
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

II Semestre 2020

Lectures 19-20: Reinforcement Learning

What is Reinforcement Learning

• RL is the theoretical model for learning from
interaction with an uncertain environment
• aleatory (intrinsic) or epistemic (knowledge)

uncertainty
• Maximize the average reward function over a

given time horizon
• Very important notion of time horizon, it can

change your goal
• There could be different reward to achieve the

same goal

What is Reinforcement Learning

Agent

Environment

Rewards
ObservationsActions

What is Reinforcement Learning

epistemic knowledge (laws of the evolution of the system)

pr
ac

tic
al

 k
no

w
le

dg
e

(q
ua

lit
y

of
 y

ou
r o

bs
er

va
tio

ns
)

Model-Based
Markov Decision Process (MDP)

Partially Observable MDP (POMDP)

Model-Free
e.g. Q-learning

Full RL
e.g. deep learning

• MDP can be described as a tuple (𝑆, 𝐴, 𝑃, 𝜋, 𝑅, 𝛾), where:
• 𝑆: discrete countable set of states
• 𝐴: set of actions
• 𝑃: S×𝐴×𝑆 → [0,1] is the transition probability function s.t. 𝑃 𝑠, a, 𝑠! = Pr(𝑠′|𝑠, 𝑎).

It is the model of the environment
• 𝜋:𝑆→𝐴 is the policy function mapping states to actions,

(Deterministic policy a = 𝜋 𝑠 , Stochastic policy, 𝜋 𝑎 𝑠 = Pr(a|s))
• 𝑅: 𝑆×𝐴×𝑆 → ℝ is a reward function.

We will use only state-reward functions to make it easy (𝑅: 𝑆 → ℝ)
• 𝛾 ∈ [0,1] is a discount factor representing diminishing rewards with time

Markov Decision Process

• Start in some initial state 𝑠! and choose action a! with respect 𝜋
• Results in some state 𝑠" drawn according to 𝑠" ∼ 𝑃(𝑠#, a#)

• Pick a new action a!
• Results in some state 𝑠! drawn according to 𝑠! ∼ 𝑃(𝑠", a")

• ...

• Total payoff for this run:
𝑅 𝑠! + 𝛾𝑅 𝑠# + 𝛾$𝑅 𝑠$ + 𝛾%𝑅 𝑠% + …

MDP run

• System starts in some initial state 𝑠! and player 1 (controller) chooses action a!
• Results in player 2 (environment) picking state 𝑠" according to 𝑠" ∼ 𝑃(𝑠#, a#)

• Player 1 picks a new action a!
• Player 2 picks state 𝑠! drawn according to 𝑠! ∼ 𝑃(𝑠", a")

• ...

• Total payoff for this run:
𝑅 𝑠! + 𝛾𝑅 𝑠# + 𝛾$𝑅 𝑠$ + 𝛾%𝑅 𝑠% + …

MDP as two-player game

• Policy 𝜋 is basically the “implementation” of our controller. It tells the controller
what action to take in each state.
• If we are executing policy 𝜋, then in state 𝑠, we take action an 𝑎 = 𝜋(𝑠)
• Goal: Maximize the average reward function over a given time horizon
• Maximize over (𝜋 𝑠! , … , 𝜋(𝑠&'#)) the average reward function

𝔼 1
()!

&'#

𝛾(𝑅(𝑠(, 𝑎(, 𝑠(*)

• 𝛾 ∈ [0,1] is the discount factor, you can see it as the probability of survival

• #
#'+

is the effective time horizon

Policies

Example: Grigworld

• S = {(i,j)|i,j ∈ [0,3]},i.e., each cell in the grid.
• A = {UP, DOWN, LEFT, RIGHT}
• 𝑃 𝑠’ 𝑠, 𝑎 =

?
1 − 𝜖 if s’= s + a
+
, 𝑜𝑡ℎ𝑒𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑜𝑎𝑑

• R: +1 for goal (green) and −1 for fail (red), else 0.

