Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
Il Semestre 2020

Lecture 22: RL+ TL

Reinforcement Learning and Temporal Logic

Challenges:
Safe RL
Complex Tasks

Reward Hacking

Safe Reinforcement Learning

]- Hyperglycemia

Blood Glucose 140

(sugar)

AN
-

120

100 —

80

60

Blood Glucose (mg/dL)

40 r

Hypoglycemia

20

0 500 1000 1500
Time (minutes since midnight)

R (7

Eat Carbohydrates Release Insulin

Reward Hacking

A policy that achieves high returns but against the designer’s intentions

https://www.youtube.com/watch?v=92qDfT8pENs

https://www.youtube.com/watch?v=92qDfT8pENs

Several Works with different motivations

Reward shaping using robusntess satisfaction
LTL constrained, Reward function remained the same

multi-task-RL

Reward function is not enough

Description using a language can help..

To define task better
To learn more efficiently and precisely

To transfer learning between tasks

To be “safe”

General |dea

Reward Shaping problem:

Design R(s,a) s.t. lcan find ™ s.t.V x, m* (x) the "satisfaction” of x is
maximised

Why important?
Poorly design -> poorly convergence
Learning unsafe or unrealistic action

Model-based Reinforcement Learning from Signal Temporal Logic
Specifications

Parv Kapoor!, Anand Balakrishnan' and Jyotirmoy V. Deshmukh®

Model-based RL from STL specification

Learning a deterministic predictive model of the system dynamics using

deep neural networks.
Given a state and a sequence of actions, such a predictive model produces a

predicted trajectory over a user-specified time horizon.

We use a cost function based on the quantitative semantics of STL to
evaluate the optimality of the predicted trajectory, and use a black-box
optimizer that uses evolutionary strategies to identify the optimal sequence

of actions (in an MPC setting).

We demonstrate the efficacy of our approach on a number of examples
from the robotics and autonomous driving domains.

Model-based RL from STL specification

Given a dataset D on sample transitions (s, a, s') collected from simulations
or real-world demonstrations.

Fit a model Fy(s;, a,) that takes the current state s, and an action a,, and
outputs a distribution over the set of possible successor states s; 5,

MPC: let an action sequence be denoted AgH) = (a;, ...,qryp—1)
At every time step t during the execution of the controller for a finite
planning horizon H we solve the following optimization problem

maximize p(S¢, A¢y Sti1y vy Aprg—1, St+1)
where:

§¢ = s¢ and

§t+i+1 =F (§t+i y A4)r ViEe O, ,H —1

ew candidate solutions are sampled according to a multivariate normal distrioution in . Recombpination amounts to selecting a new mean value 1or the distribution. iutation amounts 10 aading a ranaom vector, a

Non-Linear Optmization Techinigues

Monte-Carlo methods [25], the Cross-Entropy Method [26], or evolutionary
strategies, like CMA-ES [27] and Natural Evolutionary Strategies [28].

CMA-ES

Ssampled according to a multivariate normal distribution. Recombination amounts to
selecting a new mean value for the distribution. Mutation amounts to adding a random
vector, a perturbation with zero mean.

Pairwise dependencies between the variables in the distribution are represented by a
covariance matrix.

Method to update the mean of the distribution and covariance matrix of this distribution.

Only the ranking between candidate solutions is exploited for learning the sample

distribution and neither derivatives nor even the function values themselves are required
by the method.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Robust control Synthesis

A framework that combines the use of:
model-based reinforcement learning (MBRL)
sampling-based model predictive control (MPC)

to maximize the robustness value of a trajectory against a given STL formula
via CMA-ES

Learning the System Dynamics

Algorithm 1 Learning the system dynamics model.

