S= Klx, -, xu], d>1 Klx-xu]_d=Sd: k-rector space

P(Sd) "hypersurfacts of dof d m: Tx" positive divisors of def d = linear combinations of lithod hyp. with positive coeff. 1, VP(F1)+-+ + ns VP(Fs) $\mathbb{P}(S_a) \geq X = \{ [F] \mid F \text{ reducible} \}$ divisors not of the form VP(F), Fired. Prof. X is a majective variety.

If 1 = k < d $X_k = \{(F) \mid F = GH, dy G = k\}$ $X = \bigcup X_{k}$ $1 \le k < d$ $X_{k} = X_{k} - k$ Claim + le Xe is closed $\mathbb{T}(S_k) \times \mathbb{T}(S_{d-k}) \longrightarrow \mathbb{T}(S_d)$ Sefre product ((G), (H)) - (GH) regular map because hilomogeneous nitre coeff of and H The domain is a maj var — she image is doed. XE is closed in $\mathbb{P}(S_d)$.

in ducible

d=2 $X = \mathbb{P}(S_{z})$ quadrico reducible / Equations of X Q quadric ~ A matrix of Q $(N+1)\times(N+1)$ Q reducible (=> rle A is n=2 $\begin{vmatrix}
a_{00} & a_{01} & a_{02} \\
a_{10} & - & - \\
a_{20} & - & \end{vmatrix}$ $\begin{vmatrix}
a_{00} & a_{01} & a_{02} \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{20} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{20} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{20} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{20} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{20} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{20} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{20} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{20} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{20} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - \\
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_{10} & - & - & \end{vmatrix}$ $\begin{vmatrix}
a_$ (A)=0 equation of X is M > 2 rk m + 1 - r =) Q is proj-quit. by $x_0^2 + x_1^2 + \dots + x_{m-n}^2$ cone with restex a guadux of max rh in \mathbb{P}^{m-m} Reducible = Q is a come one 2 pts will not not not distinct Equations of X are the 3x3 minors of A.

Chapter 16

The tangent space and the notion of smoothness

We will always assume K algebraically closed. In this chapter we follow the approach of Šafarevič [S]. We define the tangent space $T_{X,P}$ at a point P of an affine variety $X \subset \mathbb{A}^n$ as the union of the lines passing through P and "touching" X at P. It results to be an affine subspace of \mathbb{A}^n . Then we will find a "local" characterization of $T_{X,P}$, this time interpreted as a vector space, the direction of $T_{X,P}$, only depending on the local ring $\mathcal{O}_{X,P}$: this will allow to define the tangent space at a point of any quasi-projective variety.

16.1 Tangent space to an affine variety

Assume first that $X \subset \mathbb{A}^n$ is closed and $P = O = (0, \dots, 0)$. Let L be a line through P: if $A(a_1,\ldots,a_n)$ is another point of L, then a general point of L has coordinates (ta_1,\ldots,ta_n) , $t \in K$. If $I(X) = (F_1, \dots, F_m)$, then the intersection $X \cap L$ is determined by the following the indeterminate t: $F_1(ta_1, \dots, ta_n) = \dots = F_m(ta_1, \dots, ta_n) = 0.$ system of equations in the indeterminate t:

$$F_1(ta_1,\ldots,ta_n)=\cdots=F_m(ta_1,\ldots,ta_n)=0.$$

The solutions of this system of equations are the roots of the greatest common divisor G(t) of the polynomials $F_1(ta_1,\ldots,ta_n),\ldots,F_m(ta_1,\ldots,ta_n)$ in K[t], i.e. the generator of the ideal they generate. We may factorize G(t) as $G(t) = \frac{t^e(t-\alpha_1)^{e_1} \dots (t-\alpha_s)^{e_s}}{t}$, where $c \in K$, $\alpha_1, \ldots, \alpha_s \neq 0, e, e_1, \ldots, e_s$ are non-negative, and e > 0 if and only if $P \in X \cap L$. The number e is by definition the intersection multiplicity at P of X and L. If G(t) is identically zero, then $L \subset X$ and the intersection multiplicity is, by definition, $+\infty$.

Note that the polynomial G(t) doesn't depend on the choice of the generators F_1, \ldots, F_m of I(X), but only on the ideal I(X) and on L.

Definition 16.1.1. The line L is tangent to the variety X at P if the intersection multiplicity of L and X at P is at least 2 (in particular, if $L \subset X$). The tangent space to X at P is the union of the lines that are tangent to X at P; it is denoted $T_{P,X}$.

