
Chapter 16

The tangent space and the notion of

smoothness

We will always assume K algebraically closed. In this chapter we follow the approach of

Šafarevič [S]. We define the tangent space TX,P at a point P of an a�ne variety X ⇢ An as

the union of the lines passing through P and “ touching” X at P . It results to be an a�ne

subspace of An. Then we will find a “local” characterization of TX,P , this time interpreted

as a vector space, the direction of TX,P , only depending on the local ring OX,P : this will

allow to define the tangent space at a point of any quasi–projective variety.

16.1 Tangent space to an a�ne variety

Assume first that X ⇢ An is closed and P = O = (0, . . . , 0). Let L be a line through P : if

A(a1, . . . , an) is another point of L, then a general point of L has coordinates (ta1, . . . , tan),

t 2 K. If I(X) = (F1, . . . , Fm), then the intersection X \ L is determined by the following

system of equations in the indeterminate t:

F1(ta1, . . . , tan) = · · · = Fm(ta1, . . . , tan) = 0.

The solutions of this system of equations are the roots of the greatest common divisor G(t) of

the polynomials F1(ta1, . . . , tan), . . . , Fm(ta1, . . . , tan) in K[t], i.e. the generator of the ideal

they generate. We may factorize G(t) as G(t) = cte(t � ↵1)e1 . . . (t � ↵s)es , where c 2 K,

↵1, . . . ,↵s 6= 0, e, e1, . . . , es are non-negative, and e > 0 if and only if P 2 X \ L. The

number e is by definition the intersection multiplicity at P of X and L. If G(t) is

identically zero, then L ⇢ X and the intersection multiplicity is, by definition, +1.
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Note that the polynomial G(t) doesn’t depend on the choice of the generators F1, . . . , Fm

of I(X), but only on the ideal I(X) and on L.

Definition 16.1.1. The line L is tangent to the variety X at P if the intersection

multiplicity of L and X at P is at least 2 (in particular, if L ⇢ X). The tangent space to

X at P is the union of the lines that are tangent to X at P ; it is denoted TP,X .

We will see now that TP,X is an a�ne subspace of An. Assume that P 2 X: then the

polynomials Fi may be written in the form Fi = Li +Gi, where Li is a homogeneous linear

polynomial (possibly zero) and Gi contains only terms of degree � 2. Then

Fi(ta1, . . . , tan) = tLi(a1, . . . , an) +Gi(ta1, . . . , tan),

where the last term is divisible by t2. Let L be the line OA, with A = (a1, . . . , an). We note

that the intersection multiplicity of X and L at P is the maximal power of t dividing the

greatest common divisor, so L is tangent to X at P if and only if Li(a1, . . . , an) = 0 for all

i = 1, . . . ,m.

Therefore the point A belongs to TP,X if and only if

L1(a1, . . . , an) = · · · = Lm(a1, . . . , an) = 0.

This shows that TP,X is a linear subspace of An, whose equations are the linear components

of the equations defining X.

Example 16.1.2. (i) TO,An = An, because I(An) = (0).

(ii) If X is a hypersurface, with I(X) = (F ), we write as above F = L + G; then

TO,X = V (L): so TO,X is either a hyperplane if L 6= 0, or the whole space An if L = 0. For

instance, if X is the a�ne plane cuspidal cubic V (x3
� y2) ⇢ A2, TO,X = A2.

Assume now that P 2 X has coordinates (y1, . . . , yn). With an a�ne transformation

we may translate P to the origin (0, . . . , 0), taking as new coordinates functions on An

x1 � y1, . . . , xn � yn. This corresponds to considering the K-isomorphism K[x1, . . . , xn] �!

K[x1 � y1, . . . , xn � yn], which takes a polynomial F (x1, . . . , xn) to its Taylor expansion

G(x1 � y1, . . . , xn � yn) = F (y1, . . . , yn) + dPF + d(2)
P
F + . . . ,

where d(i)
P
F denotes the ith di↵erential of F at P : it is a homogeneous polynomial of degree

i in the variables x1 � y1, . . . , xn � yn. In particular the linear term is

dPF =
@F

@x1
(P )(x1 � y1) + · · ·+

@F

@xn

(P )(xn � yn).
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We get that, if I(X) = (F1, . . . , Fm), then TP,X is the a�ne subspace of An defined by the

equations

dPF1 = · · · = dPFm = 0.

