Chapter 18

Aw\/ = m

Grassmannians
1 = /Q/l

In this chapter we will see how the antisymmetric tensors play an important role in alge-
braic geometry, providing an ambient space in which naturally embeds the Grassmannian of
subspaces of fixed dimension of a vector space, or, equivalently, of a projective space.

18.1 Exterior powers of a vector space

To define the exterior powers of the vector space V', one proceeds in a way which is similar to
the one used to define its symmetric powers. We define the d-th exterior power AYV as the
quotient /A, where A is generated by the tensors of the form v; @ - @u;@- - @uv;@- Dy,
with v; = v; for some i # j. The following notation is used: [v; @ - @ vy] = 1, q-

There is a natural multilinear alternating map V' x --- x V.= V¢ — AV, that enjoys
the universal property. Given a basis B = (¢i, ..., e,) of V, a basis of A“V" is formed by the
tensors e;, A ... Ae;,, with 1 < /| . n. Therefore dim A1 = (7). The exterior
algebra of V is the following direct sum: AV = @450 A2V = K@V S A2V & ... To define
an inner product that gives it the structure of algebra we can proceed as follows.

Step 1. Fixed vy,...,v, € V, define f: V¢ — /\d?v posing f(zy,...,xq) =T AL A
2g Avi A...Avg. Since f results to be multilinear and alternating, by the universal property
we get a factorization of f through A%V, which gives a linear map f : AV — AYQV,
extending f. For any w € A’V we denote f(w) by wA vi A ... Avg

Step 2. Fixed w € AV, consider the map g : V7 — A“?V such that g(yi,...,yp) =
wA Yy A ... Ayt it is multilinear and alternating, therefore it factorizes through A?V and
we get a linear map g : APV — AYPV | extending g. We denote (o) :=w A 0.

Step 3. For any d,p > 0 we have got a map A : AV x APV — APV that results to
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be bilinear, and extends to an inner product A : (AV) x (AV) — AV, which gives AV the
required structure of algebra. It is a graded algebra, the non-zero homogeneous components

are those of degree from 0 to n = dim V.

Proposition 18.1.1. Let V' be a vector space of dimension n.
(i) Vectors v, .
(it) Let v € V be a non-zero vector, and w € NPV. Then w Av = 0 if and only if there

exists ® € AP~V such that w = ® A v. In this case we say that v divides w.

, =V are linearly dependent if and only if vy A ... A v, = 0.

Proof. The proof of (i) is standard. If w = ® A v, then wA v = (PAV)Av=DA(vAV) = 0.
Conversely, if w A v =0, v # 0, we choose a basis of V, B = (ey, ..., ¢,) with ¢; = v. Write
W = i <cocipiy..ip€iy N ... A€, Then 0 = 1= Yiccip(E)aiy iper A€y Ao Aey,.
If 4, = 1, the corresponding summand does not appear in this sum, so it remains a linear
combination of linearly independent tensors, which implies «

1, = 0 every time ¢; > 1.

Pt/

AV

Therefore w = ¢; A ¢ for a suitable ®. W= N~ D P

Proposition 18.1.2. Let w # 0 be an element of APV. Then w is totally decomposable if
and only if the subspace of V: W = {v e V/

v divides w} has dimension p.

Proof. It w = oy A -+ ANz, # 0, then z4,...,x, are linearly independent and belong to

W. So we can extend them to a basis of V adding vectors z,,y,...,z,. Ifv € W, v =
a1T1++ - +0,T,, and v divides w, then wAv = 0, i.e. zA- - -AzpA (02 + ta,7,) =0. This
implies a, Ty A - AT ATpyr+- -+ T A - - Az Az, = 0, therefore oy = -+ = a;,, = 0,
s0vE (T, 1), => (X =LX%, -, Xep>.

Conversely, if (z1,...,2,) is a basis of TV, we can complete it to a basis of V' and write

w = Ya;. T N Az, But 2y divides w, so w A x; = 0. Replacing w with its explicit
expression, we obtain that a;,..;, = 0 if 1 ¢ {i;,...,ip}. Repeating this argument for
Ty,...,Tp, it remains w = ay, ;@1 A -+ - A Zp,. O
With explicit computations, one can prove the following proposition.

