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LECTURE NOTES 1 
 

CONSERVATION LAWS 
 

     Conservation of energy E, linear momentum p


, angular momentum L


and electric charge q 
are of fundamental importance in electrodynamics (n.b. this is also true for all fundamental 
forces of nature – the weak, strong, EM and gravitational force, both microscopically (locally), 
and hence macroscopically (globally - i.e. the entire universe)! 
 

Electric Charge Conservation 
 

Previously (i.e. last semester in Physics 435), we discussed electric charge conservation: 

 
 

Electric current flowing outward from volume v   

through closed bounding surface S at time t:        ,free freeS
I t J r t da Amperes 

     

Electric charge contained in volume v  at time t:       ,free freev
Q t r t d Coulombs  


 

An outward flow of current through surface S corresponds to a decrease in charge in volume v: 
 

     free
free

dQ t
I t Amperes Coulombs sec

dt
      i.e. 

 
0freedQ t

dt
 ,     

0free
free

dQ t
I t

dt
    

Global conservation of electric charge:        
, free

free freeS

dQ t
I t J r t da

dt
  

    

But: 
     ,

,free free
freev v

dQ t r td
r t d d

dt dt t


  


 

 



 

 

Use the divergence theorem on the LHS of the global conservation of charge equation: 
 

   ,
, free

freev v

r t
J r t d d

t


 


  

 
     Integral form of the continuity equation. 

 

     This relation must hold for any arbitrary volume v  associated with the enclosing surface S; 
hence the integrands in the above equation must be equal – we thus obtain the continuity 
equation (in differential form), which expresses local conservation of electric charge at  ,r t


: 

 

     ,
, free

free

r t
J r t

t


  



     Differential form of the continuity equation. 

 

n.b. The continuity equation doesn’t explain why electric charge is conserved   
       – it merely describes mathematically that electric charge is conserved!! 

Volume, v 
Enclosing 
surface, S 

free 
 

Surface area element,  
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Poynting’s Theorem and Poynting’s Vector  ,S r t
 

 
 

We know that the work required to assemble a static charge distribution is: 
 

             2 1
, , , , ,

2 2 2
o o

E v v v
W t E r t d E r t E r t d D r t E r t d

       
           

 
Likewise, the work required to get electric currents flowing, e.g. against a back EMF is: 
 

             21 1 1
, , , , ,

2 2 2M v v v
o o

W t B r t d B r t B r t d H r t B r t d  
 

    
            

 
Thus the total energy, UEM stored in EM field(s) is (by energy conservation) = total work done:   
 

               2 21 1
, , ,

2EM tot EM E M o EMv v
o

U t W t W t W t W t E r t B r t d u r t d  


 
       

 
 

  
 

 

       2 21 1
, , ,

2EM EM ov v
o

U t u r t d E r t B r t d  


 
   

 
 

  
 

 

where EMu = total energy density:       2 21 1
, , ,

2EM o
o

u r t E r t B r t


 
  

 

  
  (SI units: Joules/m3) 

 

     Suppose we have some charge density  ,r t 
 and current density  ,J r t

 
 configuration(s) 

that at time t produce EM fields  ,E r t
 

 and  ,B r t
 

.  In the next instant dt, i.e. at time t + dt, the 

charge moves around.  What is the amount of infinitesimal work dW  done by EM forces acting 
on these charges / currents, in the time interval dt ? 
 

The Lorentz Force Law is:         , , , ,F r t q E r t v r t B r t  
      

 

 
The infinitesimal amount of work dW done on an electric charge q moving an infinitesimal 

distance d vdt
   in an infinitesimal time interval dt is:   

 

   
. . to  !!!

 0

n b v

dW F d q E v B d qE vdt q v B vdt





      

             


qE vdt
     

 

But:    , ,free freeq r t r t d 
 

 and:      , , ,free freer t v r t J r t 
   

 

 
 
 

(n.b. magnetic forces do no work!!) 

SI units: 
Joules 

SI units: 
Joules 

SI units: 
Joules 

SI units: 
Joules 

Linear Dielectric Media 

Linear Magnetic Media 
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The (instantaneous) rate at which (total) work is done on all of the electric charges within the 
volume v  is: 

         

                

         

      

, , , , , , ,

             , , ,      using :    , ,

             , , ,     but :    

freev v v

free free freev

free freev

dW t
F r t d r t dt F r t v r t q r t E r t v r t

dt

r t d E r t v r t q r t r t d

E r t r t v r t d J r

   

 

  

 



  



             
     

           , , ,freet r t v r t   
 

 

     
        , ,freev

dW t
E r t J r t d P t

dt
 

    = instantaneous power (SI units: Watts) 

 

The quantity    , ,freeE r t J r t
    is the (instantaneous) work done per unit time, per unit volume – 

i.e. the instantaneous power delivered per unit volume (aka the power density).  
 

