
Chapter 17

Finite morphisms and blow–ups

In this section we will see the notion of finite morphism, and a fundamental example of a

morphism which is not finite: the blow-up of a variety at a point, or, more in general, along

a subvariety. The blow-up is the main ingredient in the resolution of singularities of an

algebraic variety. As usual we will assume that K is algebraically closed.

17.1 Finite morphisms

First of all we will give an interpretation in geometric terms of the notions of integral elements

and integral extensions introduced and studied in Chapters 4 and 8.

Let f : X ! Y be a dominant morphism of a�ne varieties, i.e. we assume that f(X) is

dense in Y . Then the comorphism f ⇤ : K[Y ] ! K[X] is injective (by Exercise 4, Chapter

12): we will often identify K[Y ] with its image f ⇤K[Y ] ⇢ K[X].

Definition 17.1.1. f is a finite morphism if K[X] is an integral extension of K[Y ].

This means that, for any regular function ' on X, there is a relation of integral depen-

dence

'r + f ⇤(g1)'
r�1 + · · ·+ f ⇤(gr) = 0 (17.1)

with g1, . . . , gr 2 K[Y ]. Finite morphisms enjoy the following properties.

Proposition 17.1.2. 1. The composition of finite morphisms is a finite morphism.

2. Let f : X ! Y be a finite morphism of a�ne varieties. Then, for any y 2 Y , f�1(y)

is a finite set.

3. Finite morphisms are surjective, i.e. f�1(y) is non-empty for any y 2 Y .
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4. Finite morphisms are closed maps.

Proof. 1. It follows from the transitivity of integral dependence, Corollary 4.0.3.

2. Let X be a closed subset of An, so K[X] is generated by the coordinate functions

t1, . . . , tn. Let y 2 Y . We want to prove that any coordinate function ti takes only

a finite number of values on the set f�1(y). For the function ti there is a relation of

integral dependence of type (17.1): tr
i
+ f ⇤(g1)t

r�1
i

+ · · · + f ⇤(gr) = 0 2 K[X] with

g1, . . . , gr 2 K[Y ].We apply this relation to x 2 f�1(y) and we get tr
i
(x)+g1(y)t

r�1
i

(x)+

· · · + gr(y) = 0. This means that the i-th coordinate of any point in f�1(y) has to

satisfy a (monic) equation of degree r, so there are only finitely many possibilities for

this coordinate. This proves what we want.

3. This is a consequence of the property of Lying over - LO (Section 8.1). Let y =

(y1, . . . , ym) 2 Y ⇢ Am, let u1, . . . , um be the coordinate functions on Y . A point x 2 X

belongs to f�1(y) if and only if ui(f(x)) = f ⇤(ui)(x) = yi for any i, or equivalently if

and only if the function f ⇤(ui) � yi vanishes on x, i.e. it belongs to the ideal IX(x).

In view of the relative version of the Nullstellensatz (Proposition 9.1.5), the condition

f�1(y) = ; is therefore equivalent to the fact that the ideal generated by f ⇤(u1) �

y1, . . . , f ⇤(um) � ym in K[X] is the entire ring K[X], in particular it is not contained

in any maximal ideal. Consider now the maximal ideal IY (y) of regular functions on

Y vanishing in y, it is generated by u1 � y1, . . . , um � ym. But, from the Lying over

applied to the integral extension f ⇤K[Y ] ⇢ K[X], it follows that there is a prime ideal

P of K[X] over f ⇤(IY (y)), which is generated by f ⇤(u1) � y1, . . . , f ⇤(um) � ym. This

implies that f�1(y) 6= ;.

4. Let f : X ! Y be a finite morphism and Z ⇢ X an irreducible closed subset. We

consider the restriction of f to Z, i.e. f̄ : Z ! f(Z). We observe that, via the

comorphism f̄ ⇤ : K[f(Z)] ! K[Z], K[Z] ' K[X]/IX(Z) is an integral extension of

K[f(Z)], because it is enough to reduce modulo IX(Z) the integral equations of the

elements of K[X]. So, applying (3) to the finite morphism f̄ , we conclude that f̄ is

surjective, i.e. f(Z) = f(Z).