The a�ne space An, which may identified with Kn, can be given a natural structure of

K-vector space with origin P , so in a natural way TP,X is a vector subspace (with origin

P ). The functions x1 � y1, . . . , xn � yn form a basis of the dual space (Kn)⇤ and their

restrictions generate T ⇤

P,X
. Note moreover that dimTP,X = dimT ⇤

P,X
= k if and only if

n � k is the maximal number of polynomials linearly independent among dPF1, . . . , dPFm.

If dPF1, . . . , dPFn�k are these polynomials, then they form a basis of the orthogonal T?

P,X
of

the vector space TP,X in (Kn)⇤, because they vanish on TP,X .

16.2 Zariski tangent space

Let us define now the di↵erential of a regular function. Let f 2 O(X) be a regular function

on X. We want to define the di↵erential of f at P . Since X is closed in An, f is induced

by a polynomial F 2 K[x1, . . . , xn] as well as by all polynomials of the form F + G with

G 2 I(X). Fix P 2 X: then dP (F +G) = dPF +dPG so the di↵erentials of two polynomials

inducing the same function f on X di↵er by the term dPG with G 2 I(X). By definition,

dPG is zero along TP,X , so we may define dpf as a regular function on TP,X , the di↵erential

of f at P : it is the function on TP,X induced by dPF . Since dPF is a linear combination of

x1 � y1, . . . , xn � yn, dpf can also be seen as an element of T ⇤

P,X
.

There is a natural map dp : O(X) ! T ⇤

P,X
, which sends f to dpf . Because of the rules

of derivation, it is clear that dP (f + g) = dPf + dP g and dP (fg) = f(P )dP g + g(P )dPf . In

particular, if c 2 K, dp(cf) = cdPf . So dp is a linear map of K-vector spaces. We denote

again by dP the restriction of dP to IX(P ), the maximal ideal of the regular functions on X

which are zero at P . Since clearly f = f(P ) + (f � f(P )) then dPf = dP (f � f(P )), so this

restriction doesn’t modify the image of the map.

Proposition 16.2.1. The map dP : IX(P ) ! T ⇤

P,X
is surjective and its kernel is IX(P )2.

Therefore T ⇤

P,X
' IX(P )/IX(P )2 as K-vector spaces.

Proof. Let ' 2 T ⇤

P,X
be a linear form on TP,X . ' is the restriction of a linear form on Kn:

�1(x1 � y1) + . . . + �n(xn � yn), with �1, . . . ,�n 2 K. Let G be the polynomial of degree 1

�1(x1� y1)+ . . .+�n(xn� yn): the function g induced by G on X is zero at P and coincides

with its own di↵erential, so ' = dP g and dP is surjective.
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Let now g 2 IX(P ) such that dpg = 0, g induced by a polynomial G. Note that dPG may

be interpreted as a linear form on Kn which vanishes on TP,X , hence as an element of T?

P,X
.

So dPG = c1dpF1 + . . . + cmdpFm (c1, . . . , cm suitable elements of K). Let us consider the

polynomial G�c1F1� . . .�cmFm: since its di↵erential at P is zero, it doesn’t have any term

of degree 0 or 1 in x1 � y1, . . . , xn � yn, so it belongs to I(P )2. Since G� c1F1 � . . .� cmFm

defines the function g on X, we conclude that g 2 IX(P )2. ⇤

Corollary 16.2.2. The tangent space TP,X is isomorphic to (IX(P )/IX(P )2)⇤ as an abstract

K-vector space.

Corollary 16.2.3. Let ' : X ! Y be an isomorphism of a�ne varieties and P 2 X,

Q = '(P ). Then the tangent spaces TP,X and TQ,Y are isomorphic.

Proof. ' induces the comorphism '⇤ : O(Y ) ! O(X), which results to be an isomorphism

such that '⇤IY (Q) = IX(P ) and '⇤IY (Q)2 = IX(P )2. So there is an induced homomorphism

IY (Q)/IY (Q)2 ! IX(P )/IX(P )2.

which is an isomorphism of K-vector spaces. By dualizing we get the claim. ⇤

The above map from TP,X to TQ,Y is called the di↵erential of ' at P and is denoted by

dP'.