Proposition 18.1.3. Let V' be a vector space with dimV = n. Let B = (ey,...,¢,) be a
basis of V and vy, ..., v, be any vectors. Then vy A --- ANv, = det(A)e; A - A ey, where A
is the matriz of the coordinates of the vectors vy, ..., v, with respect to B.

Corollary 18.1.4. Let vy, ....v, € V, with v; = Yae;, t =1,...,p. Thenvi A ANv, =
Vi) <oip @iy iy Ciy N Ny, with a;, i = det(4;, ), the determinant of the p x p submatriz

of A containing the columns of indices i, ..., 1,.
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18.2 The Pliicker embedding

We are now ready to introduce the Grassmannian and to give it an interpretation as pro-
jective variety via the Pliicker map. Let V' be a vector space of dimension n, and r be a
positive integer, 1 < r < n. The Grassmannian G(r,1") is the set whose elements are the
subspaces of V' of dimension r. It is usual also to denote it by G(r,n).

There is a natural bijection between /(r,17) and the set of the projective subspaces of
P(V) of dimension r — 1, denoted by G(r — 1,P(V)) or G(r — 1,n — 1). Let W € G(r,V);
if (wy,..., w,) and (z1,...,2,) are two bases of W, then wy A -+ Aw, = Ay A -+ Az,
where A € K is the determinant of the matrix of the change of basis. Therefore W uniquely
determines an element of A"l up to proportionality. This allows to define a map, called the
Pliicker map, ¢ : G(r, V) — E(A"V), such that ¥(W) = [w1 A --- Aw,].
Proposition 18.2.1. The Plicker map s injective.

Proof. Assume (W) = (W’), where W, W' are subspaces of V' of dimension r with bases
(z1 ,Ur). So there exists A # 0 in K such that z1A- - Az, = Ayg A+ Ay,

This implies 1 A -+ Az, Ay, = 0 for any i, so y; is linearly dependent from z1,... z,, so

z,) and (yi,.

y; € W. Therefore W/ C W. The reverse inclusion is similar. O

In coordinates with respect to the basis of A"V {e;; A...Ae;, 1 <i3 <...<i, <n}
(1) is given by the minors of maximal order r of the matrix of the coordinates of the

vectors of a basis of W, with respect to e1, ..., en.
Example 18.2.2.

(HE=n=1
V*, and an explicit isomorphism is obtained associating tc

'V has dimension n. It results to be isomorphic to the dual vector space
1A AER/ ., the linear form
e, of the dual basis. In this case the Pliicker map is surjective, so ¥(G(n —1,n)) ~P(V*).

(i) » = 4,7 = 2. G(2,4) or G(1,3), the Grassmannian of lines in P3. TIn this case
¥ G(1,3) — P(A2V) = P5. Let (e, €1, €2, €3) be a basis of V. Let £ = P(L) be the line of P
obtained by projectivisation of the vector subspace L C V of dimension 2, let L = (. y): then
W(£) =Tz A yl. Its Pliicker coordinates are traditionally denoted by poi. poz. pos. pia. pi3. p23.,

with p;; = iy — x;y:, the 2 x 2 minors of the matrix

Ty T} Tp T3
o oy v Y3 )

This time v is not surjective; its image is the subset of A2V of the totally decomposable

tensors. Assume char(K) # 2. They satisfy the equation of degree 2: poipas — poapiz +
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posp12 = 0, which represents a quadric of maximal rank in P, called the Klein quadric. The

fact that this equation is satisfied can be seen by considering the 4 x 4 matrix

To Ty X2 T3
Yo Y1 Y2 Y3
Ty Ty Ty T3

Yo Y1 Y2 Y3

its determinant is precisely the above equation (consider the development of the determinant
according to the first two rows). < s q>

For instance the line of equations z, = x5 = 0, obtained projectivising the subspace
(eo, €1), has Pliicker coordinates [1,0,0,0,0, 0]. 1 0 O O
oA O O

In general we can prove the following theorem.

Theorem 18.2.3. The image of the Plicker map is a closed subset in P(A"V).