⇤

An example of non-finite morphism is the projection V (xy � 1) ! A1. Instead the

projection p2 : V (y � x2) ! A1 is finite.
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Theorem 17.1.3 (Geometric interpretation of the Normalization Lemma). Let X ⇢ An
be

an a�ne irreducible variety of dimension d. Then there exists a finite morphism X ! Ad
.

Moreover the morphism can be taken to be a projection.

Proof. The coordinate ring of X is an integral K-algebra, finitely generated by the coordi-

nate functions, whose quotient field has transcendence degree d over K. The Normalization

Lemma (Theorem 4.0.4) then asserts that there exist elements z1, . . . , zd algebraically inde-

pendent over K, such that K[X] is an integral extension of the K-algebra B = K[z1, . . . , zd].

But B is the coordinate ring of Ad and the inclusion B ,! K[X] can be seen as the comor-

phism of a finite morphism f : X ! Ad. The proof of Normalization Lemma shows that

z1, . . . , zd can be chosen linear combinations of the generators of K[X]. In this case, f results

to be a projection. ⇤

One can prove that being a finite morphism is a local property, in the following sense: let

f : X ! Y be a morphism of a�ne varieties. Then f is finite if and only if any y 2 Y has an

a�ne open neighbourhood V , such that U := f�1(V ) is a�ne, and the restriction f |: U ! V

is a finite morphism. This property allows to give the definition of finite morphism between

arbitrary varieties, as a morphism which is finite when restricted to the open subsets of an

a�ne open covering. See [S] for more details and consequences.

For instance one can obtain the following non-trivial facts, that I quote here only for

information.

Example 17.1.4. 1. Let X ⇢ Pn
be a closed algebraic set, let ⇤ ⇢ Pn

be a linear subspace

of dimension d such that X \⇤ = ;. Then the restriction of the projection ⇡⇤ : X ! Pn�d�1

defines a finite morphism from X to ⇡⇤(X).

2. Let X ⇢ Pn
be a closed algebraic set and F0, . . . , Fr be homogeneous polynomials of the

same degree d without any common zero on X. Then ' : X ! Pr
defined by the polynomials

F0, . . . , Fr is a finite morphism to the image.

For a proof of the first property, see [S]. To prove the second one, we observe that ' is

the composition of the Veronese morphism vn,d with a projection. The conclusion follows

from part 1., remembering that vn,d is an isomorphism (Section 10.6). The upshot is that,

if ' is defined by the same homogeneous polynomials on the whole X, then it is a finite

morphism; in particular all the fibres are finite.
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17.2 Blow-up

We will define now the blow-up (or blowing-up) of an a�ne space at the origin O(0, . . . , 0).

It is a variety X with a morphism � : X ! An which results to be birational and not finite.

The idea is that X is obtained from An by replacing the point O with a Pn�1, which can be

interpreted as P(TO,An), the set of the tangent directions to An at O.

To constructX we first consider the product An
⇥Pn�1, which is a quasi-projective variety

via the Segre map. Let x1, . . . , xn be the coordinates of An, and y1, . . . , yn the homogeneous

coordinates of Pn�1. We recall that the closed subsets of An
⇥Pn�1 are zeros of polynomials

in the two series of variables, which are homogeneous in y1, . . . , yn.

Definition 17.2.1. Let X be the closed subset of An
⇥ Pn�1 defined by the system of

equations n
xiyj = xjyi, i, j = 1, . . . , n. (17.2)

The blow-up of An at O is the variety X together with the map � : X ! An defined by

restricting the first projection of An
⇥ Pn�1. O is also called the centre of the blow-up.

