
Il Trizio

Tre sono gli isotopi dell'Idrogeno: ¹H, ²H (deuterio), and ³H (trizio), con abbondanza media terrestre (in %) di 99.985, 0.015 and <10⁻¹⁴ rispettivamente.

Isotopi Instabili – TRIZIO o TRITIO

Il trizio è l'isotopo instabile dell'Idrogeno <u>cosmogenico</u> in quanto viene prodotto per via naturale da <u>reazioni di frantumazione o "spallazione"</u> di nuclei di <u>carbonio, ossigeno, azoto e argon</u> in seguito a collisione con le particelle della <u>radiazione cosmica secondaria.</u>

es:

$$^{14}_{7}N + ^{1}_{0}n \rightarrow + ^{12}_{6}C + ^{3}_{1}H$$

mentre per decadimento β - si trasforma in Elio secondo la

$$^{3}_{1}H \rightarrow ^{3}_{2}He + \beta^{-} + \upsilon$$
 υ = neutrino

Il trizio per ossidazione forma la molecola HT16O

per questioni energetiche non sono possibili altri tipi di molecole come DTO, DT¹⁶O o DT¹⁸O

Come si comporta un'acqua triziata? (la molecola ha peso molecolare 20 come quella formata da H₂¹⁸O)

Segue il normale frazionamento di un acqua "pesante", per cui sarà tra le prime a condensarsi e tra le ultime ad evaporare.

A differenza degli isotopi stabili che si esprimono in valori di δ ‰, il Trizio viene espresso in TU (Unità Trizio = T/H = $1/10^{18}$).

L'unità di misura storica del decadimento è il Curie, definito come il numero di disintegrazioni al secondo dovute a un grammo di ²²⁶88Ra.

La nuova unità di misura maggiormente utilizzata è il Bequerel che equivale a una disintegrazione al secondo.

Legge del decadimento radioattivo

Il decadimento di un isotopo radioattivo è una reazione di primo ordine:

$$dN/dt = -\lambda N$$

dove N è il numero di isotopi instabili presente al tempo t e λ è la costante di decadimento radioattivo.

L'equazione base può essere riscritta:

$$N = N_0 e^{-\lambda t}$$

Dove N_o è il numero di atomi presenti al t = 0.

Nella realtà si misura l'attività radioattiva del campione:

$$A = A_0 e^{-\lambda t}$$

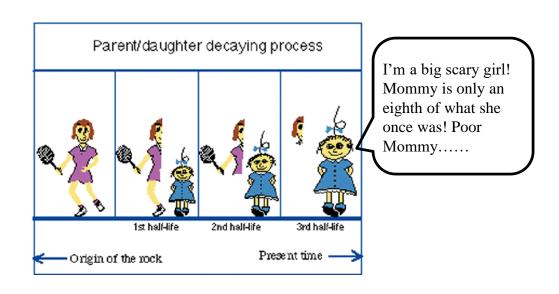
Dove A è l'attività radioattiva del campione al tempo t, definita come numero totale di disintegrazioni per unità di tempo.

Riarrangiando questa equazione si può ricavare:

$$t = -\frac{1}{\lambda} \ln (A_o/A)$$

Tempo di dimezzamento ($t_{\frac{1}{2}}$): tempo necessario affinchè il numero di nuclidi presenti si dimezzi.

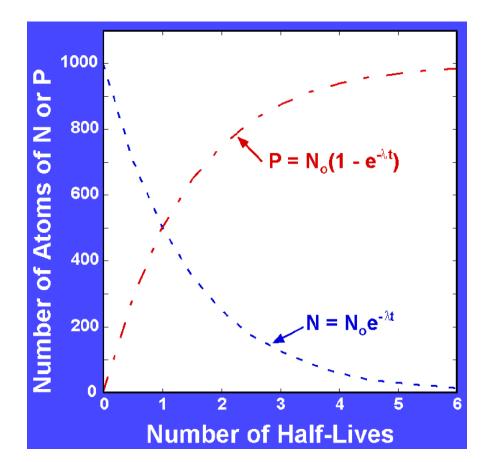
$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$


Il tempo di dimezzamento del Trizio è di 12,32 anni

In pratica, è spesso più facile considerare il decadimento radioattivo in termini di nuclide padre (N) e figlio (P).

**per qualunque sistema chiuso, il numero di nuclidi figli più il numero di nuclidi padre rimanenti deve essere uguale al numero totale di nuclidi padre al momento zero.

Considerando le 2 componenti e riarrangiando l'equazione del decadimento per il tempo


$$t = 1/\lambda \ln[1 + (P/N)]$$

Il numero di atomi del nuclide figlio (P) può essere determinato dalla seguente formula:

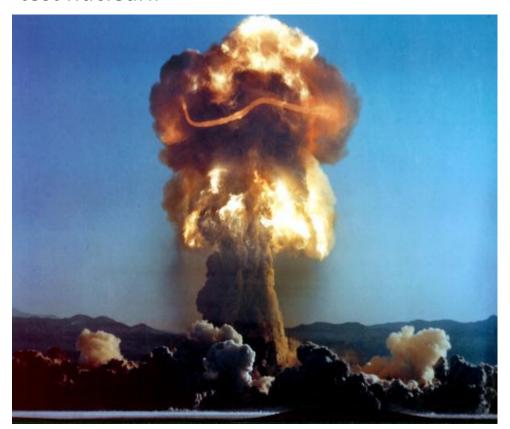
$$P = N_o(1 - e^{-\lambda t})$$

Con il passare del tempo, gli atomi del nuclide padre diminuiranno, viceversa, quelli del nuclide figlio aumenteranno.

