 1
c2
∂2

∂t2 r, t  0

−k2  2

c2 r, t  0

A solution to the homogeneous wave equation can be written as follows, where one sums
over all values of the separation constant, k:
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0r, t ∑
k

akexp ik  r − t

where for each k,

k2c2  2

Note that 0r  Cexp ik  r is the solution to the Helmholtz equation (where k2 is
specified) in Cartesian coordinates In the present case, k is an (arbitrary) separation constant
and must be summed over. If one assumes the general case with continuous values of the
separation constant, k and the solution is normalized with . 1

24 we have the general solution:

0r, t  1
24  2 − |kc|k,exp ik  r − td3kd

 1
23 k,exp ik  r − |kc|td3k

    B1

This form for the solution is the Fourier expansion of the space-time solution, 0r, t.

For the non-homogeneous differential equation k2c2  2 is not required and one must
make a four-dimensional Fourier expansion:

0r, t  1
24 k,exp ik  r − td3kd     B2

. Similarly, one can expand the (non-homogeneous) source term as follows:

Fr, t  1
24  fk,exp ik  r − td3kd

where we use the relationship
1

2 −


e−iuvdv  u

c
24  exp i k  r − 

c ct d3kd/c  crct

Note the product of two Dirac delta functions, and that the first delta function, r is three
dimensional and

ct  1
|c|
t
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The Fourier transform of our non-homogeneous wave Eq. (49) converts it into an algebraic
equation.

∇2 − 1
c2
∂2

∂t2 
1

24 k,exp ik  r − td3kd

 1
24  fk,exp ik  r − td3kd

or

k,∇2 − 1
c2
∂2

∂t2  − fk,exp ik  r − td3kd  0

k,−k  k  2

c2  − fk,exp ik  r − td3kd  0.

Since each exp ik  r − t is linearly independent, the coefficients must all be zero.
Hence the solution for the expansion coefficients, k, can be done algebraically:

k, 
fk,

−k2  /c2 .     C

The problem is now reduced to taking the inverse transform. There is at least one
difficulty. The integrand will have singularities at   c|k|. To understand the source of this
difficulty and to determine how it is handled we consider first the Green’s function for the
wave equation. That is, the case where Fr, t  3r − r ′t − t ′.

.The Green’s Function for the Non-Homogeneous Wave
Equation

The Green’s function is a function of two space-time points, r, t and r ′, t ′ so we write it
Gr,r ′, t, t ′:

∇2Gr,r ′, t, t ′ − 1
c2
∂2

∂t2 Gr,r ′, t, t ′  r − r ′t − t ′.     D

It is easy to see that in the above differential equation (by shifting the origin of the
coordinate system to r ′ and the time by t ′) one could change to the following variables without
altering the equation

r ′′  r − r ′

t ′′  t − t ′
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∇′′2Gr ′′, 0, t ′′, 0 − 1
c2
∂2

∂t ′′2
Gr ′′, 0, t ′′0  r ′′t ′′.

and we have shown that

Gr,r ′, t, t ′  Gr − r ′, t − t ′

Using the Fourier expansion for the Green’s function,

Gr,r ′, t, t ′  1
24  gk,,r ′, t ′exp ik  r − td3kd.     E

For the solution to the Green’s function, the source term can be written

Fr, t  3r − r ′t − t ′  1
24  exp i k  r − r ′ − t − t ′ d3kd

One can find the gk,,r ′, t ′ (the Fourier transform of Gr,r ′, t, t ′) using the same
method as above, where in the integrand we factor out the exponential in r and t.

gk,,r ′, t ′∇2 − 1
c2
∂2

∂t2  − exp − i k  r ′ − t ′ exp ik  r − td3kd  0

gk,,r ′, t ′−k  k  2

c2  − exp − i k  r ′ − t ′ exp ik  r − td3kd  0

gk,,r ′, t ′ 
exp − i k  r ′ − t ′ 

−k2  /c2 .

In terms of space-time coordinates, then the Green’s function for the wave equation is
given explicitly in terms of r − r ′ and t − t ′.