The equations (17.2) express that y1, . . . , yn are proportional to x1, . . . , xn. Let us see

what this means. Let P 2 An be a point, we consider ��1(P ). We distinguish two cases:

1) If P 6= O, then ��1(P ) consists of a single point and precisely, if P = (a1, . . . , an),

��1(P ) is the pair ((a1, . . . , an), [a1, . . . , an]).

2) If P = O, then ��1(O) = {O}⇥ Pn�1
' Pn�1, because if x1 = · · · = xn = 0 there are

no restrictions on y1 . . . , yn. It is a standard notation to denote ��1(O) by E. It is called

the exceptional divisor of the blow-up.

It is easy to check that � gives an isomorphism between X \��1(O) and An
\{O}. Indeed

both � and ��1 so restricted are regular.

The points of ��1(O) are in bijection with the set of lines through O in An. Indeed if L is

a line through O, it can be parametrized by {xi = ait, t 2 K, with (a1, . . . , an) 6= (0, . . . , 0).

Then ��1(L \O) is parametrized by

8
<

:
xi = ait

yi = ait, t 6= 0,
(17.3)

or, which is the same, by 8
<

:
xi = ait

yi = ai, t 6= 0.
(17.4)
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If we add also t = 0, we find the closure L0 = ��1(L \O), it is a line meeting ��1(O) at the

point O ⇥ [a1, . . . , an]: L0 can be interpreted as the line L “lifted at the level [a1, . . . , an]”.

So we have a bijection associating to the line L passing through O the point ��1(L \O) \

��1(O) = L0
\ E.

Figure 17.1: Blow-up of the plane

Finally we note that X is irreducible: indeed X = (X \ E) [ E; X \ E is isomorphic to

An
\ O, so it is irreducible; moreover every point of E belongs to a line L0, the closure of

��1(L \O) ⇢ X \ E. Hence X \ E is dense in X, which implies that X is irreducible.

Therefore X is birational to An: they are both irreducible and contain the isomorphic

open subsets X \ ��1(O) and An
\O. In particular dimX = n, and ��1(O) = E ' Pn�1 has

codimension 1 in X. The tangent space TO,An coincides with An = Kn, and the set of the

lines through O can be interpreted as the projective space P(TO,An). So there is a bijection

between the exceptional divisor E and P(TO,An).

Figure 17.2, taken from the book [S], illustrates the case of the plane.

If we consider the second projection p2 : X ! Pn�1, for any [a] = [a1, . . . , an] 2 Pn�1,

p�1
2 [a] is the line L0 of (17.4). X with the map p2 is an example of non-trivial line bundle,

called the universal bundle over Pn�1.

If Y is a closed subvariety of An passing through O, it is clear that ��1(Y ) contains
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the exceptional divisor E = ��1(O). It is called the total trasform of Y in the blow-up.

We define the strict transform of Y in the blow-up of An as the closure eY := ��1(Y \O).

It is interesting to consider the intersection eY \ E, it depends on the behaviour of Y in a

neighborhood of O, and allows to analyse its singularities at O.

Example 17.2.2.

1. Let Y ⇢ A2 be the plane cubic curve of equation y2�x2 = x3. The origin is a singular

point of Y , with multiplicity 2, and the tangent cone TCO,Y is the union of the two lines of

equations x � y = 0, x + y = 0, respectively. We consider the blow-up X ⇢ A2
⇥ P1 of A2

with centre O. Using coordinates t0, t1 in P1, X is defined by the unique equation xt1 = t0y.

Then ��1(Y ) is defined by the system

8
<

:
y2 � x2 = x3

xt1 = t0y

As usual P1 is covered by the two open subsets U0 : t0 6= 0 and U1 : t1 6= 0, so A2
⇥ P1 =

(A2
⇥ U0) [ (A2

⇥ U1), the union of two copies of A3, and we can study X considering its

intersection X0, X1 with each of them. If t0 6= 0, we use t = t1/t0 as a�ne coordinate;

if t1 6= 0 we use u = t0/t1. X0 has equation y = tx and X1 has equation x = uy. For

��1(Y )\X0 we get the equations y2�x2
�x3 = 0 and y = tx in A3 with coordinates x, y, t.