Esempio

Dato $\lambda_T = 5.575 \times 10^{-2} \text{ y}^{-1}$, se dal campionamento ed analisi delle acque di falda ottengo ${}^3\text{H} = 25 \text{ TU e } {}^3\text{He} = 0.8 \text{ TU}$, quanto tempo è passato dalla ricarica delle acque di falda attraverso le precipitazioni?

Richiamando l'espressione $t = 1/\lambda \cdot ln[1 + (P/N)]$ $t = 17.937 \cdot ln[1 + (0.8/25)] = 0.6 y$


La produzione di Trizio *nucleare*

1952 inizio dei test nucleari in atmosfera

1963 picchi di migliaia TU sono stati registrati nelle piogge dell'emisfero boreale

1980 fine esperimenti in atmosfera

Il contenuto di Trizio nelle precipitazioni era probabilmente fra 5 e 15 TU prima dei test nucleari.

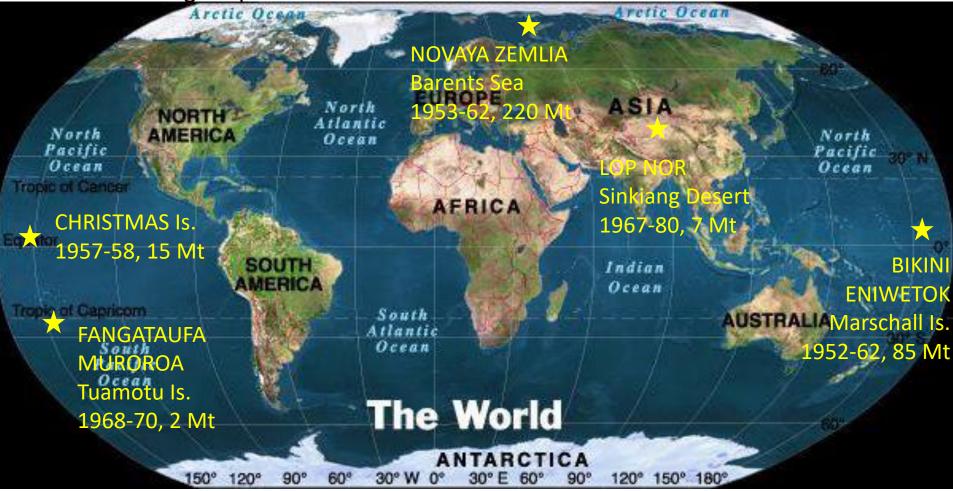
Event dating: descrive il tracciamento di un periodo specifico in cui l'abbondanza di un isotopo è stata insolitamente elevata o scarsa.

Le acque sotterranee che sono state ricaricate tra il 1952 e il 1963 avranno una firma distintiva che indica un aumento della produzione ³H

Esempio

Assumiamo che nel 1951, prima del primo test nucleare, la concentrazione di ³H nell'acqua piovana era 8 TU. Calcolare la massima attività in pCi L⁻¹ del ³H pre-test nucleare in un'acqua di falda prelevata nel 2003.

$$3.25 \text{ pCi L}^{-1} \times 8 \text{ TU} = 26 \text{ pCi L}^{-1}$$


Ci sono 52 anni tra 1951 and 2003, $\lambda_{\text{Tritio}} = 5.575 \text{ x } 10^{-2} \text{ anni}^{-1}$.

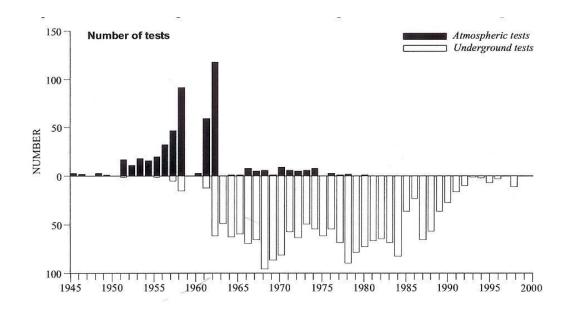
$$A = A_0 e^{-\lambda t} = 26 e^{-(0.05575)(52)} = 1.4 pCi L^{-1}$$

Per qualsiasi acqua di falda che presenta attività Trizio maggiore di 1.4 pCi L⁻¹, concludiamo che almeno una parte d'acqua tritiata è stata apportata all'acquifero a partire dal 1951.

Il TRIZIO assunse rilevante importanza come tracciante idrologico agli inizi degli anni 50, quando i numerosi esperimenti termonucleari eseguiti in atmosfera, causarono un elevato aumento della concentrazione di questo isotopo nelle precipitazioni.