Example: Grigworld

Random Policy π(s, a) = 0.25

A Random agent is one that uniformly picks an
action from the action space A.

Example: Grigworld

• In the deterministic MDP case, you can use
your favorite path planning algorithm
(Dijkstras, Bellman-Ford, .., i.e. algorithm to
compute the shortest path) to find a the
optimal policy.

• We learn a policy π such that π(s, a) = 1 for
correct action, 0 otherwise.

Policy under deterministic MDP (P(success) = 1)

Value Function
• Value function of a state 𝑠 under policy 𝜋 (denoted 𝑉(,(𝑠)) is a prediction of

future reward, “How much reward will I get from action a in state s?”

• I.e. 𝑉(, 𝑠 = 𝔼 ∑(!)(
&'# 𝛾(!𝑅(𝑠(!) | 𝑠(= 𝑠

𝑉(, 𝑠 = ∑-! 𝑃 𝑠, 𝑎, 𝑠* [𝑅 𝑠 + 𝛾𝑉(.#, (𝑠*)]

Computing optimal reward/cost over several steps of a dynamic discrete decision
problem (i.e. computing the best decision in each discrete step) can be stated in a
recursive step-by-step form by writing the relationship between the value functions in
two successive iterations.

= 𝑅 𝑠 + 𝛾∑-![𝑃 𝑠, 𝑎, 𝑠* 𝑉(.#, (𝑠*)]

Bellman’s Equation

• 𝑉(, 𝑠 = 𝑅 𝑠 + 𝛾 ∑-![𝑃 𝑠, 𝑎, 𝑠* 𝑉(.#, (𝑠*)]

• I.e. expected sum of rewards starting from 𝑠 has two terms:
• Immediate reward 𝑅(𝑠)
• Expected sum of future discounted rewards

• Note that above is the same as:
𝑉(, 𝑠 = 𝑅 𝑠 + 𝔼-!∼0 -,, - ,-* 𝑉(.#, (𝑠*)

Bellman’s Equation time-independent

• 𝑉, 𝑠 = 𝔼 ∑()!2 𝛾(!𝑅(𝑠() | 𝑠! = 𝑠

• 𝑉, 𝑠 = 𝑅 𝑠 + 𝛾 ∑-! 𝑃 𝑠, 𝜋 𝑠 , 𝑠* 𝑉,(𝑠*)

• For a finite-state MDP, we can write one such equation for each 𝑠, which gives
us 𝑆 linear equations in 𝑆 variables (the unknown 𝑉,(𝑠) for each 𝑠).

• We now know how to compute the value for a given policy
• Computing best/optimal policy:

𝑉∗ 𝑠 = max
,
𝑉, 𝑠

• There is a Bellman equation for optimal value function:

𝑉∗ 𝑠 = 𝑅 𝑠 + 𝛾max
4∈6

1
-!∈7

𝑃 𝑠, a, 𝑠* 𝑉∗(𝑠*)

• And optimal policy is the a*𝑠 that make above equation hold, i.e.
𝜋∗ 𝑠 = argmax4∈8 𝑃 𝑠, a, 𝑠* 𝑉∗ 𝑠*

Optimal value function

• How do we compute the optimal policy?
• Two algorithms:
• Value iteration
• Policy iteration

• Value iteration: Repeatedly update estimated value function using Bellman
equation
• Policy iteration: Use value function of a given policy to improve the policy

Planning in MDPs

18

𝑉9(𝑠) : Value of state 𝑠 at the beginning of the 𝑘(: iteration

Initialize 𝑉 𝑠 ≔ 0, ∀𝑠 ∈ 𝑆

While max
-∈7

𝑉9.# 𝑠 − 𝑉9 𝑠 ≥ 𝜖 {

𝑉9.# 𝑠 ≔ 𝑅 𝑠 + 𝛾max
4∈6

1
-!
𝑃 𝑠, a, 𝑠* 𝑉9 𝑠*

• Can be shown that after finite number of iterations 𝑉 converges to 𝑉∗

Value iteration

19

Let 𝜋9 be the policy at the beginning of the 𝑘(: iteration

Initialize 𝜋 randomly
While (∃𝑠 ∶ 𝜋9.# 𝑠 ≠ 𝜋9(𝑠)) {

𝑉 ≔ 𝑉, /* i.e. ∀𝑠 compute 𝑉,(𝑠) */
𝜋9.# 𝑠 ≔ argmax

4∈6
∑-! 𝑃 𝑠, a, 𝑠* 𝑉(𝑠*)