We will see now that $T_{P,X}$ is an affine subspace of \mathbb{A}^n . Assume that $P \in X$: then the polynomials F_i may be written in the form $F_i = L_i + G_i$, where L_i is a homogeneous linear polynomial (possibly zero) and G_i contains only terms of degree ≥ 2 . Then

$$F_{i}(ta_{1},...,ta_{n}) = tL_{i}(a_{1},...,a_{n}) + G_{i}(ta_{1},...,ta_{n}) = \mathcal{L}_{L_{A}}(o_{i} - o_{\mathcal{U}}) + \mathcal{T}^{2} G_{i}(\mathcal{T})$$

where the last term is divisible by t^2 . Let L be the line \overline{OA} , with $A = (a_1, \dots, a_n)$. We note that the intersection multiplicity of X and L at P is the maximal power of t dividing the greatest common divisor, so L is tangent to X at P if and only if $L_1(a_1, \ldots, a_n) = 0$ for all $i=1,\ldots,m$.

Therefore the point A belongs to $T_{P,X}$ if and only if

Therefore the point
$$A$$
 belongs to $T_{P,X}$ if and only if
$$L_1(a_1,\ldots,a_n)=\cdots=L_m(a_1,\ldots,a_n)=0.$$

$$L_1(a_1,\ldots,a_n)=\cdots=L_m(a_1,\ldots,a_n)=0.$$

$$L_1(a_1,\ldots,a_n)=0.$$

$$L_1(a_1,\ldots,a_n)=0.$$

$$L_1(a_1,\ldots,a_n)=0.$$

$$L_2(a_1,\ldots,a_n)=0.$$

$$L_3(a_1,\ldots,a_n)=0.$$

$$L_4(a_1,\ldots,a_n)=0.$$

$$L_4(a_1,\ldots,$$

Example 16.1.2. (i) $T_{O,\mathbb{A}^n} = \mathbb{A}^n$, because $I(\mathbb{A}^n) = (0)$.

(ii) If X is a hypersurface, with I(X) = (F), we write as above F = L + G; then $T_{O,X} = V(L)$: so $T_{O,X}$ is either a hyperplane if $L \neq 0$, or the whole space \mathbb{A}^n if L = 0. For instance, if X is the affine plane cuspidal cubic $V(x^3-y^2)\subset \mathbb{A}^2$, $T_{O,X}=\mathbb{A}^2$.

Assume now that $P\in X$ has coordinates (y_1,\ldots,y_n) . With a linear transformation

we may translate P to the origin $(0, \ldots, 0)$, taking as new coordinates functions on \mathbb{A}^p $x_1 - y_1, \dots, x_n - y_n$. This corresponds to considering the K-isomorphism $K[x_1, \dots, x_n] \longrightarrow$ $K[x_1-y_1,\ldots,x_n-y_n]$, which takes a polynomial $F(x_1,\ldots,x_n)$ to its Taylor expansion

$$G(x_1 - y_1, \dots, x_n - y_n) = F(y_1, \dots, y_n) + d_P F + d_P^{(2)} F + \dots,$$

where $d_P^{(i)}F$ denotes the i^{th} differential of F at P: it is a homogeneous polynomial of degree i in the variables $x_1 - y_1, \dots, x_n - y_n$. In particular the linear term is

$$d_P F = \frac{\partial F}{\partial x_1}(P)(x_1 - y_1) + \dots + \frac{\partial F}{\partial x_n}(P)(x_n - y_n).$$

116

 $y^{2}(t^{2}-1-y)=0$ $y=t^{2}-1$ (0,0) is obtained from $t=\pm 1$

TRIX PX

We get that, if $I(X) = (F_1, ..., F_m)$, then $T_{P,X}$ is the affine subspace of \mathbb{A}^n defined by the equations

$$d_P F_1 = \cdots = d_P F_m = 0.$$

The affine space \mathbb{A}^n , which may identified with K^n , can be given a natural structure of K-vector space with origin P, so in a natural way $T_{P,X}$ is a vector subspace (with origin P). The functions $x_1 - y_1, \ldots, x_n - y_n$ form a basis of the dual space $(K^n)^*$ and their restrictions generate $T_{P,X}^*$. Note moreover that dim $T_{P,X}^* = k$ if and only if n - k is the maximal number of polynomials linearly independent among $d_P F_1, \ldots, d_P F_m$. If $d_P F_1, \ldots, d_P F_{n-k}$ are these polynomials, then they form a basis of the orthogonal $T_{P,X}^{\perp}$ of the vector space $T_{P,X}$ in $(K^n)^*$, because they vanish on $T_{P,X}$.