Cronistoria degli esperimenti termonucleari:

Si passò rapidamente da poche TU a:


10.000 TU	Whitehorse (Yukon)	lat 60.6° N
5950	Vienna	lat 48.2° N
5817	Ottawa	lat 45.3° N
4573	Genova	lat 44.4° N
75	Kaitoke (Nuova Zelanda)	lat 41,1° S

Il Trizio è presente nelle acque a ricarica recente, caratterizzate da età inferiori a ca. 70 anni, dove valori di TU (Tritium Unit) inferiori a 0.8 rappresentano una ricarica anteriore al 1952; valori compresi fra 0.8 e 5 TU indicano un'acqua con età compresa tra 30 e 70 anni; valori fra 5 e 15 TU, tra 3 e 30 anni; e valori maggiori di 15 TU indicano possibili casi di inquinamento.

UNSCEAR, 2000:

- 543 atmospheric bomb tests between 1945 and 1980;

~ 530 kg of ³H produced, more than 95 % decayed or deposited in the ocean

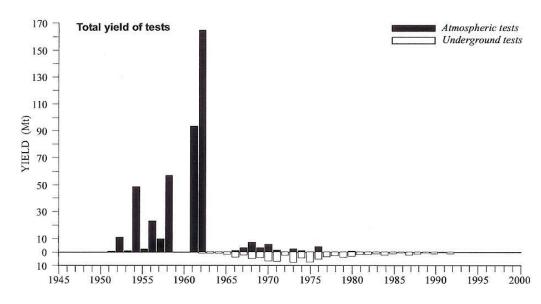
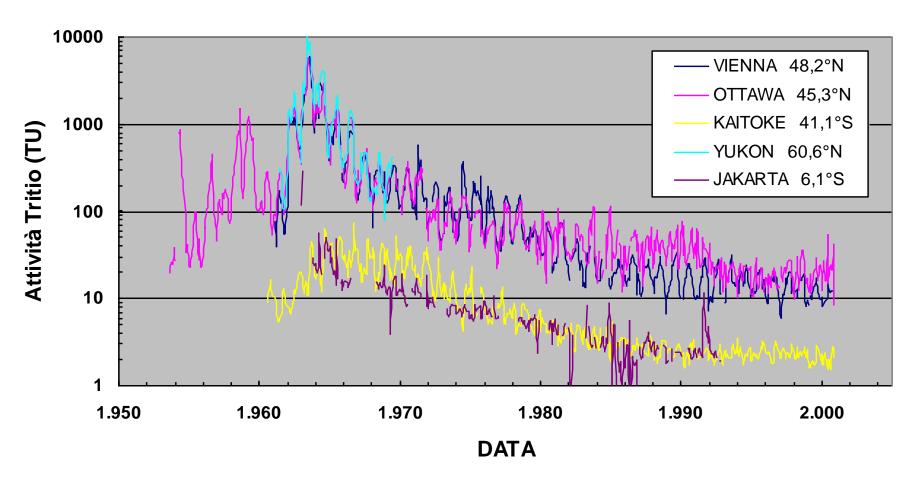


Figure I. Tests of nuclear weapons in the atmosphere and underground.

L'andamento del Trizio nelle **precipitazioni** delle zone equatoriali e dell'**emisfero australe** si differenzia soprattutto per i valori massimi raggiunti che furono anche di **due ordini di grandezza inferiori** alle quantità presenti nell'**emisfero boreale** e per un ritardo di circa due anni nel picco massimo raggiunto.



Maggior numero di **esperimenti termonucleari** realizzati nell'**emisfero Nord**

Circolazione generale dell'atmosfera che non agevola la ridistribuzione delle emissioni

Effetto di diluizione provocato dagli oceani che coprono aree molto più vaste nell'emisfero meridionale.

Attività Tritio (TU) nelle precipitazioni

CONCENTRAZIONE DEL TRIZIO NELLE PRECIPITAZIONI

Prima del 1952: 5-15 TU

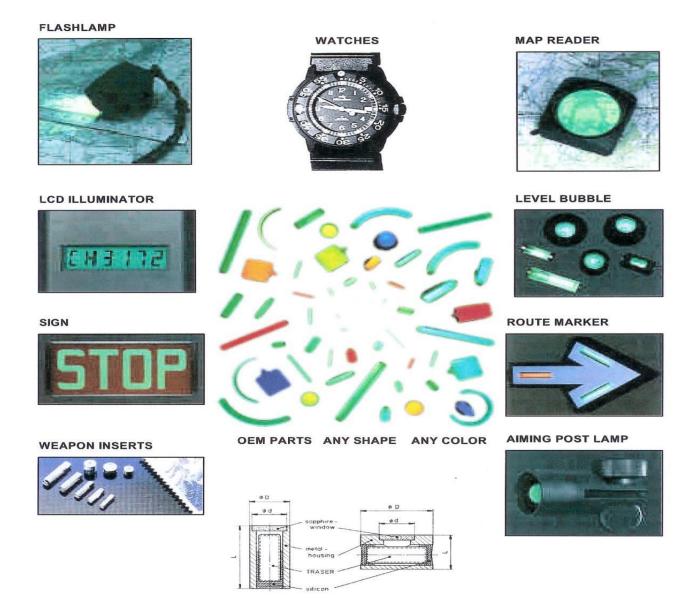
Dopo il 1952 la concentrazione è aumentata in seguito alle esplosioni termonucleari nell'atmosfera.

La concentrazione massima fu raggiunta nel 1963: fino a 10.000 TU in primavera alle alte latitudini dell'emisfero nord

Oggigiorno la concentrazione del trizio nelle Precipitazioni è ritornata al livello pre-termonucleare: 5-15 TU

A partire dal 1963, il contenuto di Trizio nelle precipitazioni cominciò a decrescere con andamento pressoché esponenziale e raggiunse i valori pre-termonucleari nel corso degli anni '90.