Thus:            , ,freev

dW t
P t E r t J r t d

dt
  

     (SI units: Watts = 
Joules

sec
) 

 

We can express the quantity  freeE J
 
  in terms of the EM fields (alone) using the Ampere-

Maxwell law (in differential form) to eliminate freeJ


. 
 

Ampere’s Law with Maxwell’s Displacement Current correction term (in differential form):  
 

          ,
, , , ,o free D o free o o

E r t
B r t J r t J r t J r t

t
   


    



        
  

Thus:         ,1
, ,free o

o

E r t
J r t B r t

t





  


   
 

Then:  

          

        

,1
, , , ,

,1
                         , , ,

free o
o

o
o

E r t
E r t J r t E r t B r t

t

E r t
E r t B r t E r t

t







       


  


        

      

 

 

Now:      E B B E E B     
       
     Griffiths Product Rule #6 (see inside front cover) 

Thus:      E B B E E B    
       
    

But Faraday’s Law (in differential form) is:    ,
,

B r t
E r t

t


  



   
 

           B
E B B E B

t


    



     
    

However:    21 1

2 2

B
B B B B

t t t

  
 

  

  
    and similarly:    21 1

2 2

E
E E E E

t t t

  
 

  

  
   
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Therefore: 

              

        

2 2

2 2

1 1 1
, , , , , ,

2 2

1 1 1
                              , , , ,

2

free o
o

o
o o

E r t J r t B r t E r t B r t E r t
t t

E r t B r t E r t B r t
t





 

                

 
        

         

     
 

Then: 

 

        

        2 2

, ,

1 1 1
          , , , ,

2

freev

ov v
o o

dW t
P t E r t J r t d

dt

d
E r t B r t d E r t B r t d

dt



  
 

 

 
      

 



 

  

     


 

 

        Apply the divergence theorem to this term, get: 
 

Poynting’s Theorem = “Work-Energy” Theorem of Electrodynamics: 
 

            2 21 1 1
, , , ,

2 ov S
o o

dW t d
P t E r t B r t d E r t B r t da

dt dt
 

 
          
   
 

       

 

Physically,    2 21 1
, ,

2 ov
o

E r t B r t d 


 
 

 


 
 = instantaneous energy stored in the EM fields 

    ,  and ,E r t B r t
  

 within the volume v  (SI units: Joules) 

Physically, the term     1
, ,

S
o

E r t B r t da


 
     = instantaneous rate at which EM energy is 

carried / flows out of the volume v  (carried microscopically by virtual (and/or real!) photons 

across the bounding/enclosing surface S  by the EM fields  and E B
 

  i.e. this term represents/is 
the instantaneous EM power flowing across/through the bounding/enclosing surface S   
(SI units: Watts = Joules sec ). 
 

Poynting’s Theorem says that:   
The instantaneous work done on the electric charges in the volume v  by the EM force is equal to 

the decrease in the instantaneous energy stored in EM fields (  and E B
 

), minus the energy that is 
instantaneously flowing out of/through the bounding surface S . 
 

We define Poynting’s vector:       1
, , ,

o

S r t E r t B r t


 
    

 = energy / unit time / unit area, 

transported by the EM fields (  and E B
 

) across/through the bounding surface S   
 

n.b. Poynting’s vector S


 has SI units of  Watts/m2 – i.e. an energy flux density. 
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Thus, we see that:          ,EM

S

dW t dU t
P t S r t da

dt dt
    

    

 

where  ,S r t da
    = instantaneous power (energy per unit time) crossing/passing through an 

infinitesimal surface area element ˆda nda


, as shown in the figure below: 
 

   n̂     n̂  = outward pointing unit normal  
vector (everywhere   to surface S ) 

 
 

           da     EM energy flowing out of volume v  
through enclosing surface S  

  ẑ  
 

ŷ  
  

x̂  
 Volume v  
 
 
 

 
Enclosing surface S  
 

Poynting’s vector:      1, , ,
o

S r t E r t B r t 
    

 = Energy Flux Density (SI units: Watts/m2) 
 

     The work W done on the electrical charges contained within the volume v  will increase their 
mechanical energy – kinetic and/or potential energy. Define the (instantaneous) mechanical 
energy density  ,mechu r t


 such that:  