Substituting we get t2x2
� x2

� x3 = x2(t2 � 1� x) = 0. So there are two components: one

is defined by x = y = 0, which is E \ X0; the other is defined by

8
<

:
x = t2 � 1

y = t(t2 � 1)
, it is

eY \X0. Note that it meets E at the two points P (0, 0, 1), Q(0, 0,�1). They correspond on

E to the two tangent lines to Y at O: y � x = 0 and x+ y = 0.

If we work on the other open set A2
⇥ U1, ��1(Y ) is defined by x = uy and y2 � u2y2 �

u3y3 = y2(1 � u2
� u3y) = 0. So eY \ X1 is defined by

8
<

:
x = uy

1� u2
� u3y = 0

. We find the

same two points of intersection with E: (0, 0, 1), (0, 0,�1).

The restriction of the projection � : eY ! Y is an isomorphism outside the points P,Q on
eY and O on Y . The result is that the two branches of the singularity O have been separated,

and the singularity has been resolved.

2. Let Y ⇢ A2 be the cuspidal cubic curve of equation y2 � x3 = 0. The total transform
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is defined by 8
<

:
y2 � x3 = 0

xt1 = t0y.

On the first open subset it becomes y2 � x3 = 0 together with y = tx; replacing and

simplifying t, which corresponds to E, we get the equations for eY :
8
<

:
x = t2

y = t3
.

This is the a�ne skew cubic, that meets E at the unique point (0, 0, 0), corresponding to

the tangent line to Y at O: y = 0. By the way, we can check that E is the tangent line to
eY at (0, 0, 0). On the second open subset, we have the equations y2 � x3 = 0 together with

x = uy; the strict transform is defined by 1 � u3y = 0 and x = uy. There is no point of

intersection with E in this a�ne chart. The map � : eY ! Y is therefore regular, birational,

bijective, but not biregular; Y and eY cannot be isomorphic, because one is smooth and the

other is not smooth.

3. Let Y = V (x2
� x4

� y4) ⇢ A2. O is a singular point of multiplicity 2 with tangent

cone the line x = 0 counted twice. Let eY be the strict transform of Y in the blow-up of

the plane in the origin. Proceeding as in the previous example we find that eY meets the

exceptional divisor E = O ⇥ P1 at the point O0 = ((0, 0), [0, 1]), which belongs only to the

second open subset A2
⇥ U1. In coordinates x, y, u = t0/t1, eY is defined by the equations

8
<

:
x = uy

u2
� u4y2 � y2 = 0

,

and O0 = (0, 0, 0). We compute the equation of the tangent space T
O0,eY , it is x = 0: it is a

2-plane in A3, so eY is singular at O0. The tangent cone TC
O0,eY is x = 0, u2

� y2 = 0, the

union of two lines in the tangent plane.

Let us consider a second blow-up �0, of A3 in O0. It is contained in A3
⇥ P2; using

coordinates z0, z1, z2 in P2, it is defined by

rk

 
x y u

z0 z1 z2

!
< 2.

We first work on the open subset A3
⇥ U0 ' A5; we put z0 = 1 and we work with a�ne

coordinates x, y, u, z1, z2; the exceptional divisor E 0 is defined by x = y = u = 0, and the
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total transform �0�1(eY ) of eY by
8
>>>>><

>>>>>:

x = uy

y = z1x

u = z2x

x2(z22 � z21 � u4z21) = 0

.

Replacing x = uy in the second and third equation we get the equivalent system
8
>>>>><

>>>>>:

x = uy

y(1� z1u) = 0

u(1� z2y) = 0

x2(z22 � z21 � u4z21) = 0

.

