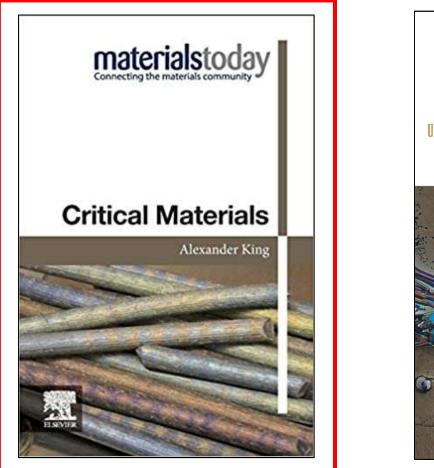
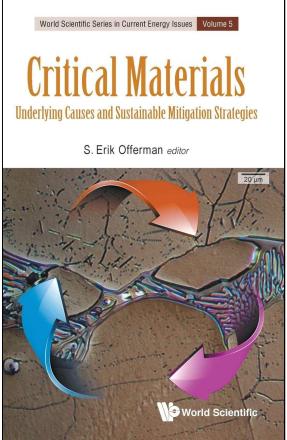

critical and strategic materials

2020-21

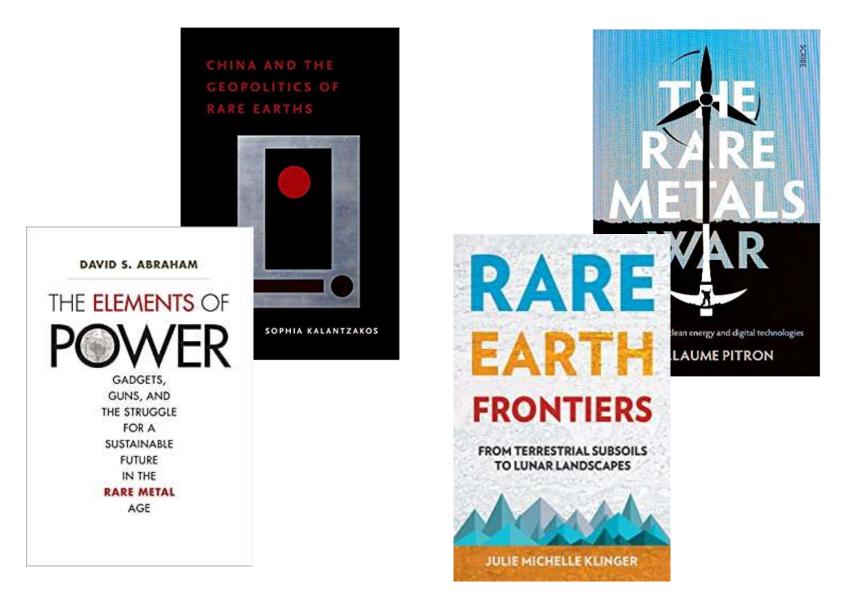

(PART 1)


Why this course is different

- new field of study (from 2008)
- rapidly evolving, constantly changing
- few experts
- just 2 (very recent) books on the subject
- many unsettled, open aspects
- emerging field (lots of interest!)
- highly **interdisciplinary** (geopolitics, economy, environment, human rights, ...)



Secondary sources



Primary sources

intro/popular books

Moodle

- Documents (primary sources)
- Web links & resources
- Feedback
- Slides (at the end of the course)

Panasi Diomotor	I DI TRIESTE									
oodle@UniTs Corsi	Supporto 💩 Dashboard 🚔 Eventi 🚔 I miei corsi 🛔 Questo corso									
	C'Attiva modifica 🕨 🖻 🦨									
Dipartimento di Ingegner	ria e Architettura Laurea Magistrale IN17 - INGEGNERIA DI PROCESSO E DEI MATERIALI A.A. 2020 - 2021									
337MI - MATERIALI CRITICI E S	ITRATEGICI 2020									
Annunci recenti										
ggiungi nuovo argomento	Introduction									
nizio corso posticipato 4 feb 2021, 11:52:59 ALOIS	Welcome to the Strategic and Critical Materials course!									
ONIFACIO rgomenti precedenti	The course will give an introduction to critical materials (also known as Critical Raw Materials, CRMs), their role in strategic technologies, and their impact on geopolitics, environment and society. For a full description of the course program please refer to the Syllabus.									
	Here on Moodle you can find all relevant documents useful for course, as well as a section to give a feedback.									
Navigazione	Other sections might be added later during the course.									
ashboard	For any information write to abonifacio@units.it									
Home del sito Moodle@Units Corso in uso 337MI - MATERIALI	Pannunci									
 CRITICI E STRATEGICI 2020 	Course-related documents									
 Partecipanti Introduction Course-related 	Documents									
documents Web links & resources	Here you can find most important documents and reports about critical materials.									

Evaluation (exam)

20 min presentation of a document (lecture) during the course

criteria:

- ✓ clarity of presentation
- ✓ correctness of concepts
- ✓ accuracy of language (use of technical terms)
- \checkmark links with course topics
- ✓ overall understanding of the topic
- Materials selection assignment (check with prof. Lughi)

(1/3)

Part 1 Troubles

"We are using minerals and metals in greater quantities than ever before. [...] The main reasons for these changes are increased global population and the spread of prosperity across the world."

> T.E. Graedel, G. Gunn, L. Tercero Espinoza, Critical Metals Handbook, BGS-Wiley, 2014

"The use of natural resources has more than tripled from 1970 and continues to grow."

International Resource Panel, Global Resource Outlook 2019

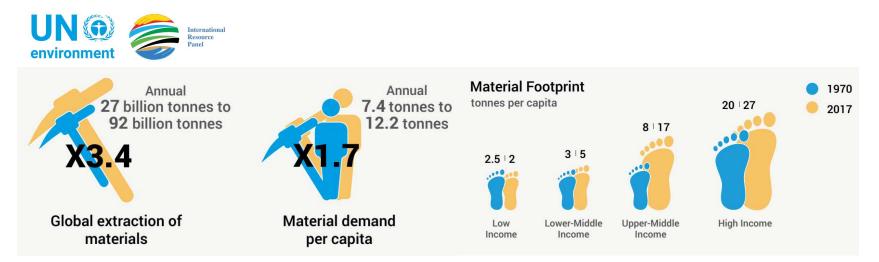
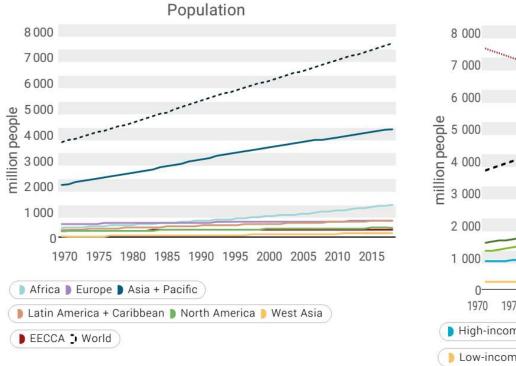
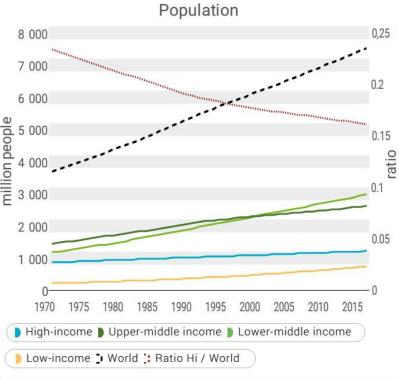
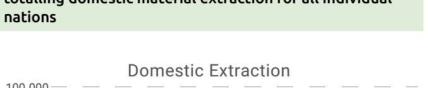
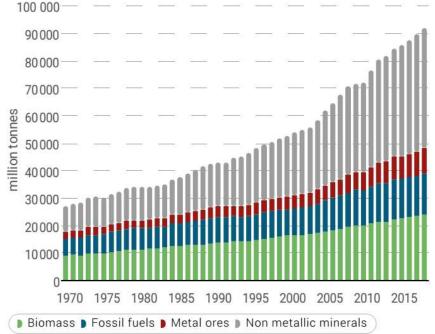




FIGURE 2.1 Distribution of population among seven world regions, 1970 – 2017, million people

FIGURE 2.2 Distribution of global population among four national income bands, with ratio of high-income group to total, 1970 – 2017