I **fattori principali** del ritorno in tempi relativamente brevi a condizioni paragonabili ai periodi anteriori ai test termonucleari:

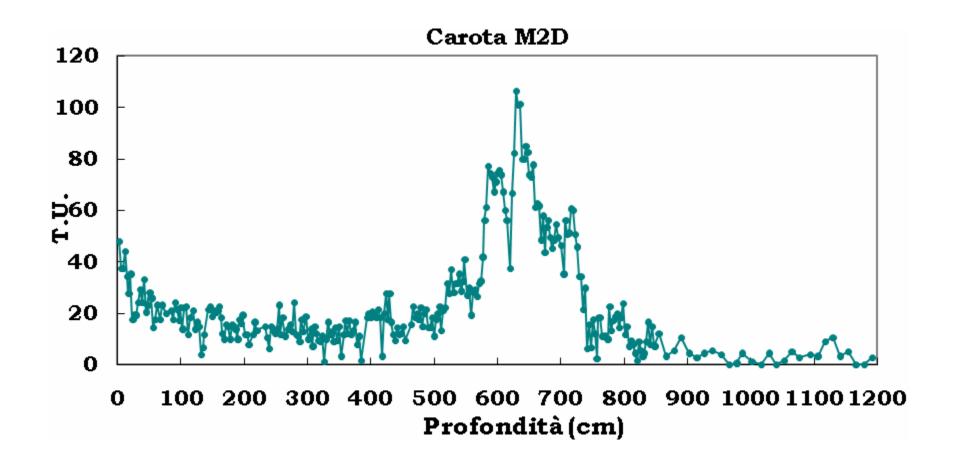

- effetto di diluizione delle acque oceaniche
- effetto serbatoio delle acque sotterranee
- effetto del decadimento radioattivo che ha ridotto a 1/8 il tritio prodotto nel periodo dei test termonucleari

Altre sorgenti di Trizio legate alle attività antropiche attuali:

- Reattori termonucleari per la produzione di energia elettrica
- Impianti per la rigenerazione del combustibile nucleare
- Produzione di materiale bellico
- Industrie che producono e usano prodotti triziati (es. vernici luminose)

Le quantità prodotte ed immesse in atmosfera a causa di queste attività non sono tali da incidere sulla concentrazione del Trizio a livello globale, ma **possono** comunque **arricchire** anche significativamente le **precipitazioni e le acque** delle località prossime a questi siti produttivi.

Il trizio è usato come fonte di energia per prodotti luminescenti, incorporato nelle vernici luminescenti o in strumenti luminosi

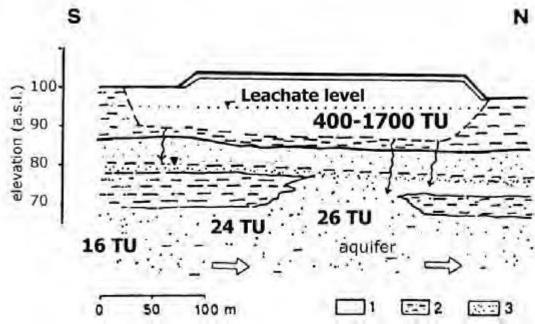

Le **precipitazioni meteoriche** in fase liquida e solida sono, in genere, la maggior **fonte di alimentazione delle acque superficiali e di falda e dei ghiacciai** presenti nelle aree fredde della Terra.

La conoscenza dell'attività Trizio può fornire informazioni per definire:

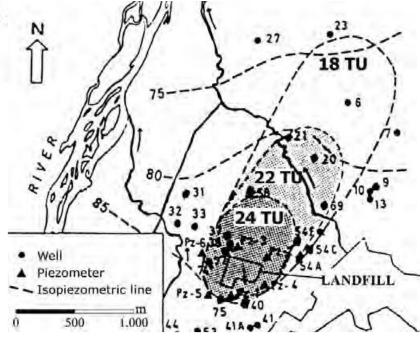
- Mescolamenti e tempi di deflusso delle acque superficiali
- Tempi di residenza delle acque sotterranee e dinamica dei circuiti idrologici
- Datazione di carote di ghiaccio e accumuli nevosi per la valutazione del bilancio di massa
- Datazione di ghiacci in cavità ipogee (speleotemi)

Oltre a queste applicazioni bisogna ricordare che con un monitoraggio costante delle precipitazioni viene fornito un **controllo** di tipo ambientale sulle **emissioni in atmosfera**.

Carote di ghiaccio dell'Antartide) databile in relazione al picco massimo di attività del 1966


Acque sotterranee

Nelle acque sotterranee la concentrazione del Trizio è un parametro che dipende dal mescolamento delle varie tipologie idriche che contribuiscono all'alimentazione delle falde acquifere, quindi si possono ottenere informazioni sul tempo di residenza medio e sulle condizioni dinamiche del sistema idrologico.


I **sistemi** che **meglio** possono essere **studiati** con il metodo del Tritio sono quelli con **tempo medio di residenza dell'acqua non superiori ai cinquanta-sessanta anni**, che risentono ancora dell'origine del tritio del periodo di test termonucleari.