Proof. The image of the Pliicker map is the set of the proportionality classes of totally
decomposable tensors. By Proposition 18.1.2, a tensor w € A"V is totally decomposable if
and only if the subspace W = {v € V' | v divides w} has dimension r. We consider the linear
map <£>): V' — ATHV | such that ®(v) = w A v. The kernel of ® is equal to W. So w is totally
decomposable if and only if the rank of @ is n — r. Fixed a basis B = (¢y,...,¢,) of V, we
write w = ¥, <. @i, i €, A ... Ae; . We then consider the basis of A"V associated to B
and we construct the matrix A of ® with respect to these bases: its minors of order n—r+ 1

are equations of the image of 1, and they are polynomials in the coordinates a;, ; of w. [J

From now on we shall identify the Grassmannian with the projective algebraic set that
is its image in the Pliicker map. The equations obtained in Theorem 18.2.3 are nevertheless
not generators for the ideal of the Grassmannian. For instance, in the case n = 4,7 = 2| let
w = poieo A €1 + pozeo A ez + ... Then:

D(eg) = w A eg = praco A €1 A s+ pigeg A ey A e + pageg A ea A es;

D(ey) =w Aep = —pozeo A er A ey — poseo A e A ez + pager A ea A es;

D(eq) =w A ey = poreo A €1 A ex — poseo A ea A es + prser A ea A es;

D(e3) =w A ez = poreo A €1 A es + poaco A ea A €3 + praer A ea A €.

So the matrix is

piz2 —poz pnn 0

pi3 —po3 0 po
78 ps 0 —pos poz

0 pas  pis pi2

w=H+A=
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Its 3 x 3 minors are equations defining G(1,3), but the radical of the ideal generated by
these minors is in fact (poipas — poapis + pospiz)

To find equations for the Grassmannian and to prove that it is irreducible, it is convenient
to give an explicit open covering with affine open subsets. In B(A"1). let I7,, ;. be the affine
open subset where the Pliicker coordinate p;, ; # 0. To simplify notation we assume
,and we put U = Uy_,. Tt W € G(r,n) N U, and wy,...,w,

=k
is a basis of W, then the first minor of the matri

Do

of the coordinates of wi, ..., w, is

non-degenerate. So we can choose a new basis of W such that M is of the form

1 0 ... 0@d,.,, ... o,
T 0 ayr oo azg
0 0 ... 1 @& - G

Conversely, any matrix of this form defines a subspace W € G(r,n) NU. So there is a
bijection between G(r,n) NI and K", i.. the affine space of dimension r(n — r). The
coordinates of W result to be equal to 1 and all minors of all orders of the submatrix of
the last n — r columns of M. Therefore they are expressed as polynomials in the r(n — r)
elements of the last n — r columns of M. This shows that G(r,n) NU is an affine subvariety
of U
equations for G(r, n).

For instance, in the case n = 4,7 = 2, the matrix M becomes

10 a3 o
M= B 0w
0 1 ax ay
One gets 1 = pur, Qo3 = Poo. Q24 = Pus, —Qas = Pra, —0ng = Prs, 130y — Gas0ng = Pas. If we
make the substitutions and homogenise the last equation with respect to py,, we find the

to A"~ By ising the equations obtained in this way, one gets

equation of the Klein quadric ., — . 2=

Theorem 18.2.4. G(r,n) is an irreducible projective variety of dimension r(n —r), and it

is rational.

Proof. We remark that G(r,n)NU,,_, is the set of the subspaces W which are complementar
i, = 0. Tt is clear that they have two by two non-

to the subspace of equations x;, =
empty intersection. Therefore, the projective algebraic set G(r, n) has an affine open covering
with irreducible varieties isomorphic to A", Using Exercise 5 of Chapter 6, we conclude
that G(r,n) is irreducible. Its dimension is equal to the dimension of any open subset of the
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open covering, r(n — ). Since it is irreducible and contains open subsets isomorphic to the
affine space, it is rational o
Assume char(K) # 2. In the special case r = 2 with n > 4, using the Pliicker coordinates
Pijo-.]. the equations of the Grassmannian G(2.1) are of the form p,pix — piape +

s =0, for any i <j <h <k

Also in the case of G(2, 1), as for P x P™ and V.2, there is an interpretation in terms of
‘matrices, that T expose here without entering in all the details. Given a tensor in AV with
coordinates ;). we can consider the skew-symmetric n x n matrix whose term of position
i.j is pij. with the conditions pi = 0 and pj; = —pij. In this way we can construct an
isomorphism between A2V and the vector space of skew-symmetric matrices of order n.

