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LECTURE NOTES 1
CONSERVATION LAWS

Conservation of energy E, linear momentum P , angular momentum L and electric charge

are of fundamental importance in electrodynamics (n.b. this is also true for all fundamental
forces of nature — the weak, strong, EM and gravitational force, both microscopically (locally),
and hence macroscopically (globally - i.e. the entire universe)!

Electric Charge Conservation

Previously (i.e. last semester in Physics 435), we discussed electric charge conservation:

Surface area element, dd

o -
<< J e
—
Enclosing
Volume, v surface, S
Electric current flowing outward from volume v
through closed bounding surface S at time t: | e (1) = Cj)s J e (T, 1)+da ( Amperes)
Electric charge contained in volume V at time t: Quree (1) = _[foree (F,t)dz (Coulombs)

An outward flow of current through surface S corresponds to a decrease in charge in volume Vv:

d t _ciree 7/
| oo () = _ (1) (Amperes = Coulombs/sec)| i.e. 9 (1) <0, I (t)=- 1Ques (1 >0
at dt dt
- d t
Global conservation of electric charge: | free (t) = és J free (F,t)-dé - Qf(rje: ( )
. deree (t) _ d r — —8pfree (l_;’t)
But: T—a foree(r’t)d[__[v ot dz

Use the divergence theorem on the LHS of the global conservation of charge equation:

- OPfree (T, 1
J.v Vel oo (F,t)dz = —L$ d7| < Integral form of the continuity equation.

This relation must hold for any arbitrary volumeV associated with the enclosing surface S;
hence the integrands in the above equation must be equal — we thus obtain the continuity

equation (in differential form), which expresses local conservation of electric charge at (F,t) :

- __apfree(r’t)

ot < Differential form of the continuity equation.

n.b. The continuity equation doesn’t explain wWhy electric charge is conserved
— it merely describes mathematically that electric charge is conserved!!
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Poynting’s Theorem and Poynting’s Vector §(F,t)

We know that the work required to assemble a static charge distribution is:

&, 2 (o _ = = _ SI units:
=] B (r.0de = [ (E(r0pE(r0)de = [ (D(r. € (r0) oe] | it
| Linear Dielectric Media

Likewise, the work required to get electric currents flowing, €.9. against a back EMF is:

Joules

2p, 7Y 2,u0

W, (=51 [ 8 (r.t)dr =L [ (B(r.0pB(r.0)d =L [ (A (r.0pB(r.0))a|[ sume

| Linear Maanetic Media

Thus the total energy, Ugm stored in EM field(s) is (by energy conservation) = total work done:

Sl units:
Joules

1 . 1 ~ "
Uy (1) =Wy, (1) =Wey, (1) =W (1)+W,, (t)=5jv(goE2(r,t)+ﬂ—Bz(r,t)jdr =jquM (F,t)dr
Uew (8) = U (F,t)dr=% v(goEZ(r,t)+ﬂiBZ(r,t)]dr s! unts
where U, = total energy density: |Ug, (f,t)=%[50E2(F,t)+LBZ(F,t)j (ST units: Joules/m?)
Hy

Suppose we have some charge density p(7,t) and current density J (F,t) configuration(s)

that at time t produce EM fields E (F,t) and I§(F,t) . In the next instant dt, i.e. at time t + dt, the

charge moves around. What is the amount of infinitesimal work dW done by EM forces acting
on these charges / currents, in the time interval dt ?

The Lorentz Force Law is:  |F (F,t) = q(E(F,t)-i-V(f,t)X E(F,t))

The infinitesimal amount of work dW done on an electric charge g moving an infinitesimal
distance d/ =vdt in an infinitesimal time interval dt is:

n.b.Ltov!!
—

AW = Fed/=q(E+VxB)-d? = qE-vdt+ q(v

dt = qE.\‘/’dt (n.b. magnetic forces do no work!!)