Now we would like to find a “more local” characterization of TP,X . To this end we consider

the local ring of P in X: OP,X . We recall the natural map O(X) ! OP,X = O(X)IX(P ), the

last one being the localization. It is natural to extend the map dP : O(X) ! T ⇤

P,X
to OP,X

setting

dP
⇣f
g

⌘
=

g(P )dPf � f(P )dP g

g(P )2
.

As in the proof of Proposition 16.2.1 one proves that the map dP : OP,X ! T ⇤

P,X
induces

an isomorphism MP,X/M2
P,X

! T ⇤

P,X
, where MP,X is the maximal ideal of OP,X . So by

duality we have: TP,X ' (MP,X/M2
P,X

)⇤. This proves that the tangent space TP,X is a local

invariant of P in X.

Definition 16.2.4. Let X be any quasi-projective variety, P 2 X. The Zariski tangent

space of X at P is the vector space (MP,X/M2
P,X

)⇤.

It is an abstract vector space, but if X ⇢ An is closed, taking the dual of the comorphism

associated to the inclusion morphism X ,! An, we have an embedding of TP,X into TP,An =

An. If X ⇢ Pn and P 2 Ui = An, then TP,X ⇢ Ui: its projective closure TP,X is called the

embedded tangent space to X at P .
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16.3 Smoothness

As we have seen the tangent space TP,X is invariant by isomorphism. In particular its

dimension is invariant. If X ⇢ An is closed, I(X) = (F1, . . . , Fm), then dimTP,X = n � r,

where r is the dimension of the K-vector space generated by {dPF1, . . . , dpFm}.

Since dPFi =
@Fi
@x1

(P )(x1�y1)+ . . .+ @Fi
@xn

(P )(xn�yn), r is the rank of the following m⇥n

matrix, the Jacobian matrix of X at P :

J(P ) =

0

B@

@F1
@x1

(P ) . . . @F1
@xn

(P )

. . . . . . . . .
@Fm
@x1

(P ) . . . @Fm
@xn

(P )

1

CA .

The generic Jacobian matrix of X is instead the following matrix with entries in O(X)

(the entries are the functions on X induced by the partial derivatives of the polynomials Fi):

J =

0

B@

@f1

@x1
. . . @f1

@xn

. . . . . . . . .
@fm

@x1
. . . @fm

@xn

1

CA .

The rank of J is ⇢ when all minors of order ⇢ + 1 are functions identically zero on X,

while at least one minor of order ⇢ is di↵erent from zero at some point. Hence, for all P 2 X

rk J(P )  ⇢, and rk J(P ) < ⇢ if and only if all minors of order ⇢ of J vanish at P . It

is then clear that there is a non-empty open subset of X where dimTP,X is minimal, equal

to n � ⇢, and a proper (possibly empty) closed subset formed by the points P such that

dimTP,X > n� ⇢.

Definition 16.3.1. The points of an irreducible variety X for which dimTP,X = n� ⇢ (the

minimal) are called smooth or non-singular (or simple) points of X. The remaining points

are called singular (or multiple). X is a smooth variety if all its points are smooth.

If X is quasi-projective, the same argument may be repeated for any a�ne open subset.

Example 16.3.2. Let X ⇢ An be the irreducible hypersurface V (F ), with F ireducible

generator of I(X). Then J = ( @F

@x1
. . . @F

@xn
) is a row matrix. So rk J = 0 or 1. If rk

J = 0, then @F

@xi
= 0 in O(X) for all i. So @F

@xi
2 I(X) = (F ). Since the degree of @F

@xi
is

 degF � 1, it follows that @F

@xi
= 0 in the polynomial ring. If the characteristic of K is

zero this means that F is constant: a contradiction. If char K = p, then F 2 K[xp

1, . . . , x
p

n
];

since K is algebraically closed, then all coe�cients of F are p-th powers, so F = Gp for a

suitable polynomial G; but again this is impossible because F is irreducible. So always rk
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J = 1 = ⇢. Hence for P general in X, i.e. for P varying in a suitable non-empty open subset

of X, dimTP,X = n � 1. For some particular points, the singular points of X, we can have

dimTP,X = n, i.e. TP,X = An.

So in the case of a hypersurface dimTP,X � dimX for every point P in X, and equality

holds in the points of the smooth locus of X. The general case can be reduced to the case

of hypersurfaces in view of the following theorem.