From ‘A = —A, it follows det(4) = (~1)" det(A). If n is odd, this implies det(4) = 0. If

. a
7 is even, one can prove that det(A) is a square. For instance if n = 2, and A = > ) i
-a

then det(A) =

0 p2 P34
-2 0 s pu
Pz P 0 Py
—pu —pu —pu 0

Ifn=4andP= , then det(P) = (py2p3s—P1apas+P1apas)?.

In general, for a skew-symmetric matrix A of even order 21, one defines the pfaffian of
A, p(4). in one of the following equivalent ways:
a

0
—a 0

(i) by recursion: if n =1, pf =a;if n > 1, one defines

PI(A) = SE5(=1)ariPf(Ar),

where Ay; is the matrix obtained from A by removing the rows and the columns of indices
1 and i. Then one verifies that pf(A)? = det(A):

ii) (in characteristic 0) given the matrix A, one considers the tensor w = S a;;eiA¢; €
E H1aiicine

A2K?". Then one defines the pfaffian of A as the unique constant such that pf(Ajcy A« A
Aw.
-symmetric matrix of odd order, one defines the pfaffian to be 0.

P

For a skew

A 2-tensor w € AV is totally decomposable if and only if w A.w = 0.

Proposition 18.
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3. Planes in G(1,3). One can prove that G(1,3) contains two families of planes, and
no linear space of dimension > 2. The planes of one family correspond to stars of lines in
P? (lines in P3 through a fixed point), while the planes of the second family correspond to
the lines contained in the planes of P3. The geometry of the lines in P? translates to give
a decription of the geometry of the planes contained in G(1,3). Since on an algebraically
closed field of characteristic # 2 two quadric hypersurfaces are projectively equivalent if and
only if they have the same rank, one obtains a description of the geometry of all quadrics of

maximal rank in P?.

Exercises 18.2.7. 1. Let ¢, ¢' two distinct lines in P3. Let [p;;] be the Pliicker coordinates
of ¢ and [g;;] those of ¢/, 0 < i < j < 3. Prove that £N ¢ # ( if and only if

P01q23 — Po2q13 + Po3qi2 + P12qo3 — P13qo2 + P23gor = 0.

(Hint: fix points on the two lines to get the Pliicker coordinates.)
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Chapter 19

Fibres of a morphism and lines on

hypersurfaces

In this last chapter we will state the Theorem on the dimension of the fibres of a morphism,
and we will see an application, involving Grassmannians, about the existence of lines on a

hypersurface of given degree in a projective space.

19.1 Fibres of a morphism

Let us recall that the fibres of a morphism are the inverse images of the points of the
codomain. More precisely, if f: X — Y is a morphism, for any y € Y, the fibre of f over y
is f7(y). Since in the Zariski topology every point is closed, the fibre f~!(y) is closed in X,
and we want to study the dimensions of its irreducible components. We have seen in Chapter
17 that finite morphisms have the property that all the fibres are finite and non-empty, so
all irreducible components have dimension 0.

The following theorem gives informations about the behaviour of the fibres of general
morphisms.
Theorem 19.1.1 (Theorem on the dimension of the fibres.). Let f : X — Y be a dominant
morphism of algebraic sets. Then:

1. dim(X) > dim(Y);

2. for anyy € Y, and for any irreducible component F of f~(y), dim F > dim(X) —
dim(Y');

3. there exists a non-empty open subset U C Y, such that diim f~!(y) = dim(X)—dim(Y")
for any y € U;
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4. the sets Y, = {y € Y | dim f~(y) > k} are closed in'Y (upper semicontinuity of the
dimension of the fibres).

Before giving a sketch of the proof, let us see an example.

Example 19.1.2. Let V be an affine variety and consider W C V' x A" defined by s linear
equations with coefficients in K[V]:

{Z;Zl az; =0, a; € K[V], i=1,...,s.