Gr − r ′, t − t ′  1
24 −

 exp i k r − r ′ − t − t ′
−k2  /c2 dd3k     F

To find Gr − r ′, t − t ′ all one needs to do is carry out the integrations. First we shall do
the first integration over  using a contour. integration and making use of the singularities at
  ck (or k  /c. How these singularities are handled depends on the boundary
conditions in time, t − t ′, imposed on the system. They give rise to causality conditions. The
basic approach involves the Cauchy’s Residue Theorem.
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More about the Cauchy’s Residue Theorem

Assume an analytic function Fz, z  x  iy, has an mth order pole at z  z0. A function,
Fz, has an mth order pole at z  z0 if in the neighborhood of z0 it has an expansion

Fz ∑
n0



anz − z0n−m

Then if Fz is integrated counter-clockwise around a contour enclosing z0 we obtain the
residue of Fz at z  z0,


counter clockwise

Fzdz  2i resz0

In the case of an mth order pole

resz0  1
m − 1!

dm−1z − z0mFz
dzm−1

zz0

Note that the residue is always the coefficient, am−1z0, of the simple pole term in the
expansion of Fz

Fz  aoz0
z − z0m  a1z0

z − z0m−1 . . .
resz

0


z − z01  amz0
z − z00 . . . . . . .

No other term contributes to the contour integral.
The only term which contributes to the integral is the simple pole term!
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The  integral’s integrand has two first order poles but it is an integral along the real 
axis.

Gr − r ′, t − t ′  −1
24 

exp ik r − r ′
2k

d3k 


−


c

exp−it − t ′
  ck

−
exp−it − t ′

 − ck
d

In order to apply Cauchy’s theorem we must have a closed path, so we write G as follows,

G   fk d3k 
closed

exp−it − t ′
2 − ck2 d − 

semi−circle

exp−it − t ′
2 − ck2 d

We will try to close the path with a semi-circle, with infinite radius, in either the upper half
complex  plane or the lower complex  half plane. The denominator will cause the integrand
to vanish, on either semi-circle, as ||−2 for large || if the numerator is well behaved. It
suffices to check the numerator on the imaginary  axis, i.e., for   i Im. The value is
determined by the exponential

exp−it − t ′  expImt − t ′

This diverges for |Im| →  if Imt − t ′  0 and vanishes exponentially with Im for
Imt − t ′  0.

For t  t ′ we will close the path in the upper half complex  plane where Im  0
while for t  t ′ the path will be closed in the lower half complex  plane where .Im  0

We now know how to close the path of integration but because the poles lie on the real axis
the integral is not well-defined. That is, it is an improper integral. The ambiguity provides the
freedom to impose temporal boundary conditions on the Green’s function. One approach
distorts the path so that it avoids the poles. It that case there are four possible paths. The
pertinent paths for our problems are shown in Figure 1.
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Figure 1.

Figure 1. shows the Location and direction of the contours CR and CA relative to the real 
axis (center line) Contour CR is completed below the real axis and contour CA is completed
above the real axis so that in each case the poles at ck are inside the closed contour. It suffices
to first consider the  or angular frequency part of the integrand.

IC,k  
C

exp−it − t ′
  ck

−
exp−it − t ′

 − ck
d

where C is the path of integration. If the path CR in Figure 1 is used we obtain

ICR,k  −2iΘt − t ′res−ck − resck

 −2iΘt − t ′exp−i−ckt − t ′ − exp−ickt − t ′

 4Θt − t ′ sinckt − t ′.

The Green’s function obtained with this path choice will be labelled GR.

GRr − r ′, t − t ′  Θt − t ′ −4c
24 

exp ik r − r ′
2k

sinckt − t ′d3k

Now we do the k integration in spherical k space, letting r − r ′ be along the ẑ direction:

reviewer
Pencil

reviewer
Pencil

reviewer
Pencil

reviewer
Callout
Note path is not counterclockwise, so we must multiply the residue by -1.



