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Dual role of  the immune system in cancer

• Inflammation ( by immune cells) can promote tumorigenesis
• The imune system has potent anti-cancer properties

Tumor promoting

Tumor fighting



CELL AUTONOMOUS 
MODIFICATIONS

INFLAMMATION AND IMMUNE 
SUPPRESSIVE NETWORK
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TEIPP antigens are presented by the residual MHC 
class I molecules of immune-edited cancers and originate 
from wild-type sequences of housekeeping genes60. Their 
strong immunogenicity is attributable to their absence on 
the surface of healthy cells with normal APM function61,62. 
Several of these self-peptides are presented by MHC 
class I when there are defects in the APM. TEIPP antigens 
are processed through alternative, non-classical process-
ing pathways, but they fail to be presented under physio-
logical conditions63–65. Hence, there is no central tolerance 
to these antigens. TEIPP antigens can be targeted in a 
very similar way to conventional tumour antigens, by 
vaccination and by adoptive transfer of cognate CD8+ 
T cells59,66. Although TEIPP-specific CD8+ T cells were 

originally identified in mice, they are now known to exist 
in humans67,68, and full exploitation of the human TEIPP 
repertoire could provide an approach for the treatment of 
immune-edited cancers with APM defects.

The immune-suppressive microenvironment
Multiple mechanisms have been reported by which 
tumour cells influence the tumour microenvironment. 
Several of these, such as the expression of ligands for 
inhibitory receptors on T cells, have been discussed 
already. Other mechanisms are intrinsically associ-
ated with characteristic biological processes found in 
cancer. For instance, induction of a tissue response to 
hypoxia impairs a cytolytic CD8+ T cell response in 

(KIWTG���| Tumour escape gives rise to alternative peptide antigens. 6JG�VJTGG�RJCUGU�QH�ECPEGT�KOOWPQ�GFKVKPI�� 
FGUETKDG�VJG�KPVTKECVG�TGNCVKQPUJKR�DGVYGGP�C�VWOQWT�CPF�KVU�KPHKNVTCVKPI�KOOWPG�U[UVGO��FWTKPI�YJKEJ�IGPGVKE�KPUVCDKNKV[�
CPF�VWOQWT�JGVGTQIGPGKV[�KPETGCUG�CPF�KOOWPG�UGNGEVKQP�QH�VWOQWT�EGNN�XCTKCPVU�QEEWTU��+P�VJG�HKTUV�RJCUG�
RCTV�a���VJG�
KOOWPG�U[UVGO�KU�KP�EQPVTQN��YJKEJ�TGUWNVU�KP�VJG�GNKOKPCVKQP�QH�VWOQWT�EGNNU��+P�VJG�UGEQPF�RJCUG�
RCTV�b���VWOQWT�EGNN�
XCTKCPVU�CTKUG�VJCV�JCXG�KPETGCUKPI�ECRCEKV[�VQ�UWTXKXG�KOOWPG�CVVCEM��UWEJ�VJCV�KP�VJG�VJKTF�RJCUG�
RCTV�c���VJG�VWOQWT�
GUECRGU�KOOWPG�EQPVTQN�CPF�CFFKVKQPCN�VWOQWT�EGNN�XCTKCPVU�FGXGNQR��6JG�GUECRG�RJCUG�KU�EJCTCEVGTK\GF�D[�C�OWNVKVWFG�
QH|VWOQWT�KPVTKPUKE�OGEJCPKUOU�VJCV�GPCDNG�VJG�VWOQWT�VQ�CXQKF�KOOWPG�TGEQIPKVKQP��CU�YGNN�CU�VWOQWT�GZVTKPUKE�
OGEJCPKUOU�VJCV�TGUWNV�KP�CEVKXG�KOOWPG�UWRRTGUUKQP�KP�VJG�OKETQGPXKTQPOGPV�
UGG�BOX 2���&WTKPI�VJG�HKTUV�RJCUG��VWOQWT�
EGNNU�IGPGTCNN[�GZRTGUU�JKIJ�EGNN�UWTHCEG�NGXGNU�QH�OCLQT�JKUVQEQORCVKDKNKV[�EQORNGZ�
/*%��ENCUU|+��VJGKT�CPVKIGP�RTQEGUUKPI�
OCEJKPGT[�
#2/��KU�UVKNN�KPVCEV�CPF�VJG[�CTG�GCUKN[�TGEQIPK\GF�D[�%&�+�6|EGNNU�VJCV�CTG�URGEKHKE�HQT�EQPXGPVKQPCN�VWOQWT�
CPVKIGPU�
RCTV�d���+P�VJG�NCVGT�RJCUGU��VWOQWT�EGNNU�UJQY�C�FGETGCUG�KP�VJG�EGNN�UWTHCEG�NGXGNU�QH�/*%�ENCUU|+�VJCV�KU�QHVGP�
CUUQEKCVGF�YKVJ�NGUU�CPVKIGP�RTGUGPVCVKQP�QYKPI�VQ�#2/�FGHGEVU��VJWU��VJGTG�KU�TGFWEGF�TGEQIPKVKQP�CPF�GTCFKECVKQP�QH�
VWOQWT�EGNNU�D[�%&�+�6|EGNNU�URGEKHKE�HQT�EQPXGPVKQPCN�VWOQWT�CPVKIGPU��*QYGXGT��C�PGY�UGV�QH�VWOQWT�CPVKIGPU�CTKUGU��
VJGUG�CTG�MPQYP�CU�6|EGNN�GRKVQRGU�CUUQEKCVGF�YKVJ�KORCKTGF�RGRVKFG�RTQEGUUKPI�
6'+22��CPF�EQPUVKVWVG�CNVGTPCVKXG�
RGRVKFGU�VJCV�CTG�WPKSWGN[�RTGUGPVGF�D[�VWOQWTU�KP�VJG�GUECRG�RJCUG��8CEEKPG�GNKEKVGF�%&�+�6|EGNNU�URGEKHKE�HQT�6'+22�
CPVKIGPU�OKIJV�GHHGEVKXGN[�UVKOWNCVG�C�VWOQWT�TGLGEVKQP�TGURQPUG�KP�VWOQWTU�YKVJ�NQY�/*%�ENCUU|+�GZRTGUUKQP��
'4�|GPFQRNCUOKE�TGVKEWNWO��0-��PCVWTCN�MKNNGT�EGNN��0-6��PCVWTCN�MKNNGT�6�EGNN��6#2��VTCPURQTVGT�CUUQEKCVGF�YKVJ�CPVKIGP�
RTQEGUUKPI��6%4��6�EGNN�TGEGRVQT��2CTVU�a��b and c�CFCRVGF�HTQO�REF. 244��0CVWTG�2WDNKUJKPI�)TQWR�
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• Vaccines 
• Co-stimulatory antibodies
• Adoptive cell transfer

Enlarge T cell pool

• Chemotherapy
• Antibodies targeting 

cytokines or cytokine
receptors

• Depletion of T
Reg

 cells and MDSCs
• Immunogenic cell death and 
CEWVG�KPȯCOOCVKQP

• Repolarization of TAMs

Tumour growth

No major 
impact on
the tumour

No major 
impact on
the tumour

Destruction of the tumour

Prevent co-inhibition

Antibodies targeting 
immune checkpoints

Activation of DCs and M1-TAMs

• Antibodies targeting CD40
• PRR agonists
• Chemotherapy
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• IDO inhibition
• PRR agonists