 

     ,
, ,mech

free

du r t
E r t J r t

dt


      Hence:     , ,mech
freev

dU
E r t J r t d

dt
 

    

 

Then:           , , ,mech
mech freev v

dW t dU d
P t u r t d E r t J r t d

dt dt dt
     

     

 

However, the (instantaneous) EM field energy density is: 
 

     2 21 1
, , ,

2EM o
o

u r t E r t B r t


 
  

 

  
  (Joules/m3) 

 

Then the (instantaneous) EM field energy contained within the volume v  is: 
  

   ,EM EMv
U t u r t d 


  (Joules) 
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Thus, we see that:            , , , ,mech EMv S v

d
u r t u r t d S r t da S r t d

dt
        

        

 

The integrands of LHS vs. {far} RHS of the above equation must be equal for each/every space-
time point  ,r t


 within the source volume v  associated with bounding surface S. Thus, we obtain: 

The Differential Form of Poynting’s Theorem:       , , ,mech EMu r t u r t S r t
t


    

     

 

Poynting’s theorem  = Energy Conservation “book-keeping” equation,  c.f. with the  
Continuity equation = Charge Conservation “book-keeping” equation: 
 

The Differential Form of the Continuity Equation:     , ,r t J r t
t


 


    

Since 
     ,

, ,mech
free

u r t
E r t J r t

t






    , we can write the differential form of Poynting’s theorem as: 

        ,
, , ,EM

free

u r t
E r t J r t S r t

t


  



        

Or:               ,
, , , 0EM

free

u r t
E r t J r t S r t

t


  



        

 

     Poynting’s Theorem / Poynting’s vector  ,S r t
 

 represents the (instantaneous) flow of EM 

energy in exactly the same/analogous way that the free current density  ,freeJ r t
 

 represents the 

(instantaneous) flow of electric charge. 
 

In the presence of linear dielectric / linear magnetic media, if one is ONLY interested in FREE 
charges and FREE currents, then: 
 

                1
, , , , ,

2
free

EMu r t E r t D r t B r t H r t 
                   , ,D r t E r t

  
      1o e     

 

                  1, , , , ,S r t E r t B r t E r t H r t   
        

         , ,B r t H r t
  

      1o m     
 
 

 
 
 
 
 
 
 
 
 
 
 

Using the 
Divergence 

theorem 
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Griffiths Example 8.1: 

Poynting’s vector S


, power dissipation and Joule heating of a long, current-carrying wire. 
 

     When a steady, free electrical current I (≠ function of time, t) flows down a long wire of 

length L a  (a = radius of wire) and resistance  2  CR L a  , the electrical energy is 

dissipated as heat (i.e. thermal energy) in the wire. 
 

Electrical power dissipation: 2P V I I R     
 I 

        
Long wire of 

    resistance R 
           
             
  I 
        Battery                 L a  
(or power supply)          V1   V    V2 
 

Free Current Density:          2 2ˆ   free CJ E I a z Amps m  
 

   

Longitudinal Electric Field:    ˆ   free

C

J V
E z Volts m

L


 




 

Potential Difference:     1 2  0   V V V Volts     

 

n.b. The {steady} free current density freeJ


( 2
C E I a  


) and the longitudinal electric field 

  ˆE V L z 


 are uniform across (and along) the long wire, everywhere within the volume of 

the wire  a  . Thus, this particular problem has no time-dependence… 

From Ampere’s Law:         2
ˆ

2
inside o I

B a
a

  


 


   2 2x y    in cylindrical coordinates 

  o enclC
B r d I

           ˆ
2

outside o I
B a

 


 


 (Tesla) 

 

n.b. for simplicity’s sake, we have approximated the finite length wire by an ∞-length wire.   
This will have unphysical, but understandable consequences later on…. 
 

Poynting’s Vector:       1

o

S r E r B r


 
    

     B 


 

     
ˆ

2 2
ˆ ˆˆ

2 2
inside V I V I

S a z
a L a L


   

 



   
    


 

 

Poynting’s vector S


 oriented radially inward for a  .    0            a            
 

  0outsideS a  


 {because   0E a  


!!!} 

I 

 E 


 

  

V

L


 

a   0  

 inB a 


varies 

linearly with   
 outB a 


 

varies as 1   

2
oI

a




 

ˆE z



ˆB 



ˆS 



1
o

S E B 
  

a
ẑ

V
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Note the following result for Poynting’s vector evaluated at the surface of the long wire, i.e. @ a  : 
 

       ˆ
2

inside V I
S a

aL
 


 

  


 (SI units: Watts/m2)               

 

Since   0outsideE a  


:   0outsideS a  


     a discontinuity in S


 at a  !!! 
 