Theorem 16.3.3. Every quasi-projective irreducible variety X is birational to a hypersurface

in some a�ne space.

Proof. We observe that we can reduce the proof to the case in which X is a�ne, closed in An.

Let m = dimX. We have to prove that the field of rational functions K(X) is isomorphic

to a field of the form K(t1, . . . , tm+1), where t1, . . . , tm+1 satisfy only one non-trivial relation

F (t1, . . . , tm+1) = 0, where F is an irreducible polynomial with coe�cients in K. This will

follow from the “Abel’s primitive element Theorem” 16.3.5 concerning extensions of fields.

To state it, we need some preliminaries.

Let K ⇢ L be an extension of fields. Let a 2 L be algebraic over K, and let fa 2 K[x]

be its minimal polynomial: it is irreducible and monic. Let E be the splitting field of fa.

Definition 16.3.4. An element a, algebraic over K, is separable if fa does not have any

multiple root in E, i.e. if fa and its derivative f 0

a
don’t have any common factor of positive

degree. Otherwise a is inseparable. If K ⇢ L is an algebraic extension of fields, it is called

separable if any element of L is separable.

In view of the fact that fa is irreducible in K[x], and that the GCD of two polynomials is

independent of the field where one considers the coe�cients, if a is inseparable, then f 0

a
is the

zero polynomial. If char K = 0, this implies that fa is constant, which is a contradiction. So

in characteristic 0, any algebraic extension is separable. If char K = p > 0, then fa 2 K[xp],

and fa is called an inseparable polynomial. In particular algebraic inseparable elements can

exist only in positive characteristic.

Theorem 16.3.5 (Abel’s primitive element Theorem.). Let K ✓ L = K(y1, . . . , ym) be an

algebraic finite extension. If L is a separable extension, then there exists ↵ 2 L, called a

primitive element of L, such that L = K(↵) is a simple extension.

For a proof, see for instance [L], or any textbook on Galois theory.

To prove Theorem 16.3.3 we need also a second ingredient, that I state here without

proof.
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Theorem 16.3.6 (Existence of separating transcendence bases). Let K be an algebraically

closed field and E � K a finitely generated field extension of K with tr.d.E/K = m. Then

any set of generators of E over K contains a transcendence basis {x1, . . . , xm} such that E

is a separable algebraic extension of K(x1, . . . , xm).

Proof. See for instance [ZS]. ⇤

Proof of Theorem 16.3.3. The field of rational functions ofX is of the formK(X) = Q(K[X]) =

K(t1, . . . , tn), where t1, . . . , tn are the coordinate functions on X and tr.d.K(X)/K = m. By

Theorem 16.3.6, possibly after renumbering them, we can assume that the first m coordi-

nate functions t1, . . . , tm are algebraically independent over K, and K(X) is an separable

algebraic extension of L := K(t1, . . . , tm). So in our situation we can apply Theorem 16.3.5:

there exists a primitive element ↵ such that K(X) = L(↵) = K(t1 . . . , tm,↵). Therefore

there exists an irreducible polynomial f 2 L[x] such that K(X) = L[x]/(f). Multiplying

f by a suitable element of K[t1, . . . , tm], invertible in L, we can eliminate the denominator

of f and replace f by a polynomial g 2 K[t1, . . . , tm, x] ⇢ L[x]. Now K[t1, . . . , tm, x]/(g) is

contained in L[x]/(g) = K(X), and its quotient field is again K(X). But K[t1, . . . , tm, x]/(g)

is the coordinate ring of the hypersurface Y ⇢ Am+1 of equation g = 0. It is clear that X

and Y are birationally equivalent, because they have the same field of rational functions.

This concludes the proof. ⇤

One can show that the coordinate functions on Y , t1, . . . , tm+1, can be chosen to be linear

combinations of the original coordinate functions on X: this means that Y is obtained as a

suitable birational projection of X.

Theorem 16.3.7. The dimension of the tangent space at a non-singular point of an irre-

ducible variety X is equal to dimX.