(KIWTG���| 8CEEKPGU�TGSWKTG�EQ�VTGCVOGPV�HQT�6|EGNNU�VQ�YKVJUVCPF�VJG�KOOWPG�UWRRTGUUKXG�OKETQGPXKTQPOGPV�� 
a | 2TQITGUUKXG�VWOQWTU�CTG�QHVGP�KPHKNVTCVGF�D[�VWOQWT�RTQOQVKPI�/��NKMG�OCETQRJCIGU��O[GNQKF�FGTKXGF�UWRRTGUUQT�EGNNU�

/&5%U��CPF�TGIWNCVQT[�6�
64GI��EGNNU�VJCV�UWRRTGUU�VJG�NQECN�GZRCPUKQP�CPF�GHHGEVQT�HWPEVKQP�QH�%&�

+�6|JGNRGT�EGNNU�CPF�
E[VQVQZKE�%&�+�6|EGNNU��HQUVGTKPI�VJG�ITQYVJ�QH�VWOQWTU��b | 8CEEKPGU��CFQRVKXG�6|EGNN�VTCPUHGT�YKVJ�QT�YKVJQWV�EQ�KPLGEVKQP�
QH�EQ�UVKOWNCVQT[�CPVKDQFKGU��KP�RCTVKEWNCT�CICKPUV�%&����1:���CPF�%&�����GPNCTIG�VJG�RQQN�QH�VWOQWT�URGEKHKE�6|EGNNU��
+P|OQUV�RCVKGPVU��6|EGNN�OGFKCVGF�KOOWPKV[�YKNN�DG�EQORTQOKUGF�KP�VJG�ECPEGT�OKETQGPXKTQPOGPV�D[�UGXGTCN�OGEJCPKUOU�
WUGF�D[�VJG�KPVTCVWOQWTCN�UWRRTGUUKXG�KOOWPG�EGNNU�CPF�VJTQWIJ�6|EGNN�EJGEMRQKPV�KPJKDKVKQP��6JKU�VWTPU�VJG�6|EGNNU�KPVQ�
VWOQWT�QDUGTXKPI�N[ORJQE[VGU�YKVJ�RQVGPVKCNN[�C�VTCPUKGPV�DWV�PQV�OCLQT�KORCEV�QP�VJG�VWOQWT��c | Dedicated and 
UGNGEVKXG�EQPFKVKQPKPI�QH�VJG�OKETQGPXKTQPOGPV�OC[�TGUWNV�KP�VGORQTCT[�UJTKPMCIG�QH�VWOQWTU�CPF�CNNQY�VJG�KPVTCVWOQWTCN�
6|EGNNU�VQ�EQODCV�VJG�VWOQWT��VJKU�EQWNF�DG�CEJKGXGF�D[�KPFWEKPI�CP�CEWVG�KPHNCOOCVQT[�RTQHKNG�WUKPI�RCVVGTP�TGEQIPKVKQP�
TGEGRVQT�
244��CIQPKUVU�CPF�QT�D[�TGOQXCN�QT�KPJKDKVKQP�QH�KOOWPG�TGIWNCVQT[�OGEJCPKUOU�
64GI�EGNNU��/&5%U�CPF�QT�/��
VWOQWT�CUUQEKCVGF�OCETQRJCIGU�
6#/U����D[�OQFWNCVKQP�QH�O[GNQKF�EGNNU�
CEJKGXGF�D[�UQOG�EJGOQVJGTCRKGU���KPJKDKVKQP�
QH�KPFQNGCOKPG�����FKQZ[IGPCUG�
+&1���VTGCVOGPV�YKVJ�CPVKDQFKGU�CICKPUV�KOOWPG�UWRRTGUUKXG�E[VQMKPGU�
UWEJ�CU�
KPVGTNGWMKP����
+.�����CPF�VTCPUHQTOKPI�ITQYVJ�HCEVQT�β�
6)(β���QT�CICKPUV�KPHNCOOCVQT[�E[VQMKPGU�
UWEJ�CU�+.����QT�
E[VQMKPG�TGEGRVQTU��9KVJQWV�CFFKVKQPCN�CEVKXCVKQP�QH�C�UVTQPI�VWOQWT�URGEKHKE�6|EGNN�TGURQPUG��PQ�OCLQT�KORCEV�QP�VWOQWT�
ITQYVJ�KU�VQ�DG�GZRGEVGF�HQT�VJG�OCLQTKV[�QH�RCVKGPVU��d | 2TQXKFGF�VJCV�C�VWOQWT�URGEKHKE�6|EGNN�TGURQPUG�JCU�DGGP�KIPKVGF��
CPVKDQFKGU�CICKPUV�VJG�E[VQVQZKE�6�N[ORJQE[VG�CUUQEKCVGF�RTQVGKP���
%6.#����RTQITCOOGF�EGNN�FGCVJ�RTQVGKP���
2&����
N[ORJQE[VG�CEVKXCVKQP�IGPG���
.#)����6|EGNN�KOOWPQINQDWNKP�OWEKP�TGEGRVQT���
6+/���QT�PCVWTCN�MKNNGT�EGNN�TGEGRVQT�#�

0-)�#��EJGEMRQKPVU�QP�6|EGNNU�
QT�CICKPUV�VJGKT�TGURGEVKXG�NKICPFU��ECP�CUUKUV�KP�UWUVCKPKPI�HWNN�GHHGEVQT�HWPEVKQP�QH�VJG�
KPVTCVWOQWTCN�6|EGNNU��+P�UQOG�RCVKGPVU��VJKU�YKNN�TGUWNV�KP�VWOQWT�FGUVTWEVKQP��YJGTGCU�KP�QVJGTU��KOOWPG�UWRRTGUUKQP�D[�
EGNNU�KP�VJG�OKETQGPXKTQPOGPV�OC[�RTGXCKN��e | +P�C�UGVVKPI�KP�YJKEJ�KOOWPG�UWRRTGUUKQP�KU�CNNGXKCVGF�CPF�VWOQWTU�CTG�
UWHHKEKGPVN[�KOOWPQIGPKE��VJG�CEVKXCVKQP�QH�FGPFTKVKE�EGNNU�
&%U��CPF�/��NKMG�6#/U�YKNN�HQUVGT�VJG�CVVTCEVKQP�CPF�CEVKXCVKQP�
QH�VWOQWT�URGEKHKE�6|EGNNU�CPF�UWUVCKP�VJGKT�CPVKVWOQWT�CEVKXKV[�QXGT�VKOG��YJKEJ�KU�NKMGN[�VQ�NGCF�VQ�VWOQWT�GTCFKECVKQP�� 
f | 6JG�JKIJGUV�TCVG�QH�VWOQWT�FGUVTWEVKQP�KU�VQ�DG�GZRGEVGF�YJGP�C�VTGCVOGPV�UEJGOG�VCTIGVU�EQORQPGPVU�KP�GCEJ�QH�VJG�
UGVVKPIU�
b–e��FGUETKDGF��6JG�V[RG�CPF�PWODGT�QH�EQODKPCVKQPU�VJCV�ECP�DG�OCFG�KU�JKIJN[�NKMGN[�VQ�DG�FKEVCVGF�D[�VJG�UKFG�
GHHGEVU�QH�VJG|VTGCVOGPV�EQODKPCVKQPU�EJQUGP�
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Generation of a tumor promoting/immuno 
suppressive environment  



Systemic accumulation of suppressive neutro
and Treg
CCl2: drives accumulation of mono in 
the premetastatic niche

• Tumor induced systemic inflammation is 
a key feature of disease progression
associated to metastasis formation
• IL-17,IL-1b, CCl2, G-CSF reprogram 
hematopoiesis towards the myeloid lineage
(monocytes, macrophages, neutrophils)