But: |Gy (Fot) = Ppee (Fo1)d7 and: [Py (F,1)V(F,1) =T o (T, 1)

2 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The (instantaneous) rate at which (total) work is done on all of the electric charges within the
volume V is:
dw (t)

" = [ F(F.t)e(d7(F.t)/dt) = [ F(F.0)7(7,t) = | Qee (T E(T,1)7(T,1)

W (t . -
d ( ) = IV( E (f,t)-J free (F,t)) dr=P (t) = instantaneous power (SI units: Watts)

The quantity E(F,t)eJ,,, (F,t) is the (instantaneous) work done per unit time, per unit volume —
i.e. the instantaneous power delivered per unit volume (aka the power density).

dW (t L
Thus: P(t) =#= [ (E(F.t)d e (7.1))d7| (ST units: Watts =

Joules
sec

)

We can express the quantity (E-j free) in terms of the EM fields (alone) using the Ampere-

Maxwell law (in differential form) to eliminate J ., .

Ampere’s Law with Maxwell’s Displacement Current correction term (in differential form):

VxB(F.1) = 21, {J e (Fo1) + T (Ft)} = 11,J e (T1) + 1, aEg,t)
q o OE (7.t
Thus: ‘Jfree(r’t):i(vxB(F’t))_go g:’ )
E(F,t)’jfree(rat):E(F’t)°{ 1 (§>< E(r,t))—go aE(r,t)
Ho o
Then: *( )
| o ~ OE(T,t
=—E(F,t)(VxB(F,t)) - E(F,t)e
LE(rTx8(r.0) -0 £()

Now: V-(E X I§)

I§-(V X E) - E-(§ X I§) Griffiths Product Rule #6 (see inside front cover)

Thus: E-(Vx I§) = I§-(V>< E)—g'(é X I§)

: o : I R oB(T.t)
But Faraday’s Law (in differential form) is: |V x E(I’,t)z— "
E(7xB)=—8-2_F(ExB)
However: Be :%g(éoé):%g(Bz) and similarly: E cE :lg(EoE)zlg(Ez)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 3
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Therefore:
E(Fot)ed o (Tot) = _ﬂio{—%g(sz (F.1))-V+(E(r.t)x B(F,t))}—go {5—(E2 (F,t))}
:_%g[goEZ(r,t)+ﬂio BZ(r,t)J_ﬂioﬁ(E(r,t)x B(.1))
Then:

Apply the divergence theorem to this term, get:

Poynting’s Theorem = “Work-Energy” Theorem of Electrodynamics:

p()- 208 [ ee Lo for-Lg (€080

Hy

Physically, %J. [50 E’ (F, t) + 1 B’ (F,t)} dz = instantaneous energy stored in the EM fields
! Hy

(E (F,t) and E(F,t)) within the volume v (SI units: Joules)
Physically, the term —i Cﬁs ( E (f, t) x B (f,t))-dé = instantaneous rate at which EM energy is
Hy

carried / flows out of the volume Vv (carried microscopically by virtual (and/or real!) photons

across the bounding/enclosing surface S by the EM fields E and B — i.e. this term represents/is
the instantaneous EM power flowing across/through the bounding/enclosing surface S
(ST units: Watts = Joules/sec).

Poynting’s Theorem says that:
The instantaneous work done on the electric charges in the volume v by the EM force is equal to

the decrease in the instantaneous energy stored in EM fields ( E and B), minus the energy that is
instantaneously flowing out of/through the bounding surface S .

- 1=, -
We define Poynting’s vector: [S (F.t) EIU—(E(V,I)X B(r,t)) = energy / unit time / unit area,

transported by the EM fields (E and B) across/through the bounding surface S

n.b. Poynting’s vector S has SI units of Watts/m> — i.e. an energy flux density.

4 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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dw (t dug, (t "
Thus, we see that: [P(t)= dt( )__ Z“:( )—CJ.DSS(?,t)-dé

where S (f,t)-dﬁ = instantaneous power (energy per unit time) crossing/passing through an

infinitesimal surface area element dd =fida, as shown in the figure below:

A A = outward pointing unit normal
vector (everywhere L to surface S)

EM energy flowing out of volumev
through enclosing surface S

Volume v

Enclosing surface S

Poynting’s vector: §(F,t) =LlE (F,t) X Ig(F,t) = Energy Flux Density (SI units: Watts/m?)

The work W done on the electrical charges contained within the volume v will increase their
mechanical energy — kinetic and/or potential energy. Define the (instantaneous) mechanical

energy density U, (F,t) such that:

dumech(r’t) = (v T = dUmec = (= T -
I S = E(T)ed o, (721)) Henee: | == [ (E(7.t)ed 1 (1)) dr
dW(t) dUmec d r = (7 J r
_Then: P(t): dt - dt - :E.[Vumech(r’t)dr:IV(E(r’t).Jfree(rat))dT

However, the (instantaneous) EM field energy density is:

R 1 . 1 ~
Ugy (Ft) :E(%Ez (r,t)+ﬂ—BZ (r,t)] (Joules/m?)