Il Trizio, può essere impiegato come **tracciante** caratteristico di i**nquinamento da percolato**, dato che il suo contento in questo liquido è centinaia di volte superiore a quello presente nelle acque naturali (3-5 TU).

Il Trizio, facendo parte della molecola d'acqua, ne segue il flusso e non risente né di rallentamenti o assorbimenti, né dei processi fisico-chimici e quindi dà informazioni molto più certe e utili dei soli dati idrochimici delle acque.

Hydrogeological cross section of the landfill 1. 1: wastes. 2: silty and sandy-clayey layer. 3: gravel and sandy sediments. Values of tritium activities in TU are reported for leachate and phreatic groundwater (after Calestani et al., 1999).

Leachate migration downgradient from the landfill 1. Grey zones indicate the pollutant plume discovered by means of tritium content (after Calestani et al., 1999).

Procedure di arricchimento e analisi del trizio in campioni d'acqua

PRIMA DISTILLAZIONE

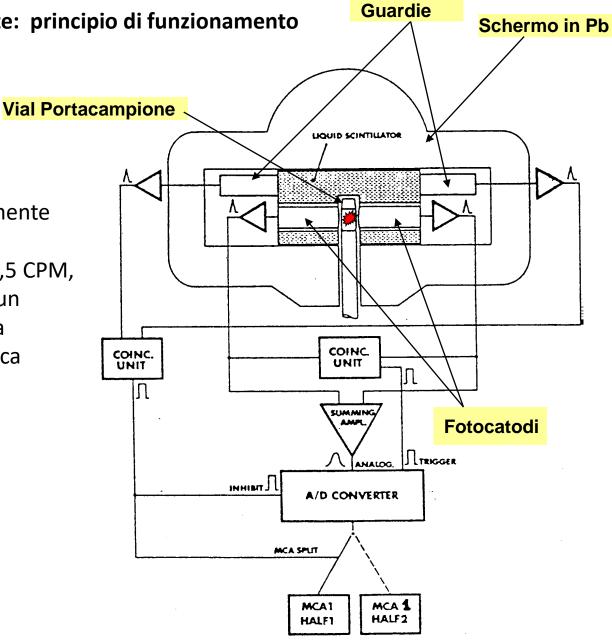
 Lo scopo di questa distillazione è quello di eliminare i sali ed altre sostanze, organiche ed inorganiche, presenti nel campione

FASE D'ARRICCHIMENTO ELETTROLITICO

• Il processo elettrolitico è necessario per concentrare le molecole di acqua triziata;

PREPARAZIONE DEL CAMPIONE PER LA FASE DEL CONTEGGIO

- Il campione distillato viene versato nei appositi contenitori chiamati *vial*
- In ogni *vial* viene versato dell'liquido scintillante


FASE DI CONTEGGIO

- L.K.B QUANTALUS, scintillatore a liquido o contatore multicanale
- Questo strumento permette di rilevare i fotoni emessi dal campione sotto forma di energia luminosa

Contatore a Liquido Scintillante: principio di funzionamento

Gli strumenti utilizzati per la determinazione di questo radioisotopo, pur tecnologicamente avanzati, non sono in grado di discriminare valori inferiori a 1,5 CPM, quindi, di norma, si ricorre ad un arricchimento del campione da analizzare ricorrendo alla tecnica dell'elettrolisi.

TECNICHE DI DATAZIONE ASSOLUTA

- il radiocarbonio (utilizzato per datare materiale organico, originatosi da esseri viventi)
- la dendrocronologia (utilizzata per datare palificazioni o travature lignee)
- la termoluminescenza (utilizzata soprattutto per datare ceramiche e laterizi).

Datazioni con ¹⁴C (radiocarbonio)

 La tecnica del radiocarbonio o (carbonio-14) permette di datare qualsiasi materiale di origine organica, cioè che derivi da qualcosa che sia stato vivo:

ossa, legno, stoffa, carta, semi, polline, pergamena e pellame, tessuti e fluidi biologici

SCOPO: risalire all'epoca della morte dell'individuo da cui proviene il campione, purché non siano passati più di 60.000 anni!

Datazioni con ¹⁴C (radiocarbonio): il principio

 Si basa sul lento decadimento del ¹⁴C (isotopo radioattivo del carbonio)

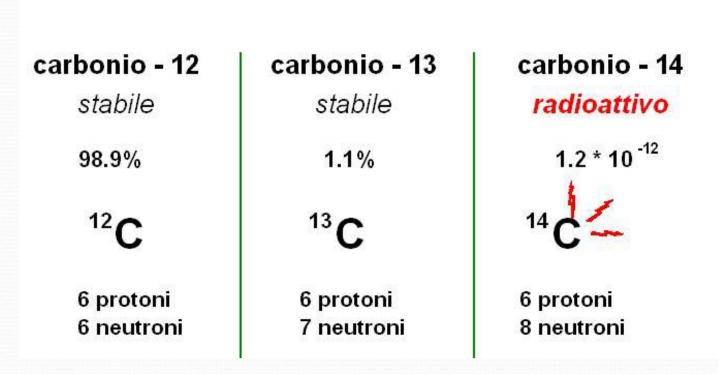
Il metodo fu messo a punto, e pubblicato, tra il 1947 ed il 1949 da un team di chimici dell'Università di Chicago diretti da **Willard Libby**, che per questo ebbe il premio Nobel nel 1960.