 S 


             
2

V I

aL
 

           2 2
ˆ ˆ

2 2long
wire

V I V I
S a

a L a L

   
 

   
    


 

 
 

 
    0     a        
 

Now let us use the integral version of Poynting’s theorem to determine the EM energy flowing 
through an imaginary Gaussian cylindrical surface S of radius a   and length H L : 
 

          
        

, , ,

        , , ,

mech
mech freev v

EM
EMS v v

dW t dU d
P t u r t d E r t J r t d

dt dt dt
dU t d

S r t da u r t d S r t d
dt dt

 

 

   

      

 

  

   

     
 

 

Since this is a static/steady-state problem, we assume that   0EMdU t dt  . 

2da  

 
             

                          x̂  
        3 3ˆˆ, ,z n da


 

        Gaussian Surface S       ẑ   
                

1da                H     3da       ŷ  

 V1         V    V2 
 
Then for an imaginary Gaussian surface taken inside the long wire ( a  ): 

   0

1wire wire LHSS endcap

P S da S da


    
   

  2 21 1

   0

2 3

ˆˆ

cyl RHS
surface endcap

da dada da z

S da S da





 

  


   


 3 3 ˆda da z 



 

 ˆS 

  is   to  1 ˆda z

  ;    ˆS 

  is anti-  to  2

ˆda   ;  ˆS 

  is   to  3 ˆda z

   
 

Only surviving term is: 
 

     
2

22
2 2 2 202

ˆ ˆ 2
2 2

Hz

wire cyl Hzsurface

V I V I
P S da d dz H V I

a H a H a

 



        
 

 

 

                    
     

  
   

  a 

1 1ˆˆ, ,z n da


 

2 2ˆ ˆ, ,n da 
 

ˆS 

  
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Thus:  
2

wireP V I
a

      
 

  (Watts)            wireP            
2

V I
a

    
 

 

 

And:  wireP a V I          (Watts) 

 
          0      a           
 

     This EM energy is dissipated as heat (thermal energy) in the wire – also known as Joule 

heating of the wire. Since   2 ,wireP   note also that the Joule heating of the wire occurs 

primarily at/on the outermost portions of the wire. 
 
From Ohm’s Law:   wireV I R    where wireR = resistance of wire = wire wire wire wire

C CL A L A    

 

    
2

2
wire wireP I R

a

     
 

  

     2
wire wireP a I R       

      
 
 
     Again use the integral version of Poynting’s theorem to determine the EM field energy 
flowing through an imaginary Gaussian cylindrical surface S of radius a   and length H L .  
 

     We expect that we should get the same answer as that obtained above, for the a   Gaussian 

cylindrical surface. However, for a  ,   0outsideS a  


, because   0outsideE a  


!!! 
 

Thus, for a Gaussian cylindrical surface S taken with a   we obtain: 0wire wireS
P S da  

  !!!   
 

What??? How can we get two different wireP  answers for a   vs. a  ??? This can’t be!!! 
 

 We need to re-assess our assumptions here… 
 

It turns out that we have neglected an important, and somewhat subtle point...  
 

The longitudinal electric field   ˆE V L z 


 formally/mathematically has a discontinuity at a  : 

 
 
 
 
 
 
 
 

i.e. The tangential ( ẑ ) component of E


 is discontinuous at a  . 
 

Power losses in wire show up / result 
in Joule heating of wire. Electrical 
energy is converted into heat 
(thermal) energy – At the microscopic 
level, this is due to kinetic energy 
losses associated with the ensemble of 
individual drift/conduction/free 
electron scatterings inside the wire! 

Joule Heating 
of current-

carrying wire 

 E 


 
2

free

C C

J I a V

L


 


 



 

  
a   0  

0  
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Formally/mathematically, we need to write the longitudinal electric field for this situation as: 
 

      ˆ1 1
freefree

C C

JJ
E a a z  

 
           




 

where the Heaviside step function is defined as:  
0  for  

1  for  

a
a

a







    
 as shown below: 

 

 
 
 
 
 
 

Furthermore, note that:    
x

x t dt


     and that:    d
x x

dx
  ,  

where  x  is the Dirac delta function. 