Source: UNDESA, 2017



Source: UNDESA, 2017

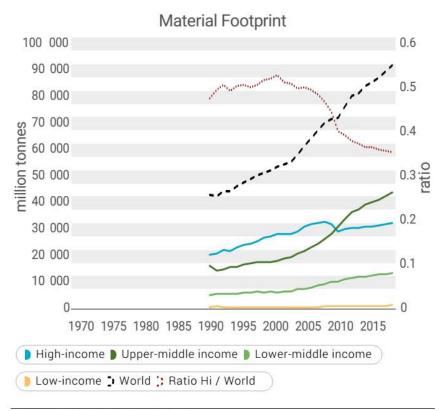
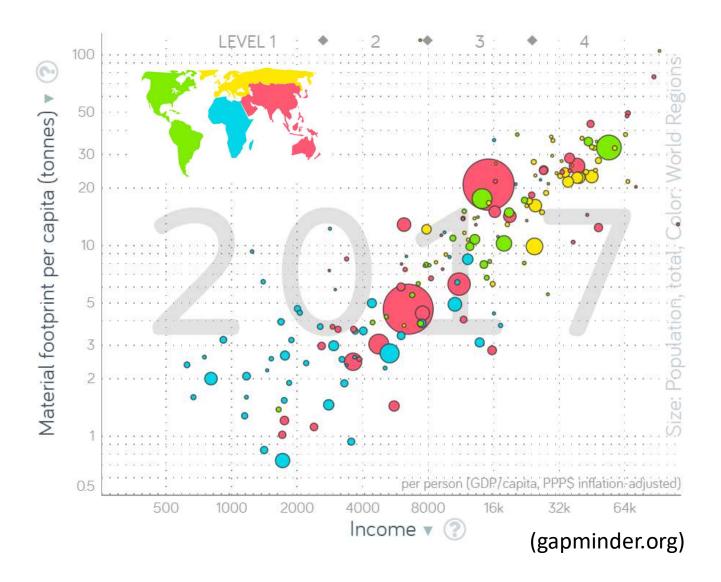
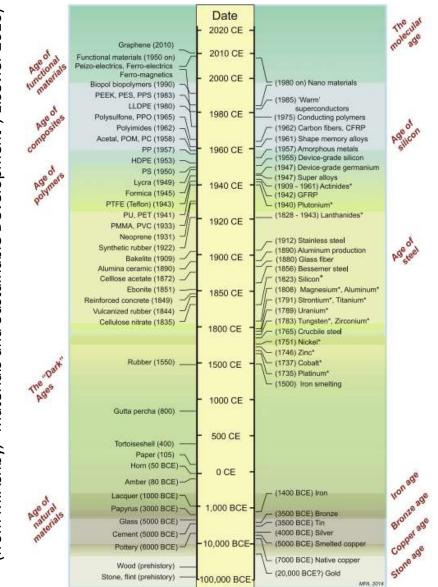


FIGURE 2.7 Global material extraction, four main material categories, 1970 - 2017, million tons. Obtained by totalling domestic material extraction for all individual nations


FIGURE 2.24 Material footprint by four national income bands, with world average, 1970 – 2017, and ratio of highincome group to World total


Source: UN, 2017a; UNEP & IRP, 2018

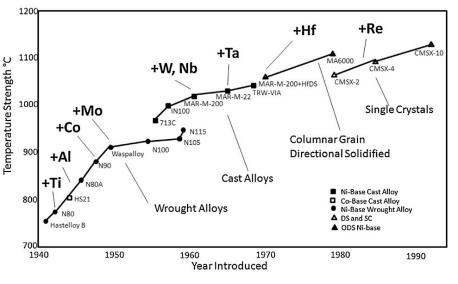
Source: UNEP & IRP, 2018

Increased variety of materials

accelerated rate of materials innovation

"In a surprisingly short space of time, we have become dependent on this treasure chest of elements and the materials made from them."

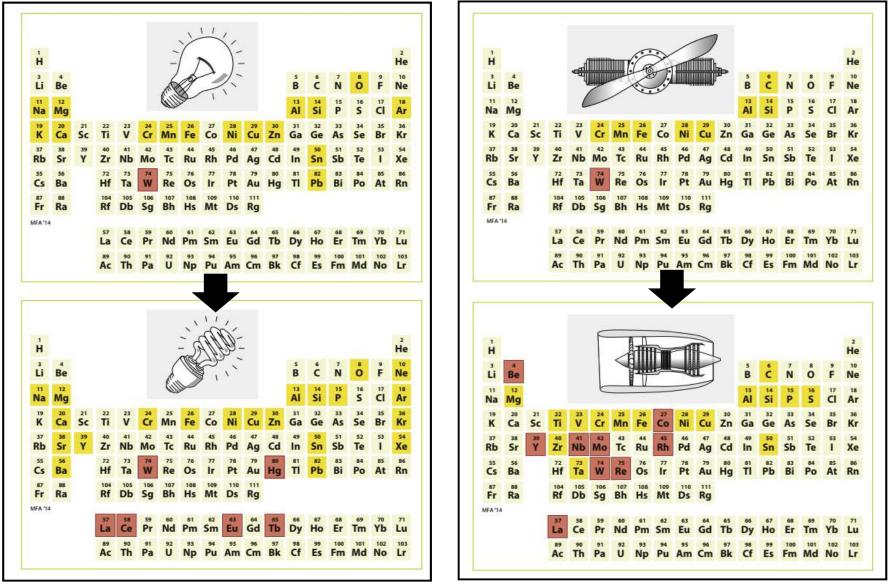
> Prof. M. Ashby Materials and Sustainable development Elsevier 2016

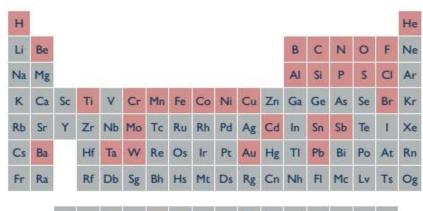

(from M.Ashby, "Materials and Sustainable Development", Elsevier 2016)

"At no point in human history we have used *more* elements, in *more* combination, and in increasingly refined amounts."

D. Abraham, The Elements of Power, Yale University Press, 2015 "Increasing numbers of elements are being used in nearly all of our technologies. Today's devices rely on a wider array of chemical elements than at any time in history."

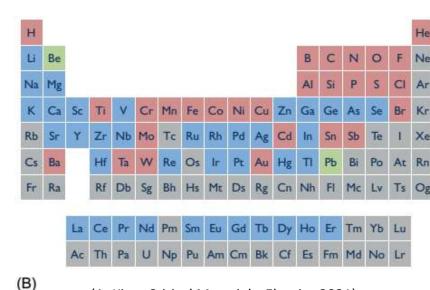
A. King, Critical Materials, Elsevier, 2021


Devices over th		ents Used in Materials and						
Alloys and Devices	Changing Demand for Elements over Time							
	75 Years Ago	Today						
Iron-based alloys*	Fe, C	Al, Co, Cr, Fe, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W						
Aluminum alloys*	Al, Cu, Si	Al, Be, Ce, Cr, Cu, Fe, Li, Mg, Mn, Si, I, V, Zn, Zr						
Nickel alloys*	Ni, Cr	Al, B, Be, C, Co, Cr, Cu, Fe, Mo, Ni, Si, Ta, Ti, W, Zr						
Copper alloys*	Cu, Sn, Zn	Al, Be, Cd, Co, Cu, Fe, Mn, Nb, P, Pb, Si, Sn, Zn						
Magnetic materials*	Fe, Ni, Si	Al, B, Co, Cr, Cu, Dy, Fe, Nd, Ni, Pt, Si, Sm, V, W						
Displays	W	Eu, Ge, Ne, Si, Tb, Xe, Y						
(Micro) electronics	Cu, Fe, W	As, Ga, In, Sb, Si						
Low-C energy (Solar, Wind)	Cu, Fe	Ag, Dy, Ga, Ge, In, Li, Nd, Pd, Pt, Re, Se, Si, Sm, Te, Y						


(A. Greenfield, T.E.Graedel, Resour. Conserv. Recycl. 74, 2013, 1-7)

*Data from the composition fields of records in the CES EduPack '14 Level 3 database, Granta Design, (2014).

(M. Ashby, "Materials and Sustainable Development", Elsevier 2016)



(from M.Ashby, "Materials and Sustainable Development", Elsevier 2016)

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

(A)

(A. King, Critical Materials, Elsevier 2021)

Fig. 3.10 The growing palette of materials in high-tech devices. (A) The elements known or inferred to be required for the manufacture of a 1983 vintage cellular telephone. (B) The elements required to make a 2018 smart phone. The elements used in the 1983 phone are in *blue*, the additional elements are in *red*, and the elements that have been removed are shown in *green*.

ELEMENTS OF A SMARTPHONE

SCREENO		OELECTRONICS
Indium 50 Sn Tin	Indium tin oxide is a mixture of indium oxide and tin oxide, used in a transparent film in the screen that conducts electricity. This allows the screen to function as a touch screen.	Copper is used for wiring in the phone, whilst copper, gold and silver are the major metals from which microelectrical components are fashioned. Tantalum is the major component of micro-capacitors.
13 Aluminium 8 Oxygen 19 K Potassium	The glass used on the majority of smartphones is an aluminosilicate glass, composed of a mix of alumina (Al_2O_3) and silica (SiO ₂). This glass also contains potassium ions, which help to strengthen it.	Nickel is used in the microphone as well as for other electrical connections. Alloys including the elements praseodymium, gadolinium and neodymium are used in the magnets in the speaker and microphone. Neodymium, terbium and dysprosium are used in the vibration unit.
39 Yttrium Lanthanum Terbium 59 Pr Eu Dysprosum Europium Dysprosum	A variety of Rare Earth Element compounds are used in small quantities to produce the colours in the smartphone's screen. Some compounds are also used to reduce UV light penetration into the phone.	Pure silicon is used to manufacture the chip in the phone. It is oxidised to produce non-conducting regions, then other elements are added in order to allow the chip to conduct electricity.
Gd adolinium		Tin & lead are used to solder electronics in the phone. Newer lead- free solders use a mix of tin, copper and silver.
BATTERY	<u></u>	O CASING
Lithium Cobait Carbon Aluminium B Carbon	The majority of phones use lithium ion batteries, which are composed of lithium cobalt oxide as a positive electrode and graphite (carbon) as the negative electrode. Some batteries use other metals, such as manganese, in place of cobalt. The battery's casing is made of aluminium.	Magnesium compounds are alloyed to make some phone cases, whilst many are made of plastics. Plastics will also include flame retardant compounds, some of which contain bromine, whilst nickel can be included to reduce electromagnetic interference.