Immune cells in metastasis
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Supplemental Figure 3 a, Flow diagram of CD45+ bone marrow cells labeled with 
CD11b (Y axis) and CD115 (X axis). b, Monocytes separated into Gr1+ IM and Gr1- RM 
populations by FACS and have the same level of Csf1r-GFP expression. c, Virtually all 
CD115+ monocytes in the bone marrow are Ly6G- (X axis) and separated into Ly6C+ 
and Ly6C– (Y axis) populations which correspond to the Gr1+ and Gr1– populations. d, 
Representative flow histogram showing that IMs (red) has elevated CD62L cell surface 
expression (Left panel)compared with RMs (Blue). Both populations express minimal 
level of cell surface MHCII and IL4Ra (middle and right panels). e, Representative flow 
diagram of recovered GFP+ donor cells (boxed) from peripheral blood of recipient mice. 
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MMTV-polyoma middle T antigen tumor model ( spontaneous breast cancer model)

Question: leukocytes composition at distant sites favour metastatic growth? focus on 
neutrophilsLETTERRESEARCH
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a contribution of other cells to a favourable pre-metastatic environ-
ment5–7, such as monocytes14, these results reveal that the breast- 
tumour-induced systemic accumulation of neutrophils coincidentally acts  
as a pre-metastatic niche in tissue targeted for metastatic dissemination.

Next, we investigated a potential direct effect of neutrophil-secreted 
factors on tumour cells. Pre-metastatic lung neutrophils (Extended 
Data Fig. 6a, b) were used to condition cell culture medium for 14 h 
(LuN medium). Primary MMTV-PyMT tumour cells cultured in LuN 
medium in non-adherent culture showed enhanced sphere growth  
(Fig. 2a, b). Furthermore, short-term exposure to LuN medium in 
adherent culture boosted the tumorigenic potential of cancer cells in 
vivo and in vitro (Fig. 2c, d and Extended Data Fig. 6c, d). Importantly, 
short-term culture in LuN medium also increased the metastatic initi-
ation potential of total cancer cells (Fig. 2e, f).

Cancer cells are also heterogeneous when disseminated into 
the circulation15 and might respond differently to environmental 

stimulations16. We therefore probed whether neutrophil-secreted fac-
tors influence the relative amount of highly metastatic cells. We moni-
tored the previously described MIC population (CD24+CD90+)8 after 
exposing tumour cells seeded into the lung to either LuN medium or 
freshly isolated pre-metastatic lung neutrophils (Fig. 2g). Notably, both 
settings induced a doubling of MIC frequencies among the total cancer 
cell population (Fig. 2h, i and Extended Data Fig. 6e–h) and partially 
increased metastatic growth (Extended Data Fig. 6i–k). Collectively, we 
observe that neutrophil-derived factors alter the heterogeneity of cancer 
cells favouring MICs and lead to increased metastatic competence of 
total cancer cells (Fig. 2j).

We aimed to identify neutrophil-secreted factors mediating this 
activity. LuN medium contains many factors (data not shown) includ-
ing CCL2, MMP9, interleukin (IL)-6 and IL-1 that might alter inflam-
matory responses and increase pro-tumorigenic behaviour17–19. Various 
cells in the tumour microenvironment can secrete these mediators, 
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Figure 1 | Neutrophils infiltrate pre-metastatic lungs and favour 
metastasis. a, b, Analysis of wild-type (WT) or MMTV-PyMT+ mice.  
a, Lung neutrophils frequencies determined by flow cytometry (n = 5 (wild 
type), n = 4 (pre-metastatic lung), n = 4 (metastatic lung)). Met., metastatic. 
b, Lung neutrophils or cancer cells determined by histology staining for 
S100A9 or PyMT (brown). Scale bars, 100 µm. Magnifications in inserts.  
c, Haematoxylin & eosin (H&E)-stained neutrophil. Scale bar, 5 µm.  
d, Lung neutrophil quantification by flow cytometry (n = 5 (wild type), n = 4 
(PyMT+ Gcsf+/+), n = 7 (PyMT+ Gcsf −/−)). e, f, Spontaneous metastasis 
of MMTV-PyMT+ Gcsf+/+ (n = 13) or MMTV-PyMT+ Gcsf −/− (n = 24) 

(e) and MMTV-PyMT+ control (n = 14) or MMTV-PyMT+Ela2-Cre-
DTA+ (n = 6) mice (f). g, Representative H&E-stained sections of lung. 
Scale bar, 500 µm. h, Experimental setup for neutrophil depletion. i, Flow 
cytometric lung neutrophil quantification (n = 4 (tumour-free), n = 12 (IgG 
tumour), n = 11 (Ly6G tumour)). j, k, Spontaneous (n = 8 per group) (j) and 
experimental metastasis (n = 12 per group) (k). Lin, CD45,CD31,TER119.  
l, Histological GFP-stained lung sections including close-up on spontaneous 
(arrow) and experimental metastases (brown). Scale bar, 500 µm. Statistical 
analysis by two-sided t-test. Data are represented as mean ± standard error 
of the mean (s.e.m.). *P < 0.05, **P < 0.01, ***P < 0.001.

© 2015 Macmillan Publishers Limited. All rights reserved

Neutrophils accumulate in the lung 
BEFORE arrival of cancer cells
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a contribution of other cells to a favourable pre-metastatic environ-
ment5–7, such as monocytes14, these results reveal that the breast- 
tumour-induced systemic accumulation of neutrophils coincidentally acts  
as a pre-metastatic niche in tissue targeted for metastatic dissemination.

Next, we investigated a potential direct effect of neutrophil-secreted 
factors on tumour cells. Pre-metastatic lung neutrophils (Extended 
Data Fig. 6a, b) were used to condition cell culture medium for 14 h 
(LuN medium). Primary MMTV-PyMT tumour cells cultured in LuN 
medium in non-adherent culture showed enhanced sphere growth  
(Fig. 2a, b). Furthermore, short-term exposure to LuN medium in 
adherent culture boosted the tumorigenic potential of cancer cells in 
vivo and in vitro (Fig. 2c, d and Extended Data Fig. 6c, d). Importantly, 
short-term culture in LuN medium also increased the metastatic initi-
ation potential of total cancer cells (Fig. 2e, f).

Cancer cells are also heterogeneous when disseminated into 
the circulation15 and might respond differently to environmental 

stimulations16. We therefore probed whether neutrophil-secreted fac-
tors influence the relative amount of highly metastatic cells. We moni-
tored the previously described MIC population (CD24+CD90+)8 after 
exposing tumour cells seeded into the lung to either LuN medium or 
freshly isolated pre-metastatic lung neutrophils (Fig. 2g). Notably, both 
settings induced a doubling of MIC frequencies among the total cancer 
cell population (Fig. 2h, i and Extended Data Fig. 6e–h) and partially 
increased metastatic growth (Extended Data Fig. 6i–k). Collectively, we 
observe that neutrophil-derived factors alter the heterogeneity of cancer 
cells favouring MICs and lead to increased metastatic competence of 
total cancer cells (Fig. 2j).

