Esame di Analisi matematica I : esercizi A.a. 2020-2021, sessione estiva, terzo appello

COGNOME STAMPATELLO NOME LEGGIBILE
N. Matricola Anno di corso
Corso di S. CUCCAGNA
SERCIZIO N. 1. Sia X un sottoinsieme non vuoto di \mathbb{R} .
Si dia la definizione di punto di accumulazione di X . $F \in \mathbb{R}$ U V U V U V U
YEZO J KEX t.c. OCIX-XICE
Si dimostri che y e' un punto di accumulazione di $X \iff$ esiste una successione strettamente monotona x_n } in X con $y = \lim_{n \to +\infty} x_n$.
lan xn=y. Risulta xn <y orn.="" sicion<br="">+ 670 + Ne te M>Ne => y-E< xn<y cho<="" copie="" td=""></y></y>
Le HEZO J XEX TS. OC IX-YICE Chasta prendere un X=Xn con n>No)
Si dimostri con un esempio che e' falsa la proposizione seguente: se esiste una successione $\{x_n\}$ in X con $=\lim_{n\to+\infty}x_n$ allora y e' un punto di accumulazione di X . Follow $Y \in \left(X \cap (-\infty, Y)\right)$
t nEN 7 xmEX ts. Ycxmcy+2. Chioconeta lun xmey Infine, in provi defin un sottosoccennou dxmp che sio strettomente cereneli
> Es. sw yer e su X= gyl. > ether rem x= y + m, hur lim x= >

ESERCIZIO N. 2. Si consideri

$$f(x) = \begin{cases} \int_0^x \frac{2+t}{1-t+t^2-t^3} dt & \text{se } x \le 0\\ \int_x^{3x} \frac{1}{\arctan(t)} dt & \text{se } x > 0 \end{cases}.$$

Si determinino (spiegando come si ottengono le risposte):

•
$$\lim_{x \to \infty} f(x)$$
: $P = xx \to +\infty$ and $P = x \to +\infty$ $A = x^2 \to +\infty$

COGNOME & NOME STAMPATELLO LEGGIBILE N. Matricola

ESERCIZIO N. 3. Sia $f: \mathbb{R} \to \mathbb{R}$ localmente integrabile in \mathbb{R} , il che si scrive con $f \in L_{loc}(\mathbb{R})$, e sia $F(x) := \int_0^x f(t)dt$.

• Si dimostri che
$$F$$
 c' una funzione continua in \mathbb{R} .

• Si dimostri che F c' una funzione continua in \mathbb{R} .

• Si dimostri che F c' una funzione continua in \mathbb{R} .

• Si dimostri che F c' una funzione continua in \mathbb{R} .

• Si dimostri che F c' una funzione continua in \mathbb{R} .

• Si che F (F) F (F)

• Si che dia l'esempio di una F = F (F) F (F) F (F) F (F) F (F)

• Sis dia l'esempio di una F = F (F) F (F) F (F) F (F) F (F)

• Si dia l'esempio di una F = F (F) F (F) F (F) F (F)

• Si dia l'esempio di una F = F (F) F (F) F (F) F (F) F (F)

• Si dia l'esempio di una F = F (F) F (F) F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• Si dia l'esempio di una F = F (F)

• O F (F)

• O

polynom ESERCIZIO N. 4. Calcolare tutti i punti di McLaurin di

ESERCIZIO N. 5. Stabilire se la funzione $f(x) = x^{-\frac{1}{x}} \cos x$ e' integrabile in $[1, +\infty)$

ESERCIZION. 5. Stabilire se la funzione
$$f(x) = x^{-\frac{\pi}{2}} \cos x$$
 e' integrabile in $[1, +\infty)$.

 $x - \frac{1}{x} = \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2} = \frac{1}{x^2} \exp x = 0$
 $x - \frac{1}{x^2}$