1: Initialize empty dataset, D

2: for i €1,..., Ny, do

3 for Each time step ¢ do

4 a; ~ Uniform(°), St41 v EnV(St,at)
5: D «+ (s¢,a4,8¢41)

6 end for

7: end for
8: 0 «— SGD(D)

The out put O is the vector of parameters of the NN

The learned dynamics, ﬁg, is deterministic

Training the model

We train the model by minimizing the sum of squared error loss for each
transition in the dataset:

L(0) = Z (s’ — F’g(s,a))2

(870'73,)6Dtrain

The loss minimization is carried out using stochastic gradient descent, where
the dataset is split into randomly sampled batches and the loss is minimized
over these batches.

Sampling-based Model Predictive Control

Algorithm 2 Model Predictive Control using Ey.

1: for Each time step ¢ in episode do
2: for 1...Njer and 1... Ngmples do

3: A = (ay,...,ar11-1) ~ CMA-ES()

4: for . €0,...,H—1do

D St+i+1 = Fo(8t+4i, Qt4i)

6: end for

7. Compute cost p(§t7 at, §t+17 co oy At H—1, '§t+H)

8: Update CMA-ES()

9: end for

10: Execute first action a™ from optimal sequence AgH) ~
CMA-ES()

11: end for

Cartpole

A pole is attached to a cart on an
unactuated joint

The cart moves on a frictionless track

It is controlled by applying a force to
push it left or right on the track.

s=(0,x,0",x"

o= G(|x| <0.1A10] < 12°)

Mountain Car

A car stuck at the bottom of a valley
between two mountains.

The car can be controlled by applying a
force pushing it left or right

s = (x,x")

p:= F(x > 0.4)

Fetch robot

The goal of the environment is e T
design a controller to move the arm S-S

of a simulated Fetch manipulator
robot to a region in 3D space

The state vector of the environment
is a 16 dimensional vector containing
the position and orientation of the
robots joints and end-effector

p:=F(lxg —x| <01AJy, —y|<01A|z; —z] <0.1)

Adaptive Cruise-Control

The goal is to synthesize a controller for a car
(the ego car) that safely does cruise control in
the presence of an adversarial (or ado) car ahead
of it.

The environment itself is a single lan. The ego car
is controlled only by the acceleration applied to
the car.

The ado agent ahead of the car accelerates and
decelerates in an erratic manner, in an attempt
to cause a crash.

S = (Xegor Vegor Aegor Arels Urel) @ := FG(50 > drel > 15)

TABLE 1
HYPERPARAMETERS AND RESULTS.

Environment Hyperparameters Results (averaged across 30 runs)

No. of training No. of optimizer No. of optim. Horizon Trajectory Vanilla rewards®
trajectories iterations samples per iteration Robustness o
N traj]Viter N, samples Vi | P

Cartpole 2000 5 1000 10 0.069 £ 8e—3 200.0£0

Mountain Car 2000 2 1000 50 0.047 &= 1e—3 89.06 + 4.57

Fetch 2000 7 500 10 0.067 4= 6e—3 -

ACC 400 7 500 2 7.679 & 5.47 -

Parking Lot 400 5 5 5 1.69e—2 4= 3.8e—3 -

Q-learning RL with TL

D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-Learning [35] for robust satisfaction of signal
temporal logic specifications,” in 2016 IEEE, CDC, Dec. 2016, pp. 6565-6570.

An extension to Q-learning where STL robustness is directly used to define
reward functions over trajectories in an MDP.

X. Li, C.-l. Vasile, and C. Belta, “Reinforcement learning with temporal logic rewards,” in 2017 IEEE/RSJ
International Conference on Intelli- gent Robots and Systems (IROS), Sept. 2017, pp. 3834—-3839.

Propose a method that augments an MDP with finite trajectories, and
defines reward functions for a truncated form of Linear Temporal Logic.

A. Balakrishnan and J. V. Deshmukh, “Structured Reward Shaping using Signal Temporal Logic
specifications,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov.
2019, pp. 3481-3486.