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

(www.compoundchem.com)

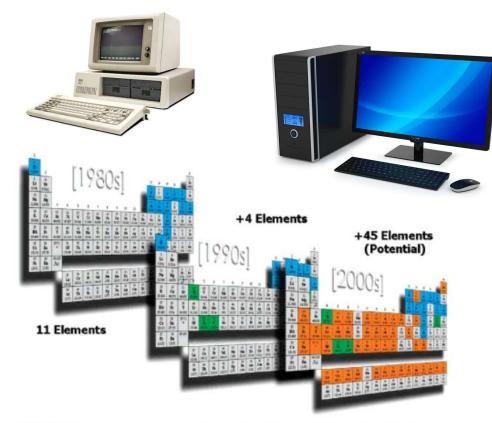


FIGURE 2. Use of elements in a circuit board (from T. McManus, Intel Corporation, private communication, 2006).

Environ. Sci. Technol. 2007, 41, 1759-1765

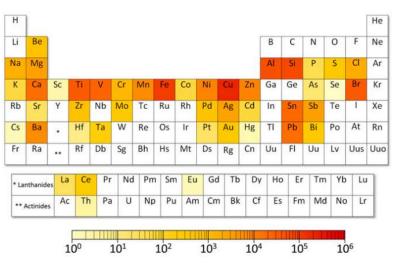
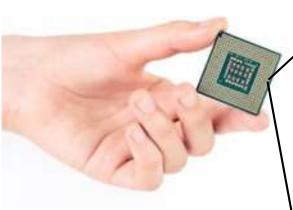
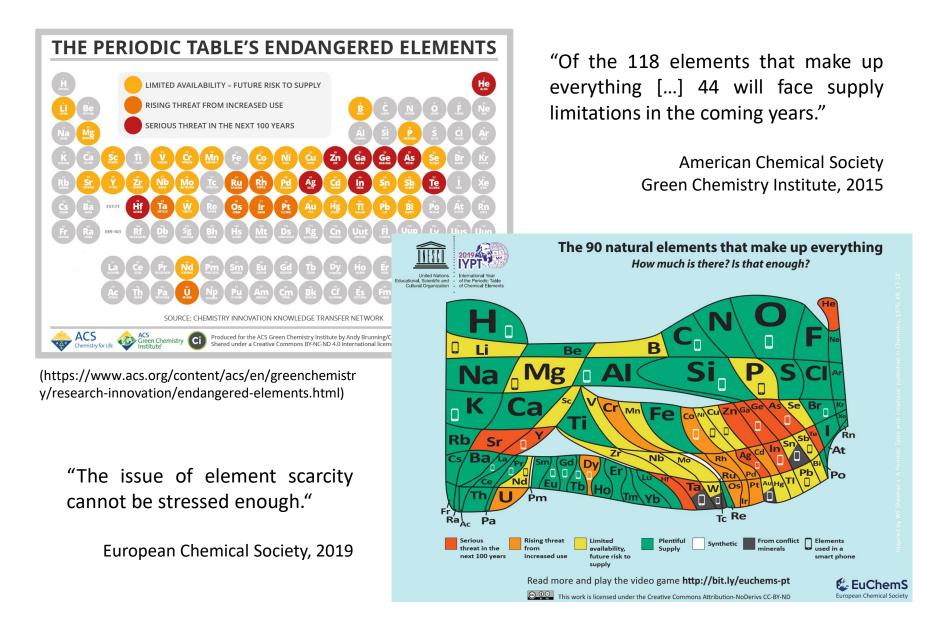



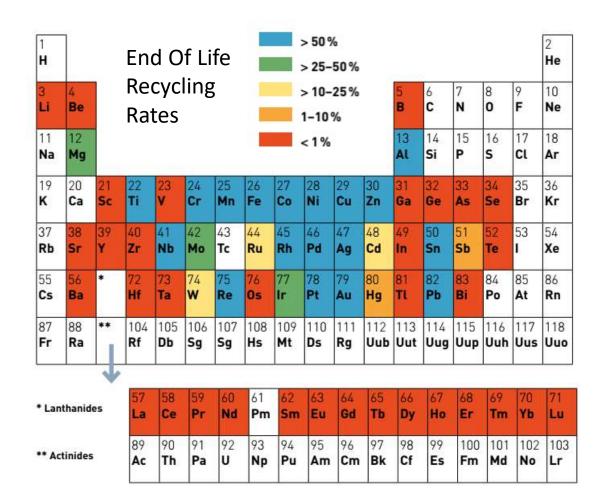
Fig. 1. The concentrations (parts per million) of 44 elements found on printed circuit boards (33).

PNAS | April 7, 2015 | vol. 112 | no. 14 | 4257-4262

Mixed together at smaller and smaller scales



(SEM) Cross-section of 64-bit highperformance microprocessor chip Al, Cu Cu Si, O, (F, C) Si, O, (F, C) Si, O, (B, P)


(https://www-03.ibm.com/press/us/en/photo/19014.wss)

not easy to recycle ...

Endangered elements?

Endangered elements?

(source: UNEP, International Resource Panel, Metal Recycling Report 2019)

- economic value (fishing ground, oil/gas deposits)
- geostrategic value (control of E. China Sea)

(NATO www.stratcomcoe.org)

The 2010 Senkaku crisis

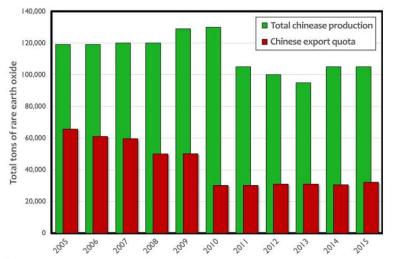
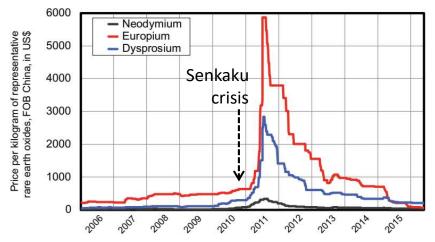
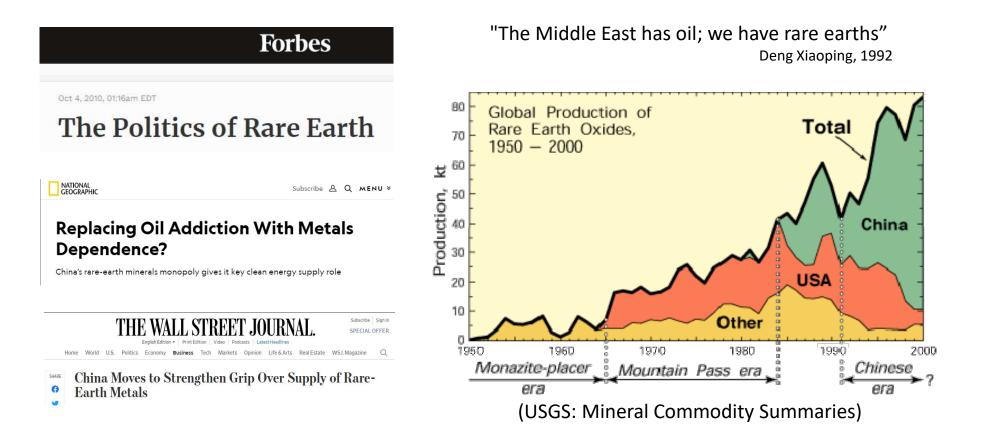



Fig. 1.5 Chinese rare earth oxide production (*in green*) and export quotas (*in red*) from 2005 to 2015. The export quotas ended in 2016.

Fig. 1.6 The prices of three representative rare earths from 2006 to 2016. Source of raw price data: Argus Media Inc. (direct.argusmedia.com).

