Esame di Analisi matematica I: esercizi A.a. 2020-2021, sessione estiva, secondo appello

COGNOME		NOME	
N. Matricola		Anno di corso _	
	Corso di	S. CUCCAGNA	
SERCIZIO N. 1. Sia X	un sottoinsieme non	vuoto di Z .	
Si dimostri che se $\sup X$	$<+\infty$ allora esiste ma	$\operatorname{ax} X$.	
Si dimostri che se inf X	$> -\infty$ allora esiste min	1X.	
Si dimostri che se esiste	$\min X \in \text{se } n \in X \Rightarrow ($	$(n+1) \in X$ allora $X = \mathbb{Z} \cap [\min X]$	$X, +\infty$).

 ${\bf ESERCIZIO~N.~2.}$ Studio della funzione definita da

$$f(x) = \int_0^x e^{\frac{1}{t}} \frac{t+1}{t-1} dt.$$

• Si determini il dominio di definizione;
ullet i limiti agli estremi del dominio di definizione ed i particolare se ci sono rette asintotiche;
• eventuali punti di massimo e di minimo;
• convessita' e concavita'.

COGNOME e NOME	N. Matricola

ESERCIZIO N. 3. Sia $f:[0,1] \to \mathbb{R}$ integrabile per Darboux in [0,1].

 \bullet Si dimostri che se $f(x)\geq 0$ per ogni $x\in [0,1],$ allora $\int_0^1 f(x)dx\geq 0.$

• Sia $f \in C^0([0,1]), f(x) \ge 0$ per ogni $x \in [0,1]$ ed f diversa dalla funzione nulla. Dimostrare che $\int_0^1 f(x) dx > 0$.

• Dimostrare che se $g:[0,1]\to\mathbb{R}$ differisce da f solo nel punto 0 e se pertanto in (0,1] abbiamo f=g, allora $g\in L[0,1]$ e $\int_0^1 g(x)dx=\int_0^1 f(x)dx$.

4 Università degli Studi di Trieste – Ingegneria. Trieste, 28 giugno 2021
ESERCIZIO N. 4. Sia $f(x) = \sin(x^2) + \cos(x^2)$:
Calcolare tutti i punti di McLaurin $f(x)$.
ESERCIZIO N. 5. Sia $f(x) = \frac{\sin x}{x^p}$.
• Stabilire per quali valori di $p > 0$ la funzione f e' integrabile in $(0, +\infty)$.
• Dimostrare che $\sqrt{x} \sin x$ non e' integrabile in $(0, +\infty)$.