Translate STL specifications into locally shaped reward functions using a
notion of “bounded horizon nominal robustness”

STL and discrete space

Q-Learning for Robust Satisfaction of Signal Temporal Logic
Specifications

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta

Abstract— In this paper, we address the problem of learning
optimal policies for satisfying signal temporal logic (STL)
specifications by agents with unknown stochastic dynamics.
The system is modeled as a Markov decision process, in
which the states represent partitions of a continuous space
and the transition probabilities are unknown. We formulate
two synthesis problems where the desired STL specification is
enforced by maximizing 1) the probability of satisfaction, and 2)
the expected robustness degree, i.e., a measure quantifying the
quality of satisfaction. We discuss that Q-learning is not directly
applicable to these problems because, based on the quantitative
semantics of STL, the probability of satisfaction and expected
robustness degree are not in the standard objective form of Q-
learning (i.e., the sum of instantaneous rewards). To resolve
this issue, we propose an approximation of STL synthesis
problems that can be solved via Q-learning, and we derive
some performance bounds for the policies obtained by the
approximate approach. Finally, we present simulation results
to demonstrate the performance of the proposed method.

to describe tasks involving bounds on physical parameters
and time intervals [8]. An example STL specification is
“Within 7, seconds, a region in which y is less than p,
is reached, and regions in which y is larger than p, are
avoided for 1, seconds.” STL is also endowed with a metric
called robustness degree that quantifies how strongly a given
trajectory satisfies an STL formula as a real number rather
than just providing a yes or no answer [10], [8]. This measure
enables the use of continuous optimization methods to solve
inference (e.g., [14], [15], [18]) or formal synthesis problems
(e.g., [22]) involving STL.

In this paper, we formulate two problems that enforce a
desired STL specification by maximizing 1) the probability
of satisfaction and 2) the expected robustness degree. One
of the difficulties in solving these problems is the history-
dependence of the satisfaction. For instance, if the specifi-

4 1 " ' " Nl

General idea

States: partition of a Continuous Space N
Unknown stochastic dynamics - . .r . e .r
Goal: Maximizing Pr|s | = ®] or E[r(s, ®)] u,,,___-(}_f____(_f_?_____i_

31 04 :
Issue: Pr[s | = ®]or E[r(s,®)] are notin the VR
standard objective form of Q- learning (i.e., the o2 '011 / oy
sum of instantaneous rewards) e
Solution: approximation of STL synthesis B (:) S

problems that can be solved via Q-learning,

Fig. 2. (a) Discretized state-space, |

System Model

YA

L : : Ax Ay R A
Set of partitions with centroid o; = [o ! o ! o !
Motion primitives a € A, blue arrow i R A
Se..t,: State trajectory of the system within [¢; , t; | Ayl -4 / - o
e.g. Sg = oy. If the system visits g3 and returns to gy, its & —> o | o
state trajectory can be written as sg.opy = 010307 X Va S
probability distribution for s;,; is unknown (a)

Fig. 2. (a) Discretized state-space, |

Problem: history- dependence of the satisfaction

Let @ be an STL specification with hrz(®) = T . Given a stochastic model M =
(2,A,P,R) with unknown P and an initial partial state trajectory sO:t for some
0<t<T,find a control policy it such that

m; = argmax Pr’[sg.r &=]
U

m, = argmax E”" [r(so.7,DP)]
T

Fragment of STL such that the progress towards satisfaction is checked with
a sufficient number of (i.e.,) state measurements.

Q-learning

Algorithm 1: Q-learning

Input: s - current state
Output: m- control policy maximizing the sum of (discounted) rewards

1 : initialization: Arbitrary Q(s,a) and 7;
2: for k=1:Ngpisode

3: Initialize s

3: fort=1:T

4 : Select an action a (via €-greedy or T);

5: Take action a, observe r and s’;

6: Q(s,a) < (1— o) Q(s,a) + oy [r+ ¥ max Q(s',d’) |;
a

73 7t(s) < argmax Q(s,a);

a
8 : s §';
9: end for

10 : end for

Problem: history- dependence of the satisfaction

The policies should be definedas m : £* XNsy = A where £t = ¥X---XX for
T times. Hence, the state-space of the system needs to be redefined as

