
Exercise Lecture X

Lattice gas

Simulated annealing

(results for items in red have to be included in the homework report)

1. Self-di↵usion coe�cient in a lattice gas model

Consider a finite square lattice with sites randomly occupied by particles with a given density ⇢. The
particles can move randomly to empty nearest sites (two particles can not occupy the same site). It is an
example of a restricted random walk. A meaningful physical quantity is the self-di↵usion coe�cient D of
an individual particle. D is the limit t ! 1 of D(t), where D(t) is given by:

D(t) =
1

2dt
h�R2(t)i,

with d which is the dimensionality of the system and h�R2(t)i is the net instantaneous mean square
displacement per particle, averaged over all particles, after t units of time (h...i here indicates the average
over particles and not temporal averages).
The dynamical model can be summarized by the following algorithm:

i) Occupy at random the L⇥ L sites of a square lattice with N particles subject to the condition that
no double occupancy is allowed, with the desired density ⇢ = N/L2  1. Tag each particle, that is,
distinguish it from the others, and record its initial position in an array.

ii) At each step choose a particle (randomly, or, alternatively, in an ordered way) and one of its nearest
neighbor sites at random. If the neighbor site is empty, the particle moves to this site; otherwise it
does not. Loop over the particles.

Note 1: The measure of “time” in this context is arbitrary. The usual definition is that during one unit
of time or one Monte Carlo step, each particle on average attempts one jump. Time goes on even if the
particles do not move, i.e., the tentative move is not accepted.
Note 2: Consider periodic boundary conditions, but note that reliable results can be obtained only for
h�R2(t)i < (L/2)2 (this sets a limit to number of MC steps). Otherwise, they could be a↵ected by the
imposed periodicity.

Do a Monte Carlo simulation to determine D and its dependence on the particles concentration ⇢.

See for instance the code latticegas.f90. Internal units for Monte Carlo time step and displacement
should be preferred. For comparison with a realistic situation, such as for instance di↵usion in solids,
we may consider Monte Carlo time step equal to 1 ns and the unit length to 2 Å, properly rescaling the
internal quantities at the end of the calculations.

(a) Study h�R2(t)i as a function of time for a fixed value of ⇢ = 0.03 and for a fixed number of particles
(e.g., 13 particles in a 20⇥20 lattice). What do you see increasing time (within the limit mentioned
above)? Make a fit and compare your result (the slope) with the expected behavior of a standard
random walk.

1



(b) Repeat for ⇢ = 0.2.

(c) Plot D(t) as a function of time: after a certain equilibration time, it fluctuates. Calculate the
amplitude of the fluctuations as a function of t (from the distribution of data over the particles).
These fluctuations remain also by increasing t.

(d) In order to estimate D, which is defined as the limit of D(t) for t ! 1, do a temporal average
hD(t)iT (h...iT here indicates a ”global” temporal average on t from 0 to T or some block average).
Plot together D(t) and hD(t)iT . Change the seed, do another run and compare hD(t)iT with the
previous results. An estimate of D can be obtained by averaging hD(t)iT over di↵erent runs.

(e) Better statistics forD(t) (and consequently forD) can be obtained by calculating h�R2(t)i as average
over many particles (i.e., for a given ⇢, considering a lattice with L as large as possible; it is suggested
L � 40). Verify that fluctuations of D(t) (and the deviations of hD(t)iT over more runs from its
mean value) are proportional to the inverse square root of the number of particles.

(f) Study the dependence of D on the concentration, using for instance ⇢=0.1, 0.2, 0.3, 0.5, and 0.7.
You should find that D is a monotonically decreasing function of ⇢. Why?

(g) To gain some insight into this dependence, determine the dependence on ⇢ of the probability that if
a particle jumps to a vacancy at time t, it returns to its previous position at time t + 1. Is there a
qualitative relation between the density dependence of D and this probability?

2. Simulated annealing

Simulated annealing is a stochastic method for global energy minimization, considering the system star-
ting from a su�ciently high temperature; at each temperature it goes towards equilibrium according to
the Boltzmann factor (see the application of the Metropolis algorithm in the canonical ensemble); then
the temperature is slightly reduced and the equilibration procedure is repeated, and so on, until a global
equilibrium state is reached at T=0. The method can be e�ciently used for function minimization, even
if the function is not representing an energy. In program simulated annealing.f90 it is implemented
for the minimization of f(x) = (x + 0.2) ⇤ x + cos(14.5 ⇤ x � 0.3). Initial temperature, initial position
and scaling factor for the temperature are input quantities. Test the program by choosing di↵erent initial
parameters and scaling factor for the temperature. For instance:

(a) Annealing rate: Try di↵erent annealing factors (0.8, 0.9, 0.95) with di↵erent random seeds. How
slowly do you have to anneal to settle down in the global minimum over 90% of the time? Just
estimate the quantity, but provide some explanation and data to support your answer.

(b)
p
T scaling: It is often convenient to scale by

p
T the step size used in the Metropolis algorithm.

Why? Hint, look at the acceptance ratios, and think about di↵usion and thermal distributions in
parabolic wells

2



3. MC simulation of a simple N-particles model

Consider an ideal gas of N non interacting, distinguishable particles, confined in a box (fixed V) and
isolated (fixed E), divided into left/right with the possibility for one particle at a time to pass through
the separation wall, with equal probability from the left to the right or viceversa.

A macrostate is specified for instance by the number of particles on the left side, say n, that can cor-
respond to di↵erent microstates depending on the list of the specific particles there. A Monte Carlo
approach consists in generating a certain number of movements, randomly, and consider them as represen-
tative of all the possible movements. The program box.f90 is a possible implementation of the algorithm
describing the time evolution of the system in terms of macrostates, i.e. –given an initial number of
particles on the left, n– the approach to equilibrium and what the equilibrium macrostate is.

(a) Choose N=4, 10, 20, 40, 80, and n=N initially. Make a plot of n (or, better, of n/N) with respect
to time. What is the equilibration time ⌧eq (=how many MC steps)?

(b) Modify the program so that at each time step t it calculates the number of particles < n(t) > averaged
over di↵erent runs (e.g. 5 runs). Make a plot to compare n(t) over the individual runs and averaged
< n(t) >.

(c) (Optional) Compare the numerical value of < n(t) > with the exact analytic results for a simple
case, for instance N=4.

(d) (Optional) Consider only one run. Modify the program to calculate numerically the probability Pn

of having at equilibrium a macrostate with n particles on the left, by simply counting the number
of occurring microstates that correspond to the macrostate n and dividing for the total number
of microstates generated in the time evolution. Plot the histogram Pn for N=20, 40, 80 and a
“su�ciently” long run. Comment.

(e) Modify the program to measure the statistical fluctuations at the equilibrium, by calculating the
variance �2 =< n2 > � < n >2, where the average is done over a time interval after reaching the
equilibrium.

(f) Determine < n > and �/ < n > at equilibrium for N=20, 40, 80. Which is the dependence of these
quantities on N?

(g) An alternative method to find the equilibrium macrostate is the calculation of the entropy Sn of the
di↵erent possible macrostates, by looking at the one with maximum entropy. An e�cient numerical
implementation is feasible by evaluating the ratio Rn= sum of possible coincidences for each micro-
state/maximum number of possible coincidences for each microstate, then calculating Sn / � logRn.
The code entropy.f90 calculatesRn and Sn. Use it withN=10. Compare the numerically calculated
Sn with the analytical value.

3