Then the (instantaneous) EM field energy contained within the volume Vv is:

Uen (t):IVuEM (F,t)dz’ (Joules)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 5
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d _ _ — - - = L_Jsing the
Thus, we see that: aj‘v(umech (r,t) +Ugy (r,t))dr = —Cﬁs S (r,t)-da = —IV(VOS (r,t))d‘[ Dtlxggggnmce

The integrands of LHS vs. {far} RHS of the above equation must be equal for each/every space-
time point (F,t) within the source volumeV associated with bounding surface S. Thus, we obtain:

g[um (F.t)+Ugy (F.t)]=-V-S(F.1)

The Differential Form of Poynting’s Theorem:

Poynting’s theorem = Energy Conservation “book-keeping” equation, C.f. with the
Continuity equation = Charge Conservation “book-keeping” equation:

o . S T
The Differential Form of the Continuity Equation: | = 2 (F,t)=-V+J(F,t)

ot
OUppeen (T, 1)

Since =E (f,t)-j ree (T 1), we can write the differential form of Poynting’s theorem as:

E(F,t)ed e (F,t)+—a”EMafr’t) = VS (T.1)

Or: E(F,t)ed e (T, 1) +

Poynting’s Theorem / Poynting’s vector S (F,t) represents the (instantaneous) flow of EM

energy in exactly the same/analogous way that the free current density J,,, (T,t) represents the
(instantaneous) flow of electric charge.

In the presence of linear dielectric / linear magnetic media, if one is ONLY interested in FREE
charges and FREE currents, then:

uly (F.t)=—(E(F,t)-D(F,t)+B(T,t)-H (F.t))|  |[D(F.t)=cE(T.t)| |e=5,(1+2.)

S(Pt)=LE(F,t)xB(r,t)=E(r,t)xH(F.t)| |B(F.t)=pH(F,t)] |u=p(1+1,)

6 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Griffiths Example 8.1:
Poynting’s vector S, power dissipation and Joule heating of a long, current-carrying wire.

When a steady, free electrical current | (# function of time, t) flows down a long wire of

Fall Semester, 2015

Lect. Notes 1 Prof. Steven Errede

length L > a (a=radius of wire) and resistance R (= L/ ra’o, ) , the electrical energy is

dissipated as heat (i.e. thermal energy) in the wire.

ﬁ#_

_l
T g=<

Battery
(or power supply)

Free Current Density:

Longitudinal Electric Field: E=

Potential Difference:

Long wire of
_ resistance R

Electrical power dissipation: |P =AV -l = IZR‘

n.b. The {steady} free current density J ., (= o E

Vi <« AV
i =0cE=(1/7a’)2 (Amps/m*) 0
- ‘E(p)‘ -
T AV, (Volts/m)
O. L
AV =V, -V, (>0) (Volts) |
0 p=a

=1/7a’ ) and the longitudinal electric field

E =(AV/L)2 are uniform across (and along) the long wire, everywhere within the volume of

the wire ( p < a) . = Thus, this particular problem has no time-dependence...

From Ampere’s Law:

(6. B(F)d? =t e}

o [
Blnsnde /JO 10 A
(pea)=279
I I
Bout5|de > :/uo ~
(p=a) 2757

p=+/X+Yy’ in cylindrical coordinates

(Tesla)

n.b. for simplicity’s sake, we have approximated the finite length wire by an oo-length wire.
This will have unphysical, but understandable consequences later on....

Poynting’s Vector: |S (

2za’l

. . ——
S|n5|de(p<a)=AV Ip 7 x

Poynting’s vector S oriented radially inward for p < a.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois

S (p>a)=0| {because E(p>a)=0!!!}

_____________

0 p=a

S—— N

B" (p< a) varies BOUt(pZ a)
linearly with p varies as 1/ o
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Note the following result for Poynting’s vector evaluated at the surface of the long wire, i.e. @ p=a:

AV -1
2ral

§inside (p — a) —

(=£)| (ST units: Watts/m?)