}

• Can be shown that this algorithm also converges to the optimal policy

Policy iteration

Can use the LP
formulation to

solve this, or an
iterative algorithm

21

𝑄! 𝑠, 𝑎 =&
"!
𝑃 𝑠, 𝜋 𝑠 , 𝑠# 𝑅 𝑠, 𝑎, 𝑠# +&

$!
𝜋(𝑎#|𝑠′) 𝑄! 𝑠#, 𝑎′

• 𝑄! 𝑠, a is called the Quality function or Stat-Action Value function and indicates
the reward obtained by taking action a in state 𝑠 and following the policy 𝜋
thereafter

• Optimal-action-value policy denoted by 𝑄∗
𝑄∗ 𝑠, 𝑎 = &

"!
𝑃(𝑠, a, 𝑠#)(𝑅 𝑠, a, 𝑠# + 𝛾max

$#
𝑄∗(𝑠′, 𝑎′)

• Note that previous formulas change a bit, as the reward depends on which action is
taken (and is thus is subject to transition probability)

Using state-action pairs for rewards

22

• Value-fcn requires less memory
• Q-fcn makes the choice of optimal action more straightforward
• Value iteration is preferred over policy iteration as the latter requires solving

linear equations, which scales ~cubically with the size of the state space

• Real-world applications face challenges:
1. Curse of modeling: Where does the (probabilistic) environment model come from?
2. Curse of dimensionality: Even if you have a model, computing and storing

expectations over large state-spaces is impractical. -> functional approximation

Challenges

Example: Value iteration Gridworld

Value after one iteration Value after 2 iterations

Example: Value iteration Gridworld

Value after 3 iterations

26

The agent is assumed to have prior knowledge about the effects of its actions
on the environment, that is, the transition probability function P of the MDP is
known.

Model-based method

Policy iteration and Value iteration are model-based methods as it is necessary to
have knowledge of the probability of transitions in the MDP to compute the
expected V (s) at any given iteration of the algorithm.

Planning by dynamic programming, solving a known MDP

28

• Called a model-free method, because it does not assume knowledge of a
model of the environment
• Learning agent tries to learn optimal policy from its history of interactions

with the environment

Model-free

29

General Picture

30

Model-free prediction
Estimate the value function of an unknown MDP
• Monte-Carlo Learning
• Temporal-Difference Learning
• TD(𝜆)
Model-free control
Optimize the value function of an unknown MDP

Model-free methods

31

Some example problems that can be modelled as MDPs
Elevator, Parallel Parking, Ship Steering, Bioreactor, Helicopter, Aeroplane
Logistics, Soccer, Quake, Portfolio management, Protein Folding, Robot walking,
Game of Go

For most of these problems, either:
• MDP model is unknown, but experience can be sampled
• MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems

Uses of Model-Free Control

32

• MC methods learn directly from episodes of experience
• MC is model-free: no knowledge of MDP transitions / rewards
• MC learns from complete episodes: no bootstrapping
• MC uses the simplest possible idea: value = mean return
• Caveat: can only apply MC to episodic MDPs:
• all episodes must terminate

Monte-Carlo Reinforcement Learning

33

• Monte-Carlo policy evaluation uses empirical mean return instead of expected
return

• Recall that the return is the total discounted reward:

𝐺& = 𝑅&'(+ 𝛾𝑅& + 2 + … + 𝛾)*(𝑅)

• Recall that the value function is the expected return:

𝑉!& 𝑠 = 𝔼 &
&!+&

)*(

𝛾&!𝑅(𝑠&!) | 𝑠& = 𝑠 = 𝐸! 𝐺& 𝑠& = 𝑠]