Let ¢ : W — V be the projection. For P € V, p™*(P) is the set of solutions of the system
of linear equations with constant coefficients

Zaij(P):rj, a;j(P)eK, i=1,...,s,
j=1

so its dimension is r — rk(a;;(P)). For any k € N the set {P € V' | rk(a;;(P)) < k} is closed
in V, defined by the vanishing of the minors of order k 4 1, and it is precisely V,_;, the
subset of V' where the dimension of the fibre is > r — k.

The meaning of this example is that we have a family of subspaces of A" defined by a
system of linear equations with coeflicients parametrized by V. A “general” space of the
family has maximal dimension r — rkA, where A = (a;j) is the matrix of the coeflicients
of the system. General spaces correspond to the points of an open non-empty subset of V.

There are closed subsets in V' corresponding to spaces of lower dimension.

Proof of Theorem 19.1.1. 1. Since f is dominant, there is the K-homomorphism f* : K(Y') —
K(X), and trd.K(Y)/K < tr.d.K(X)/K, because algebraically independent elements of
K(Y') remain algebraically independent in K(X). So dim(Y") < dim(X).

2. Fix y € Y. We observe that we can replace Y with an affine open neighborhood U
of y and X with f~}(U). So we can assume that Y is closed in an affine space AN. Let
n = dim(X),m = dim(Y’). We observe that we can find a polynomial G in N variables
which does not vanish identically on any irreducible component of Y. For instance, we
can fix a point on any irreducible component and choose a hyperplane not passing through
any of these points. Then all irreducible components of Y := Y N V(G) have dimension
m — 1. Repeating this argument, we can find a chain of subvarieties of Y of the form
YooYW 5.5 Ym™ 5y where all irreducible components of Y have dimension
m — 4. In particular the irreducible components of Y™ are points, among which there is v,
and Y™ is defined by m equations of the form g; = --- = g,, = 0, with g1,..., g, € K[Y].
Possibly restricting the open set U, we can assume that Y™ N U = {y}. Hence, the fibre
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£ (y) is defined by the system of m equations f*(g1) = -+ = f*(gm) = 0. The conclusion
follows from the Theorem of the intersection 14.1.1.

3. See [5].

4. By induction on the dimension of Y. It is obviously true if dimY = 0. We know from
3. that there is an open subset U of Y such that dim f~*(y) = n — m if and only if y € U.
Let Z be the complement of U in Y thus Z =Y, _,,.y. Let Zy,..., Z, be the irreducible
components of Z. We can now apply the induction to the restrictions of f, f~(Z;) — Z;

for each j , and we obtain the result. O

As a consequence of Theorem 19.1.1, we are able to prove the following very useful

proposition.

Proposition 19.1.3. Let f : X — Y be a surjective morphism of projective algebraic sets.
Assume thatY is irreducible and that all fibres of f are irreducible and of the same dimension

v, then X is irreducible of dimension dim(Y) 4 7.

Proof. Note first of all that r = dim(X) — dim(Y’). Let Z be an irreducible closed subset of
X, and consider the restriction f|z : Z — Y ; its fibres are f|}1(y) = f~}(y)N Z. There are
three possibilities:

(a) f(Z) # Y. Then f(Z) is a proper closed subset of Y;

(b) f(Z) =Y and dim(Z) < r +dim(Y’). Then 2. of Theorem 19.1.1 shows that there is
a nonempty open subset U of Y such that for y € U, dim(f~}(y) N Z) = dim(Z) — dim(Y) <
7 = dim(X) — dim(Y). Thus, for y € U, the fibre is not contained in Z.

(c) f(Z) =Y and dim(Z) > r + dim(Y). Then again 2. of Theorem 19.1.1 shows that
dim(f~(y)NZ) > dim(Z) —dim(Y') > r for all y; thus f~'(y) C Zforally € Y, s0 Z = X.