Proof. It is enough to prove the claim under the assumption that X is a�ne. Let Y be an

a�ne hypersurface birational to X (which exists by the previous theorem) and ' : X 99K Y

be a birational map. There exist open non-empty subsets U ⇢ X and V ⇢ Y such that

' : U ! V is an isomorphism. The set of smooth points of Y is an open subset W of Y

such that W \ V is non-empty and dimTP,Y = dimY = dimX for all P 2 W \ V . But

'�1(W \ V ) ⇢ U is open non-empty and dimTQ,X = dimX for all Q 2 '�1(W \ V ). This

proves the theorem. ⇤

We will denote by Xsing the closed set, possibly empty, of singular points of X, and by

Xsm the smooth locus of X, i.e. the open non empty subset of its smooth points.
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Corollary 16.3.8. The singular points of an a�ne variety X closed in An
with dimX = m,

are the points P of X where the Jacobian matrix J(P ) has rank strictly less than n�m.

To find the singular points of a projective variety, it is useful to remember the following

Euler relation for homogeneous polynomials.

Proposition 16.3.9 (Euler’s formula). Let F (x0, . . . , xn) be a homogeneous polynomial of

degree d. Then dF = x0Fx0 + · · · + xnFxn, where, for every i = 0, . . . , n, Fxi denotes the

(formal) partial derivative of F with respect to xi.

Proof. Since d = degF , we have F (tx0, . . . , txn) = tdF (x0, . . . , xn). To get the desired

formula it is enough to derive with respect to t and then put t = 1. ⇤

Let now X ⇢ Pn be a hypersurface with Ih(X) = hF (x0, . . . , xn)i, degF = d.

Proposition 16.3.10. Let K be a field of characteristic p; assume that p = 0 or d does not

divide p. Then the singular points of X are the common zeros of the partial derivatives of

F , i.e. Xsing = VP (Fx0 , . . . , Fxn).

Proof. We denote by f(x1, . . . , xn) the dehomogenized aF = F (1, x1, . . . , xn) of F with

respect to x0. We observe that, for i = 1, . . . , n, a(Fxi) = fxi , and that aFx0 = df � x1fx1 �

· · ·� xnfxn , in view of Proposition 16.3.9. So, if P 2 U0, f(P ) = fx1(P ) = · · · = fxn(P ) = 0

if and only if Fx0(P ) = · · · = Fxn(P ) = 0. ⇤

Therefore, to look for the singular points of an a�ne hypersurface X, one has to consider

the system of equations defined by the equation of X and its partial derivatives, whereas

in the projective case it is enough to consider the system of the partial derivatives, be-

cause Euler’s relation garantees that by consequence also the equation of the hypersurface

is satisfied.

For an a�ne variety X of higher codimension n � m, one has to impose the vanishing

of the equations of X and of the minors of order n � m of the Jacobian matrix. In the

projective case, using again Euler’s relation, one can check that the singular points are

those that annihilate the homogeneous polynomials F1, . . . , Fr generating Ih(X) and also

the minors of order n�m of the homogeneous r ⇥ (n+ 1) Jacobian matrix (@Fi/@xj)ij.

Euler formula is useful also to write the equations of the embedded tangent space TP,X

to a projective variety X at a point P . Assume first that X ⇢ Pn is a hypersurface VP (F ),

F 2 K[x0, . . . , xn]. Assume that P 2 U0, and use non-homogeneous coordinates ui = xi/x0

on U0, so that X \ U0 is the zero locus of aF = F (1, u1, . . . , un) =: f(u1, . . . , un). If P
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has non-homogeneous coordinates a1, . . . , an, the a�ne tangent space TP,X\U0 has equation
P

n

i=1
@f

@ui
(P )(ui � ai) = 0. By definition TP,X is its projective closure, so it is

TP,X = {[x0 . . . , xn] |
nX

i=1

@F

@xi

(1, a1, . . . , an)(xi � aix0) = 0}.

From Euler formula, using that F (1, a1, . . . , an) = 0, we get that

nX

i=1

@F

@xi

(1, a1, . . . , an)(�aix0) =
@F

@x0
(1, a1, . . . , an)x0.

We conclude that TP,X is defined by the equation
P

n

i=0
@F

@xi
(P )xi = 0.

IfX is the projective variety with ideal Ih(X) = (F1, . . . , Fr), then, repeating the previous

argument, we get that its tangent space is defined by the linear polynomials
P

n

i=0
@Fk
@xi

(P )xi,

for k = 1, . . . , r.