Since E** (p>a)=0: [S**(p=a)=0| = 3 adiscontinuityin S at p=a!!!

= AV -1p

S'v‘v’ﬂge (p=a)= 27a’L

AV -lp .
27ra2Lp

(-6)--

0 p=a p

Now let us use the integral version of Poynting’s theorem to determine the EM energy flowing
through an imaginary Gaussian cylindrical surface S of radius p <a and lengthH < L:

P(t)= dV\;t(t) = dL:j':eCh =%fvumech (F.t)dr = [ (E(T,t)d e (F1))d7
:_‘“Jz_h:(t)_gsss”(r da =~ 3 [ g, (1, 0)0 [ (945 (r.0)de

Since this is a static/steady-state problem, we assume that dU, (t) / dt=0

da,

Gaussian Surface S yA

___________ 1 A
AN {i L 1Yo, vane X

day y

Then for an imaginary Gaussian surface taken inside the long wire (p<a):

=0 =0
I:)wire = _qss Swire dd=- J-LH .dal - Icyl S°da2 - J-RH .daS
dcap surface dcap
- %/A—/ -
dé, =da, (~2) dé =day dd; =day (+2)

S(I-p) is L to dd (I1-2); S(ll-p) isanti-|| to d&, (I[+p); S(lI-p) is L to da, (||+2)

Only surviving term is:

_ 2=+H/ ecp=27 AV - | AV - g
Pare (P) =~y S(p)-dd, “Z_H//J ( £ jpdcodp (MazH pJ(ZﬂPH)ZAV"{p—z]

surface 27a H a

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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2
Thus: Pwire(p)=Av-l(§] (Watts) [P ()

And: |P,.(p=a)=AV-1| (Watts)

0 p¥a yo,

This EM energy is dissipated as heat (thermal energy) in the wire — also known as Joule

heating of the wire. Since ‘PW ( p)‘ oc p?, note also that the Joule heating of the wire occurs

ire

primarily at/on the outermost portions of the wire.

From Ohm’s Law: |AV =1-R,,.|where|R,, = resistance of wire = p2"*L/ A" = L/ 2™ Al

wire

Power losses in wire show up / result

2 - - - -
Joule Heatin in Joule heating of wire. Electrical
£ t & Pwire (,0) =—I szire (ﬁj energy is converted into heat
of current- a (thermal) energy — At the microscopic
carryng wire P —a)=-I’R level, this is due to kinetic energy
wire (,0 a) wire - .
losses associated with the ensemble of

individual drift/conduction/free
electron scatterings inside the wire!

Again use the integral version of Poynting’s theorem to determine the EM field energy
flowing through an imaginary Gaussian cylindrical surface S of radius p>a and lengthH < L.

We expect that we should get the same answer as that obtained above, for the p <a Gaussian
cylindrical surface. However, for p>a, S**(p>a)=0, because E**(p>a)=0!!!

Thus, for a Gaussian cylindrical surface S taken with p > a we obtain: P, = —Cﬁs S,i.eda=01"

What??? How can we get two different P, answers for p<a vs. p>a??? This can’t be!!!

wire
= We need to re-assess our assumptions here...

It turns out that we have neglected an important, and somewhat subtle point...

The longitudinal electric field E =(AV/L)2 formally/mathematically has a discontinuity at p =a:

A
- Vi 1/7a> v
‘E(p)‘ [ Oc - O. L
0 p=a ”

i.e. The tangential ( Z ) component of E is discontinuous at p =a.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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Formally/mathematically, we need to write the longitudinal electric field for this situation as:

LT J e ,
E(p)=—" D—@(p—a)]J ~[1-0(p-a)]z
Oc Oc
- L 0 for p<a
where the Heaviside step function is defined as: @(p—-a)= { as shown below:
1 for p>a
1 ________ —
O(p-a)
01 > P
0 p=a

Furthermore, note that: ©(x) = _[X &(t)dt and that: %@(X) =5(x),

—00

where O ( X) 1s the Dirac delta function.