16.2 Zariski tangent space

Let us define now the differential of a regular function. Let $f \in \mathcal{O}(X)$ be a regular function on X. We want to define the differential of f at P. Since X is closed in \mathbb{A}^n , f is induced by a polynomial $f \in K[x_1,\ldots,x_n]$ as well as by all polynomials of the form F+G with $G \in I(X)$. Fix $P \in X$: then $d_P(F+G) = d_PF + d_PG$ so the differentials of two polynomials inducing the same function f on X differ by the term d_PG with $G \in I(X)$. By definition, d_PG is zero along $T_{P,X}$, so we may define d_Pf as a regular function on $T_{P,X}$, the differential of f at P: it is the function on $T_{P,X}$ induced by d_PF . Since d_PF is a linear combination of $x_1 - y_1, \ldots, x_n - y_n, d_Pf$ can also be seen as an element of $T_{P,X}$.

There is a natural map $d_p: \mathcal{O}(X) \to T_{P,X}^p$, which sends f to $d_p f$. Because of the rules of derivation, it is clear that $d_P(f+g) = d_P f + d_P g$ and $d_P(fg) = f(P)d_P g + g(P)d_P f$. In particular, if $c \in K$, $d_p(cf) = cd_P f$. So d_p is a linear map of K-vector spaces. We denote again by d_P the restriction of d_P to $I_X(P)$, the maximal ideal of the regular functions on X which are zero at P. Since clearly f = f(P) + (f - f(P)) then $d_P f = d_P (f - f(P))$, so this restriction doesn't modify the image of the map.

Proposition 16.2.1. The map $d_P: I_X(P) \to T^*_{P,X}$ is surjective and its kernel is $I_X(P)^2$. Therefore $T^*_{P,X} \simeq I_X(P)/I_X(P)^2$ as K-vector spaces.

Proof. Let $\varphi \in T_{P,X}^*$ be a linear form on $T_{P,X}$. φ is the restriction of a linear form on K^n : $\lambda_1(x_1-y_1)+\ldots+\lambda_n(x_n-y_n)$, with $\lambda_1,\ldots,\lambda_n\in K$. Let G be the polynomial of degree 1 $\lambda_1(x_1-y_1)+\ldots+\lambda_n(x_n-y_n)$: the function g induced by G on X is zero at P and coincides with its own differential, so d_p is surjective.

Let now $g \in I_X(P)$ such that $d_p g = 0$, g induced by a polynomial G. Note that $d_P G$ may be interpreted as a linear form on K^n which vanishes on $T_{P,X}$, hence as an element of $T_{P,X}^{\perp}$. So $d_P G = c_1 d_p F_1 + \ldots + c_m d_p F_m$ $(c_1, \ldots, c_m \text{ suitable elements of } K)$. Let us consider the polynomial $G - c_1 F_1 - \ldots - c_m F_m$: since its differential at P is zero, it doesn't have any term of degree 0 or 1 in $x_1 - y_1, \ldots, x_n - y_n$, so it belongs to $I(P)^2$. Since $G - c_1 F_1 - \ldots - c_m F_m$ defines the function g on X, we conclude that $g \in I_X(P)^2$.

Corollary 16.2.2. The tangent space $T_{P,X}$ is isomorphic to $(I_X(P)/I_X(P)^2)^*$ as an abstract K-vector space.

Corollary 16.2.3. Let $\varphi: X \to Y$ be an isomorphism of affine varieties and $P \in X$, $Q = \varphi(P)$. Then the tangent spaces $T_{P,X}$ and $T_{Q,Y}$ are isomorphic.

Proof. φ induces the comorphism $\varphi^*: \mathcal{O}(Y) \to \mathcal{O}(X)$, which results to be an isomorphism such that $\varphi^*I_Y(Q) = I_X(P)$ and $\varphi^*I_Y(Q)^2 = I_X(P)^2$. So there is an induced homomorphism

$$I_Y(Q)/I_Y(Q)^2 \to I_X(P)/I_X(P)^2$$
.

which is an isomorphism of K-vector spaces. By dualizing we get the claim.

The above map from $T_{P,X}$ to $T_{Q,Y}$ is called the differential of φ at P and is denoted by

Now we would like to find a "more local" characterization of $T_{P,X}$. To this end we consider the local ring of P in X: $\mathcal{O}_{P,X}$. We recall the natural map $\mathcal{O}(X) \to \mathcal{O}_{P,X} = \mathcal{O}(X)_{L^{p}(P)}$, the last one being the localization. It is natural to extend the map $d_P: \mathcal{O}(X) \to T_{P,X}^*$ to $\mathcal{O}_{P,X}$

$$d_P\left(\frac{f}{g}\right) = \frac{g(P)d_P f - f(P)d_P g}{g(P)^2}.$$

As in the proof of Proposition 16.2.1 one proves that the map $d_P: \mathcal{O}_{P,X} \to T_{P,X}^*$ induces an isomorphism $\mathcal{M}_{P,X}/\mathcal{M}_{P,X}^2 \to T_{P,X}^*$, where $\mathcal{M}_{P,X}$ is the maximal ideal of $\mathcal{O}_{P,X}$. So by duality we have: $T_{P,X} \simeq (\mathcal{M}_{P,X}/\mathcal{M}_{P,X}^2)^*$. This proves that the tangent space $T_{P,X}$ is a local invariant of P in X.