We note that the a�ne tangent space, when X is a�ne, or the embedded tangent space,

when X is projective, to X at P is the intersection of the tangent spaces to the hypersurfaces

containing X.

Now we would like to study a variety X in a neighbourhood of a smooth point. We

have seen that P is smooth for X if and only if dimTP,X = dimX. Assume X a�ne: in

this case the local ring of P in X is OP,X ' O(X)IX(P ). But by Theorem 7.2.4, we have:

dimOP,X = htMP,X = htIX(P ) = dimO(X) = dimX and dimTP,X = dimK MP,X/M2
P,X

.

Therefore P is smooth if and only if

dimK MP,X/M
2
P,X

= dimOP,X

(the first one is a dimension as K-vector space, the second one is a Krull dimension). By

Nakayama’s Lemma (Theorem 14.3.1) a basis of MP,X/M2
P,X

corresponds bijectively to a

minimal system of generators of the ideal MP,X . Indeed, since the residue field of OP,X is

isomorphic to K, we can interpret any scalar in K as an element [a]MP,X 2 OP,X/MP,X ,

and the product giving the structure of K-vector space to MP,X/M2
P,X

operates as follows:

[a]MP,X [m]M2
P,X

= [am]M2
P,X

(the definition is well posed). Now, given elements f1, . . . , fr 2

MP,X , we call ↵ = hf1, . . . , fri the ideal they generate. We apply Nakayama’s Lemma

with notations as in Theorem 14.3.1, where the module M is the maximal ideal MP,X , its

submodule N is the ideal ↵, and the ideal I is again MP,X .

Therefore P is smooth for X if and only if MP,X is minimally generated by r elements,

where r = dimOP,X , in other words if and only if OP,X is a regular local ring.
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For example, if X is a curve, P is smooth if and only if TP,X has dimension 1, i.e. MP,X

is principal: MP,X = (t).

Observe that the set of common zeros of the functions in MP,X is precisely the point P .

The fact that MP,X is principal generated by t means that P is defined in X by the only

equation t = 0 in a suitable neighborhood of P . This is called a local equation of P . If P is

a singular point, then the minimal number of generators of MP,X is bigger than one, equal

to the dimension of the tangent space TP,X . So to define P we need more than one local

equation.

Let P be a smooth point of X and dimX = n. Functions u1, . . . , un 2 OP,X are called

local parameters at P if u1, . . . , un 2 MP,X and their residues ū1, . . . , ūn in MP,X/M2
P,X

(= T ⇤

P,X
) form a basis, or equivalently if u1, . . . , un is a minimal set of generators of MP,X .

Recalling the isomorphism

dP : MP,X/M
2
P,X

! T ⇤

P,X

we deduce that u1, . . . , un are local parameters if and only if dP ū1, . . . , dP ūn are linearly

independent linear forms on TP,X (which is a vector space of dimension n), if and only if the

system of linear equations on TP,X

dP ū1 = . . . = dP ūn = 0

has only the trivial solution P (which is the origin of the vector space TP,X).

Let u1, . . . , un be local parameters at P . There exists an open a�ne neighborhood of P

on which u1, . . . , un are all regular. We replace X by this neighborhood, so we assume that

X is a�ne and that u1, . . . , un are polynomial functions on X. Let Xi be the closed subset

V (ui) of X: it has codimension 1 in X, because ui is not identically zero on X (u1, . . . , un

is a minimal set of generators of MP,X).

Proposition 16.3.11. In this notation, P is a smooth point of Xi, for all i = 1, . . . , n, and
T

i
TP,Xi = {P}.

Proof. Assume that Ui is a polynomial inducing ui, then Xi = V (Ui)\X = V (I(X)+ (Ui)).

So I(Xi) � I(X) + (Ui). By considering the linear parts of the polynomials of the previous

ideal, we get: TP,Xi ⇢ TP,X \ V (dPUi). By the assumption on the ui, it follows that TP,X \

V (dPU1)\ · · ·\V (dPUn) = {P}. Since dimTP,X = n, we can deduce that TP,X \V (dPUi) is

strictly contained in TP,X , and dimTP,X \ V (dPUi) = n� 1. So dimTP,Xi  n� 1 = dimXi,

hence P is a smooth point on Xi, equality holds and TP,Xi = TP,X \ V (dPUi). Moreover
T

TP,Xi = {P}. ⇤
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Note that
T

i
Xi has no positive-dimensional component Y passing through P : otherwise

the tangent space to Y at P would be contained in TP,Xi for all i, against the fact that
T

TP,Xi = {P}.