Le prime datazioni con radiocarbonio si ebbero perciò a partire dal 1950. Si definisce come "Conventional Radiocarbon Age, CRA, chiamata spesso più propriamente "Uncalibrated Radiocarbon Age", una datazione non calibrata (ma corretta C-13).

Datazione convenzionale e datazione calibrata

Conventional Radiocarbon Age È espressa in anni B.P. (Before Present = 1950)

Calibrazione*


Data calibrata

Def: La miglior stima della data «vera»

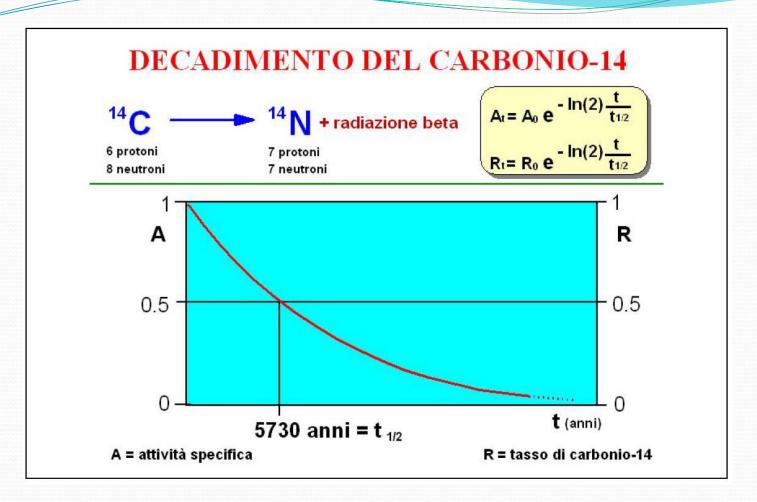
(espressa come età calendario in anni BC, Before Christ, o AD, Anno Domini)

^{*}La calibrazione può essere effettuata dal laboratorio oppure dal cliente stesso, mediante software specializzati

Il decadimento radioattivo

Il 14C decade secondo la modalità **beta-** e senza emissione di raggi gamma: **un neutrone si trasforma in un protone ed un elettrone**, che viene espulso dal nucleo sotto forma di **radiazione beta-**. Il nucleo si trova così con un neutrone in meno ed un protone in più, cioè con 7 protoni e 7 neutroni.

Di quale elemento parliamo?


¹⁴N (azoto-14, stabile e non radioattivo)

Il decadimento radioattivo

Il 14 C ha un tempo di dimezzamento* di 5730 anni (detto "T $_{1/2}$ di Cambridge")

Il valore "errato" di Libby (5568 anni) viene ancora utilizzato nel calcolo della "datazione ¹⁴C convenzionale", per omogeneità con le prime datazioni, in quanto comunque anche questo errore sistematico viene poi automaticamente corretto in fase di calibrazione.

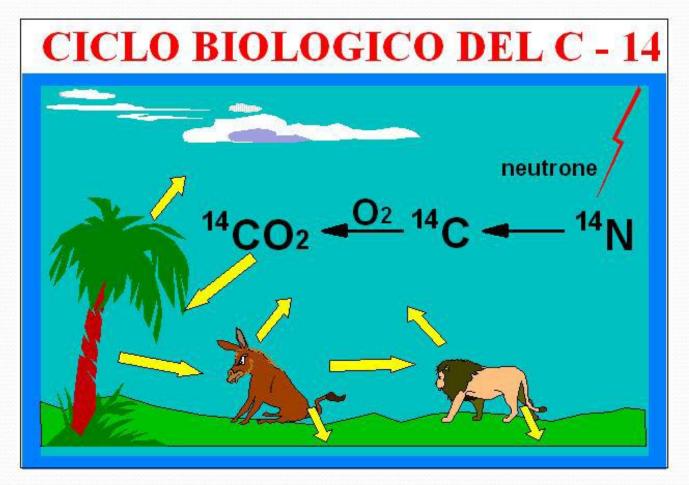
^{*}rappresenta il tempo necessario perché decada la metà dei nuclei radioattivi presenti

Andamento esponenziale nel tempo della radioattività specifica (A) e della frazione (R) di ¹⁴C in seguito al decadimento radioattivo

Ciclo radiochimico del ¹⁴C

La frazione di ¹⁴C nell'atmosfera terrestre è più o meno costante (1.2 x 10⁻¹²)

Perché? Qual è la "fonte" di "nuovo" 14C?


Il bombardamento subìto nell'atmosfera terrestre ad opera dei raggi cosmici (neutroni) dell'azoto:

$$^{14}_{7}N + ^{1}_{0}n \rightarrow + ^{14}_{6}C$$

In realtà, il flusso di radiazione cosmica ha avuto nel passato forti fluttuazioni che (insieme ad altri fenomeni di minore entità) hanno comportato una sensibile variazione della frazione di ¹⁴C nell'atmosfera durante i millenni: questo è il principale (ma non unico) motivo per cui si devono calibrare le datazioni ¹⁴C convenzionali.

Ciclo biochimico del ¹⁴C

La frazione di 14C negli esseri viventi è pressoché la stessa di quella atmosferica

Quando un individuo muore, se non ci sono contaminazioni, non scambia più carbonio con l'ambiente, per cui il suo ¹⁴C comincia a diminuire (con un ritmo noto) a causa del decadimento radioattivo, non venendo più reintegrato dall'esterno.

