Esame di Analisi matematica I : esercizi A.a. 2020-2021, sessione estiva, primo appello

COGNOME		NOME		
N. Matricola		Anno di	corso	
	Corso di	S. CUCCAGNA		
ESERCIZIO N. 1. Sia X	un sottoinsieme non	vuoto di ${\rm I\!R}$ e sia \overline{X} la ch	iusura di X in ${\rm I\!R}.$	
• Si dimostri che se inf X $\lim_{n\to\infty} x_n = -\infty$.	$=-\infty$, esiste una s	uccessione strettamente	crescente $\{x_n\}$ di pune	ti di X con
• Sia $X = \{\pi q : q \in \mathbb{Q}\}$. Si	dimostri che $\overline{X} = \mathbb{R}$.			
(
				
$\bullet \operatorname{Sia} X = \{2^n : n \in \mathbb{Z}\}. \operatorname{Si}$	i trovi X .			

ESERCIZIO N. 2. Per $g: \mathbb{R} \to \mathbb{R}$ la funzione inversa della funzione biettiva $x \to (x^{\frac{1}{3}} + 2x^3 + 4x^7)$ e si consideri

$$f(x) = \begin{cases} \int_{x}^{x + \arctan(x)} \frac{1}{g(t)} dt & \text{se } x > 0, \\ \int_{0}^{x} \frac{t}{(t-1)(t-2)^{2}} dt & \text{se } x \le 0 \end{cases}$$

• si determini $\lim_{x \to +\infty} f(x)$;

• si determini $\lim_{x \to -\infty} f(x)$;

• si determini se f(x) e' continua in \mathbb{R} ;

• si calcoli f'(x) dove e' definita

0	
COGNOME e NOME	N. Matricola
ESERCIZIO N. 3. Sia $f:[0,1] \to \mathbb{R}$.	
\bullet Si scriva cosa significa che f e' integrabile per Riemann i	n [0,1].
\bullet Siano f e rispettivamente g integrabili secondo Riemann mente $B.$ Si dimostri che se $f(x) \leq g(x)$ per ogni $x \in [0,1]$	
• Dimostrare che la funzione $f:(0,1] \to \mathbb{R}$ con $f(x) = 0$ se per un $n \in \mathbb{N}$, e' integrabile in senso imporprio in $(0,1]$ e c	

ESERCIZIO N. 4. Sia $f(x) = \int_{2}^{x} \frac{1}{1 + t + t^{3}} dt$:

Calcolare il polinomio di McLaurin $p_6(x)$ di f(x) di ordine 6;

ESERCIZIO N. 5. Sia $[x]: \mathbb{R} \to \mathbb{Z}$ la parte intera di $x \in \mathbb{R}$, definita da $[x] \le x < [x] + 1$.

 \bullet Dimostrare che $\frac{\sin(x)}{x}$ e' integrabile in $(-\infty,-2]).$

 \bullet Dimostrare che $\frac{\sin(x)}{[x]}$ e' integrabile in $(-\infty,-2]).$