Now let Zy,...,Z, be the irreducible components of X . We claim that (c) holds for at
least one of the Z;. Otherwise, there will be an open subset U in Y, such that for y ev,
f~!(y) is contained in none of the Z;; but f~!(y) is irreducible and f~!(y) = J,(f~* Z;)

so this is impossible. We conclude that X is irreducible. O

19.2 Lines on hypersurfaces

As an important application, we will study the existence of lines on hypersurfaces of fixed

degree. Let S = K|z, ..., r,], let d > 1 be an integer number, then P(S,) is a projective
ntd

d
them there are reducible and even non-reduced hypersurfaces (i.e. those corresponding to non

space of dimension V' = (") = 1. parametrizing the hypersurfaces of degree d in P". Among

square-free polynomials). Let us introduce the incidence correspondence line-hypersurface
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as follows. Let (1) be the Grassmannian parametrising the lines in B*. We consider the
product variety G(1,n1) x B(Sy). whose points are the pairs (£, [F]), where { is a line in B*
and F € 5, that we can identify with the hypersurface Vp(F). By definition the incidence
p(F)} € G(1.n) x B(S,).

variety (or correspondence) is Iy == {(£. [F]) | ¢
Proposition 19.2.1. Iy is a projective algebraic scf, i.e. it is the set of zcros of a set of
bihomogencous polynomials in two serics of variables: the Pliicker coordinates pi; on the
Grasmannian and the cocfficients ai, i, of F.

Proof. Let P = (p,;) be the skew-symmetric matrix, whose elements are the coordinates
aline - it has rank two and from Proposition 18.2.5, it follows that each non-zers

vector subspace IV of dimension 2, such that ¢ = B(W).

of £ are linear combinations of the rows of P, of the form (

A line £ is contained in V() if and only if the equation F(S:Apui..... XiApe) = 0 is an

identity in A..... A Therefore, I is the set of common zeros of the coefficients of the
‘monomials of degree d in Mo, .. Au: they are homogercous of degree 1 in the coefficients of
F and of degree d in the p;’s o

Example 19.2.2.

Letn=d =3, F = xj - zyrazs € S5. We put

20 = Aipor + Aapin + Aspog

1= —dopot + Aop12 + Asp13
2= —dop2 — Mp12 + Aspz3
3= —Aopos = AiPi3 — Aopas

Aopot + Aapra +
y equating to zero the coefficients

then we replace in F, and we get the identity (Aspo + Aspoa + Aspus)® —
Aspis)(—AoPu2—MPia+Aspas) (—AoPos—MPrs—Aapas)
of the 20 monomials of degree 3 in ).....\; we get the equations representing the lines
S rmd
contained in Vp(F).
As a matter of fact, for this particular surface finding the lines contained in it is partic-
ularly simple. Indeed, we can distinguish the lines contained in the hyperplane “at infinity”

from the lines which are projective closure of a line in A% The first ones are contained in
2= 0,20 =13 =

29 =0, and it is clear that there are only three of them: zp =z = 0,29 =
. and consider

0. To find the others we dehomogenize F and get the equation r1zazs — 1

the parametrization of a general line in A% ;= a;t + b, i = 1,2,3. By substituting, we
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immediately see that there are no solutions. We conclude that the surface contains only
three lines.

T, =6ap) <105,

Rz

v
(‘-P(g' ?)> Figure 19.1: The cubic surface of Example 19.2.2

‘We consider now the restrictions to I'; of the two projections, and we get ¢ : Iy —
G(1.n), g2 : T'y = P(Sg). We will see now that the fibres of ¢; are all irreducible and of the

\ \}/QV\)\ ﬂ ) g same dimension; this will allow to compute the dimension of I'y and get informations on the
\ 0 M . 5 fibres of s.
2 b 1o@iTy) =
il

G(1,n), because any line ¢ is contained in some hypersurface of degree d.
Indeed, up to a change of coordinates, we can assume that ¢ : g = 2y = --- = 2,y = 0.
So ¢ C Vp(F) if and only if F(0,....0,2,_1,2,) = 0, if and only if the coefficients of the
monomials containing only x,_1,x, vanish, i.e. F is of the form x0Go + -+ + z,_2Gn_2.