We aimed to identify neutrophil-secreted factors mediating this 
activity. LuN medium contains many factors (data not shown) includ-
ing CCL2, MMP9, interleukin (IL)-6 and IL-1 that might alter inflam-
matory responses and increase pro-tumorigenic behaviour17–19. Various 
cells in the tumour microenvironment can secrete these mediators, 
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Figure 1 | Neutrophils infiltrate pre-metastatic lungs and favour 
metastasis. a, b, Analysis of wild-type (WT) or MMTV-PyMT+ mice.  
a, Lung neutrophils frequencies determined by flow cytometry (n = 5 (wild 
type), n = 4 (pre-metastatic lung), n = 4 (metastatic lung)). Met., metastatic. 
b, Lung neutrophils or cancer cells determined by histology staining for 
S100A9 or PyMT (brown). Scale bars, 100 µm. Magnifications in inserts.  
c, Haematoxylin & eosin (H&E)-stained neutrophil. Scale bar, 5 µm.  
d, Lung neutrophil quantification by flow cytometry (n = 5 (wild type), n = 4 
(PyMT+ Gcsf+/+), n = 7 (PyMT+ Gcsf −/−)). e, f, Spontaneous metastasis 
of MMTV-PyMT+ Gcsf+/+ (n = 13) or MMTV-PyMT+ Gcsf −/− (n = 24) 

(e) and MMTV-PyMT+ control (n = 14) or MMTV-PyMT+Ela2-Cre-
DTA+ (n = 6) mice (f). g, Representative H&E-stained sections of lung. 
Scale bar, 500 µm. h, Experimental setup for neutrophil depletion. i, Flow 
cytometric lung neutrophil quantification (n = 4 (tumour-free), n = 12 (IgG 
tumour), n = 11 (Ly6G tumour)). j, k, Spontaneous (n = 8 per group) (j) and 
experimental metastasis (n = 12 per group) (k). Lin, CD45,CD31,TER119.  
l, Histological GFP-stained lung sections including close-up on spontaneous 
(arrow) and experimental metastases (brown). Scale bar, 500 µm. Statistical 
analysis by two-sided t-test. Data are represented as mean ± standard error 
of the mean (s.e.m.). *P < 0.05, **P < 0.01, ***P < 0.001.
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so we concentrated on specific innate leukocyte-derived factors. We 
detected high levels of the lipids leukotriene B4 (LTB4) and cystei-
nyl leukotrienes C4, D4 and E4 (LTC/D/E4), products of the Alox5 
enzyme20 (Fig. 3a–c). Importantly, direct leukotriene (LT) stimulation 
boosted sphere formation and a short 3-day LT exposure of total can-
cer cells enhanced their tumour initiation potential (Extended Data 
Fig. 7a–c). Notably, cells expressing LT receptors (LTRs; LTB4 recep-
tor 2 (BLT2) and LTC/E/D4 receptor 2 (CysLT2))21,22 appeared to be 
enriched among MICs within total MMTV-PyMT cancer cells as well 
as among other known tumorigenic subpopulations of breast cancer 

cell lines23–25 (Fig. 3d, e and Extended Data Fig. 7d–i). Indeed, LTRs 
themselves identified MMTV-PyMT cancer cells with high sphere and 
tumour formation abilities (Extended Data Fig. 7j–l).

In accordance with LTR expression on MICs, we found that 3-day 
LT stimulation of MMTV-PyMT tumour cells in vitro increased MIC 
frequency and metastatic initiation capacity in vivo (Fig. 3f–h), sim-
ilar to neutrophil-derived mediators (Fig. 2e–j). LT stimulation also 
enriched the CD49f high sub-pool among 4T1 cells (Extended Data 
Fig. 8b). Other cells such as macrophages and eosinophils respond to 
LTs, but no broader inflammatory reaction was detected at this stage 
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Figure 3 | LTs enrich for MICs and tumorigenicity. a, b, Enzyme 
immunoassay detecting LTB4 (n = 4 per group) (a) or LTC/D/E4 (n = 2 per 
group) (b). c, Overview of LTs and LTRs. d, e, Flow cytometric quantification 
of BLT2+ (n = 4 tumours) (d) and CysLT2+ cells (n = 2 tumours) (e) among 
indicated sub-pools. f–h, Representation of LT treatment (f): frequency of 
MICs (n = 8 per group) (g); and experimental lung metastasis (n = 6 per 
group) with representative images of GFP+ colonies (h). Scale bar, 3 mm. 
Lin, CD45,CD31,TER119. i, Western blot of ERK1/2 phosphorylation and 

total ERK1/2 levels of LTB4- or LTC/D/E4-treated cells for indicated minutes. 
Loading control: anti-vinculin antibody. j–k, 5-Bromodeoxyuridine (BrdU) 
incorporation comparing LT-treated MICs with non-MICs (n = 3 (non-MICs),  
n = 4 (MICs)) (j) or MICs treated with LTs and/or PD0325901 MEK inhibitor 
(MEKi; n = 3 per group) (k) DMSO, dimethylsulfoxide treated; EtOH, ethanol 
treated. Statistical analysis by two-sided t-test (a, d, h, j, k) and one-sample 
t-test (g). Data are represented as mean ± s.e.m. NS, not significant. *P < 0.05, 
**P < 0.01. Blot source data are in Supplementary Fig. 1.

Figure 2 | Neutrophil-derived signals promote tumorigenicity and 
increase the metastatic cell sub-pool. a, b, Images and quantification 
(technical replicate n = 14 (control), n = 9 (LuN) of biological 
triplicates) of primary MMTV-PyMT spheres in indicated medium. 
SFI, sphere formation index. Scale bar, 10 µm. c–f, Medium pre-treated 
luciferase+MMTV-PyMT cells (c) grafted onto the mammary gland  
(d) or intravenously injected (e, f) into Rag1-null mice. Lung metastases 
quantified by histological sectioning (n = 5 (control), n = 4 (LuN)).  

f, Representative bioluminescence signal. g, Experimental setup. h, i, Flow 
cytometric quantification of MICs in lungs of LuN-treated (n = 3 (PyMT 
control), n = 4 (PyMT + LuN)) (h) or neutrophil-treated mice (n = 3 
(PyMT control) n = 4 (PyMT + neutrophils)) (i). j, Representation of cell 
heterogeneity change. Statistical analysis by two-sided t-test (b), Mann–
Whitney test (e) and one representative experiment of two analysed by 
analysis of variance (ANOVA) (h, i). Data are represented as mean ± s.e.m. 
*P < 0.05, **P < 0.01.
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• Conclusions: neutrophils specifically support metastatic initiation. Neutro derived 
leukotrienes aid the colonization of distal tissues by expanding the sub-pools of 
cancer cells that retain tumorigenic potential

MIC: metastasis intiating cells
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CIBERSORT 
(Cell-type identification by 
estimating relative subsets of 
RNA transcripts). A 
metagene-based analytical 
method of weighting the 
contribution of different 
leukocyte subpopulations to 
the overall immune infiltrate 
during the analysis of 
transcriptomic data by 
measuring the expression of 
genes associated with specific 
immune cell types relative to 
those expressed in all 
haematological cell types.

Microenvironment cell 
populations–counter
(MCP-Counter). A method 
based on metagenes highly 
expressed in one and only one 
cellular population present in 
the tumour microenvironment, 
which enables intersample 
quantification of infiltrating 
cells based on transcriptomic 
data.

Global estimates of the immune contexture
Immunohistochemistry is the only technique that yields 
quantitative information on tumour-infiltrating immune 
cells with spatial resolution. Images obtained using this 
approach can then be further investigated using auto-
mated morphometric analysis. This approach is cur-
rently being optimized for the simultaneous detection 
of multiple distinct immune subtypes, which would 
ultimately facilitate the analysis of their spatial distribu-
tion and proximity47,48. Transcriptomic data, from RNA 
microarrays and RNA sequencing, can be analysed using 
bioinformatic approaches that enable the quantification 
of the immune-cell subtypes present within tumour 
biopsy samples or surgical specimens, although without 
providing information on spatial resolution.