 
Now, in the process of deriving Poynting’s theorem (above), we used Griffith’s Product Rule # 6  

to obtain      E B B E E B    
       
   , and then used Faraday’s law (in differential form) 

E B t   
  

 and then used    21 1

2 2

B
B B B B

t t t

  
 

  

  
   and    21 1

2 2

E
E E E E

t t t

  
 

  

  
   

with  2 21 1
2 oEM ou E B   to finally obtain: 

 

   

           ,

mech
mech freev v

EM
EMS v v

dW t dU d
P t u d E J d

dt dt dt
dU t d

S da u d S r t d
dt dt

 

 

   

      

 

  

 


   
 

 

So here, in this specific problem, what is E
 

???  
 

In cylindrical coordinates, the only non-vanishing term is:  
 

     ˆ ˆ ˆ ˆ1
free free free

z
C C C

J J Ja B
E E a a

t


      

     

                          

    

 

In other words:  

         0           for  

ˆ  for  

         0            for  

free

C

a

JB
E a

t

a



 







              




 
 

 
 

 a   

  
a   0  

0  

1 
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Thus, {only} for a   integration volumes, we {very definitely} need to {explicitly} include 
the  -function such that its contribution to the integral at a   is properly taken into account! 
 

   

 2 21 1
2

2 21 1
2 2

1

1

  

        

        

        

        

o

o

o

o

EMv S

ov S

o v v S

o v v S

o v

dW t d
P t u d S da

dt dt
d

E B d S da
dt

d d
E d B d S da

dt dt

dE dB
E d B d S da

dt dt

dE
E d B

dt











 

  

  

 

   

   

   

   

   

 

 

  

  



 

 

 
      
 

 









  ˆ        

v S

free

o v v S
o C

Ed S da

JdE
E d B a d S da

dt



     
 

 

    

 

  

  
     





 

 

For this specific problem: 0dE dt 


 and for a  ,      1

0

0
o

S a E a B a  


     
  

 . 

Thus for a  : 
 

       ˆ 2 2
free free

v
o C o C

J J
P t B a d aL B a a      

   
    
 

 
 free

o

J
L



o

C



 2

I

a
free

C

J
I L


 



 

 

But: ˆfree

C

J V
E z

L


 




, and thus, finally we obtain, for a  :   V
P t

L


 I L V I   ,  

which agrees precisely with that obtained earlier for a  :  P t V I   !!! 

 
For an E&M problem that nominally has a steady-state current I present, it is indeed curious that 

  ˆ
free

C

J B
E a

t
  




    


  
 is non-zero, and in fact singular {at a  }! The singularity is a 

consequence of the discontinuity in E


 on the a   surface of the long, current-carrying wire.  
 

     The relativistic nature of the 4-dimensional space-time world that we live in is encrypted into 
Faraday’s law; here is one example where we come face-to-face with it! 
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     Let’s pursue the physics of this problem a bit further – and calculate the magnetic vector 

potential  A r
 

 inside  a   and outside  a   the long wire… 

In general, we know/anticipate that {here}:     ˆA r J r z
     since:    

4
o

v

J r
A r d

 
 


 

  
r

 

where r r  
 

r r .  
 

     We don’t need to carry out the above integral to obtain  A r
 

  a simpler method is to use 

   B r A r 
  

 in cylindrical coordinates. Since     ˆzA r A r z
  

 (only, here), the only non-

zero contribution to this curl is:    
ˆzA r

B r 



 



 
. 

For a  :    
2

1
ˆ ˆ ˆ          

2 2
zo

o

A aI
B a J

a

     
 

 
    




       

  1
ˆ

2 o

A a
J z


 


 

 



 

For a  :    21 1
ˆ ˆ ˆ  

2 2
zo

o

A aI
B a Ja

    
  

  
       


       

  21 1
ˆ

2 o

A a
Ja z




 
   

     


 

 

     Using a   as our reference point for carrying out the integration {and noting that as in the 

case for the scalar potential  V r


, we similarly have the freedom to e.g. add any constant vector 

to  A r
 

}: 

       2 2 2 2
1 1

1 1 1 1
ˆ ˆ ˆ           

2 2 2 4o o oA a J d z J c z J c z               


 

     2 2
2

1 1 1
ˆ ˆ ln

2 2o oA a Ja d z Ja c z    


 
     

 



 

where 1c  and 2c  are constants of the integration(s).  
 

Physically, we demand that  A 


 be continuous at a  , thus we must have: 
 

     2 2 2
1 2

1 1
ˆ ˆln

4 2o oA a J a c z Ja a c z       


 

 

Obviously, the only way that this relation can be satisfied is if 1 2c c a   , because then   0A a  


 

{n.b.   0ln 1 ln 0e  }.  
 