X' XNsg.
h
T —MDP where 7 = | "Zi"”] +1 for Fioz ¥, Groz
"‘-A'!/“‘““‘:r ————— E——-—-—:FA 0401
Each state corresponds to a g | w | » |
T-length trajectory 2y g 0307
ok ;
” | : e 09201
0 Ax 2Ax 3A -
(a) (b)

Fig. 2. (a) Discretized state-space, (b) Representation of o7 over 2 —MDP.

Problem: robustness shape

max E*| max (r(s
max E”*[r(so.7,DP)] = T _r—lg.zgr
4 max E¥| min (r(s
% T 1<t<T

T
[

™

)

)

0
0

).
)

)

)

if & = Fig 719
if &= Gy 1/¢

log-sum-exp approximation to adapt the Robustness of Q-learning

1
p

n
max(Xxy,...,X,) ~ —Ingeﬁxia
i=1

Finally...

= T .
argmjng” Y ePrisi ,¢)] : if &= Fy70
Ty = ——— T
aremaxE* | — Y e Prls m] , 1t ®=Gp7¢
” - =11 ’

The immediate reward is :

'6131("(5;:‘1’))’ if Problem 1A with @ = Fjy 7¢
_ —e PIUE9) 1 if Problem 1A with @ = Gig 719
Prisi9) if Problem 2A with ® = Fjg 71¢

\ _e Prisi®) if Problem 2A with ® = Gio.r)¢

Experiments
4 Dy = Go,12](Flo,21(region A) A Fioz)(region B))

| e INZ - IS|=19, |S*Y|=676and T =3

> 2

the robustness degree gives “partial credit”
0 for trajectories that are close to satisfaction

For the prop satisfaction, instead, Q-
learning algorithm is essentially performing
a random search

(b) (c)

Fig. 5. (a) The initial state and the desired regions in case study 2 for
which a sample trajectory by (b) 7, and (c)).

Reinforcement Learning With Temporal Logic Rewards

Xiao Li, Cristian-Ioan Vasile and Calin Belta.

Abstract— Reinforcement learning (RL) depends critically on
the choice of reward functions used to capture the desired be-
havior and constraints of a robot. Usually, these are handcrafted
by a expert designer and represent heuristics for relatively
simple tasks. Real world applications typically involve more
complex tasks with rich temporal and logical structure. In this
paper we take advantage of the expressive power of femporal
logic (TL) to specify complex rules the robot should follow,
and incorporate domain knowledge into learning. We propose
Truncated Linear Temporal Logic (TLTL) as a specification
language,We propose Truncated Linear Temporal Logic (TLTL)
as a specification language,that is arguably well suited for the
robotics applications, We show in simulated trials that learning
is faster and policies obtained using the proposed approach
outperform the ones learned using heuristic rewards in terms
of the robustness degree, i.e., how well the tasks are satisfied.
Furthermore, we demonstrate the proposed RL approach in a
toast-placing task learned by a Baxter robot.

I. INTRODUCTION

—— - - ~ - ~ - - p——

to Q-learning on 7-MDPs in discrete spaces. Authors of [4]
and [5] has also taken advantage of automata-based methods
to synthesize control policies that satisfy LTL specifications
for MDPs with unknown transition probability.These meth-
ods are constrained to discrete state and action spaces, and
a somewhat limited set of temporal operators. To the best
of our knowledge, this paper is the first to apply TL in
reinforcement learning on continuous state and action spaces,
and demonstrates its abilities in experimentation.

We compare the convergence properties and the quality
of learned policies of RL algorithms using temporal logic
(i.e., robustness degree) and heuristic reward functions. In
addition, we compare the results of a simple TL algorithm
against a more elaborate RL algorithm with heuristic re-
wards. In both cases better quality policies were learned
faster using the proposed approach with TL rewards than
with the heuristic reward functions.