Monte-Carlo Reinforcement Learning

34

• To evaluate state s
• The first (every) time-step t that state s is visited in an episode,
• Increment counter 𝑁(𝑠) ← 𝑁(𝑠) + 1
• Increment total return 𝑆(𝑠) ← 𝑆(𝑠) + 𝐺(
• Value is estimated by mean return 𝑉(𝑠) = 𝑆(𝑠)/𝑁(𝑠)
• By law of large numbers, 𝑉(𝑠) → 𝑉,(𝑠) 𝑎𝑠 𝑁(𝑠) → ∞

First-Visit Monte-Carlo Policy Evaluation

35

The mean of a sequence can be computed incrementally:

Incremental Mean

36

Update V(s) incrementally after episode 𝑆#, 𝐴#, 𝑅$, … , 𝑆&

Incremental Monte-Carlo

In non-stationary problems, it can be useful to track a running mean, i.e. forget
old episodes

Temporal-Difference Learning
• TD methods learn directly from episodes of experience
• TD is model-free: no knowledge of MDP transitions / rewards
• TD learns from incomplete episodes, by bootstrapping
• TD updates a guess towards a guess

MC and TD
• Goal: learn 𝑉! online from experience under policy 𝜋
• Incremental every-visit Monte-Carlo Update value 𝑉(𝑆&) toward actual return 𝐺&

𝑉(𝑆&) ← 𝑉(𝑆&) + 𝛼 (𝐺& − 𝑉(𝑆&))
• Simplest temporal-difference learning algorithm: TD(0)

• Update value 𝑉(𝑆") toward estimated return: 𝑅"#$ + 𝛾𝑉 𝑆"#$

𝑉(𝑆") ← 𝑉(𝑆") + 𝛼 (𝑅"#$ + 𝛾𝑉(𝑆"#$) − 𝑉(𝑆"))

this is called the TD target

is called the TD error

Advantages and Disadvantages of MC vs. TD
MC
• must wait until end of episode before

return is known
• can only learn from complete

sequences and/or in terminating
environments
• has high variance, zero bias

• Good convergence properties (even
with function approximation)
• Not very sensitive to initial value
• Very simple to understand and use
• Does not exploit Markov property

Usually more effective in non-
Markov environments

TD
• can learn before knowing the final outcome,

learning online after every step
• can learn without the final outcome, from

incomplete sequences and/or in non-
terminating environments
• has low variance, some bias

• converges to 𝑣!(𝑠) (but not always with
function approximation)
• More sensitive to initial value
• Usually more efficient than MC TD(0)
• Exploits Markov property

(usually more efficient in Markov
environments)

Monte-Carlo Backup

Temporal-Difference Backup

Dynamic Programming Backup

43

Generalised Policy Iteration (Refresher)

Policy evaluation: Estimate 𝑉- e.g. Iterative policy evaluation
Policy improvement: Generate 𝜋’ ≥ 𝜋 e.g. Greedy policy improvements

Generalised Policy With Monte-Carlo Evaluation

Policy evaluation: Monte-Carlo policy evaluation, 𝑄 = 𝑞-
Policy improvement: Greedy policy improvement

𝜖-Greedy Exploration

• Simplest idea for ensuring continual exploration
• All m actions are tried with non-zero probability
• With probability 1 − 𝜖 choose the greedy action
• With probability 𝜖 choose an action at random

For any 𝜖-greedy policy 𝜋, the 𝜖-greedy policy 𝜋′ with respect to 𝑞! is an
improvement, i.e. V,*(𝑠) ≥ V,(𝑠)

Monte-Carlo Control

Policy evaluation: Monte-Carlo policy evaluation, 𝑄 = 𝑞-
Policy improvement: 𝜖-Greedy policy improvement

Monte-Carlo Control

Every episode:
Policy evaluation: Monte-Carlo policy evaluation, 𝑄 ≈ 𝑞-
Policy improvement: 𝜖-Greedy policy improvement