     Additionally, we demand that     ˆA r J r z
    , hence the physically acceptable solution is 

1 2c c a   , and thus the solutions for the magnetic vector potential  A r
 

for this problem are: 
 

     2 2 2 21 1
ˆ ˆ  

4 4o oA a J a z J a z          


 

     2 21 1
ˆ ˆln ln

2 2o oA a Ja a z Ja a z         

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      A 


 

 
 

            
 
      0       a            
 

 
 
 
 

     Note that:    1
ˆln

2 oA a J a z   


 has a {logarithmic} divergence as   , whereas:  

    21 1
ˆ 0

2 oB A Ja   


 
      

 


 

 

     This is merely a consequence associated with the {calculationally-simplifying} choice that we 
made at the beginning of this problem, that of an infinitely long wire – which is unphysical.  
It takes infinite EM energy to power an infinitely long wire… For a finite length wire carrying a 
steady current I, the magnetic vector potential is mathematically well-behaved {but has a 
correspondingly more complicated mathematical expression}. 
 

     It is easy to show that both of the solutions for the magnetic vector potential    A a 



 satisfy 

the Coulomb gauge condition:   0A r 
  , by noting that since     ˆ    zA a A a z  

 


 are 

functions only of  , then in cylindrical coordinates:        0zA a A a z  
     


 . 

 
     Let us now investigate the ramifications of the non-zero curl result associated with Faraday’s 

law at a   for the A


-field at that radial location:  
 

  ˆ
free

C

J B
E a

t
  




    


  
 

 

Since ˆzA
B A 




   


 
 {here, in this problem}, then:  

 
 ˆ ˆ

freez

C

A JAB
a

t t t
   

 

    
          

 
    or:     freez

C

JA
a

t
 

 
 

    



 

 

Then:  
 

 
 

free freez

C C
a

J JA
a d a

t


   
 

 


    

 
 


 or:   ˆ

free

C

JA
a z

t





  



. 

 

 inA a 


 

varies as 1(/a)2 

 outA a 


 

varies as ln(/a) 

  21
40 oA Ja


 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2015       Lect. Notes  1        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2015.  All Rights Reserved. 

14

     Now, recall that the {correct!} electric field for this problem is: 
 

    ˆ1
free

C

J
E a z 


    




 

 

However, in general, the electric field is defined in terms of the scalar and vector potentials as: 
 

     ,
, ,

A r t
E r t V r t

t


  



   
 

 

Since {here, in this problem}:   ˆ
free

C

JA
a z

t





  



,  we see that: ˆ

free

C

J
V z


 




  

 

and hence {in cylindrical coordinates} that:   free

C

J
V z z


 



 , then:  

 

 ˆ ˆ ˆ
free free free

C C C

J J J
V z z z z z

z z  

       
   

  


. 

 

Note that the {static} scalar field   free

C

J
V z z


 



 pervades all space, as does   ˆ  A a z 
 


 . 

 
Explicitly, due to the behavior of the Heaviside step function  a  we see that the electric 

field contribution   ˆ
free

C

JA
a z

t





  



 is: 

    0       for  

ˆ  for  
free

C

a
A

J
t z a









  





.  

 
Explicitly writing out the electric field in this manner, we see that: 
 

      ˆ ˆ      0         for  
  

    

ˆ ˆ  0           for  

free free

C C

free free

C C

J J
z z a

A a
E a V a

t J J
z z a


  

 


 


 

 


   

 
     

  


 


 
   

 

     Thus, for a   we see that the  A a t  


 contribution to the E


-field outside the wire 

{which arises from the non-zero E
 

of Faraday’s law at a  } exactly cancels the 

 V a 


contribution to the E


-field outside the wire, everywhere in space outside the wire, 

despite the fact that  A a 


varies logarithmically outside the wire!!!! 
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     The long, current-carrying wire can thus also be equivalently viewed as an electric flux tube: 
 

    ˆ1E free C CS S
E da J a z da I          
     

 

     The electric field E


 is confined within the tube ( = the long, current carrying wire) by the 

 A a t  


 contribution arising from the Faraday’s law effect on the a   boundary of the 

flux tube, due to the {matter geometry-induced} discontinuity in the electric field at a  ! 
 