Definition 16.3.12. Let X be a smooth variety. Subvarieties Y1, . . . , Yr of X are called

transversal at P , with P 2
T

Yi, if the intersection of the tangent spaces TP,Yi has dimension

as small as possible, i.e. if codimTP,X (
T
TP,Yi) =

P
codimXYi.

Taking TP,X as ambient variety, one gets the relation:

dim
\

TP,Yi �

X
dimTP,Yi � (r � 1) dimTP,X ;

hence

codimTP,X (
\

TP,Yi) = dimTP,X � dim
\

TP,Yi 

X
(dimTP,X � dimTP,Yi) =

=
X

codimTP,X (TP,Yi) 
X

codimXYi.

If equality holds, P is a smooth point for Yi for all i, moreover we get that P is a smooth

point for the set
T

Yi.

For example, if X is a surface and P 2 X is smooth, there is a neighbourhood U of

P such that P is the transversal intersection of two curves in U , corresponding to local

parameters u1, u2. If P is singular we need three functions u1, u2, u3 to generate the maximal

ideal MP,X .

16.4 Tangent cone

To conclude this chapter I want to mention the tangent cone to a variety X at a point P.

To introduce it we consider first the case where X is a closed a�ne variety X ⇢ An and

P = O(0, . . . , 0). The tangent cone to X at O, TCO,X , is the union of the lines through

O which are “limit positions” of secant lines to X. To formalize this idea, we consider in

An+1 = An
⇥A1 the closed set X̃ of pairs (a, t), with a = (a1, . . . , an) 2 An and t 2 A1, such

that at 2 X. Let ' : X̃ ! A1,  : X̃ ! An be the projections. If X 6= An, X̃ results to be

reducible: X̃ = X̃1 [ X̃2, where X̃2 = {(a, 0) | a 2 An
}, X̃1 = '�1(A1 \ 0). We consider the

restrictions '1, 1 of the projections to X̃1.  1(X̃1) results to be the closure of the union of

the secant lines of X through O. The tangent cone TCO,X is by definition  1('
�1
1 (0)).

Let us write the equations of TCO,X . We note first that the equations of X̃ are of the

form F (a1t, . . . , ant) = 0 where F 2 I(X). Write F as sum of its homogeneous components
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F = Fk + · · · + Fd, where Fk is the non-zero component of minimal degree, and k � 1

because O 2 X. Then F (at) = tkF (a) + · · · + tdFd(a). The equation of the component X̃2

inside X̃ is t = 0. The equations of the tangent cone are Fk = 0 for all F 2 I(X), they

are given by the initial forms of the polynomials of I(X), i.e. the non-zero homogeneous

components of minimal degree. Since all equations are homogeneous, it is clear that we get

a cone. Moreover TCO,X ✓ TO,X , and equality holds if and only if O is a smooth point of X.

As in the case of the tangent space, we can extend the definition to any point, by transla-

tion, and then find a characterization that allows to prove that the tangent cone is invariant

by isomorphism.

In the particular case n = 2, with X a curve defined by the equation F (x, y) = 0, the

tangent cone at O is defined by the vanishing of the initial form Fk(x, y). Being a homo-

geneous polynomial in two variables, it factorizes as a product of k linear forms (counting

multiplicities), defining k lines: the tangent lines to X at O.

For instance, in the case of the cuspidal cubic V (x3
� y2) the tangent cone at the origin

has equation y2 = 0: it is the line y = 0 “counted with multiplicity 2. If X is the cubic of

equation x2
� y2 + x3 = 0, the tangent cone consists in the two distinct lines x� y = 0 and

x+ y = 0: the cubic is nodal.

The tangent cone allows to define the multiplicity of a point on X and to start an analysis

of the singularities.

Exercises 16.4.1. 1. Assume char K 6= 2. Find the singular points of the following surfaces

in A3:

1. xy2 = z3;

2. x2 + y2 = z2;

3. xy + x3 + y3 = 0.

2. Suppose that char K 6= 3. Determine the singular locus of the projective variety in

P5 given by the equations:
5X

i=0

xi = 0,
5X

i=0

x3
i
= 0.
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