(A. King, Critical Materials, Elsevier 2021)

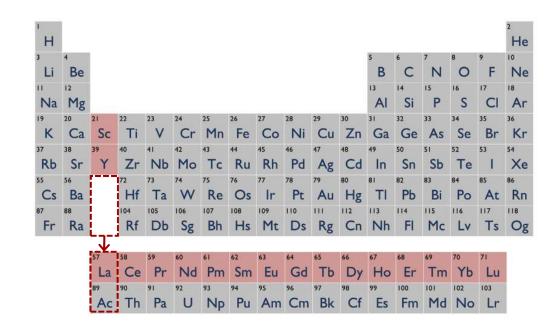
The New York Times


Amid Tension, China Blocks Vital Exports to Japan

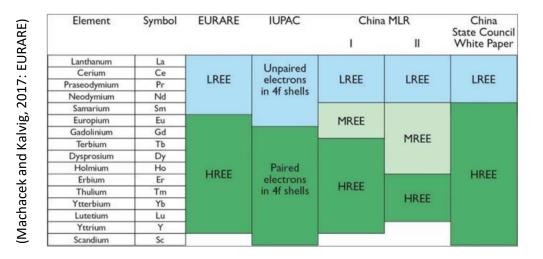
- ✓ governments report REE as critical
- ✓ perception of 2010 Japan embargo
- ✓ stringent export quotas

→ price spike (market panic)

A sudden awareness

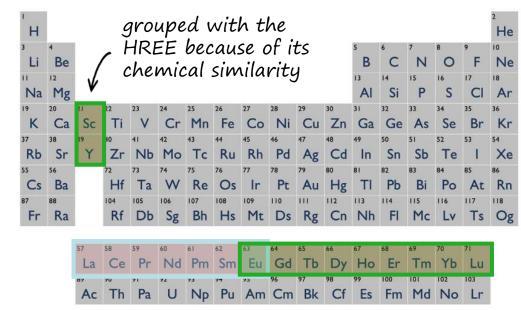


politicization of rare earths fears that China might use them as a economic weapon for geopolitical purposes


What are rare earths?

RE: rare earths REE: rare earts elements REY: rare elements +Y REO: rare earths oxides REM: rare earth metals 17 elementsfrom Gr. Λανθάνειν (hidden)15 lanthanides (from La to Lu)often consider
also in Group
closely related

often considered RE: also in Group 3 and closely related to Lanthanides in terms of chemical behaviour

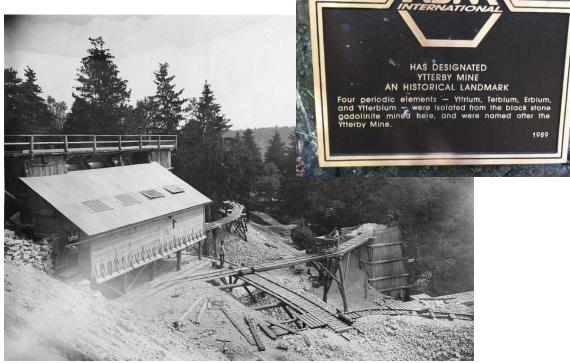


HREE and LREE

Light REE (LREE) Heavy REE (HREE)

inconsistent classification

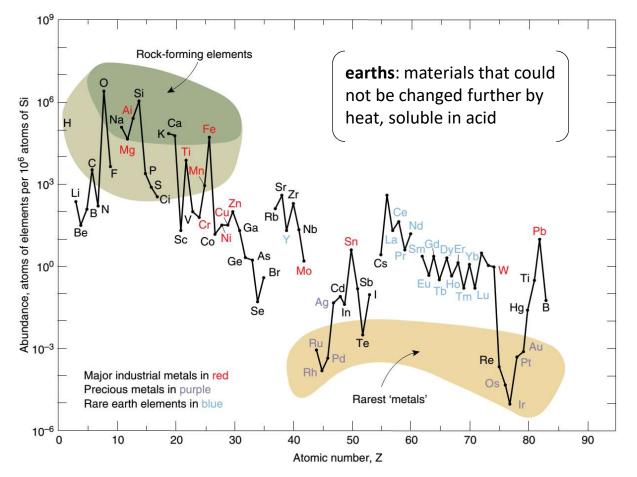
Where it all started



J. Gadolin (1760-1852)

Ytterby

Yttr ium	Υ
Terb ium	Тb
Erb ium	Er
Ytterbium	Yb


Ytterby (near Stockholm) Sweden, 1794

A new element (Y) is isolated from a black mineral (gadolinite)

Rare earths: neither rare nor earths

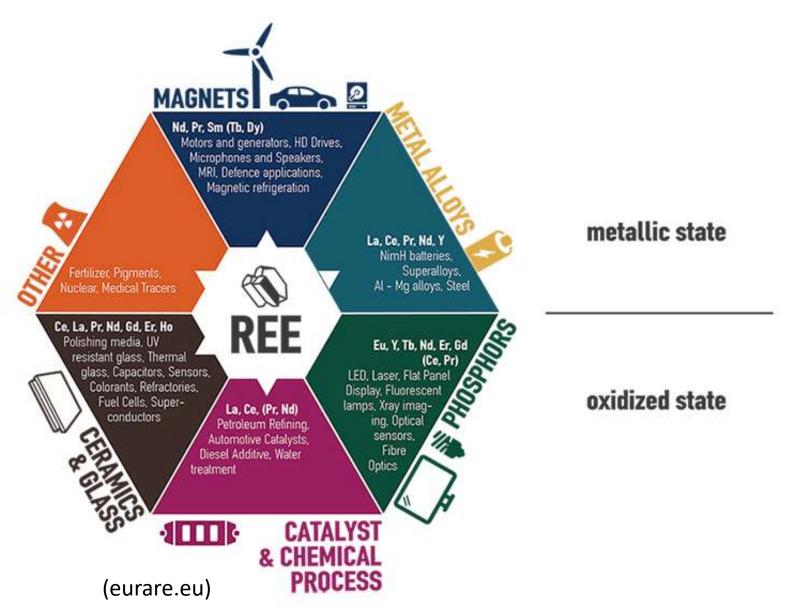
"The first thing you need to know is they are neither rare nor earths" A. Sella, Professor of Inorganic Chemistry at UCL, BBC interview

(G.Gunn, ed. «Critical metals handbook», Wiley 2014: from USGS 2002 data)

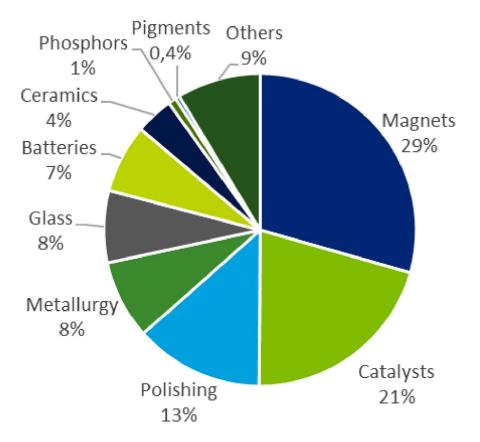
Early uses of REEs

ceramics pigment (Pr)

gas mantles (Th, Ce)



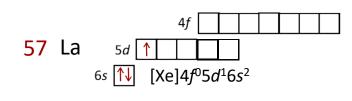
lighters (mischmetal: Ce, La, Nd, Fe)



Carl Auer von Welsbach (1858-1929)

Current uses of REEs

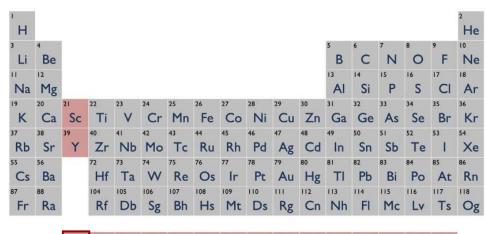
Current uses of REEs

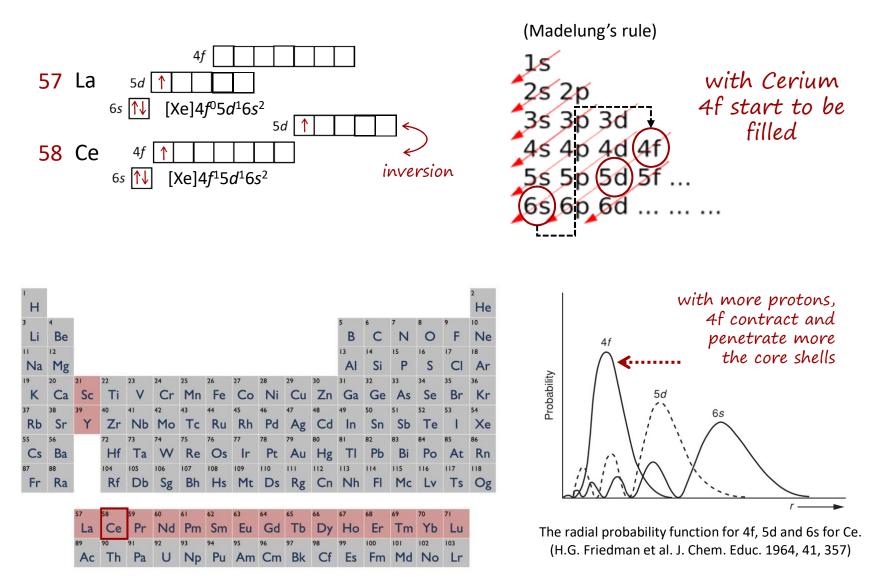


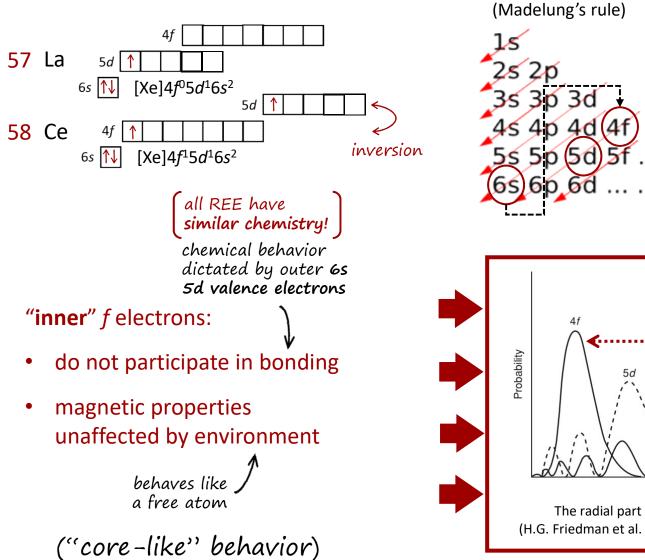
Global consumption of REO in 2019: 139 551 t

(EC, CRMs Factsheets, 2020, citing EUROSTAT, EURARE, Roskill) "The REE are **critical** for the success of the EU ambitions to become climate-neutral by 2050. They are essential in the production of hightech, low-carbon goods [...]. They are also indispensable in the defence sector [...]."