GR  Θt − t ′ −c
23 

exp i k|r − r ′|cosk
k

sinckt − t ′k2dkdkd−cosk

 Θt − t ′ −c2
23  −1

1 exp i k|r − r ′|u
k

sinckt − t ′k2dkdu

 Θt − t ′ −c
22 0

 exp i k|r − r ′| − exp− i k|r − r ′|
ik2|r − r ′|

sinckt − t ′k2dk

 Θt − t ′ −c
i22|r − r ′|


−


exp i k|r − r ′| sinckt − t ′dk

 Θt − t ′ c
222|r − r ′|


−


exp i k|r − r ′|expickt − t ′ − exp−ickt − t ′dk

 Θt − t ′ c
222|r − r ′|


−


exp i k|r − r ′|ct − t ′ − exp i k|r − r ′|−ct − t ′dk

Retarded Green’s function:

Finally, we have :

GRr − r ′, t − t ′  c
4|r − r ′|

Θt − t ′|r − r ′|ct − t ′ − |r − r ′|−ct − t ′

 −c
4|r − r ′|

Θt − t ′|r − r ′|−ct − t ′

    GR

In the last step the additional term involving |r − r ′ |  ct − t ′ was dropped since the
argument of this delta function could not vanish for t  t ′. The Green’s function GR is called
the retarded Green’s function. It gives a disturbance (created at time t ′) propagating outward
from a source point r ′. The condition t − t ′  0 is often interpreted as a causality condition.
That is, the disturbance is detected at a time, t, which must be larger than the creation time, t ′,
at the source. The Green’s function is also called a propagator as it ”propagates” the
disturbance from point r ′, t ′ to the point r, t within the integral expression for the solution
to the wave equation
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Advanced Green’s Function:

The Green’s function obtained using the path CA is similar, but corresponds to t  t ′. Note
that one must repeat all the steps leading to Eq. (67b), but use the contour CA, rather than CR.

ICA,k  2iΘt ′ − tres−ck − resck

 2iΘt ′ − texp−i−ckt − t ′ − exp−ickt − t ′

 −4Θt ′ − t ′ sinckt ′ − t.

Finally, we have :

GAr − r ′, t − t ′  −c
4|r − r ′|

Θt ′ − t|r − r ′|ct − t ′ − |r − r ′|−ct − t ′

 −c
4|r − r ′|

Θt ′ − t|r − r ′|−ct ′ − t − |r − r ′|ct ′ − t

 −c
4|r − r ′|

Θt ′ − t|r − r ′|−ct ′ − t

    GA

This is the advanced Green’s function and corresponds to the time reversed retarded
Green’s function. The interpretation of this Green’s function is that the disturbance is
‘converging on its source’
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Green’s Function Solution to Wave Equation

Given

∇2 − 1
c2
∂2

∂t2 r, t  Fr, t

ℒr, t  Fr, t

    A1

∇2 − 1
c2
∂2

∂t2 Gr,r ′; t, t ′  r − r ′t − t ′

ℒGr,r ′; t, t ′  r − r ′t − t ′

    A2

One can write:

r ′, t ′ ∇′2 − 1
c2
∂2

∂t ′2
Gr,r ′; t, t ′d3x ′dct ′

− Gr,r ′; t, t ′ ∇′2 − 1
c2
∂2

∂t ′2
r ′, t ′d3x ′dct ′

    A3

  #   

 r ′, t ′r − r ′t − t ′d3x ′dct ′ − Gr,r ′; t, t ′Fr ′, t ′d3x ′dct ′

 r, t − Gr,r ′; t, t ′Fr ′, t ′d3x ′dct ′     A4

This expressions in A3 can also be written in terms of ”surface” integrals as follows:

r ′, t ′∇′2Gr,r ′; t, t ′ − Gr,r ′; t, t ′∇′2r ′, t ′d3x ′dct ′

  dct ′  ∇′  r ′, t ′∇Gr,r ′; t, t ′ − Gr,r ′; t, t ′∇r ′, t ′d3x ′

  dct ′ 
r’ –

r ′, t ′∇Gr,r ′; t, t ′ − Gr,r ′; t, t ′∇r ′, t ′  nsdS′

    A5a

If we want the solution for all space, and both r ′, t ′ and Gr,r ′; t, t ′ −  0 at r′ − 
at least like 1

r′
then the surface integrals vanish.
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r ′, t ′ − 1
c2
∂2