Now, in the process of deriving Poynting’s theorem (above), we used Griffith’s Product Rule # 6
to obtain E-(§ X I§) = é-(§ X E) — %-( E x E) , and then used Faraday’s law (in differential form)

V xE =—0B/ét and then used 5.8 :lg(é-g):lg(Bz) and E-E :lﬁ(ﬁ.ﬁ):lé(g)
ot 2ot ot ot 20t 2ot
with Ug, =4(&,E* +--B?) to finally obtain:
(t) — dw (t) — dUmech —
dt dt

J.Vumechdz- = J.v E>'jfreedz-

2o

dUg (1) ¢ 2 .. d 5.8 (v
:_T_¢Ss.da:_EIVUEMdT_IvV.S(r’t)dT

So here, in this specific problem, what is VxE 277

In cylindrical coordinates, the only non-vanishing term is:

= = é’ N 8 ‘jfree N ‘jfree 5(9(/)—8) A ‘jfree A 6I§
VxE=——Ep=————|1-0O(p- = = o(p— =——
T 6,0{ ac[ % a)]}gp Yo oy P oAy
0 for p<a
— = 2] jree
In other words: VxE=—a—B= oo{‘f—}([) for p=a
ot O.
0 for p>a

10 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Thus, {only} for p > a integration volumes, we {very definitely} need to {explicitly} include
the o -function such that its contribution to the integral at p =a is properly taken into account!

dw (t)

P(t)=—, =—— Ugydr—¢ Seda
_% V%(goEerth)dr—(ﬁS Seda
=—1e, I%E dr—5 %Bzdr—g55§-dé
=—gojvé-fdr—,+0 vé°?fdf—(ﬁ5§°d§
:_gojvE.(:j dr+-L [ B-VxEdr - S-dd
=—¢, VE-dd—'fdz ‘#”ee jB.5 (p—a)gdr—¢, S-da

For this specific problem: dE/dt =0 and for p>a, §(p>a):l+é(p>a)x B(p>a)=0.
0 =0

Thus for p>a:

j j B J ree | ree
P(t):‘ - I B 5(/?—3.)(0(12' ZﬂaL‘ free B(p a ‘ ‘ f }/ ‘ fi L
luoo-c v IUOGC }/O-C C
= jfree AV
But: E = =——17, and thus, finally we obtain, for p>a: P( ) | )[ AV -1,
O'C L /K

which agrees precisely with that obtained earlier for p<a: P (t) =AV - !

For an E&M problem that nominally has a steady-state current | present, it is indeed curious that

— — j ree

VxE= ‘f—ﬁ ( p— a) Q= _%B 1s non-zero, and in fact singular {at p =a }! The singularity is a
Oc

consequence of the discontinuity in E on the p = a surface of the long, current-carrying wire.

The relativistic nature of the 4-dimensional space-time world that we live in is encrypted into
Faraday’s law; here is one example where we come face-to-face with it!

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois ]
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Let’s pursue the physics of this problem a bit further — and calculate the magnetic vector

potential A(T) inside (p <a) and outside (o >a) the long wire...

In general, we know/anticipate that {here}: A(F) | J(F)]|+2 since: A(T) =f—°J. yﬁdf'
T \
where r :|F| E|f—F'|.

We don’t need to carry out the above integral to obtain A(F') — a simpler method is to use

B(F)=VxA(T) in cylindrical coordinates. Since A(F)= A, ()2 (only, here), the only non-
zero contribution to this curl is: B (r)=- oA (r) .

op
5 lp,. 1 R d <a) . A(p<a 1 .
For p<a: Blp<a)=0r50= Sudpd = AZ(a/; Uy = (gp ):‘gﬂonz
Forpza:ﬁ(pza):%é, _%%Jaz(ﬂ@ oA (p=a). oA (p > a)

>a

p = L= ——lyoJa2 1
op op 2 o,
Using p =a as our reference point for carrying out the integration {and noting that as in the

case for the scalar potential V (f) , we similarly have the freedom to e.g. add any constant vector
to A(T)}:

A(p<a)= —%qujpdp 2 =) é(/o2 —¢)2= _%ﬂoJ (p*—c)2

Alp= a):—%,quazj(%jdp 4 :—%,uo.]a2 In(p/c,)?

where ¢, and c, are constants of the integration(s).

Physically, we demand that A(p) be continuous at p = a, thus we must have:
rs 1 2 2\ 5 1 2 5
A(p=a)= 5 Ho? (a*-c’)2= 3 Ho3a In(a/c,)?

Obviously, the only way that this relation can be satisfied is if ¢, =C, =ta, because then A( p= a) =0
{n.b. In(1)=Ine’ =0}.