Several distinct methods have been proposed for 
the bioinformatic analysis of transcriptomic data. Cell-
type  identification by estimating relative subsets of 
RNA transcripts (CIBERSORT) enables the relative pro-
portions of cellular populations in a single sample to be 
described49. A method developed by Bindea et al.24 has 
revealed the identity of several metagenes (weighted 
ensembles of several individual genes) that are expressed 
in distinct immune-cell subpopulations. Another 

method, microenvironment cell populations–counter  
(MCP–counter), is based on the expression of genes that 
are solely transcribed in a single immune-cell subset, 
thus providing a high degree of specificity, and also 
enabling assessments of the proportions of such sub-
sets among different samples50. This latter method has 
also been extensively validated relative to the findings 
of immunohistochemical analysis50.

Analyses of data from publically available data-
bases using 11 CIBERSORT leukocyte signatures have 
demonstrated that the presence of T-lymphocyte and 
B-lymphocyte signatures is associated with a favourable 
prognosis49. The presence of specific plasma-cell signa-
tures was also associated with a good prognosis. Among 
T-cell subsets, the presence of Treg cells indicated a poor 
prognosis, whereas a signature that included γδT cells con-
stituted the strongest factor indicating a favourable prog-
nosis49. Signatures including myeloid cells (macrophages, 
neutrophils, eosinophils granulocytes and dendritic cells), 
NK cells, and also those including memory B cells were all 
associated with a poor prognosis49.

Although originally developed by Bindea et al.24 
for the analysis of CRC samples, the quantification of 
metagenes corresponding to 28 different immune-cell 

Figure 3 | Effects of the immune infiltrate on the prognosis of patients with cancer. Data from 200 studies (cited in 
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and, more specifically, macrophages of an M1 or M2 subtype to overall survival outcomes. Bold colours indicate a positive 

(green) or a negative (red) prognostic association following analysis of all relevant studies; lighter colours indicate a 

predominantly positive (light green) or negative (orange) prognostic association in the majority of studies analysed. White 

circles indicate no statistically significant correlation, or that a dubious prognostic association was observed in a similar 

number of studies. The size of the circles indicates the number of patients enrolled in the studies: small circles indicate 

0–100 patients, medium-sized circles indicate 100–1,000 patients and large circles indicate 1,000–10,000 patients.

REV IEWS

722 | DECEMBER 2017 | VOLUME 14 www.nature.com/nrclinonc

ǟ
ɥ
ƐƎƏƗ

ɥ

�!,(++�-

ɥ
�4 +(2'#12

ɥ
�(,(3#"Ʀ

ɥ
/�13

ɥ
.$
ɥ
�/1(-%#1

ɥ
��341#ƥ

ɥ
�++
ɥ
1(%'32

ɥ
1#2#15#"ƥ ǟ

ɥ
ƐƎƏƗ

ɥ

�!,(++�-

ɥ
�4 +(2'#12

ɥ
�(,(3#"Ʀ

ɥ
/�13

ɥ
.$
ɥ
�/1(-%#1

ɥ
��341#ƥ

ɥ
�++
ɥ
1(%'32

ɥ
1#2#15#"ƥ

Effect	of	the	immune	infiltrate	on	the	prognosis	of	pa:ents	



Cancer-immunity cell cycle and  
immunotherapy

Mutations in cancer cells
cause release of neo-
antigens
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apoptotic tumor cells
and process the neo-
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APC present neo-
Ags to cytotoxic
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Activated cytotoxic T
cells are recruited at
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Tumor Antigens 
Discovery & Definition 



Experimental Demonstration of  
Antigen-specific Tumor Immunity 



What antigens are recognized by the immune response 

Point	muta9ons	
that	modify	a	pep9de	
binding	to	MHC	class-I,	
genera9on	of	new	
epitopes	

Ac9va9on	of	genes		
not	expressed		
in	normal	9ssue,	
by	demethyla9on	

Tissue	specific		
expression	

Overexpression	
WT1:leukemia	

Point	muta9ons	
that	modify	a	pep9de	
binding	to	MHC	class-I,	
genera9on	of	new	
epitopes	

Ac9va9on	of	genes		
not	expressed		
in	normal	9ssue,	
by	demethyla9on	

Tissue	specific		
expression	

Overexpression	
WT1:leukemia	

Point	muta9ons	
that	modify	a	pep9de	
binding	to	MHC	class-I,	
genera9on	of	new	
epitopes	

Ac9va9on	of	genes		
not	expressed		
in	normal	9ssue,	
by	demethyla9on	

Tissue	specific		
expression	

Overexpression	
WT1:leukemia	

Point	muta9ons	
that	modify	a	pep9de	
binding	to	MHC	class-I,	
genera9on	of	new	
epitopes	

Ac9va9on	of	genes		
not	expressed		
in	normal	9ssue,	
by	demethyla9on	

Tissue	specific		
expression	

Overexpression	
WT1:leukemia	



Neoantigens: discovery and definition



•  More	muta9ons	à	more	neoan9gens	à	more	T	cell	infiltra9on	

	



Tumor-infiltrating lymphocytes 
correlation with survival  

in ovarian cancer patients 

Zhang et al. NEJM 348:203, 2003 

The presence of tumor antigens is demonstrated by the enrichment of T cells in  
antigenic tumors 



together to recognize a developing tumor and
destroy it before it becomes clinically apparent;
equilibrium, in which residual occult tumor cells
not destroyed in the elimination phase are held
in a state of tumor dormancy as a consequence of
adaptive immune system activity and undergo
“editing”; and escape, inwhich edited tumor cells
are no longer recognized or controlled by immune
processes, begin to grow progressively, induce an
immunosuppressive tumormicroenvironment, and
then emerge as clinically apparent cancers. Recent
work has demonstrated that T cells play a major
role in shaping the immunogenicity of developing
cancers—i.e., “edit” tumor immunogenicity—and
exert this effect by at least two mechanisms. First,
Tcells canshape tumorantigenicity/immunogenicity
through an immunoselection process by destroy-
ing tumor cells that express strong tumor-specific
mutant antigens, leaving behind tumor cells that
either express weaker antigens (some of which
may still be mutant tumor antigens) or are in-
capable of expressing antigens (e.g., those that
have developed mutations in antigen process-
ing or presentation) (11). Second, chronic T cell
attack on a tumor has been shown to silence
expression of certain tumor-specific antigens
through epigenetic mechanisms in a preclinical
model (34). Strikingly, a recent study, based on
analysis of thousands of the Cancer Genome Atlas
solid tumor samples, showed that, in particular
in colorectal cancer, mutated peptides predicted
to bind to autologous MHC class I molecules are
less frequent than expected by chance, an ob-
servation that is consistent with immune-based
selection (35). By extension, the combination of
cell-extrinsic forces such as cancer immunoedit-
ing and the stochastic nature of epitopes arising
from tumor-specific mutations may help drive
the heterogeneousmutational—and by inference,
antigenic—landscapes that have been noted in
certain tumors (23). As such, the antigenic he-
terogeneity of tumorsmight explain some of the
differences in response that individual patients
display to checkpoint blockade therapy. Individ-
ualswho develop durable responses to checkpoint
blockade may be those whose tumors retain suf-
ficient antigenicity to render them sensitive to
the heightened immune function that accom-
panies cancer immunotherapy, despite not being
controlled by naturally occurring antitumor im-
mune responses.