     The     ˆ
free CE J a B t        

   
 effect at a   also predicts a non-zero “induced” EMF 

in a loop/coil of wire: m t    . The magnetic flux through a loop of wire is: 
loop

m C S
A d B da B A    
       where loopA  is the cross-sectional area of a loop of wire {whose plane 

is perpendicular to the magnetic field at that point}. Note further that the width, w of the coil only needs 

to be large enough for the coil to accept the B t 


 contribution from the -function at a  . Then, here 

in this problem, since the magnetic field at the surface of the wire is oriented in the ̂ -direction, and: 
 

  ˆ
free

C

JB
a

t
  




  



, then we see that:  

looploop
freem

C

J AB A
a

t t
  




  
     

 


 

 

     For a real wire, e.g. made of copper, how large will this EMF be – is it something e.g. that we 
could actually measure/observe in the laboratory with garden-variety/every-day lab equipment??? 
 

     A number 8 AWG (American Wire Gauge) copper wire has a diameter D = 0.1285” = 0.00162 m  
(~ 1/8” = 0.125”) and can easily carry I = 10 Amps of current through it.  
 

The current density in an 8 AWG copper wire carrying a steady current of  I = 10 Amps is: 
 

 
 6 2

8 22 2

4 4 10
4.8 10   

0.001632
AWG

I I
J Amps m

a D  
 

     

 

The electrical conductivity of {pure} copper is:        75.96 10   Cu
C Siemens m   . 

 

     If our “long” 1/8” diameter copper wire is 1 L m long, and if we can e.g. make a loop of ultra-
fine gauge wire that penetrates the surface of the wire and runs parallel to the surface, then if we 
approximate the radial delta function  a    at a   as ~ a narrow Gaussian of width 

9~ 10 Å 1 10w nm m   (i.e. ~ the order of the inter-atomic distance/spacing of atoms in the copper 
lattice {3.61 Å }), noting also that the delta function  a    has physical SI units of inverse length 

(i.e. m-1) and, neglecting the sign of the EMF, an estimate of the magnitude of the “induced” EMF is: 
 

 8 8
loop

AWG AWG
Cu Cu

C

J A J L w
a  


  

  
Cu
C

w



 

 

6 2

8
7

4.8 10
1 80 !!!

6 10
AWG
Cu
C

Amps mJ
L m mV

Siemens m

  
         

   

     

 This size of an EMF is easily measureable with a modern DVM…  
 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2015       Lect. Notes  1        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2015.  All Rights Reserved. 

16

     Using Ohm’s Law: V I R  , note that the voltage drop dropV  across a 1 L m  length of  

8 AWG copper wire with 10 I Amps  of current flowing thru it is: 
 

1
1 8

Cu
m wireC

drop m AWGwire

L
V I R I J A

A






       Cu wire
C

L

A 

 8 !!!AWG
CuCu

C

J
L 


    

 

     In other words, the “induced” EMF,    loop
free CJ A a     


 in the one-turn loop coil of 

length L {oriented as described above} is precisely equal to the voltage drop  drop free CV J L 


 

along a length L of a portion of the long wire with steady current I flowing through it, even though 
the 1-turn loop coil is completely electrically isolated from the current-carrying wire!!! 
 

     This can be easily understood... Using Stoke’s theorem, the surface integral of E
 

 can be 

converted to a line integral of E


 along a closed contour C bounding the surface of integration S ; 

likewise, a surface integral of B t A t    
 

 can be converted to a line integral of A t 


 along 
a closed contour C bounding the surface of integration S: 
 

  m

S C S S C

B A A
E da E d da da d

t t t t


    
                
    

                

 

n.b.:  0
C

V d 


   
 

     Then for any closed contour C associated with the surface S that encloses the Faraday law 

E
 

 -function singularity at a  , e.g. as shown in the figure below: 
 

 
 

the “induced” EMF   can thus also be calculated from the line integral 
C

E d


   taken around 

the closed contour C. From the above discussion(s), the electric field inside (outside) the long 

current-carrying wire is in CE J 
   0outE 


, respectively {n.b.  tangential E


 is 

discontinuous across the boundary of a {volume} current-carrying conductor!}. Then: 
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1 2

2 1 2 2 3
1 2 2 31

C

inC
J E V

E d E d E d





 
 

  

   
 

    
     

3 3 4
3 42

 0

outsideE d







 


4 4 1
4 13

 0

E d







 


1

1 24

 0

E V 



    


 

 

     The presence of a non-zero Faraday’s law     ˆ
free CE B t J a        

   
 term at the surface 

of the long current-carrying wire implies that the “induced” EMF    loop
free CJ A a     


 can also 

be viewed as arising from the mutual inductance   M Henrys associated with the long wire and the coil 

{oriented as described above}, and a non-zero I t  :  
 

 
looploop

freem

C

J AB A I
M a

t t t
  




   
       

  


 

 

     We can obtain a relation between B t 


 and I t   using the integral form of Ampere’s law:  

o enclC
B d I


  . Taking the partial derivative of both sides of this equation with respect to time: 

  encl
oC C

IB
B d d

t t t
  

 
   

 
      

 

     The contour of integration C needs to be taken just outside the surface of the long wire, along 

the ̂ -direction, since ˆB 

  at a  , i.e. ˆd 


   in order to include the non-zero Faraday’s law 

effect at the surface of the long wire.  
 