Additionally, we demand that A(T)|| J ()|l +2, hence the physically acceptable solution is

C, =C, =—a, and thus the solutions for the magnetic vector potential A(F) for this problem are:

- 1 R 1 R

A(p<a)=—z,uo\] (p2 —az)z =+Z,u0J (a2 —,02)2
A(p=a) :_% pda n(p/-a)2 = % pd2* n(pfa)2
12

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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A

Alo)_|._. |A(0)| =4 1,387
\0 v PRE > J K
A (p<a)  |A(p=a)

varies as 1—(p/a)?>  varies as In(p/a)

Note that: A(p>a)= % 1,3 In(p/a)i has a {logarithmic} divergence as p —» oo, whereas:

B(p—o)=Vx A(p—)oo):%,quaz(lj@aO
o

This is merely a consequence associated with the {calculationally-simplifying} choice that we
made at the beginning of this problem, that of an infinitely long wire — which is unphysical.
It takes infinite EM energy to power an infinitely long wire... For a finite length wire carrying a
steady current |, the magnetic vector potential is mathematically well-behaved {but has a
correspondingly more complicated mathematical expression}.

It is easy to show that both of the solutions for the magnetic vector potential A( yoaN a) satisfy
the Coulomb gauge condition: 6-/&(?) =0, by noting that since A(p N a) =A (p N a) 7 are
functions only of p, then in cylindrical coordinates: 6'A(p N a) =0A, (,0 N a)/az =0.

Let us now investigate the ramifications of the non-zero curl result associated with Faraday’s
law at p=a for the A-field at that radial location:

6Az ‘ j free ‘ j free %) A ‘ j free

Then: —*= - = - —= O(p-

en: — y j5(p a)dp = O(p-a) or s (p—a)2
=0(p-a)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 13
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Now, recall that the {correct!} electric field for this problem is:

Prof. Steven Errede

However, in general, the electric field is defined in terms of the scalar and vector potentials as:

Since {here, in this problem}:

Note that the {static} scalar field

B, _OA(TY)

E(F.t)=-VV (F.t)

2|, we see that:

Z | pervades all space, as does A(p : a) | +2Z.

Explicitly, due to the behavior of the Heaviside step function @( P — a) we see that the electric

field contribution

0

. |oA
| ot

= “] free

O¢

for p<a

2 for pZa'

Explicitly writing out the electric field in this manner, we see that:

E(pza)-—wv(pia)-2et ) ¢

jfree 2 0 . ‘jfree
5:5\( P ; a) O¢ B O¢
at J free| o ‘jfree 2 -0
Oc Oc B

for p>a

Thus, for p>a we see that the —8,5\( p= a) / ot contribution to the E -field outside the wire

{which arises from the non-zero V x E of Faraday’s law at p =a } exactly cancels the

-VV ( P> a) contribution to the E -field outside the wire, everywhere in space outside the wire,

despite the fact that A(p > a) varies logarithmically outside the wire!!!!

14
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The long, current-carrying wire can thus also be equivalently viewed as an electric flux tube:
/O'C )L[l—@)(p—a)] 2.dd=1/o,

The electric field E is confined within the tube ( = the long, current carrying wire) by the

o, - [ E-da=(7,,

—8,5\( P> a) / ot contribution arising from the Faraday’s law effect on the p =a boundary of the

flux tube, due to the {matter geometry-induced} discontinuity in the electric field at p=a!

The VxE =(‘jfree

/O'C )6(,0 ~a)p=—-0B/ot effectat p=a also predicts a non-zero “induced” EMF
in a loop/coil of wire: &€ =—0®, /ot . The magnetic flux through a loop of wire is:
@, = Cﬁc Asd( = L Bedd = B- A where A is the cross-sectional area of a loop of wire {whose plane

is perpendicular to the magnetic field at that point}. Note further that the width, w of the coil only needs
to be large enough for the coil to accept the 8I§/ ot contribution from the d-function at p =a. Then, here
in this problem, since the magnetic field at the surface of the wire is oriented in the ¢ -direction, and:

m

. Aloop
5(/7_3)(/3, then we see that: |& = — - \
ot o o p -

B e o, 0B-A [T

s(p-a)

For a real wire, e.g. made of copper, how large will this EMF be — is it something e.g. that we
could actually measure/observe in the laboratory with garden-variety/every-day lab equipment???