. So ¢7!(f) is a linear subspace of dimension N — (d + 1), because the d + 1 monomials
u\\ ﬁ\%MXQ LM C/O {A* ziil,:r::llzn, . .,Iﬁ don’t appear in F. In particular we have that the fibres of ¢; are all
/ irreducible and of the same dimension. By applying Proposition 19.1.3, we obtain that I'y
is irreducible of dimension dim G(1,n) + dim 7' (£) = 2(n — 1) + N — (d + 1).
M, QQ \/ XL 2. Consider now @y : I'y = P(S4) = PN If dim[y < N, then o cannot be surjective.
O?-/) i \(V\Q This happens if
dim(l'q) =2(n — 1) + N — (d + 1) < N if and only if d > 2n — 3.
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We have proved the following theorem.

Theorem 19.2.3. If d > 2n — 3, there is an open non-empty subset U C P(Sy), such
that if [F] € U then the hypersurface Vp(F) does not contain any line; shortly, a “general”
hypersurface of degree d > 2n — 3 in P™ does not contain any line. The hypersurfaces

containing a line form a proper closed subset in P(Sy).

Example 19.2.4. Let n = 3, the case of surfaces in P2. Theorem 19.2.3 says that a general
surface of degree > 4 does not contain any line. Let us analyse the cases d = 1,2, 3.

e d = 1: the surface is a plane, the lines contained in a plane form a P2.

e d = 2: the surface is a quadric, any quadric contains lines, and precisely, if its rank is
4, it contains two families of dimension 1 parametrised by two conics in G(1, 3); if the rank
is 3, the quadric is a cone, and it contains a family of dimension 1 of lines, parametrised by
a conic in G(1,3). In both cases of rank 3,4 the fibres of ¢, have dimension 1. If the rank
is 2 or 1, the quadric is a pair of distinct planes or one plane with multiplicity 2, and the
fibres of 2 have dimension 2.

e d = 3: in this case N = 19 = dimI';. Two cases can occur: either ¢, is surjective,
and a general fibre has dimension 0, or it is not surjective. In the second case, ¢o(I's), the
variety of the cubic surfaces containing at least one line, has dimension < 19, so the fibres of
I's — ¢2(I'3) have all dimension > 0. Hence, if a cubic surface contains a line, it contains by
consequence infinitely many lines. But in Example 19.2.2 we have seen an explicit example of
a cubic surface containing finitely many lines; this shows that the first possibility occurs, i.e.
a “general” cubic surface contains finitely many lines. Theorem 19.1.1 explains the meaning
of the adjective “general”: it means that the property holds true in an open dense subset of
PO,

It is a classical fact that any smooth cubic surface contains exactly 27 lines, whose
configuration is completely described (see for instance [rH]). Figure 19.2 shows the Clebsch
cubic surface, the only one having 27 real lines. In particular, among these 27 lines there are
many pairs of skew lines.

It is a nice application of the theory we have developed so far to prove that such a cubic

surface is rational.

Theorem 19.2.5. Let S C P? be a cubic surface containing two skew lines. Then S is

rational.

Proof. Let £, ¢ be two skew lines contained in S. For any point P € P*, P ¢ (U ¢, there is

exactly one line rp passing through P and meeting both ¢ and ¢': rp is the intersection of
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the two planes passing through P and containing ¢ and ¢ respectively. So we can consider
the rational map f: P3 --» £ x ¢/ ~ P! x P!, such that f(P) = (rpN¢,r,N{), the pair of
points of intersection of rp with ¢ and #. We consider now the restriction f of f to S, and
we get a birational map. Indeed, for any pair of points x € ¢ and 2’ € ¢, the line joining
z and 2/, if not contained in S, meets S in a third point. Since not all lines meeting ¢ and
¢' can be contained in S, this defines the rational inverse of f. Therefore S is birational to

P! x P!, that is birational to IP2. By transitivity we conclude that S is rational. d

Figure 19.2: The Clebsch cubic surface

Possible equations for the Clebsch cubic surface, for different choices of coordinates, are
Py+yiz+ 2w+ uwiz =0
or

I0+x1+x2+r3+m4:zg+ﬁ+$g+x§+li:0~

The following equation represents the Cayley cubic surface with 4 singular points of

multiplicity 2, containing 9 lines
ryz + yzw + zwx + wry = 0.

Figure 19.2 is the image of such a surface.
A list of all possible types of singularities of cubic surfaces, with figures, can be found in

the following web page: https://singsurf.org/parade/Cubics.php
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