Then:   
2

freeo

C

JB I
a

t a t

  
 

        



   or:    2 2 free

o o C

JI a B a
a

t t

   
  

    
          



 

 

Then:   
looploop

freem

C

J AB A I
M a

t t t
  




   
       

  


 

Solving for the mutual inductance, we obtain a rather simple result:    
2

loop

o

A
M Henrys

a



 

  
 

 

 

     Note that the mutual inductance, M involves the magnetic permeability of free space 

 74 10o Henrys m     {n.b. which has SI units of inductance/length} and geometrical 

aspects {only!} of the wire (its radius, a) and the cross-sectional area of the loop, loopA . 
 

     What is astonishing {and unique} r.e. the “induced” Faraday’s law EMF    loop
free CJ A a     


 

associated with a long, steady current-carrying wire is that “normal” induced EMF’s only occur in electrical 
circuits that operate at non-zero frequencies, i.e. 0 f Hz . However, here, in this problem, we have an 
example of a DC  induced EMF – i.e. an induced EMF that occurs at 0 f Hz , arising from the non-zero 

Faraday’s law effect     ˆ
free CE B t J a        

   
 due to the longitudinal E


-field discontinuity 

at the surface  a   of a long, steady current-carrying wire!!! 
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     Instead of using a long wire to carry a steady current I to observe this effect, one might instead 
consider using e.g. a long, hollow steady current-carrying pipe of inner (outer) radius a, (b) respectively. 
Following the above methodology, one can easily show that for such a long, hollow current-carrying 

pipe, two opposing non-zero Faraday law E
 

 radial -function contributions occur – one located at 
the a   inner surface, and the other located at the b   outer surface of the long hollow current-
carrying pipe: 

      ˆ
free CE B t J a b               

   
 

The E


-field is: 

      ˆ1free CE V A t J a b z            
  

 
 

where:  
1  for  

0  for  

a
a

a







    
 is the complement of the Heaviside step function, such that: 

   d x dx x    and:    
x

x t dt


    where:  x is the Dirac delta-function. 
 

     Hence, a 1-turn coil {oriented as described above} enclosing the a   inner surface .and. 
the b  outer surface of a current-carrying hollow pipe will have a “null” induced EMF, i.e. 

0   due to the wire loop simultaneously enclosing the two opposing non-zero Faraday law

E
 

 radial -function contributions, one located at a  , the other at b  : 
 

     0
looploop

freem

C

J AB A
a b

t t
    




  
        

 


 

 

     In general, any penetration/hole made into the metal conductor of a long, steady current-

carrying wire will result in a non-zero Faraday law E
 

 -function on the boundary/surface of 

that penetration/hole! Since the current density 0freeJ 


 in the penetration/hole, 0E 


there and 

thus a discontinuity in E


 exists on the boundary of the penetration/hole, hence a non-zero 

Faraday law E
 

 -function exists on the boundary of the penetration/hole! 
 

     This fact {unfortunately} has important ramifications for the experimental detection / 
observation of the predicted non-zero DC induced EMF in a coil {oriented as described above}, 
Embedding a portion of a physical wire loop inside the long, steady current-carrying wire 
requires making a penetration/hole {no matter how small} into the wire, which will result in a 

non-zero Faraday law E
 

 -function on the boundary/surface of that penetration/hole in the 

wire! Thus, the wire loop will in fact enclose not only the Faraday law E
 

 radial singularity at 
a   on the surface of the wire, but will also enclose another, opposing singularity located on 

the boundary/surface of the penetration/hole made into the long wire {which was made to embed 
a portion of the wire loop in a long, steady current-carrying wire in the first place}, thus 
experimentally, a “null” induced EMF, i.e. 0   is expected/anticipated, because of this…     
 

     Hence, in the real world of experimental physics, it appears that embedding a portion of a real wire 
loop in a long, steady current-carrying wire in an attempt to observe this effect is doomed to failure… 