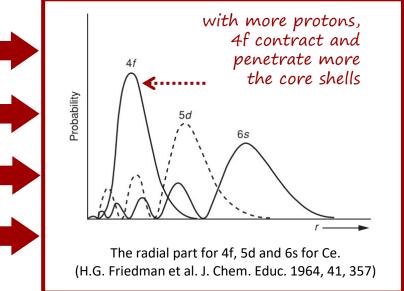
EC CRMs Factsheets, 2020



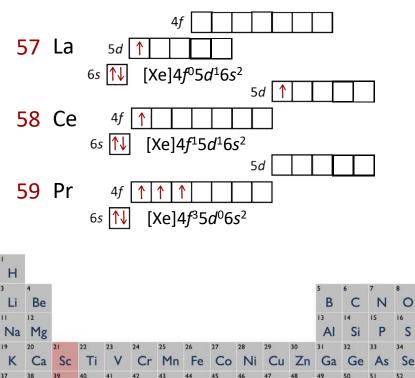

(Madelung's rule)

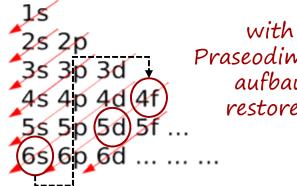


Lanthanium exception to aufbau rules

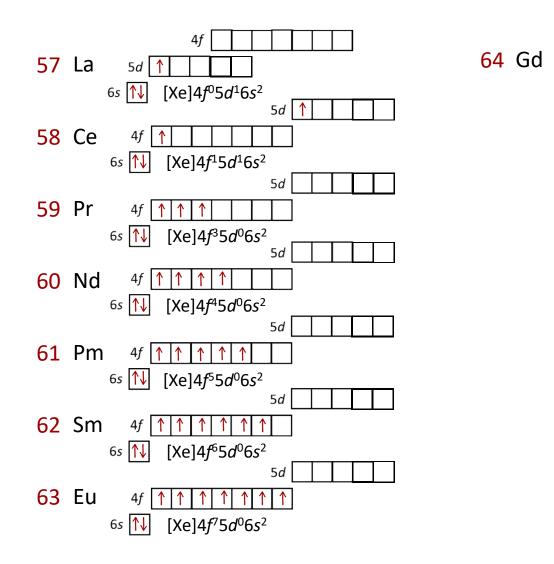


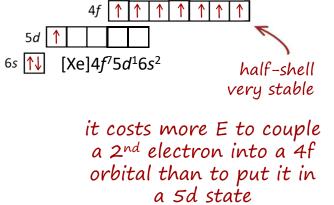
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	69 Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr



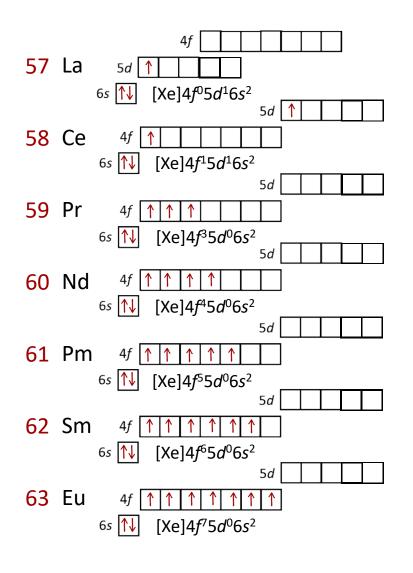

with Cerium 4f start to be filled

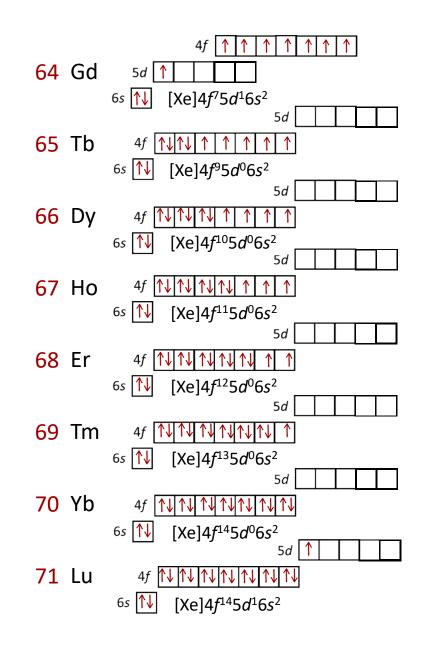
...

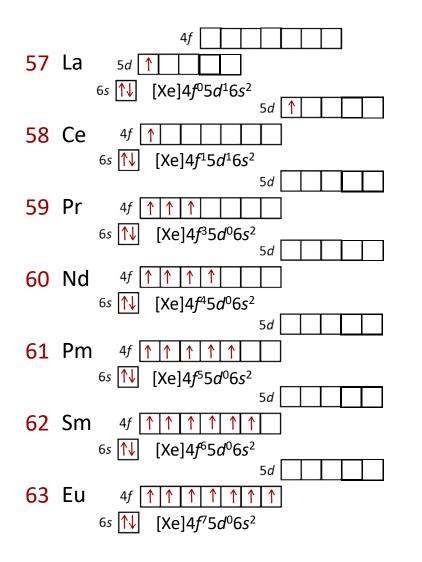

(Madelung's rule)



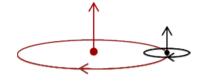
Praseodimium aufbau restored


H																	2 He
3	4	í										5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
н	12	1										13	14	15	16	17	18
Na	Mg											AI	Si	Ρ	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	In	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

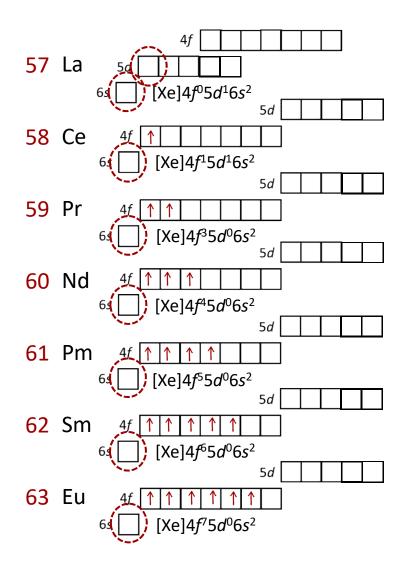

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr



Electronic configuration of REEs

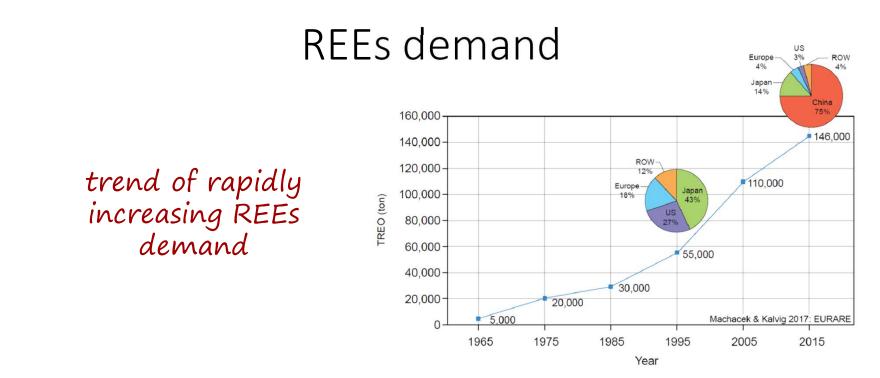


Electronic configuration of REEs



many **unpaired** *f* electrons ($\uparrow\uparrow\uparrow\uparrow...$)

- high total spin S
- high orbital angular momentum L
- high total atomic angular momentum J
 (spin-orbit coupling J = S + L)
- high overall magnetic moment