MC vs. TD
TD advantages:
• Lower variance
• Online
• Incomplete sequences

• Natural idea: use TD instead of MC in our control loop:
• Apply TD to Q(S, A)
• Use 𝜖-greedy policy improvement
• Update every time-step

SARSA

On-Policy With Sarsa

Every time-step:
Policy evaluation: Sarsa , 𝑄 ≈ 𝑞-
Policy improvement: 𝜖-Greedy policy improvement

On-Policy With Sarsa

Example windy Gridworld

• Reward = -1 per time-step until reaching goal

53

• Evaluate target policy π(a|s) to compute 𝑣,(𝑠) or 𝑞,(𝑠, 𝑎)
• While following behaviour policy µ(𝑎|𝑠)

{𝑆#, 𝐴#, 𝑅$, … , 𝑆& } ∼ µ

• Why is this important?
• Learn from observing humans or other agents
• Re-use experience generated from old policies 𝜋", 𝜋., … , 𝜋/0"
• Learn about optimal policy while following exploratory policy
• Learn about multiple policies while following one policy

Off-policy Learning

54

• We now consider off-policy learning of action-values 𝑄(𝑠, 𝑎)
• Next action is chosen using behaviour policy 𝐴(.# ∼ µ(· |𝑆()
• But we consider alternative successor action 𝐴′ ∼ 𝜋(· |𝑆()
• And update Q(St , At) towards value of alternative action

𝑄(𝑆(, 𝐴() ← 𝑄(𝑆(, 𝐴() + 𝛼 (𝑅(.# + 𝛾𝑄(𝑆(.#, 𝐴′) − 𝑄(𝑆(, 𝐴())

Q-learning: Off-policy TD Control

55

• We now allow both behaviour and target policies to improve
• The target policy π is greedy w.r.t. Q(s, a)

𝜋(𝑆(.#) = 𝑎𝑟𝑔𝑚𝑎𝑥;! 𝑄(𝑆(.#, 𝑎′)
• The behaviour policy µ is e.g. 𝜖-greedy w.r.t. Q(s, a)
• The Q-learning target then simplifies:

𝑅(.# + 𝛾𝑄 𝑆(.#, 𝑎* = 𝑅(.# + 𝛾𝑄(𝑆(.#, 𝑎𝑟𝑔𝑚𝑎𝑥;*𝑄(𝑆(.#, 𝑎′) =
= 𝑅(.# +max; 𝛾𝑄(𝑆(.#, 𝑎′)

Q-learning: Off-policy TD Control

56

Q-learning: Off-policy TD Control

57

• Whenever the agent is in state 𝑞 and takes action 𝑎, we have new data about the
reward that we get, we use this to update our estimate of the 𝑄 value at that state
• Agent updates its estimate of 𝑄 𝑠, a using following equation:

𝑄 𝑠, a ≔ 𝑄 𝑠, a + 𝛼 𝑟 + 𝛾max
,!∈.

𝑄(𝑠′, a# − 𝑄 𝑠, a)

∶= 1 − 𝛼 𝑄 𝑠, a + 𝛼 𝑟 + 𝛾max
,!

𝑄 𝑠#, a#

• Learning rate 𝛼 controls how aggressively you update the old 𝑄 value.
• 𝛼 ≈ 0 means that you update 𝑄 value very slowly
• 𝛼 ≈ 1 means that you simple replace the old value with the new value

• max
$#

𝑄(𝑠#, a#) is the estimate of the optimal future value

Q-learning

58

73

This is a subset of the sources I used. It is possible I missed something!

1. Richard S. Sutton and Andrew G. Barto, Reinforcement Learning, MIT Press.

2. http://ieeecss.org/CSM/library/1992/april1992/w01-ReinforcementLearning.pdf
3. https://github.com/omerbsezer/Reinforcement_learning_tutorial_with_demo - FunctionApproximation

Bibliography

http://ieeecss.org/CSM/library/1992/april1992/w01-ReinforcementLearning.pdf
https://github.com/omerbsezer/Reinforcement_learning_tutorial_with_demo