Combining the factors of the four equations in all possible ways, we find that, on A3
⇥ U0,

�0�1(eY ) is union of E 0 and of the strict transform eY 0 defined by
8
>>>>><

>>>>>:

x = uy

1� z1u = 0

1� z2y = 0

z22 � z21 � u4z21 = 0

.

The intersection eY 0
\ E 0

\ (A3
⇥ U0) results to be empty.

We then work on the open subset A3
⇥ U1 ' A5; we put z1 = 1 and we work with a�ne

coordinates x, y, u, z0, z2. Proceeding as in the first case, we find the equations of the total

transform 8
>>>>><

>>>>>:

x = uy

y(z0 � u) = 0

u = z2y

y2(z22 � 1� z42y
4) = 0

.

The strict transform results to be defined by
8
>>>>><

>>>>>:

x = uy

z0 � u = 0

u = z2y

z22 � 1� z42y
4 = 0

,
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and its intersection with the exceptional divisor x = y = u = 0 is the union of the two

points P,Q of coordinates ((0, 0, 0), [0, 1,±1]) 2 A3
⇥ P2. Considering the third open subset

A3
⇥ U2 ' A5 one finds the same two points.

In conclusion, we consider the composition of the two blow-ups eY 0 �
0

! eY �
! Y , which is

birational. In the first blow-up �, we pass from Y , with a singularity at the blown-up point

O with one tangent line, to eY with a node in O0, its point of intersection with E. In the

second blow-up �0, O0 is replaced by two points on the second exceptional divisor E 0. To

verify if eY 0 is smooth, it is enough to check if P,Q are smooth, and this can be checked

easily.

The singularity of Y is called a tacnode. We have just checked that to resolve it two

blow-ups are needed. What allows to distinguish the singularity of the curve of Example 2

from the present example, is the multiplicity of intersection at the point O of the tangent

line at the singular point O with the curve: it is 3 in Example 2 and 4 in Example 3.

The general problem of the resolution of singularities is, given a variety Y , to find a

birational morphism f : Y 0
! Y with Y 0 non-singular. It is possible to prove that, if Y is

a curve, the problem can be solved with a finite sequence of blow-ups. If dim Y > 1, the

problem is much more di�cult, and is presently completely solved only in characteristic 0

(see for instance [rH], Ch. V, 3).

To conclude this chapter, we will see a di↵erent way to introduce the blow-up of An at

O. Let p : An
\ O ! Pn�1 be the natural projection (a1, . . . , an) ! [a1, . . . , an]. Let � be

the graph of p, � ⇢ (An
\O)⇥ Pn�1

⇢ An
⇥ Pn�1. We immediately have that the closure of

� in An
⇥ Pn�1 is precisely the blow-up X of An at O. This interpretation suggests how to

extend Definition 17.2.1 and define the blow up of a variety X along a subvariety Y .

Suppose that X is an a�ne variety and I = IX(Y ) ⇢ K[X] is the ideal of a subvariety

Y of X. Suppose that I = (f0, . . . , fr). Let � be the rational map X 99K Pr defined by

� = [f0, . . . , fr]. The blow-up of X along Y is the closure of the graph of �, together with the

projection map to X. Similarly one can define the blow-up of a projective variety along a

subvariety, provided that its ideal is generated by homogeneous polynomials all of the same

degree. For details, see for instance [C].

Exercises 17.2.3. Let Y ⇢ P2 be a smooth plane projective curve of degree d > 1, defined

by the equation f(x, y, z) = 0. Let C(Y ) ⇢ A3 be the a�ne variety defined by the same

polynomial f : C(Y ) is the a�ne cone of Y . Let O(0, 0, 0) 2 A3 be the origin, vertex of

C(Y ). Let � : X ! A3 be the blow-up in O.
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1. Show that C(Y ) has only one singular point, the vertex O;

2. show that ]C(Y ), the strict transform of C(Y ), is nonsingular (cover it with open a�ne

subsets);

3. let E be the exceptional divisor; show that ]C(Y ) \ E is isomorphic to Y .
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