Truncated Linear

Temporal Logic (TLTL)

* Specifically for robots
 Unbounded

* Atomic propositions

* Evaluated against finite time sequencesp
St:t+k = St St+1 -

St+k

p(St:ttks 1)
p(St:t+k, f(s¢) <)
/)(91‘ t+k s ﬂ(b)
p(St:t+ks @ = V)
P(St:ttk, P1 N P2)
P(St:t+k, 01V @2)
[)(9t t+k> Q¢)
,0(9f itk D¢)
(
(

P\St:t+k <>¢)
St:t+k» U w)

P(St:t+k7 ¢ T w)

Pmax

c— f(st),

— [)(St:t—i—ka (Z)),

max(—p(St:t+k, @), P(St:t+k, 1))

min(p(Se.t4k, ¢1), P(Stataks P2)),

max(P(Se:¢4k, P1)s P(St:t1ks P2)),

,O(St+1:t+k, 45) (k > O),
min (p(S¢.t+k, P)),

t'e[t,t+k)
p(S,g’;t—}—k'v (b))?

max (
Elt,t+k)

o max (min(p(S¢ .44k, 1),
E[t,t+k)
(

tlerﬁiik)(mln(p(&tf:wk, ¥),

max p(s¢r.er, @))),

t" e[t,t’)

STL and continuous space

Policy parametrization (s, a|@) where 0 is the set of model parameters

0" = argmaxg E,mg)|R(7)],
where p™8 (1) is trajectory distribution from following policy it

Relative Entropy Policy Search (REPS) :
constrained optimization problem that can be solved by Lagrange multipliers

method

Time-varying linear Gaussian policies and weighted maximum-likelihood
estimation to update the policy parameters

Experiments o =(1bg. T g, T 1hg,) A (~(thg, V 1hg,) U 1hg.)
("(%b) U ’(pgg) N (/\ D(¢gi = ODﬁwgi)) A D¢o

1=1,9,b
—— REPS TL Robustness —— REPS Continuous Reward —— step-REPS Continuous Reward
~— REPS Discrete Reward step-REPS Discrete Reward

(5 goals visited in the right order
—5 goals visited in the wrong

,rgzsc'rete = ¢

Robustness Value
| |

=2 d01,2,3 < r01,2,3

L0 everywhere else

3
Tgontz‘nuous = —c1dg, + Cz(dgj + dgk) + c3 Z o

i=1

Iteration Number

LTL constrained to discrete state and action

Probably Approximately Correct MDP Learning
and Control With Temporal Logic Constraints

Jie Fu and Ufuk Topcu

Department of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, Pennsylvania 19104
Email: jief, utopcu@seas.upenn.edu

Abstract—We consider synthesis of controllers that maximize
the probability of satisfying given temporal logic specifications
in unknown, stochastic environments. We model the interaction
between the system and its environment as a Markov decision
process (MDP) with initially unknown transition probabilities.
The solution we develop builds on the so-called model-based
probably approximately correct Markov decision process (PAC-
MDP) method. The algorithm attains an =-approximately optimal
policy with probability 1 —4§ using samples (i.e. observations), time
and space that grow polynomially with the size of the MDP, the
size of the automaton expressing the temporal logic specification,
1, 4 and a finite time horizon. In this approach, the system
maintains a model of the initially unknown MDP, and constructs
a product MDP based on its learned model and the specification
automaton that expresses the temporal logic constraints. During
execution, the policy is iteratively updated using observation of
the transitions taken by the system. The iteration terminates in
finitely many execution steps. With high probability, the resulting
policy is such that, for any state, the difference between the
probability of satisfying the specification under this policy and
the optimal one is within a predefined bound.

arrived positions differ
of different grounds.
terrain can be modele
probabilities are unkno
observations of robot’
number of samples.
may not be affordable
amount of samples, we
MDP and reason abot
respect to the underl!
policies synthesized us
We develop an alg
updates the controller
for an unknown MDP.
method [4, 5] to maxin
temporal logic specific
tion probabilities. In th
a model of the MDP