Electronic configuration of REEs ions

Ln³⁺ most common Ln (III) oxidation state

6s and 5d electrons are lost first

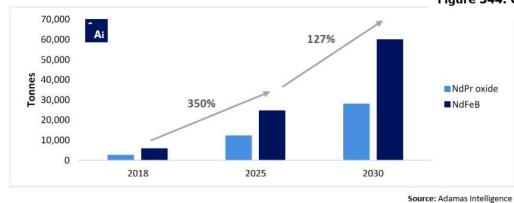
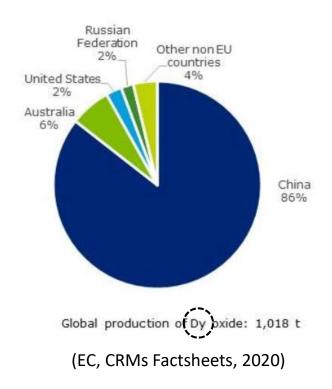
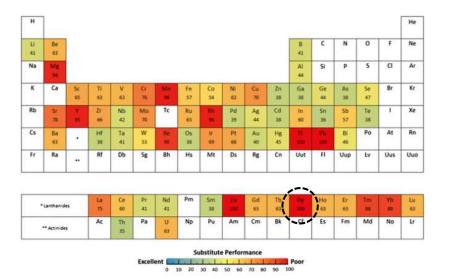


Figure 344: Changes in total rare earth demand during 1965-2015 (t REO). (Machacek and Kalvig 2017: EURARE)

Figure 327: Changes in rare earths (Nd, Pr) and NdFeB magnets demand for EV traction motors to increase by 350% between 2018 and 2025 (Adamas Intelligence, 2019)

(EC, CRMs Factsheets, 2020)


REEs sourcing & substitutes


"China provides around 80-90% of the world production of the whole range and purity of REE and their compounds"

EC, CRMs Factsheets 2020

"In most of their applications, REE are not substitutable without losses of performance."

EC, CRMs Factsheets 2020

Fig. 5. The periodic table of substitute performance. The results are scaled from 0 to 100, with 0 indicating that exemplary substitutes exist for all major uses and 100 indicating that no substitute with even adequate performance exists for any of the major uses.

Recycling of REEs

Table 177: EOL-RIR of individual REE (1 - UNEP, 2013; 2 - Bio Intelligence Service, 2015; 3 - BRGM, 2015)

REE	LREE					HREE						
	Ce1	La1	Nd ²	Pr ³	Sm1	Dy ²	Er1	Eu²	Gd1	Ho, Tm, Lu, Yb ¹	Tb ²	Y ²
End of life recycling input rate (EOL-RIR)	1%	1%	1%	10%	1%	0%	1%	38%	1%	1%	6%	31%

(EC, CRMs Factsheets, 2020, citing various sources)

Are we in trouble?

FACTS

- REEs are **essential** for digital & green technologies, industry and defence
- REEs are sourced mainly from a single producer

- REEs demand is increasing
- REEs are not recycled

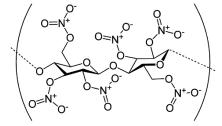
Part 2 Criticality: an historical perspective

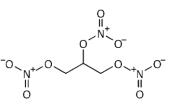
Copper and the Bronze Age (~1200 BCE) (= Cu + Sn)

Cyprus dominated Cu production

(Cu chemical symbol from Latin cuprum, derived from Cyprium)

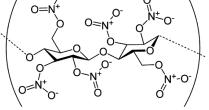
PROBLEM: single supply source

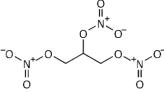

(Bronze Age Collapse) Bronze Age Collapse


around 1200 BCE, collapse of Cyprus society widespread breakdown (invasions?) might have an of civilization important factor in the (copper supply shortage)

Cordite (WWI, 1914-18)

 made mainly from *guncotton* and *nitroglycerine* (nitrocellulose) (1,2,3-trinitroxypropane)




- used as smokeless propellant instead of gunpowder for bullets and shells
- production needs lots of acetone
- acetone produced by distillation of dry wood
- UK imported acetone, but not enough **PROBLEM:** (UK not a timber-producer) **Iack of supply**

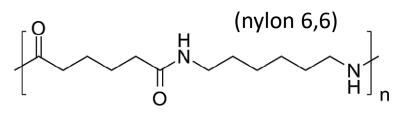
Cordite (WWI, 1914-18)

made mainly from *guncotton* and *nitroglycerine* (nitrocellulose) (1,2,3-trinitroxypropane)

 solution: new acetone production methods found using starch (e.g. horse-chestnut)

(agricultural products substituted timber)

Silk (WWII, 1941-1945)



- silk used for parachutes, ropes, mosquito nets, ...
- US imported 90% of silk from Japan

PROBLEM: single supply source

• solution: silk substituted with nylon (invented in 1937)

«The fiber that won the war» (used for parachutes, tire cords, ropes, aircraft fuel tanks, shoe laces, mosquito netting and hammocks)

Rubber (WWII, 1941-1945)

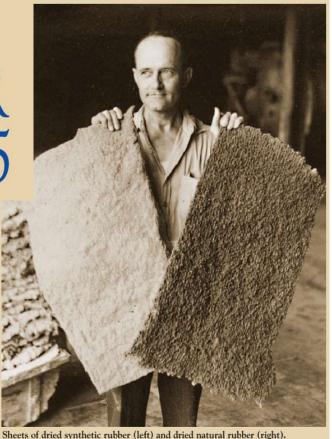
- natural rubber (*cis-polyisoprene*) used for many military applications
- produced from a tree, mainly in southeast asia (controlled by Japan)

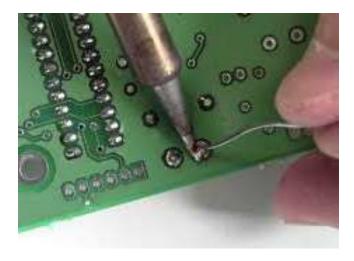
PROBLEM: single supply source

 CH_3

 solution: development of a substitute (syntethic polymers) (Government Rubber-Styrene)

Rubber (WWII, 1941-1945)


A NATIONAL HISTORIC CHEMICAL LANDMARK


AMERICAN CHEMICAL SOCIETY Division of the History of Chemistry and The Office of Communications

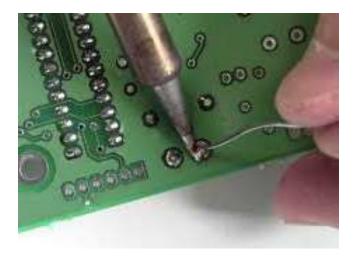
UNITED STATES SYNTHETIC RUBBER PROGRAM, 1939-1945

enormous (secret) cooperative effort

Old lead (1978-2006)

- Pb used as solder in electronics
- 4 stable isotopes ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb
- ²⁰⁴Pb primordial, while others endproducts of decay series (U, Ac, Th)
- α-emission from radioactive impurities in ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb cause *soft-errors* in RAM
- only low- α Pb can be used (difficult to find)

SCIENTIFIC AMERICAN


Ancient Roman Metal Used for Physics Experiments Ignites Science Feud

Physicists prefer Roman-era lead ingots to recently mined metal for shielding particle experiments, but archaeologists want them preserved

By Clara Moskowitz on December 18, 2013

PROBLEM: lack of supply

Old lead (1978-2006)

- Pb used as solder in electronics
- 4 stable isotopes ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb
- ²⁰⁴Pb primordial, while others endproducts of decay series (U, Ac, Th)
- α-emission from radioactive impurities in ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb cause *soft-errors* in RAM
- only low- α Pb can be used (difficult to find)
- *solution*: development of a *substitute* (lead-free solder alloys: SnAgCu, SnCu)

Cobalt (1978)

- Co used in superalloys for jet engines, chemical plants, magnets Sm-Co •
- major productor Zaire (now DRC), under Mobutu's dictatorship •
- in 1978, rebellions in Co mines region •

PROBLEMS: single supplier, supply risk

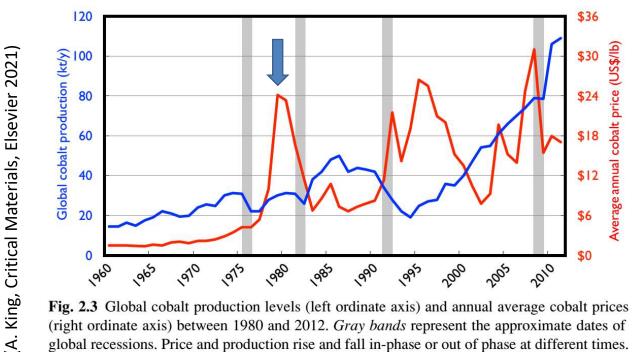
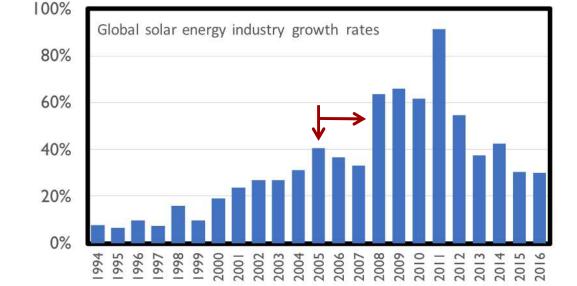


Fig. 2.3 Global cobalt production levels (left ordinate axis) and annual average cobalt prices (right ordinate axis) between 1980 and 2012. Gray bands represent the approximate dates of global recessions. Price and production rise and fall in-phase or out of phase at different times. Original data from the USGS Mineral Commodity Summaries for the relevant years.