A number 8 AWG (American Wire Gauge) copper wire has a diameter D = 0.1285” =0.00162 m
(~ 1/8”=0.125") and can easily carry | = 10 Amps of current through it.

The current density in an 8 AWG copper wire carrying a steady current of | =10 Amps is:

‘]SAWG -

| 4 4-10
= - =4.8x10° ( Amps/m’
za’  7D*  7(0.001632)° (Amps/m’)

The electrical conductivity of {pure} copperis:  o¢' =5.96x10" (Siemens/m).

If our “long” 1/8” diameter copper wire is L =1m long, and if we can e.g. make a loop of ultra-
fine gauge wire that penetrates the surface of the wire and runs parallel to the surface, then if we

approximate the radial delta function & ( p— a) at p =a as ~ a narrow Gaussian of width

w~10A =1nm=10"m (i.e. ~ the order of the inter-atomic distance/spacing of atoms in the copper
lattice {3.61A }), noting also that the delta function & ( p— a) has physical SI units of inverse length

(i.e. m™") and, neglecting the sign of the EMF, an estimate of the magnitude of the “induced” EMF is:

loop

£y = JSAWGC'UAL §(p—a): JSAWG C:—W _WZ(J;AC\:AJG j L:[

Oc Oc c

4.8x10°( Amps/m?*)
6x107 (Siemens/m)

}-lm:SOmV!!!

This size of an EMF is easily measureable with a modern DVM...

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 15
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Using Ohm’s Law: V =1-R, note that the voltage drop V,,, acrossa L =1m length of
8 AWG copper wire with | =10 Amps of current flowing thru it is:

Cu
vI" —_|.R _|.pC_L_ 3. Upure ) L _‘]SAWG.L—g "
drop — im — Awire - SAWG i Cu ire - Cu —C“Cu-*
L GC | o-C

AP / O ) &(p—a) in the one-turn loop coil of

length L {oriented as described above} is precisely equal to the voltage drop V= (‘j free / o ) L

along a length L of a portion of the long wire with steady current | flowing through it, even though
the 1-turn loop coil is completely electrically isolated from the current-carrying wire!!!

In other words, the “induced” EMF, & = (‘j free

This can be easily understood... Using Stoke’s theorem, the surface integral of VxE can be
converted to a line integral of E along a closed contour C bounding the surface of integration S ;
likewise, a surface integral of 8I§/ ot =Vx 85\/ ot can be converted to a line integral of 6,&/ ot along
a closed contour C bounding the surface of integration S:

aA-dZ
¢ ot

g:js(ﬁx E).da=<ﬁc Ed?:-ac;m =], ‘2'?@3:-]{%2’?]@5:—

n.b.: <_f>c —VVd7=0

Then for any closed contour C associated with the surface S that encloses the Faraday law
VxE &function singularity at p = a, €.g. as shown in the figure below:

«— ¢ >
4 E_=0 dt, ., 3 l
qroil £ :%\
T ¥ T = W# / w
1 —

\ 4

the “induced” EMF & can thus also be calculated from the line integral IC E«d/ taken around
the closed contour C. From the above discussion(s), the electric field inside (outside) the long

current-carrying wire is E, = J / o (Eout = O), respectively {n.b. = tangential E is

discontinuous across the boundary of a {volume} current-carrying conductor!}. Then:

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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, =E-1=AV

152

&= Eedi= L E 22 d£H2+J'

=J é/ac El(=AV,_,,

The presence of a non-zero Faraday’s law VxE = —6@/ ot = (‘j free / O. )5 (p—a)¢ term at the surface

of the long current-carrying wire implies that the “induced” EMF & = (‘J o] - AP / Oc ) (p—a) canalso

be viewed as arising from the mutual inductance M (Henrys) associated with the long wire and the coil

{oriented as described above}, and a non-zero 0l /ot :

_OB-AYP
at

We can obtain a relation between 8I§/ ot and 0l /6t using the integral form of Ampere’s law:

Cﬁc Bed/ = 1,1, - Taking the partial derivative of both sides of this equation with respect to time:

S(6.807) =4, St T

-d 0=
Pt
The contour of integration C needs to be taken just outside the surface of the long wire, along

the ¢ -direction, since B||¢ at p=a, i.e. d/|| ¢ in order to include the non-zero Faraday’s law
effect at the surface of the long wire.