A Learning Based Approach to Control Synthesis of Markov Decision
Processes for Linear Temporal Logic Specifications

Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, Sanjit A. Seshia

Abstract—We propose to synthesize a control policy for a
Markov decision process (MDP) such that the resulting traces
of the MDP satisfy a linear temporal logic (LTL) property.
We construct a product MDP that incorporates a deterministic
Rabin automaton generated from the desired LTL property.
The reward function of the product MDP is defined from the
acceptance condition of the Rabin automaton. This construction
allows us to apply techniques from learning theory to the
problem of synthesis for LTL specifications even when the
transition probabilities are not known a priori. We prove that
our method is guaranteed to find a controller that satisfies the
LTL property with probability one if such a policy exists, and
we suggest empirically that our method produces reasonable
control strategies even when the LTL property cannot be
satisfied with probability one.

practical contexts where we start from a partial model with
unspecified probabilities.

Our approach is based on finding a policy that maximizes
the expected utility of an auxiliary MDP constructed from
the original MDP and a desired LTL specification. As in
the above mentioned existing work, we convert the LTL
specification to a deterministic Rabin automaton (DRA) [11],
[12], and construct a product MDP such that the states of the
product MDP are pairs representing states of the original
MDP in addition to states of the DRA that encodes the
desired LTL specification. The novelty of our approach is
that we then define a state based reward function on this
product MDP based on the Rabin acceptance condition of

LTL constrained to discrete state and action

select the reward function on the product MDP so it corresponds to the Rabin
acceptance condition of the LTL specification.

Sp = (s,q) < Sp (wg if sp €Gi
Wp(sp) = qwp if sp € B;)
0 ifspeS\(GUB)

where wg > 0 is a positive reward, wg < 0 is a
negative reward.

Prove convergence if policy exist s.t. it satisfies property with probability 1

1) Learn the transition probabilities and
2) Optimize the expected utility.
E.g. with a modified active temporal difference learning algorithm

Several Works with different motivations

LTL constrained, Reward function remained the same
Reward shaping using probability of average robusntess satisfaction

Multi-task-RL

Multi-task-RL

Teaching Multiple Tasks to an RL Agent using LTL

Rodrigo Toro Icarte
University of Toronto
Department of Computer Science & Vector Institute
rntoro@cs.toronto.edu

Richard Valenzano
Element Al
rick.valenzano@elementai.com

ABSTRACT

This paper examines the problem of how to teach multiple tasks
to a Reinforcement Learning (RL) agent. To this end, we use Linear
Temporal Logic (LTL) as a language for specifying multiple tasks in
a manner that supports the composition of learned skills. We also
propose a novel algorithm that exploits LTL progression and off-
policy RL to speed up learning without compromising convergence
guarantees, and show that our method outperforms the state-of-
the-art approach on randomly generated Minecraft-like grids.

Toryn Q. Klassen
University of Toronto
Department of Computer Science
toryn@cs.toronto.edu

Sheila A. Mcllraith

University of Toronto
Department of Computer Science
sheila@cs.toronto.edu

Linear Temporal Logic (LTL) and then defining reward functions
that provide positive reward for their successful completion. LTL
is a propositional, modal temporal logic first developed for the
verification of reactive systems [35]. It augments propositional logic
with modalities such as ¢ (eventually), O (always), and U (until) in
support of expressing statements such as “Always if clothes are on
the floor, put them in the hamper” or “Eventually make dinner.” Such
statements can be combined via logical connectives and nesting of
modal operators to provide task specifications. The syntax is natural
and compelling and. as a formal language. it has a well-defined