Cobalt (1978)

- Co used in superalloys for jet engines, chemical plants, magnets Sm-Co
- major productor Zaire (now DRC), under Mobutu's dictatorship
- in 1978, rebellions in Co mines region P

PROBLEMS: single supplier, supply risk


solution: development of substitutes
 (Ni superalloys, NdFeB magnets)
 (Ni superalloys, NdFeB magnets)
 (nclude Nb as well:
 induced sudden
 increase of
 increase of
 demand & price
 spike for Nb!

Photovoltaic Si (mid-2000s)

- PV silicon requires extreme purity (99.999%)
- large PV growth (1999-2005) outstripped global production
- PV silicon facilities need 3y and billions of investment (investors reclutant)

PROBLEM: lack of supply

(3y needed to **expand production** to keep up with demand)

Fig. 2.5 Annual growth rates of the global installed solar-PV capacity, between 1994 and 2016. The industry's growth outstripped the global production capacity for solar-grade polycrystalline silicon in the mid-2000s, despite the high crustal abundance of silicon.

(A. King, Critical Materials, Elsevier 2021)

Lessons learned from history

- excessive reliance on single sources / highly localized prodution is a supply risk
- sudden changes in demand induce *criticality*
- technologies with purity/grade requirements (e.g. low- α lead, PV silicon) induce *criticality*
- possible *solutions* are:
 - expand production
 - diversify sources
 - find substitutes or change technology
 - recycle (if possible)
 - any combination of the above work best

Part 3 Criticality assessments

critical

- 1. of, relating to, or being a **turning point** or specially important juncture
- 2. indispensable, vital
- 3. being in or approaching a state of **crisis**
- 4. crucial, decisive

- 1. very important for the way things will happen in the future
- 2. very serious or **dangerous**

- 1. of *decisive importance* in relation to the issue
- 2. tending to determine or decide; decisive, crucial

"The background of critical material thinking has been defined through war."

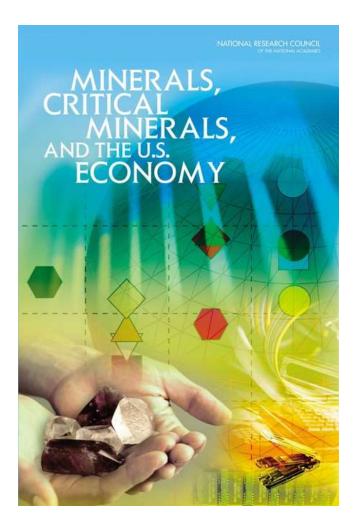
(D. Peck, in "Critical Materials", E. Offerman ed., World Scientific 2019)

Strategic and Critical Materials Stock Piling Act

[Chapter 190, Enacted June 7, 1939, 53 Stat. 811]

[As Amended Through P.L. 116–92, Enacted December 20, 2019]

- [Currency: This publication is a compilation of the text of Chapter 190 of the 76th Congress. It was last amended by the public law listed in the As Amended Through note above and below at the bottom of each page of the pdf version and reflects current law through the date of the enactment of the public law listed at https://www.govinfo.gov/app/collection/comps/]
- [Note: While this publication does not represent an official version of any Federal statute, substantial efforts have been made to ensure the accuracy of its contents. The official version of Federal law is found in the United States Statutes at Large and in the United States Code. The legal effect to be given to the Statutes at Large and the United States Code is established by statute (1 U.S.C. 112, 204).]


SHORT TITLE

SECTION 1. [50 U.S.C. 98] This Act may be cited as the "Strategic and Critical Materials Stock Piling Act".

FINDINGS AND PURPOSE

SEC. 2. [50 U.S.C. 98a] (a) The Congress finds that the natural resources of the United States in certain strategic and critical materials are deficient or insufficiently developed to supply the military, industrial, and essential civilian needs of the United States for national defense.

(b) It is the purpose of this Act to provide for the acquisition

National Research Council, 2006

"[...] a critical mineral is one that is both essential in use and subject to the risk of supply restriction."

- 2 defining concepts
- importancesupply risk

2019

9 critical material: an element [...] or [...] material which [...] enables a product to deliver value-added functionality, wherein the ability to substitute that functionality using an alternative material is limited [...] and for which one or more of its constituents or precursors is at risk of experiencing a supply disruption.

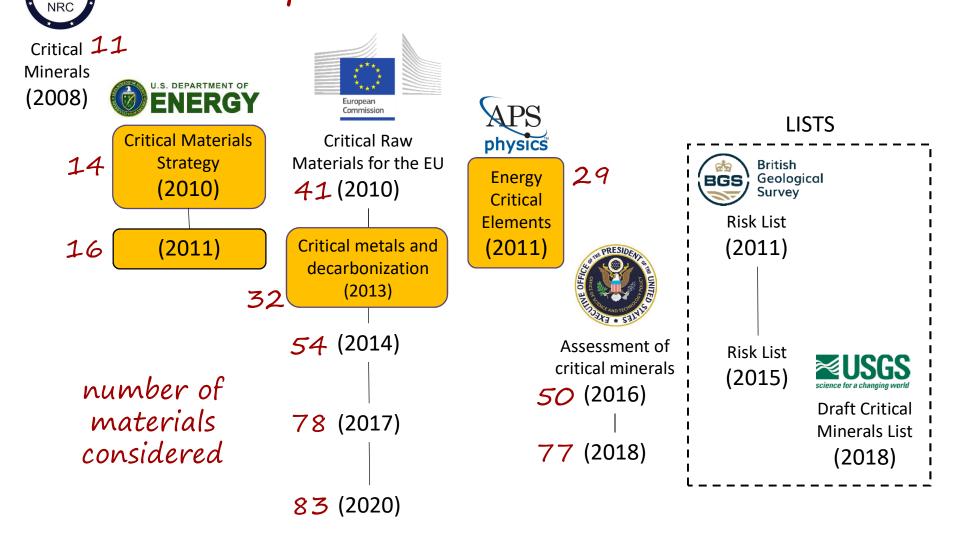
(J. Goddin, in "Critical Materials", E. Offerman ed., World Scientific 2019)

2020 critical raw material (CRMs): raw materials of a high importance to the economy of the EU and whose supply is associated with a high risk.

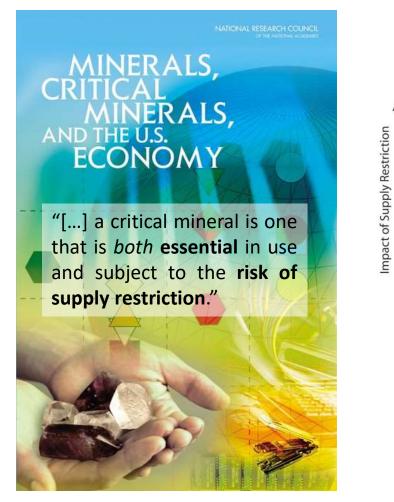
(European Commission, Study on the EU's list of Critical Raw Materials – Final Report 2020)

what?

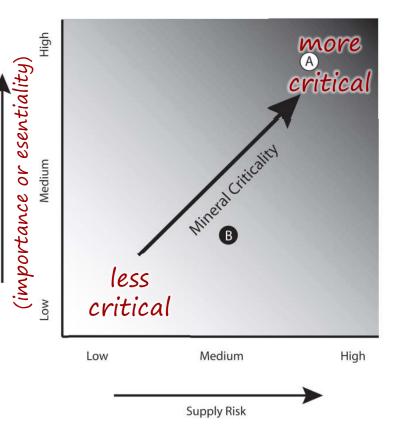
the applicaton of a **method** to determine materials criticality


with respect to a **country**, a specific **industrial sector**, a **company** or a **product**

why?

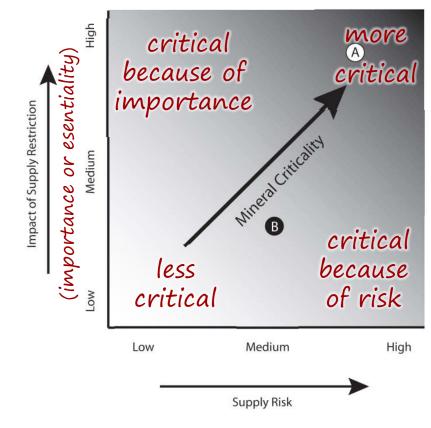

decision tools for industry and policymakers

(e.g. materials selection, product and process design, investment decisions, trade agreements, research strategies, policy agendas, ...)