Frazionamento isotopico e "correzione C-13"

Se non si tiene conto del frazionamento isotopico, cioè una variazione della frazione di ¹⁴C negli esseri viventi tra di loro e rispetto all'atmosfera, <u>la datazione risulta falsata</u>, poiché, nel campione da analizzare, la frazione di ¹⁴C residuo non è determinata solo dal tempo trascorso dopo la morte (decadimento radioattivo), ma anche dall'entità del frazionamento isotopico.

E' stato verificato sperimentalmente che l'entità del frazionamento isotopico del ¹⁴C è il doppio di quella relativa al ¹³C.

E' possibile correggere questo errore misurando la frazione 13 C/ 12 C nel campione da datare.

Il δ^{13} C viene così usato per "normalizzare" le misure di attività specifica o della frazione 14 C/ 12 C ed ottenere quindi datazioni convenzionali corrette per il frazionamento isotopico ("corrette C-13").

Calcolo della datazione ¹⁴C convenzionale - 1

I presupposti di Libby:

- 1) la frazione di ¹⁴C nell'atmosfera è costante ed è rimasta inalterata durante i passati millenni.
- 2) la frazione di ¹⁴C nelle riserve acquatiche è la stessa di quella atmosferica
- 3) la frazione di ¹⁴C negli esseri viventi è la stessa di quella atmosferica a causa dello scambio di carbonio attraverso la fotosintesi, la respirazione e la catena alimentare.

Calcolo della datazione ¹⁴C convenzionale - 2

Quindi...secondo Libby:

a) la frazione di ¹⁴C di un essere vivente del passato doveva perciò essere identica a quella di uno attuale ("standard moderno")

ma...

b) quando un individuo muore, non scambia più C con l'esterno e quindi il suo 14 C comincia a diminuire per decadimento radioattivo, secondo un ritmo noto (t1/2 "errato" di Libby = 5568 anni)

Calcolo della datazione 14C convenzionale - 3

Confrontando la frazione di ¹⁴C di un campione da datare con quella di materiale organico recente ("standard moderno"), si può calcolare il tempo trascorso dalla morte dell'individuo da cui il campione deriva.

$$t_{(anni)} = k \ln(\frac{A_{ns}}{A_{nc}}) = k \ln(\frac{R_{ns}}{R_{nc}})$$

t (anni)	tempo trascorso espresso in anni, contato a ritroso a partire dal 1950
Ans	attività specifica "normalizzata" dello "standard moderno"
Anc	attività specifica "normalizzata" del campione da datare
Rns	frazione (ratio) ¹⁴ C/ ¹² C "normalizzata" nello "standard moderno"
R _{nc}	frazione (ratio) ¹⁴ C/ ¹² C "normalizzata" nel campione da datare
k	costante ricavata da un t _{1/2} "convenzionale" di 5568 anni (detto "t _{1/2} di Libby")

"Datazione ¹⁴C non calibrata ma corretta C-13" = Conventional Radiocarbon Age (CRA) = Uncalibrated Radiocarbon Age)

Calcolo della datazione 14C convenzionale - 4

Esempio:

2950 ± 30 BP (1σ, confidenza del 68,3 %)

Indica una data ¹⁴C convenzionale (corretta C-13 ma non calibrata) compresa tra il 1030 a.C. ed il 970 a.C., con un grado di incertezza di circa il 68%.

La datazione convenzionale deve essere sempre pubblicata nelle relazioni scientifiche, in quanto, pur essendo affetta da gravi errori sistematici correggibili mediante la calibrazione, è comunque un dato sperimentale non ancora manipolato da procedure statistiche quali la calibrazione stessa.

Effetto «reservoir»

Ogni essere vivente è in equilibrio con il suo "serbatoio" (reservoir) ambientale, che normalmente è costituita dall'atmosfera, dove il ¹⁴C è distribuito in maniera omogenea a causa dei continui rimescolamenti meteorologici.

Per la sostanza organica proveniente dall'ambiente marino o lacustre, la "riserva" di Carbonio può avere una composizione isotopica assai diversa da quella atmosferica: è l'«effetto serbatoio» dato dalla sostanza organica più vecchia.

Ciò comporta errori nelle datazioni dell'ordine di 100/1000 anni, per cui sono stati approntati dei database sull'effetto "reservoir" per correggere le datazioni (attraverso i software di calibrazione).

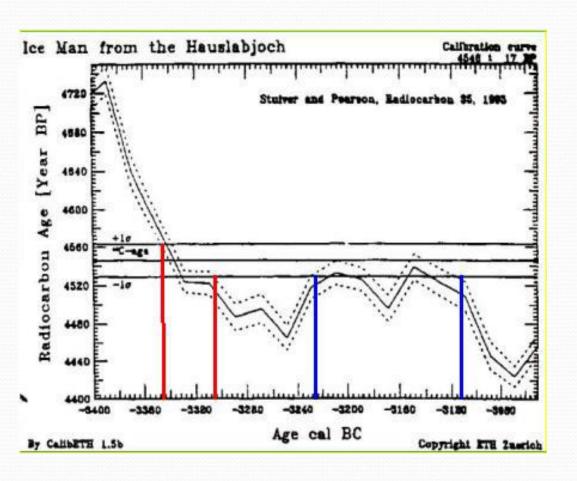
La calibrazione – 1/3

E' noto che:

- La frazione di ¹⁴C nell'atmosfera ha subito notevoli fluttuazioni durante i passati millenni.
- La frazione di ¹⁴C nell'ambiente acquatico si discosta da quella terrestre ("effetto serbatoio").
- Il ritmo con cui il 14 C decade (t1/2 = 5730 anni) è leggermente diverso da quello calcolato da Libby (t1/2 = 5568 anni) ed usato per il calcolo della datazione radiocarbonica convenzionale.