Role of neoantigens in cancer
immunotherapy

On theoretical grounds, two factors should de-
termine the relative importance of neoantigens
and nonmutated self-antigens in the effects of
cancer immunotherapies such as checkpoint block-
ade and TIL therapy: first, the frequency with
which T cell responses against the two antigen
classes occur; second, the relative potency of T
cell responses specific for the two antigen classes.
Recent work in mouse models using transplant-
able carcinogen-induced cancers has demon-
strated that checkpoint blockade alters both the
quality of the neoantigen-specific intratumoral
T cell response (as reflected by common- and

treatment-specific changes in gene expression
in CD8+ TILs isolated from tumor-bearingmice
treated with antibodies to CTLA-4 and/or PD-1)
and the magnitude of this T cell response (seen
withCTLA-4or combinedCTLA-4/PD-1 blockade
but not with PD-1 blockade only) (15). Because
the neoantigens identified in this model serve
as cancer rejection antigens, these data provide
compelling evidence that checkpoint blockade
acts at least in part through neoantigen-specific
T cell reactivity in this setting. However, in the
case of humanmelanoma, where autochthonous
tumors may be in contact with the immune sys-
tem for years, the situation is more complicated.
As discussed above, T cell reactivity against neo-
antigens is common in melanoma. Furthermore,
a case report has shown that such reactivity can
be enhanced by anti–CTLA-4 treatment (13). How-
ever, T cell reactivity against nonmutated shared
antigens is also observed in the majority of mela-
noma patients, and broadening of this T cell re-
sponse has been documented following both TIL
therapy and anti–CTLA-4 treatment (36, 37). Thus,
although the murine data show that neoantigen-
specific T cell reactivity can be critical to the ef-
fects of checkpoint blockade, the human data are
presently only consistent with this possibility.
What other data are available with respect to

this issue? If recognition of neoantigens is an
important component of cancer immunotherapy,
one would expect tumor types with high numbers
of mutations to be characterized by strong T cell

responses and to be particularly sensitive to im-
munotherapy. Furthermore, also within a given
tumor type, response rate should correlate with
mutational load. Evidence for a role of neoanti-
gens in driving the strength of the intratumoral
T cell response is provided by the observation that
the presence of CD8+ T cells in cancer lesions, as
read out using RNA sequencing data, is higher in
tumors with a high mutational burden (38). Fur-
thermore, an extensive analysis by Hacohen and
colleagues has demonstrated that the level of tran-
scripts associated with cytolytic activity of natural
killer cells and T cells correlates with mutational
load in a large series of human tumors (35). With
respect to the effects of immunotherapy in tumors
with different mutational loads, in non–small cell
lung cancer patients treated with anti–PD-1, muta-
tional load shows a strong correlation with clinical
response (22). Likewise, in melanoma patients
treated with ipilimumab, an antibody to CTLA-4,
long-term benefit is also associated with a higher

mutational load, although the effect appears less
profound in this setting (39). A striking observa-
tion in the latter study has been that the pre-
dictedMHC binding neoantigens in patients with
a long-term clinical benefit were enriched for a
large series of tetrapeptide motifs that were not
found in tumors of patients with no or minimal
clinical benefit. An appealing interpretation of
these data is that the neoantigen-specific T cell
response is preferentially directed toward a sub-
set of mutant sequences, something that could
facilitate bioinformatic identification of neoanti-
gens for therapeutic targeting. However, analysis
of the sequence properties of human neoanti-
gens identified in other studies does not show
the profound bias toward these tetrapeptide
signatures that would be predicted if their role
were central in the tumor-specific T cell response
(40), and conceivably the identified tetrapeptide
motifs play a different role.
It will be valuable to extend the analysis of

genomic determinants of tumor cell sensitivity to
cancer immunotherapeutics to other malignan-
cies. However, because of the probabilistic nature
of neoantigen generation, mutational load will
by itself always remain an imperfect biomarker,
even in a situation in which neoantigen reac-
tivity is the sole tumor-specific T cell reactivity
that is relevant to tumor control. Furthermore,
the formation of tumor-specific antigens is
only one of a number of essential conditions
for a successful immune attack on cancer cells,
a concept that is well described by the cancer-
immunity cycle introduced by Chen andMellman
(41). As an example, genetic inactivation of the b2-
microglobulin subunit ofMHCclass Imolecules is
a relatively frequent event in some tumor types
(42). In addition, a recent analysis of genetic al-
terations that are present in tumors with high
immune activity provides evidence for a series of
other escape mechanisms (35). In such cases, in
which the cancer-immunity cycle is disrupted at
another site, the number of neoantigens produced
is unlikely to still be ofmuch relevance. Because of
this interdependence of different phases of the
cancer-immunity cycle, the combined use of assay
systems that report on these different phases ap-
pears warranted.
Arguably themost direct data on the relevance

of neoantigen-specific T cells in human tumor
control comes from a small number of clinical
studies that involve infusion of defined T cell
populations or infusion of TCR-transducedT cells.
Encouragingly, a recent case report demonstrated
regression of a metastatic cholangiocarcinoma by
infusion of a CD4+ T cell product that was highly
enriched for reactivity against an MHC class II–
restricted neoantigen (18). Combined with the
observation that, at least inmelanoma, CD4+T cell
recognition of neoantigens is a frequent event
(16), these data underscore the potential clinical
relevance of MHC class II–restricted neoantigens.
Comparison of the clinical effects of TIL therapy
with that of T cells modified with TCRs recogniz-
ing different shared antigens can also be con-
sidered informative. Infusion of T cells modified
with TCRs directed against the gp100 andMART-I
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“The genetic damage that on
the one hand leads to
oncogenic outgrowth can
also be targeted by the
immune system to control
malignancies.”
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meaningful frequencies and may therefore be
considered patient-specific. Because of this, tech-
nologies to interrogate T cell reactivity against
putative mutation-derived neoantigens need to
be based on the genome of an individual tumor.
With the development of deep-sequencing tech-
nologies, it has become feasible to identify the
mutations present within the protein-encoding
part of the genome (the exome) of an individual
tumor with relative ease and thereby predict
potential neoantigens (9). Two studies in mouse
models provided the first direct evidence that
such a cancer exome–based approach can be used
to identify neoantigens that can be recognized
by T cells (10, 11). In brief, for all mutations that
resulted in the formation of novel protein se-
quence, potential MHC binding peptides were
predicted, and the resulting set of potential neo-
antigens was used to query T cell reactivity. Sub-
sequent studies have demonstrated that cancer
exome–based analyses can also be exploited in a
clinical setting, to dissect T cell reactivity in pa-
tients who are treated by either tumor-infiltrating
lymphocyte (TIL) cell therapy or checkpoint block-
ade (12, 13). Furthermore, following this early
work, the identification of neoantigens on the
basis of cancer exome data has been documented
in a variety of experimental model systems and
human malignancies (10–22).
The technological pipeline used to identify

neoantigens in these different studies has varied
substantially, and further optimization is likely pos-
sible (Fig. 1). Accepting the limitations of probing
themutational profile of a tumor in a single biopsy
(23), the genetic analysis of the tumor itself can be
considered a robust process. Specifically, based on
the analysis of neoantigens previously identified
by other means, the false-negative rate of cancer

exome sequencing is low—i.e., the vast majority of
neoantigens occur within exonic sequence for
which coverage is sufficient (24). At the same time,
it is apparent from unbiased screening efforts—in
which the entire collection of identified muta-
tions was used to query T cell reactivity—that the
vastmajority ofmutationswithin expressed genes
do not lead to the formation of neoantigens that
are recognized by autologous T cells (16, 17). Because
of this, a robust pipeline that can be used for the
filtering of cancer exome data is essential, in par-
ticular for tumors with high mutational loads.
How can such filtering be performed? With

