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Chapter 16

The tangent space and the notion of

smoothness

We will always assume K algebraically closed. In this chapter we follow the approach of
Safarevic [S]. We define the tangent space Tx p at a point P of an affine variety X C A™ as
the union of the lines passing through P and “touching” X at P. It results to be an affine
subspace of A”. Then we will find a “local” characterization of T’x p, this time interpreted
as a vector space, the direction of T'x p, only depending on the local ring Ox p: this will

allow to define the tangent space at a point of any quasi—projective variety.

16.1 Tangent space to an affine variety

Assume first that X € A" is closed and P = O = (0,...,0). Let L be a line through P: if
A(ay, ..., a,) is another point of L, then a general point of L has coordinates (17 tan),
te K. If I(X) = (Fy,...,Fn), then the intersection X N L is determined by the following

system of equations in the indeterminate :

Fi(tay, ... tay) =+ = Fy(tay, ... ta,) = 0. = 6[‘1[*\ )

The solutions of this system of equations are the roots of the greatest common divisor G(t) of
the polynomials Fi(tay,...,tay),..., Fn(tay,. .. ta,) in K[t]; i.e. the generator of the ideal
they generate. We may factorize G(t) as G(t) = «(“(t — ay)™ ... (L — @), where ¢ € K,
ay,...,as # 0, e eq,...,es are non-negative, and e > 0 if and only if P € X N L. The
number e is by definition the intersection multiplicity at P of X and L. If G(t) is
identically zero, then L C X and the intersection multiplicity is, by definition, +oco.

115

T Pex

\674@



Note that the polynomial G(t) doesn’t depend on the choice of the generators Fy, ..., Fp,
of I(X), but only on the ideal /(X) and on L.

Definition 16.1.1. The line L is tangent to the variety ' at P if the intersection
multiplicity of L and X at P is at least 2 (in particular, if L C X). The tangent space to
X at P is the union of the lines that are tangent to X at P; it is denoted Tp x.

We will see now that Tpy is an affine subspace of A". Assume that P € X: then the —
polynomials F; may be written in the form F; = /., + (,, where L; is a homogeneous linear
polynomial (possibly zero) and G; contains only terms of degree > 2. Then

2
Fi(tas, ..., tan) = tLi(as, . . an) + Giltazrstan), = AL, ©, - /ou\#f G '@L)

where the last term is divisible by ¢2. Let L be the line DA, with A = (ay,...,a,). We note
that the intersection multiplicity of X and L at P is the maximal power of ¢ dividing the
greatest common divisor, so L is tangent to X at P if and only if L («, 1,) =0 for all
F=140 005
Therefore the point A belongs to Tp x if and only if
I
Ly~ L P cloenm
%&kwmﬂ ou e dorca ,_§<>
This shows that 75 y is a linear spbspace of A", whose equations are the linear components -L
of the equations defining X. Mo OV() 9q70 @-q@mu% r&’\%%A @)
Example 16.1.2. (i) T .~ = A", because I(A™) = (0).
(ii) If X is a hypersurface, with I(X) = (F), we write as above F' = L + G; then
To,x = V(L): so Tp x is either a hyperplane if L # 0, or the whole space A™ if L = 0. Fo

instance, if X is the affine plane cuspidal cubic V(2% — y?) C A2, Tp x =A%
£
Assume now that P € X has coordinates (y;..... y,). With a lidear transformation
we may translate P to the origin (0,...,0), taking as new coordinates functions on A" <= tz ><!:_2{-
Ty — Y1y, I — Yn. This corresponds to considering the K-isomorphism K[z, ..., z,] — 7: t 5 7 I_ 3 +l

Flry— yi..o %u— yu), which takes a polynomial F(zy,....: r,) to its Taylor expansion
G(@r =y, T —yn) = FWis- ) + dpF +dPF + ...,

where d@F denotes the it differential of F' at P: it is a homogeneous polynomial of degree

i in the variables x1 — v, ..., 2, — y,. In particular the linear term is
aF P2 ) ol—
dpF = TM{PV‘ =)+t UT‘\P/\-ML = Yn)-
n
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We get that, if I(X) = (F,..., F), then Tpy is the affine subspace of A" defined by the
equations
dpFy = =dpF,=0.

The affine space A", which may identified with K™, can be given a natural structure of
K-vector space with origin P, so in a natural way T x is a vector subspace (with origin P).
The functions x; — v, ..., z, — vy, form a basis of the dual space (K")* and their restrictions
generate 77 . Note moreover that dim 7% y = k if and only if n — k is the maximal number
of polynomials linearly independent among dpF,...,dpF,,. If dpFy, ..., dpF, ;. are these

polynomials, then they form a bastof the orthpgonal Tﬁ « of the vector space Tp x in (K™)*,

— A T\?,%
16.2 Zariski tangent space LCD(]
I\

because they vanish on Tp x.

Let us define now the differential of a reqular function. Let f € O(X) be a regular function
on X. We want to define the differential of f at P. Since X is closed in A", [ is induced
by a polynomial | € Kl[z,,...,,] as well as by all polynomials of the form 7 + & with
G e I(X). Fix P € X: then dp(F +G) = d, '+ d (i so the differentials of two polynomials
inducing the same function f on X differ by the term dpG with G € I(X). By definition,
dpG is zero along Tp x, so we may define d, f as a regular function on 7p v, the differential
of fat P: it is the function on 7p v induced by dpF'. Since dpF is a linear combination of
L1 —Yi,.. ., Ty — Yn, [ can also be seen as an element of 7, .