Si confronta la datazione ¹⁴C convenzionale con curve di calibrazione, ottenute datando col metodo del radiocarbonio reperti di epoca nota: utilizzando legno ricavato da tronchi datati mediante la dendrocronologia, sono state costruite curve di calibrazione per gli ultimi 11.000 anni.

Basandosi invece sulla crescita annuale dei coralli, ci si è potuti spingere fino a circa 24.000 anni fa; ancora più in là (circa 45.000 anni) si può arrivare grazie ai depositi lacustri (varve).


La calibrazione – 2/3

La calibrazione si effettua mediante software specializzati (alcuni disponibili online), che spesso correggono anche l'eventuale "effetto serbatoio" se si indica il bacino acquatico da cui proviene il reperto.

Mediante la calibrazione, partendo dalla *Conventional Radiocarbon Age*, si ottiene la data reale di calendario, *Calendar Age*, espressa normalmente come intervallo di anni BC o AD.

Mentre la *Conventional Radiocarbon Age* viene di solito pubblicata con un range di errore espresso in " \pm anni", con confidenza del 68,3% (1σ), la datazione calibrata *Calendar Age* viene fornita come intervallo di date di calendario entro il quale la data "vera" ha il 95,4% di probabilità di cadere (limite di confidenza del 95,4% = 2σ).

La calibrazione – 3/3

Esempio: la "mummia" del Similaun:

Data radiocarbonio convenzionale: 4550 ± 19 BP (1 σ , confidenza del 68,3%)

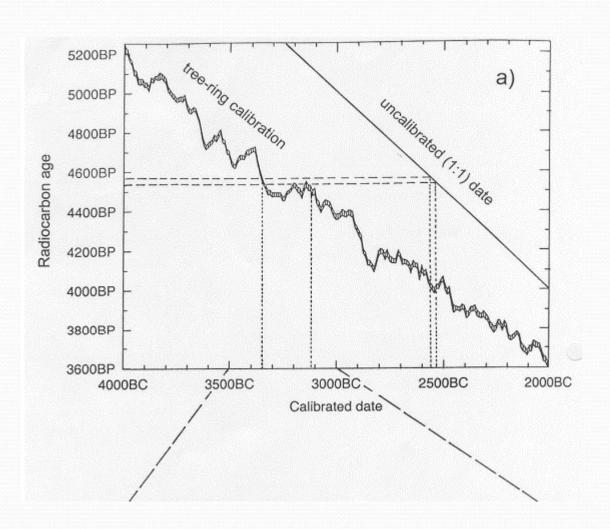
Data calibrata: 3370 - 3320 BC (primo range, 2σ , confidenza del 95,4%) 3230 - 3100 BC (secondo range, 2σ , confidenza del 95,4%).

La presenza di due range è dovuta all'andamento seghettato della curva di calibrazione. Possiamo perciò dire che l'uomo del Similaun è vissuto, con 95 probabilità su 100, tra il 3370 ed il 3100 a.C.

La misurazione del ¹⁴C

Ci sono dunque due possibilità:

- 1) contare la radioattività residua dovuta al ¹⁴C (metodo radiometrico) o mediante un contatore proporzionale a gas o mediante scintillazione liquida (LSC).
- 2) ricavare il rapporto 14 C/ 12 C mediante spettrometria di massa con acceleratore (AMS)


Materiale da datare	Quantità minima per metodo radiometrico	Quantità minima per AMS
Carbone	2-3 grammi	3-5 milligrammi
Conchiglie	7-10 grammi	15-30 milligrammi
Legno	7-10 grammi	7-10 milligrammi
Ossa	200 grammi	1-10 grammi

La misurazione del ¹⁴C: metodi a confronto

Caratteristica	Metodo radiometrico	AMS
Sensibilità	medio-bassa	altissima
Precisione con poca sostanza	scarsa	buona
Precisione con molta sostanza	ottima	buona
Dosaggio (*) di campione e standard	deve essere preciso	non serve
Costo analisi	minore	maggiore
Costo apparecchiature	medio-basso	altissimo
Manutenzione sistema	minima	molto impegnativa
Ingombro apparecchiature	piccolo	grande
Tempi di conteggio	lunghissimi	brevi

Ccon l'AMS si ottiene facilmente anche il δ^{13} C . Al contrario, utilizzando il metodo radiometrico, per valutare il δ^{13} C occorre disporre anche di uno spettrometro di massa (se pur senza acceleratore); altrimenti si dovrebbe ricorrere ai valori stimati di δ^{13} C, meno attendibili di quelli ottenuti da una misura diretta del 13-C fatta sul campione.

^{*} Esatte quantità di campione