Several Works with different motivations

LTL constrained, Reward function remained the same
Reward shaping using probability of average robusntess satisfaction

multi-task-RL

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

Safe Reinforcement Learning via Shielding

Mohammed Alshiekh,' Roderick Bloem,’> Riidiger Ehlers,’
Bettina Konighofer,” Scott Niekum,' Ufuk Topcu '

1Univelrsity of Texas at Austin, 210 East 24th Street, Austin, Texas 78712, USA

2Graz University of Technology, RechbauerstraBe 12, 8010 Graz, Austria
3University of Bremen and DFKI GmbH, Bibliothekstralle 1, 28359 Bremen, Deutschland
{malshiekh, sniekum, utopcu} @utexas.edu, {roderick.bloem, bettina.koenighofer } @iaik.tugraz.at, rehlers @uni-bremen.de

Abstract

Reinforcement learning algorithms discover policies that
maximize reward, but do not necessarily guarantee safety dur-
ing learning or execution phases. We introduce a new ap-
proach to learn optimal policies while enforcing properties
expressed in temporal logic. To this end, given the temporal
logic specification that is to be obeyed by the learning system,
we propose to synthesize a reactive system called a shield.
The shield monitors the actions from the learner and corrects
them only if the chosen action causes a violation of the spec-
ification. We discuss which requirements a shield must meet
to preserve the convergence guarantees of the learner. Finally,
we demonstrate the versatility of our approach on several
challenging reinforcement learning scenarios.

N reward ¢
[Environment 5 Learning Agent]<—
= 7| observation -
! actions
=
£ Shield]
safe action \ [

Figure 1: Shielded reinforcement learning

its operation whenever absolutely needed in order to ensure

safety?”

In this paper, we introduce shielded learning, a frame-
work that allows applving machine learning to control sys-

Safe RL via Shield

How can we let a learning agent do whatever it is doing, and also monitor and interfere with
its operation whenever absolutely needed in order to ensure safety?

The shield is computed upfront from the safety part of

the given system specification and an abstraction of ’ \ reward ;KL o A
the agent’s environment dynamics Environment Mon ” 1 earning Agent <
- observation

Minimum interference: monitors the actions selected actions
. . . \

by the learning agent and corrects them if and only if ('

the chosen action is unsafe. ’L Shield J

safe action

Boundary helps to separate the concerns, e.g., safety !

and correctness on one side and convergence and , , , .

optimality on the other Figure 1: Shielded reinforcement learning

Compatible with mechanisms such as function
approximation, employed by learning algorithms in
order to improve their scalability

Safe RL via Shield

Safety fragment of LTL
(something bad should never happen, e.g. no safety G(r - Fg), every request is eventually
granted)

A faithful, yet precise enough, abstraction of the physical environment is required
Independent of the state space components of the system to be controlled

The shield is the product between specification automaton and the MDP abstraction

Safe RL via Shield

If the property is violated there are two approaches:

Assign a punishment : negative reward

Assign the reward: positive reward

Then the shield selects an action in a “rank” that is safe

Grid world Example

With tabular Q-learning with an e-greedy explorer

a1
] -
E
Qg
5 0.10
a7
E
= 0.00
=
] : |
3 —0.10 ——{------ No shielding
a3 = .4 — No shielding w/ Large penalty
o —0.20 — |ranki| = 3 w/ penalty

0 20 40 60 80 100
: ; Episodes
Figure 6: 9x9 grid world. P
Figure 7: The accumulated reward per episode for the 9x9
¢.: the robot must not crash into walls or grid world example.
the moving opponent agent.

The PacMan Example

Approximate Deep Q-learning agent

1,000

0

—1,000

Accumulated Reward

—2,000

Figure 13: The accumulated reward per episode for the pac-

man example.

..J.'-Tilll.
2eed

‘\-7 2rre

At T
« * o, " .- aw
P _',' “

o
s

------ No shielding
— |rank;| = 1 w/o penalty

5t

0

100
Episodes

1

)

[

0

Figure 12: The 5x18 grid world of the pacman example.

The safety specification in this example is to avoid

crashing into a wall.