There is a natural map d, : O(\') — 7, which sends f to d,f. Because of the rules
of derivation, it is clear that dp(f + g) = dpf + dpg and dp(fg) = f(P)dpg + g(P)dpf. In
particular, if ¢ € K, d,(cf) = cdpf. So d, is a linear map of K-vector spaces. We denote
again by dp the restriction of dp to Ix(P), the maximal ideal of the regular functions on X
which are zero at P. Since clearly [ = /() + (/ — [()) then dpf = dp(f — f(P)), so this

e

restriction doesn’t modify the image of the map. v MOU‘MV’D’& PR S g fﬁf-(P ) =

Proposition 16.2.1. The map dp : Ix(P) — Tp x is surjective and its kernel is Ix(P)2.

Therefore Tp 5 = ] «(17)" as K-vector spaces.

Proof. Let p € T  be a linear form on Tpx.  is the restriction of a linear form on K™:
Mz —wy) + .o+ (2, — y,), with Ay, ..., A\, € K. Let G be the polynomial of degree 1

M(z1—y1)+...+A\(@n —yn): the function ; induced by G on X is zero at P and coincides
with its own differential, so d,, is surjective. (_E = d © %
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Let now g € Ix(P) such that d,g = 0, g induced by a polynomial . Note that d»G may
be interpreted as a linear form on K™ which vanishes on 75 . hence as an element of T .

So dpG = c1d,Fi + ... + end,F,, (ca, . . ., cm suitable elements of K). Let us consider the
polynomial G — ¢, F; —. .. — ¢, F,,: since its differential at P is zero, it doesn’t have any term
of degree 0 or 1 in @y — Y1, ..., T, — Yn, so it belongs to I(P)?. Since G — ¢/, — ... — ¢, [,
defines the function g on X, we conclude that o & 7. ((/7)". O

Corollary 16.2.2. The tangent space Ty is isomorphic to (Ix(P)/Ix(P)?)* as an abstract
K -vector space.

Corollary 16.2.3. Let ¢ : X — Y be an isomorphism of affine varieties and P € X,
Q = ¢(P). Then the tangent spaces Tpx and Tgy are isomorphic.

Proof. ¢ induces the comorphism * : O(7") — O(X), which results to be an isomorphism
such that ¢*/,(Q) = Ix( ) and "Iy (Q)? = I(P)>. So there is an induced homomorphism

Iy(Q)/Iy(Q)* = Ix(P)/Ix(P).

which is an isomorphism of K-vector spaces. By dualizing we get the claim. O

The above map from Tp x to Ty is called the differential of p at P and is denoted by
dpp.

Now we would like to find a “more local” characterization of T x. To this end we consider
the local ring of P in X: Op . We recall the natural map O(X) — Opx = O( V), p), the
last one being the localization. It is natural to extend the map dp : O(X) — Tp x to Opx
setting

i (L) = 9PLeT (P,

g 9(P)
As in the proof of Proposition 16.2.1 one proves that the map dp : Opy — T;,V\» induces
an isomorphism M p /,\/t%,_\» — T} . where Mpy is the maximal ideal of Opx. So by
duality we have: T ~ (,'\/lpy_\v/,'\/@,yx)’ﬂ This proves that the tangent space Tpx is a local
invariant of P in X.
Definition 16.2.4. Let X be any quasi-projective variety, P € X. The Zariski tangent
space of X at P is the vector space (Mpx /M3 y)*.

It is an abstract vector space, but if X' € A" is closed, taking the dual of the comorphism
associated to the inclusion morphism ¥~ A" we have an embedding of Tp x into Tppn =
A" If X CcP*and P € U, = A", then T, « /- its projective closure Tp x is called the
embedded tangent space to X at P.
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16.3 Smoothness

As we have seen the tangent space Tpx is invariant by isomorphism. In particular its

dimension is invariant. If X C A™ is closed, I(X) = (F,..., ), then dimTpx = n —r,

e L)

where 7 is the dimension of the K-vector space generated by {d, "

Since dpF; = Z—Q(P)( ) +...+ %(P)(¢ Yn), r is the rank of the following m x n

matrix, the Jacobian matriz of X at P:

g—g(p) gzii(P)
J(P) = e
%%(P) %%(P)

The generic Jacobian matriz of X is instead the following matrix with entries in O(X):

of | ok

1
ox1 "7 Ozn
Oxy Tt Oz

The rank of J is p when all minors of order p + 1 are functions identically zero on X,
while at least one minor of order p is different from zero at some point. Hence, for all P € X
tk J(P) < p, and rk J(P) < p if and only if all minors of order p of J vanish at P. It
is then clear that there is a non-empty open subset of X where dim Tp v is minimal, equal
to n — p, and a proper (possibly empty) closed subset formed by the points P such that
dimTpx > n —p.

Definition 16.3.1. The points of an irreducible variety X for which dim Tp x = n — p (the
minimal) are called smooth or non-singular (or simple) points of X. The remaining points

are called singular (or multiple). X is a smooth variety if all its points are smooth.
If X is quasi-projective, the same argument may be repeated for any affine open subset.

Example 16.3.2. Let X C A" be the irreducible hypersurface V(F'), with F' square-free
generator of I(X). Then J = (g—i...%) is a row matrix. Sork J = 0 or 1. If rk
J = 0, then % = 0in O(X) for all i. So gTZ € I(X) = (F). Since the degree of (’% is
< deg F' — 1, it follows that gTi = 0 in the polynomial ring. If the characteristic of K is
zero this means that F is constant: a contradiction. If char K = p, then F € K[a},. .., 22];
since K is algebraically closed, then all coeflicients of F' are p-th powers, so F' = GP for a
suitable polynomial G; but again this is impossible because F is irreducible. So always rk

J =1 = p. Hence for P general in X, i.e. for P varying in a suitable non-empty open subset
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