B | e | (27a)oB  (27a)[Twe
Then: |28 [ #o_ i:_‘f_(;(p_a) or | _[278|B_ (272 I, 5(p-a)
ot \2za)ot o ot M, )ot H, ) Oc
q) E * AlOOp I J ree Aloop
Then: 8:—6 n_ BA =—Ma—=‘ : 5(p-a)
ot ot ot O.
Aloop
Solving for the mutual inductance, we obtain a rather simple result: [M = Sy (Hen ryS)
V4

Note that the mutual inductance, M involves the magnetic permeability of free space
=47 x107 (Hen rys/ m) {n.b. which has SI units of inductance/length} and geometrical

aspects {only!} of the wire (its radius, a) and the cross-sectional area of the loop, A” .

: Af"p/ac)ﬁ(p—a)
associated with a long, steady current-carrying wire is that “normal” induced EMF’s only occur in electrical
circuits that operate at non-zero frequencies, i.e. f >0 Hz. However, here, in this problem, we have an

What is astonishing {and unique} r.e. the “induced” Faraday’s law EMF & = (‘j free

example of a DC induced EMF —i.e. an induced EMF that occurs at f =0 Hz, arising from the non-zero
Faraday’s law effect VxE = —6@/6’[ = (‘jﬂee

/ o )5 (p—a)@ due to the longitudinal E -field discontinuity

at the surface (o =a) of a long, steady current-carrying wire!!!

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Instead of using a long wire to carry a steady current | to observe this effect, one might instead
consider using €.g. a long, hollow steady current-carrying pipe of inner (outer) radius a, (b) respectively.
Following the above methodology, one can easily show that for such a long, hollow current-carrying
pipe, two 0pposing non-zero Faraday law V x E radial S-function contributions occur — one located at
the p =a inner surface, and the other located at the p =b outer surface of the long hollow current-

carrying pipe:

VxE =—0B/at=—(|3,,

Joc)[6(p-a)-5(p-b)]s

The E -field is:

E=-VV -aAfat=(|J,,

/O'C)[1+C:)(p—a)—®(p—b)}2

where: ©(p-a) is the complement of the Heaviside step function, such that:

1 for p<a
0 for p>a

dO(x)/dx=-5(x) and: ©(X) = —J:X &(t)dt where: §(x)is the Dirac delta-function.

Hence, a 1-turn coil {oriented as described above} enclosing the p =a inner surface .and.
the p =D outer surface of a current-carrying hollow pipe will have a “null” induced EMF, i.e.
& =0 due to the wire loop simultaneously enclosing the two opposing non-zero Faraday law

V x E radial &function contributions, one located at p =a, the otherat p=bh:

_ 8I§ . AJI?OP _ ‘jfree ’ ATOP
ot ot o

(6(p-a)-5(p-b))=0

In general, any penetration/hole made into the metal conductor of a long, steady current-
carrying wire will result in a non-zero Faraday law Vx E &-function on the boundary/surface of
=0 in the penetration/hole, E = 0 there and

that penetration/hole! Since the current density J .,

thus a discontinuity in E exists on the boundary of the penetration/hole, hence a non-zero
Faraday law V x E &function exists on the boundary of the penetration/hole!

This fact {unfortunately} has important ramifications for the experimental detection /
observation of the predicted non-zero DC induced EMF in a coil {oriented as described above},
Embedding a portion of a physical wire loop inside the long, steady current-carrying wire
requires making a penetration/hole {no matter how small} into the wire, which will result in a

non-zero Faraday law V x E &-function on the boundary/surface of that penetration/hole in the
wire! Thus, the wire loop will in fact enclose not only the Faraday law V x E radial singularity at
p =a on the surface of the wire, but will also enclose another, opposing singularity located on

the boundary/surface of the penetration/hole made into the long wire {which was made to embed
a portion of the wire loop in a long, steady current-carrying wire in the first place}, thus @
experimentally, a “null” induced EMF, i.e. £ =0 is expected/anticipated, because of this...

Hence, in the real world of experimental physics, it appears that embedding a portion of a real wire
loop in a long, steady current-carrying wire in an attempt to observe this effect is doomed to failure...
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