the set of mutations within expressed genes as a
starting point, two additional requirements can
be formulated. First, a mutated protein needs to
be processed and then presented as a mutant
peptide by MHC molecules. Second, T cells need
to be present that can recognize this peptide-
MHC complex. In two recent preclinical studies,
presentation of a handful of predicted neoanti-
gens byMHCmolecules was experimentally dem-
onstrated by mass spectrometry (15, 20), and this
approach may form a valuable strategy to further
optimize MHC presentation algorithms. At the
same time, the sensitivity of mass spectrometry
is presently still limited, thereby likely resulting
in a substantial fraction of false negatives. For this
reason, but also because of logistical issues, imple-
mentation of this approach in a clinical setting is
unlikely tohappen soon.Lackingdirect evidence for
MHC presentation, as can be provided by mass
spectrometry, presentation of neoantigens byMHC
class Imoleculesmay be predicted using previously
established algorithms that analyze aspects such as
the likelihood of proteasomal processing, transport
into the endoplasmic reticulum, and affinity for
the relevant MHC class I alleles. In addition,

gene expression levels (or perhaps preferably
protein translation levels) may potentially also
be used to help predict epitope abundance (25).
Althoughmost neoantigen identification studies

have successfully used criteria for epitope predic-
tion that are similar to those previously estab-
lished for the identification of pathogen-derived
epitopes [e.g., (12, 13)], Srivastava and colleagues
have argued that neoantigens in a transplantable
mouse tumor model display very different prop-
erties from viral antigens and generally have a
very low affinity for MHC class I (14). Although
lacking a satisfactory explanation to reconcile
these findings, we do note that the vast majority
of human neoantigens that have been identified
in unbiased screens do display a high predicted
MHC binding affinity (24, 26). Likewise, minor
histocompatibility antigens, an antigen class that
is conceptually similar to neoantigens, are cor-
rectly identified by classical MHC binding algo-
rithms (27). Moreover, the mutations that were
identified in a recent preclinical study as forming
tumor-specific mutant antigens that could in-
duce therapeutic tumor rejection when used in
tumor vaccines (15) were not predicted to be sig-
nificant using the Srivastava approach. Another
potential filter step that has been suggested
examines whether the mutation is expected to
improve MHC binding, rather than solely alter the
T cell receptor (TCR)–exposed surface of the mu-
tant peptide. However, with examples of both
categories in both mouse models and human
data, the added value of such a filter may be
relatively modest (11, 15, 20, 26). For MHC class
I restricted neoantigens, conceivably the biggest
gain in prediction algorithms can be made with
respect to identification of the subset of MHC
bindingpeptides that can successfully be recognized
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Fig. 2. Estimate of the neoantigen repertoire in human cancer. Data depict the number of somatic mutations in individual tumors. Categories on the right
indicate current estimates of the likelihood of neoantigen formation in different tumor types. Adapted from (50). It is possible that the immune system in
melanoma patients picks up on only a fraction of the available neoantigen repertoire, in which case the current analysis will be an underestimate. A value of 10
somatic mutations per Mb of coding DNA corresponds to ~150 nonsynonymous mutations within expressed genes.
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Mutational landscape determines
sensitivity to PD-1 blockade in
non–small cell lung cancer
Naiyer A. Rizvi,1,2*† Matthew D. Hellmann,1,2* Alexandra Snyder,1,2,3* Pia Kvistborg,4

Vladimir Makarov,3 Jonathan J. Havel,3 William Lee,5 Jianda Yuan,6 Phillip Wong,6

Teresa S. Ho,6 Martin L. Miller,7 Natasha Rekhtman,8 Andre L. Moreira,8

Fawzia Ibrahim,1 Cameron Bruggeman,9 Billel Gasmi,10 Roberta Zappasodi,10

Yuka Maeda,10 Chris Sander,7 Edward B. Garon,11 Taha Merghoub,1,10

Jedd D. Wolchok,1,2,10 Ton N. Schumacher,4 Timothy A. Chan2,3,5‡

Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are
revolutionizing cancer treatment. To unravel the genomic determinants of response
to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated
with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two
independent cohorts, higher nonsynonymous mutation burden in tumors was associated
with improved objective response, durable clinical benefit, and progression-free survival.
Efficacy also correlated with the molecular smoking signature, higher neoantigen
burden, and DNA repair pathway mutations; each factor was also associated with mutation
burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor
regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell
reactivity. Our results suggest that the genomic landscape of lung cancers shapes
response to anti–PD-1 therapy.

T
oday, more than a century since the initial
observation that the immune system can re-
ject human cancers (1), immune checkpoint
inhibitors are demonstrating that adaptive
immunity can be harnessed for the treat-

ment of cancer (2–7). In advanced non–small cell
lung cancer (NSCLC), therapies with an antibody
targeting programmed cell death-1 (anti–PD-1) dem-
onstrated response rates of 17 to 21%, with some
responses being remarkably durable (3, 8).
Understanding the molecular determinants of

response to immunotherapies such as anti–PD-1
therapy is one of the critical challenges in oncol-
ogy. Among the best responses have been in
melanomas and NSCLCs, cancers largely caused
by chronic exposure to mutagens [ultraviolet light

(9) and carcinogens in cigarette smoke (10), re-
spectively]. However, there is a large variability
in mutation burden within tumor types, ranging
from 10s to 1000s of mutations (11–13). This range
is particularly broad in NSCLCs because tumors
in never-smokers generally have few somatic mu-
tations compared with tumors in smokers (14).
We hypothesized that the mutational landscape
of NSCLCs may influence response to anti–PD-1
therapy. To examine this hypothesis, we sequenced
the exomes of NSCLCs from two independent
cohorts of patients treated with pembrolizumab,
a humanized immunoglobulin G (IgG) 4-kappa
isotype antibody to PD-1 (n = 16 and n = 18, re-
spectively), and their matched normal DNA (fig.
S1 and table S1) (15).
Overall, tumor DNA sequencing generatedmean

target coverage of 164x, and a mean of 94.5% of
the target sequence was covered to a depth of at
least 10x; coverage and depth were similar be-
tween cohorts, as well as between those with or
without clinical benefit (fig. S2). We identified a
median of 200 nonsynonymous mutations per
sample (range 11 to 1192). The median number of
exonic mutations per sample was 327 (range 45
to 1732). The quantity and range of mutations were
similar to published series of NSCLCs (16, 17)
(fig. S3). The transition/transversion ratio (Ti/Tv)
was 0.74 (fig. S4), also similar to previously de-
scribed NSCLCs (16–18). To ensure accuracy of our
sequencing data, targeted resequencing with an
orthogonal method (Ampliseq) was performed
using 376 randomly selected variants, and muta-
tions were confirmed in 357 of those variants (95%).
Higher somatic nonsynonymous mutation

burden was associated with clinical efficacy of

pembrolizumab. In the discovery cohort (n = 16),
the median number of nonsynonymous muta-
tions was 302 in patients with durable clinical
benefit (DCB) (partial or stable response lasting
>6 months) versus 148 with no durable benefit
(NDB) (Mann-Whitney P = 0.02) (Fig. 1A). Seventy-
three percent of patients with high nonsynon-
ymous burden (defined as above the median
burden of the cohort, 209) experienced DCB, com-
pared with 13% of those with low mutation bur-
den (belowmedian) (Fisher’s exact P = 0.04). Both
confirmed objective response rate (ORR) and
progression-free survival (PFS) were higher in
patients with high nonsynonymous burden [ORR
63% versus 0%, Fisher’s exact P = 0.03; median
PFS 14.5 versus 3.7 months, log-rank P = 0.01;
hazard ratio (HR) 0.19, 95% confidence interval
(CI) 0.05 to 0.70] (Fig. 1B and table S2).
The validation cohort included an independent