∂t ′2
Gr,r ′; t, t ′d3x ′dct ′

− Gr,r ′; t, t ′ − 1
c2
∂2

∂t ′2
r ′, t ′d3x ′dct ′

 −  ∂
∂ct ′

r ′, t ′ ∂
∂ct ′

Gr,r ′; t, t ′ − Gr,r ′; t, t ′ ∂
∂ct ′

r ′, t ′dct ′ d3x ′

 − r ′, t ′ ∂
∂ct ′

Gr,r ′; t, t ′ − Gr,r ′; t, t ′ ∂
∂ct ′

r ′, t ′ |t′–−
t′–

d3x ′

    A5b

a) Causality (via the Retarded Green’s function) provides a means of evaluating the t′–
limit:

Gr,r ′; t, t ′  0 for t  t ′ (violates Causality as t′–)

∂
∂ct ′

Gr,r ′; t, t ′  0 for t  t ′

b) Intial conditions provide a means of evaluating the t′–− (one usually assumes the
source is turned on at, say, t ′  0::

r ′, t ′  0 at t ′  − (no signal before source is turned on)

∂
∂ct ′

r ′, t ′  0 at t ′  −

With these boundary conditions both the spatial and time ”surface” terms vanish and we

have:

r, t − Gr,r ′; t, t ′Fr ′, t ′d3x ′dct ′  0

and

r, t  Gr,r ′; t, t ′Fr ′, t ′d3x ′dct ′     A6

Note that if a homogeneous background wave (not due to the source) exists, one could
superimpose it onto our solution without any loss of generality. Usually this is not considered
part of the problem.
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Using the Green’s Function to find the Solution to the Wave

Equation:

Example 1:

∇2 − 1
c2
∂2

∂t2 r, t  − q
0

eitr −aẑ − r aẑ

r, tr 
1
r ; ∂
∂r
r, tr 

1
r2

The Green’s function solution is given by

r, t  GRr − r ′, t − t ′Fr ′, t ′d3r′dt ′

 Θt − t ′ −c
4|r − r ′ |

|r − r ′ | − ct − t ′Fr ′, t ′d3r′dt ′

 Θt − t ′ −c
4|r − r ′ |

1
c  t ′ − t − |r − r ′ |

c  Fr ′, t ′d3r′dt ′

  F r ′, t − |r − r ′ |
c

1
4|r − r ′ |

d3r′

    A7

r, t   − q
40

eit′−
r−r′

c r ′−aẑ − r ′aẑ −1
|r − r ′ |

d3r′

 q
40

expit − |r − aẑ|
c  1

|r − aẑ|
− expit − |r  aẑ|

c  1
|r  aẑ|

Normally the Green’s function solution would have ”surface integral terms” evaluated at
r′   and at t ′  . They would be of the form:


−


dct ′ 

r′→
∇′G − G∇′  dS′  dV ′ ∂

∂ct ′
G − G ∂

∂ct ′
t′→−.

The surface integrals do not contribute since both the solution and the Green’s function
vanish as r′ →  .The time derivatives at t ′  . do not appear because of the Θt − t ′ in the
Green’s function and at t ′  − one assumes that there is no time derivative of the source
signal in the Green’s function, and no time derivative of the ”wave” function, . The t ′  
boundary condition has been taken care of by our choice of contour. In most applications of
the Green’s function the disturbance is assumed to take place near t ′  0 and to ”turn off” at
t ′   In this case one can see that the boundary conditions in time are automatically taken
care of.

reviewer
Pencil

reviewer
Rectangle

reviewer
Rectangle

reviewer
Rectangle



Maxwell’s Equations

Generally one wants to find Er, t and Br, t, but in practice it is easier to find Ar, t
and r, t.first and then determine Er, t and Br, t from the following:

B  ∇  A

E  −∇ − 1
c
∂A
∂t

Since the above defines A uniquely, one has to supply another condition on A. There are
two commonly used choices or gauges:

Lorentz Gauge
∇  Ar, t  1

c
∂
∂t
r, t  0

∇2r, t − 1
c2
∂2

∂t2 r, t  −r, t/0 S.I. units

∇2Ar, t − 1
c2
∂2

∂t2 Ar, t  −0Jr, t S.I. units

    A8

Coulomb/Radiation Gauge

∇  Ar, t  0

∇2r, t  −r, t/0

∇2Ar, t − 1
c2
∂2

∂t2 Ar, t  −0Jtr, t

J  Jℓ  Jt

∇  Jt  0; ∇ .Jℓ  0

    A9

In the Lorentz gauge:

Ar, t  −GRr − r ′, t − t ′0Jr ′, t ′
′d3r′dt ′

 0 Θt − t ′ c
4|r − r ′ |

|r − r ′ | − ct − t ′Jr ′, t ′d3r′dt ′

 0 Θt − t ′ −c
4|r − r ′ |

1
c  t ′ − t − |r − r ′ |

c  Jr ′, t ′d3r′dt ′

 0  J r ′, t − |r − r ′ |
c

1
4|r − r ′ |

d3r′

    A10
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Example: A single frequency current density source

Jtr, t  Jrexp−i0t

Ar, t 
0

4  J r ′, t − |r − r ′ |
c

1
|r − r ′ |

d3r′


0

4  Jr ′ exp −i0t −
|r − r ′ |

c  1
|r − r ′ |

d3r′


0

4
e−i0t  Jr ′ exp

i0|r − r ′ |
c  1

|r − r ′ |
d3r′


0

4
e−i0t  Jr ′

expik0|r − r ′ |
|r − r ′ |

d3r′; k0 
0
c

Ar, t 
0

4
e−i0t  Jr ′

expik0|r − r ′ |
|r − r ′ |

d3r′; k0 
0
c     A11

Using the expansion for the Helmholtz Equation Green’s function we have

eik|r−r′|

|r − r ′|
∑

ℓ0



∑
m−ℓ

ℓ

−4ikjℓkrhℓkrYℓ
m ′, ′∗Yℓ

m,

and finally we have the multipole expansion of the vector potential, A:

Ar, t  −ik0e−i0t∑
ℓ0



∑
m−ℓ

ℓ

 Jr ′jℓkrhℓkrYℓ
m ′, ′∗Yℓ

m,d3r′     A12

Since the source current is localized near r′  0, the jℓkr′ can be used in the integral and

the solution for r  r′ is given by:

Ar, t  A0re−i0t

A0r  −ik0∑
ℓ0



∑
m−ℓ

ℓ
jℓkr  inℓkrYℓm,  J0r ′jℓkr′Yℓm

′, ′∗r′2d′dr′

where k  k0 
0
c . and Jr ′  J0r

′

Approximating jℓkr′ with the form near r′  0:
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jℓkr ≈ 1
2ℓ  1 !!

kr ℓ

A0r ≈ k0∑
ℓ0



∑
m−ℓ

ℓ
ijℓkr − nℓkrYℓm,  J0r ′kℓ 1

2ℓ  1 !!
r′ ℓ2Yℓm

′, ′∗d′dr′.

kr  0r
c  r

c/2f
 r

2
≈ r


In the ‘near field’ region, kr  1  r  , and A0r is approximated by letting:

ijℓkr − nℓkr ≈ −nℓkr  − 2ℓ − 1!!

krℓ1

Note: r′ (source) is close to 0 and less than r and r  

A0r ≈ −k0∑
ℓ0



∑
m−ℓ

ℓ
2ℓ − 1!!

krℓ1
Yℓm,  J0r ′kℓ 1

2ℓ  1 !!
r′ ℓ2Yℓm

′, ′∗d′dr′

 −k0∑
ℓ0



∑
m−ℓ

ℓ
1

rℓ1
Yℓm,  J0r ′ 1

2ℓ  1
r′ ℓ2Yℓm

′, ′∗d′dr′.