Definition 16.2.4. Let X be any quasi-projective variety, $P \in X$. The Zariski tangent space of X at P is the vector space $(\mathcal{M}_{P,X}/\mathcal{M}_{P,X}^2)^*$.

It is an abstract vector space, but if $X \subset \mathbb{A}^n$ is closed, taking the dual of the comorphism associated to the inclusion morphism $X \to \mathbb{A}^n$, we have an embedding of $T_{P,X}$ into T_{P,\mathbb{A}^n} \mathbb{A}^{\hbar} . If $X \subset \mathbb{P}^n$ and $P \in U_i = \mathbb{A}^n$, then $T_{PX} \subset U_i$; its projective closure \mathbb{T}_{PX} is called the embedded tangent space to X at P. mojective subspace

In a-a, F, --- - Cun Fm expressed as polyn.

u x-yn - xu-yn,

le first posible comp.

s xx (x-y)+- (x-yx-y)

$$\frac{1}{2}(P) = (x_1 - y_1) - x_1 - y_2$$

$$\frac{1}{2}(p) = ((x_1 - y_1)^2, (x_1 - y_1)(x_2 - y_2)_{1-1-1})$$

16.3 Smoothness

As we have seen the tangent space $T_{P,X}$ is invariant by isomorphism. In particular its dimension is invariant. If $X \subset \mathbb{A}^n$ is closed, $I(X) = (F_1, \dots, F_m)$, then $\dim T_{P,X} = n - r$, where r is the dimension of the K-vector space generated by $\{d_PF_1, \dots, d_pF_m\}$.

Since $d_P F_i = \frac{\partial F_i}{\partial x_1}(P)(x_1 - y_1) + \ldots + \frac{\partial F_i}{\partial x_n}(P)(x_n - y_n)$, r is the rank of the following $m \times n$ matrix, the Jacobian matrix of X at P:

$$J(P) = \begin{pmatrix} \frac{\partial F_1}{\partial x_1}(P) & \dots & \frac{\partial F_1}{\partial x_n}(P) \\ \dots & \dots & \dots \\ \frac{\partial F_n}{\partial x_1}(P) & \dots & \frac{\partial F_n}{\partial x_n}(P) \end{pmatrix}.$$

The generic Jacobian matrix of X is instead the following matrix with entries in $\mathcal{O}(X)$:

$$J = \begin{pmatrix} \frac{\partial \mathbf{f}_1}{\partial x_1} & \dots & \frac{\partial \mathbf{f}_n}{\partial x_n} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial \mathbf{f}_n}{\partial x_1} & \dots & \frac{\partial \mathbf{f}_n}{\partial x_n} \end{pmatrix}.$$

The rank of J is ρ when all minors of order $\rho+1$ are functions identically zero on X, while at least one minor of order ρ is different from zero at some point. Hence, for all $P \in X$ rk $J(P) \leq \rho$, and rk $J(P) < \rho$ if and only if all minors of order ρ of J vanish at P. It is then clear that there is a non-empty open subset of X where $\dim T_{P,X}$ is minimal, equal to $n - \rho$, and a proper (possibly empty) closed subset formed by the points P such that $\dim T_{P,X} > n - \rho$.

Definition 16.3.1. The points of an irreducible variety X for which $\dim T_{P,X} = n - \rho$ (the minimal) are called *smooth* or *non-singular* (or *simple*) points of X. The remaining points are called *singular* (or multiple). X is a *smooth* variety if all its points are smooth.

If X is quasi-projective, the same argument may be repeated for any affine open subset.

Example 16.3.2. Let $X \subset \mathbb{A}^n$ be the irreducible hypersurface V(F), with F square-free generator of $I_h(X)$. Then $J=(\frac{\partial F}{\partial x_1}\dots\frac{\partial F}{\partial x_n})$ is a row matrix. So rk J=0 or 1. If rk J=0, then $\frac{\partial F}{\partial x_i}=0$ in $\mathcal{O}(X)$ for all i. So $\frac{\partial F}{\partial x_i}\in I(X)=(F)$. Since the degree of $\frac{\partial F}{\partial x_i}$ is $\leq \deg F-1$, it follows that $\frac{\partial F}{\partial x_i}=0$ in the polynomial ring. If the characteristic of K is zero this means that F is constant: a contradiction. If char K=p, then $F\in K[x_1^p,\dots,x_n^p]$; since K is algebraically closed, then all coefficients of F are p-th powers, so $F=G^p$ for a suitable polynomial G; but again this is impossible because F is irreducible. So always rk $J=1=\rho$. Hence for P general in X, i.e. for P varying in a suitable non-empty open subset