set of 18 NSCLC samples from patients treated
with pembrolizumab. The clinical characteristics
were similar in both cohorts. The median non-
synonymous mutation burden was 244 in tu-
mors from patients with DCB compared to 125
in those with NDB (Mann-Whitney P = 0.04)
(Fig. 1C). The rates of DCB and PFS were again sig-
nificantly greater in patients with a nonsynon-
ymous mutation burden above 200, the median
of the validation cohort (DCB 83% versus 22%,
Fisher’s exact P = 0.04; median PFS not reached
versus 3.4 months, log-rank P = 0.006; HR 0.15,
95% CI 0.04 to 0.59) (Fig. 1D and table S2).
In the discovery cohort, there was high con-

cordance between nonsynonymous mutation bur-
den and DCB, with an area under the receiver
operator characteristic (ROC) curve (AUC) of 87%
(Fig. 1E). Patients with nonsynonymous muta-
tion burden ≥178, the cut point that combined
maximal sensitivity with best specificity, had a
likelihood ratio for DCB of 3.0; the sensitivity
and specificity of DCB using this cut point was
100% (95% CI 59 to 100%) and 67% (29 to 93%),
respectively. Applying this cut point to the
validation cohort, the rate of DCB in patients
with tumors harboring ≥178 mutations was 75%
compared to 14% in those with <178, corre-
sponding to a sensitivity of 86% and a specific-
ity of 75%.
There were few but important exceptions. Five

of 18 tumors with ≥178 nonsynonymous muta-
tions had NDB, and one tumor with a very low
burden (56 nonsynonymous mutations) responded
to pembrolizumab. However, this response was
transient, lasting 8 months. Across both cohorts,
this was the only patient with a tumor mutation
burden <178 and confirmed objective response.
Notably, although higher nonsynonymous mu-
tation burden correlated with improved ORR,
DCB, and PFS (Fig. 1, F and G), this correlation
was less evident when examining total exonic
mutation burden (table S2).
We next examined all 34 exomes collectively to

determine how patterns of mutational changes
were associated with clinical benefit to pembro-
lizumab (tables S4 and S5). C-to-A transversions
were more frequent, and C-to-T transitions were
less frequent, in patients with DCB compared to
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NDB (Mann-Whitney P = 0.01 for both) (fig. S5).
A previously validated binary classifier to identi-
fy the molecular signature of smoking (17) was
applied to differentiate transversion-high (TH,
smoking signature) from transversion-low (TL,
never-smoking signature) tumors. Efficacy was
greatest in patients with tumors harboring the
smoking signature. The ORR in TH tumors was
56% versus 17% in TL tumors (Fisher’s exact P =
0.03); the rate of DCBwas 77% versus 22% (Fisher’s
exact P = 0.004); the PFS was also significantly
longer in TH tumors (median not reached versus
3.5 months, log-rank P = 0.0001) (Fig. 2A). Self-
reported smoking history did not significantly
discriminate those most likely to benefit from
pembrolizumab. The rates of neither DCB nor
PFS were significantly different in ever-smokers
versus never-smokers (Fisher’s exact P = 0.66 and
log-rank P = 0.29, respectively) or heavy smokers
(median pack-years >25) versus light/never smokers
(pack-years ≤25) (Fisher’s exact P = 0.08 and log-
rank P = 0.15, respectively). Themolecular smoking
signature correlated more significantly with non-

synonymous mutation burden than smoking his-
tory (fig. S6, A and B).
Although carcinogens in tobacco smoke are

largely responsible for the mutagenesis in lung
cancers (19), the wide range of mutation burden
within both smokers and never-smokers impli-
cates additional pathways contributing to the
accumulation of somatic mutations. We found
deleterious mutations in a number of genes that
are important in DNA repair and replication. For
example, in three responders with the highest
mutation burden, we identified deleterious mu-
tations in POLD1, POLE, and MSH2 (Fig. 3). Of
particular interest, a POLD1 E374K mutation was
identified in a never-smoker with DCB whose tu-
mor harbored the greatest nonsynonymous muta-
tion burden (n = 507) of all never-smokers in our
series. POLD1 Glu374 lies in the exonuclease proof-
reading domain of Pol d (20), and mutation of
this residue may contribute to low-fidelity repli-
cation of the lagging DNA strand. Consistent with
this hypothesis, this tumor exome had a relatively
low proportion of C-to-A transversions (20%) and

predominance of C-to-T transitions (51%), similar
to other POLD1 mutant, hypermutated tumors
(21) and distinct from smoking-related lung can-
cers. Another responder, with the greatest muta-
tion burden in our series, had a C284Y mutation
in POLD1, which is also located in the exonu-
clease proofreading domain. We observed non-
sense mutations in PRKDC, the catalytic subunit
of DNA-dependent protein kinase (DNA-PK),
and RAD17. Both genes are required for proper
DNA repair and maintenance of genomic integ-
rity (22, 23).
Genes harboring deleterious mutations com-

mon to four or more DCB patients and not present
in NDB patients included POLR2A,KEAP1, PAPPA2,
PXDNL, RYR1, SCN8A, and SLIT3. Mutations in
KRAS were found in 7 of 14 tumors from patients
with DCB compared to 1 of 17 in the NDB group,
a finding that may be explained by the asso-
ciation between smoking and the presence of
KRAS mutations in NSCLC (24). There were no
mutations or copy-number alterations in antigen-
presentation pathway–associated genes or CD274
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Fig. 1. Nonsynonymous mutation burden associated with clinical bene-
fit of anti–PD-1 therapy. (A) Nonsynonymous mutation burden in tumors
from patients with DCB (n = 7) or with NDB (n = 9) (median 302 versus
148, Mann-Whitney P = 0.02). (B) PFS in tumors with higher nonsynony-
mous mutation burden (n = 8) compared to tumors with lower nonsynony-
mous mutation burden (n = 8) in patients in the discovery cohort (HR 0.19,
95% CI 0.05 to 0.70, log-rank P = 0.01). (C) Nonsynonymous mutation
burden in tumors with DCB (n = 7) compared to those with NDB (n = 8) in
patients in the validation cohort (median 244 versus 125, Mann-Whitney
P = 0.04). (D) PFS in tumors with higher nonsynonymous mutation burden
(n = 9) compared to those with lower nonsynonymous mutation burden
(n = 9) in patients in the validation cohort (HR 0.15, 95% CI 0.04 to 0.59,

log-rank P = 0.006). (E) ROC curve for the correlation of nonsynonymous
mutation burden with DCB in discovery cohort. AUC is 0.86 (95% CI 0.66
to 1.05, null hypothesis test P = 0.02). Cut-off of ≥178 nonsynonymous mu-
tations is designated by triangle. (F) Nonsynonymous mutation burden in
patients with DCB (n = 14) compared to those with NDB (n = 17) for the
entire set of sequenced tumors (median 299 versus 127, Mann-Whitney P =
0.0008). (G) PFS in those with higher nonsynonymous mutation burden
(n = 17) compared to those with lower nonsynonymous mutation burden
(n = 17) in the entire set of sequenced tumors (HR 0.19, 95% CI 0.08-0.47,
log-rank P = 0.0004). In (A), (C), and (F), median and interquartile ranges of
total nonsynonymous mutations are shown, with individual values for each
tumor shown with dots.
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