    A13

In the ‘far field’ region, kr  1 and r  , the radiation form for A0r is
approximated using

ijℓkr − nℓkr ≈
exp i kr − ℓ

2

kr

Note: r′ (source) is close to 0 and less than r and r  

A0r ≈ −k0∑
ℓ0



∑
m−ℓ

ℓ
kℓ

2ℓ  1 !!

exp i kr − ℓ
2

kr
Yℓm,  J0r ′r′ ℓ2Yℓm

′, ′∗d′dr′.     A14

This can be evaluated term by term. When kd  1 the series is generally dominated by the
lowest non-zero term. It is also a useful expression if J0r is described by a superposition of
one or two spherical harmonics.
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More general time dependence

In this section we consider the potentials generated by a moving charge located at Rt.
The charge and current densities are

r, t  qr − Rt

Jr, t  qr − Rt d
dt

Rt

These can be used to obtain the potentials, at r and time t (Gaussian units) from:

∇  Ar, t  1
c
∂
∂t
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    A8b

:

Ar, t  q
c  Θt − t ′ c

|r − r ′ |
|r − r ′ | − ct − t ′ d

dt ′
Rt ′r ′−Rt ′d3r′dt ′

r, t  q  Θt − t ′ c
|r − r ′ |

|r − r ′ | − ct − t ′r ′−Rt ′d3r′dt ′.

The r ′ integrations can be done first, using r ′−Rt ′:

Ar, t  q
c  c

|r − Rt ′|
d

dt ′
Rt ′ r − Rt ′ ′ − ct − t ′ dt ′;

r, t  q  c
|r − Rt ′|

|r − Rt ′| − ct − t ′dt ′

Finally, the t ′ integration for r, t can be done with the |r − Rt ′| − ct − t ′:

r, t  q  c
|r − Rt ′|

t ′ − to
| d

dt′
r − Rt ′ − ct − t ′|t′to

dt ′

 q c
|r − Rto|

1
| d

dt′
|r − Rt ′|  c|t′to

,

where to represents the values of t ′  t for which

|r − Rt ′| − ct − t ′  0 at t ′  t0

r − Rt ′  r − Rt ′  c2t − t ′2.

Similarly
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Ar, t  q
c

c
|r − Rto|

d
dt′

Rt ′|t′to

| d
dt′
 r − Rt ′ ′  c|t′to

As a special case, if Rt  vot one obtains to as follows:

r − vot ′  r − vot ′  c2t − t ′2 ≡ W2

Ro − bct ′ − t  Ro − bct ′ − t ′  c2t − t ′2 ≡ W ; b  vo
c

Ro − bW  Ro−bW  W2, Ro  r − vot

with solution

W  2b  Ro1  1 
Ro

2

b  Ro22 
1/2  ct − cto,

where

2  1
1 − b2 .

Only one value of W  0 satisfies causality. The solution for Rt ′  vot ′ is (after some
algebra)

r, t  q
|r − vot|

 1
1 − b2 sin2

where b  Ro

bRo
 cos;

Ar, t  q
|r − vot|

 vo

1 − b2 sin2
.

In order to calculate the fields in the general case for Rt ′ one needs a relationship

between the derivatives with respect to r and t and the derivative with respect to t ′. We begin
with the equality ct − t ′  |r − Rt ′|.

d
dt ′

|r − Rt ′|  −
r − Rt ′
|r − Rt ′|

 ut ′,

where ut ′  dR
dt′

.
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Relativistic four vector notation: Covariant form for Maxwell’s
Equations

Under a Lorentz transformation, L
,

x ′  L
x with the following choice of metric tensor

g  LTL  − for ,  1,2,3

 0  0 otherwise.

x  ct,r   0,1,2,3

x  ct,−r

∂   1
c
∂
∂t

,∇

∂   1
c
∂
∂t

,−∇

∂∂  1
c2
∂2

∂t2 − ∇
2

The vector potential is a four vector (transforms under Lorentz transformation as a four
vector),

A  r, t,A

A ≡ r, t,−A;

A ′  A − ∂

 r, t − 1
c
∂
∂t
,A  ∇

  ′r, t,A′

A
′  A − ∂

 r, t − 1
c
∂
∂t
,−A − ∇

Eq. 31 (the Lorentz gauge condition) becomes

∂A ′  ∂A − ∂∂

 1
c
∂
∂t
r, t  ∇  A − ∂∂

 0

    R5

Note that the general condition on  which ensures the Lorentz gauge is

∂∂  −∇2r, t  1
c2
∂2

∂t2 r, t  ∇  Ar, t  1
c
∂
∂t
r, t,

Finally,

∂∂A  4
c J where

J  c,J

    R6a

    R6b

Conservation of charge is given by
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∂J 
∂
∂t

 ∇  J  0     R7