Assessments of materials criticality *important documents*

NRC, **2008**

criticality matrix



at the basis of all subsequent methodologies

criticality matrix

NOTE: criticality is a matter of **degree**, not of state (i.e. y/n), although thresholds can be set

different methods differ in the way **importance** and **supply risk** are evaluated

at the basis of all subsequent methodologies

criticality matrix

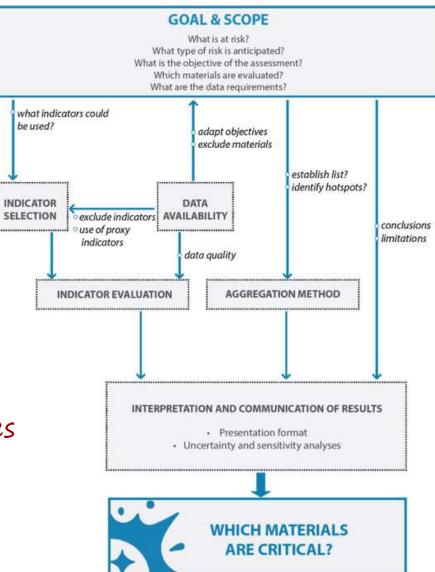
High (A) (importance or esentiality) in some Impact of Supply Restriction methodologies, a Mineral Criticality Medium third dimension is added to the B criticality matrix Low Low Medium High Corvivon mental implications Supply Risk

International Round Table on Materials Criticality in Business Practice

comparison among different methodologies

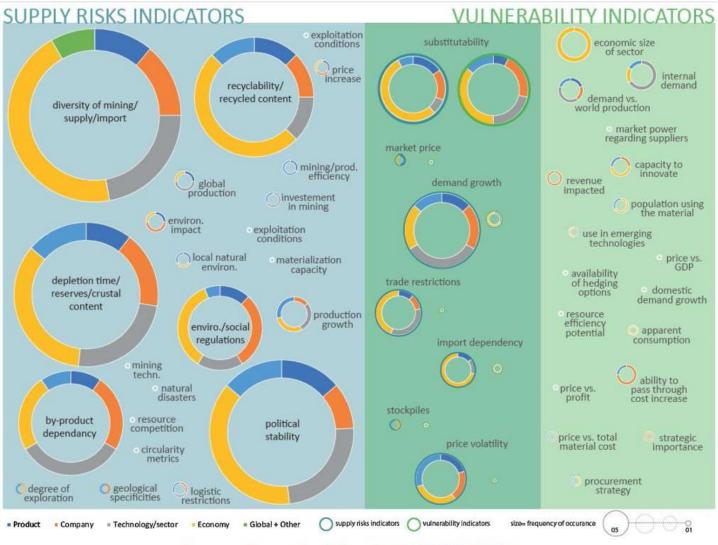
Resources, Conservation & Recycling 155 (2020) 104617

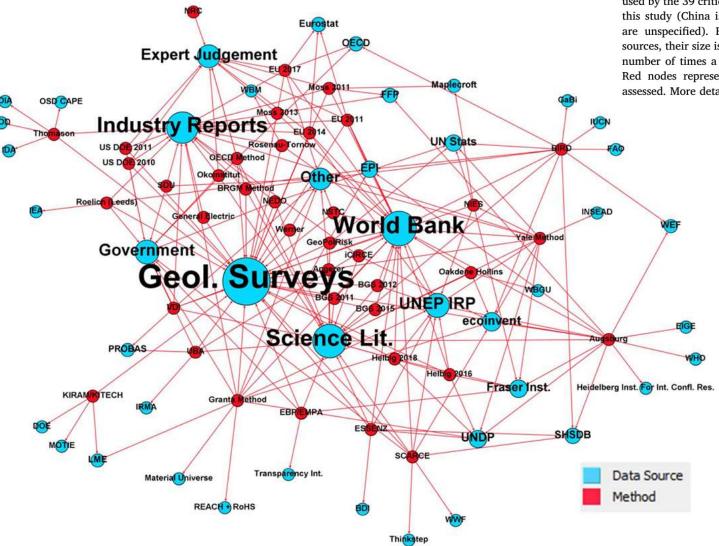
"criticality is in the eye of the beholder, [...] there is no generic standard approach to conduct a criticality assessment"


A review of methods and data to determine raw material criticality

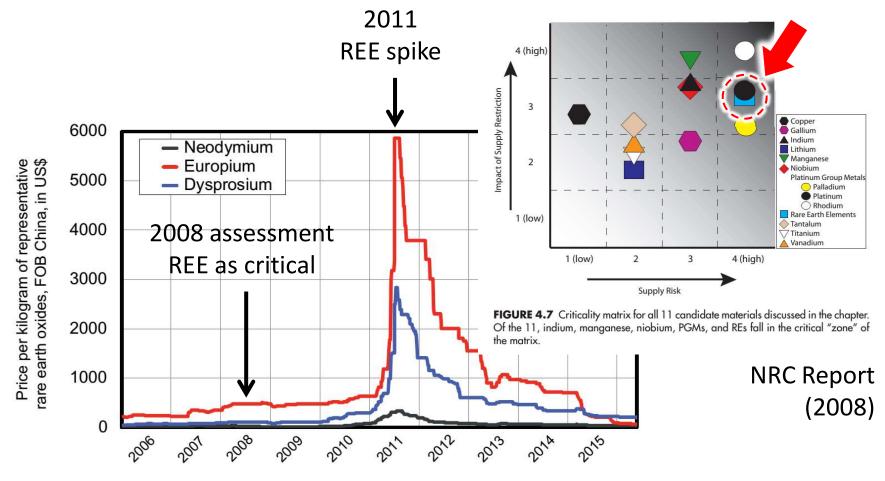
Dieuwertje Schrijvers^{a,b}, Alessandra Hool^{c,*}, Gian Andrea Blengini^d, Wei-Qiang Chen^e, Jo Dewulf[¢], Roderick Eggert[§], Layla van Ellen^h, Roland Gaussⁱ, James Goddin^j, Komal Habib^k, Christian Hagelüken^{l,c}, Atsufumi Hirohata^m, Margarethe Hofmann-Amtenbrinkⁿ, Jan Kosmol^o, Maïté Le Gleuher^p, Milan Grohol^q, Anthony Ku^r, Min-Ha Lee[§], Gang Liu^t, Keisuke Nansai^u, Philip Nuss^v, David Peck^h, Armin Reller^{c,w}, Guido Sonnemann^{a,b}, Luis Tercero^{c,x}, Andrea Thorenz^w, Patrick A. Wäger^{c,y}

^a Univ. Bordeaux, ISM, UMR 5255, F-33400 Talence, France ^b CNRS, ISM, UMR 5255, F-33400 Talence, France ^c ESM Foundation, Junkerneasse, 56, 3011 Bern, Switzerland ^d European Commission, DG JRC – Joint Research Centre, Sustainable Resources Directorate Unit D3 – Land Resources, Via Enrico Fermi 2749 TP270, I-21027 Ispra, Italy e Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China ^f Research Group Sustainable Systems Engineering, Department Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, Building B, Coupure Links 653, 9000 Ghent, Belgium ⁸ Division of Economics & Business, Colorado School of Mines, Golden, CO 80401, USA h Delft University of Technology, Faculty of Architecture and the Built Environment, Architectural Engineering and Technology, Building 8, Delft University of Technology (TU Delft), Julianalaan 134, 2628BL, The Netherlands ¹ EIT RawMaterials GmhH Europa Center, Tauentzienstr, 11, 10789 Berlin, Germany ^j Granta Design/ANSYS, Rustat House, 62 Clifton Road, Cambridge, CB1 7EG, UK k Faculty of Environment, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L3G1, Canada ¹ Umicore AG & Co KG, Rodenbacher Chaussee 4, 63457 Hanau, Germany ^m Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, United Kingdom ⁿ MatSearch Consulting Hofmann, Chemin Jean Pavillard 14, 1009 Pully, Switzerland ^o German Environment Agency (UBA), Wörlitzer Platz 1, 06844 Dessau-Rosslau, Germany ^p BRGM, 3 avenue C. Guillemin, 45060 Orléans, France ⁹ European Commission, DG Internal Market, Industry, Entrepreneurship and SMEs, BREY 07/045, 1049 Brussels, Belgium ^r NICE America Research, 2091 Stierlin Ct, Mountain View, CA 94043, USA ⁸ Korea Institute of Industrial Technology (KITECH), 156 Gaetbeol-ro, Yeonsu-Gu, 21999 Incheon, Republic of Korea ^t SDU Life Cycle Engineering, Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, 5230 Odense, Denmark

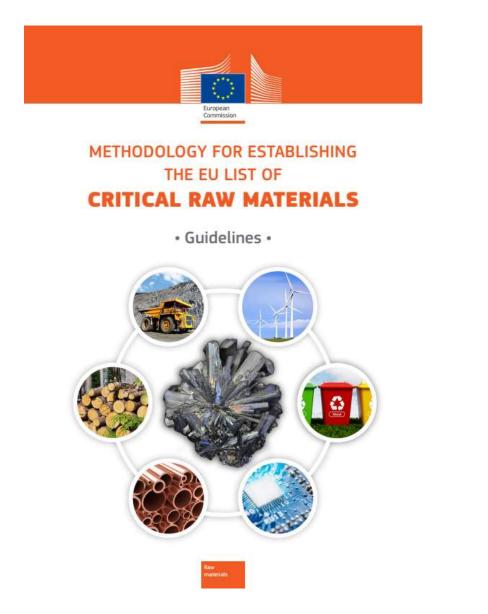


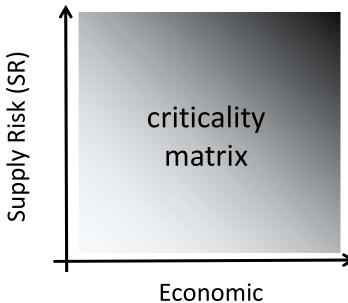

common aspects of different methodologies

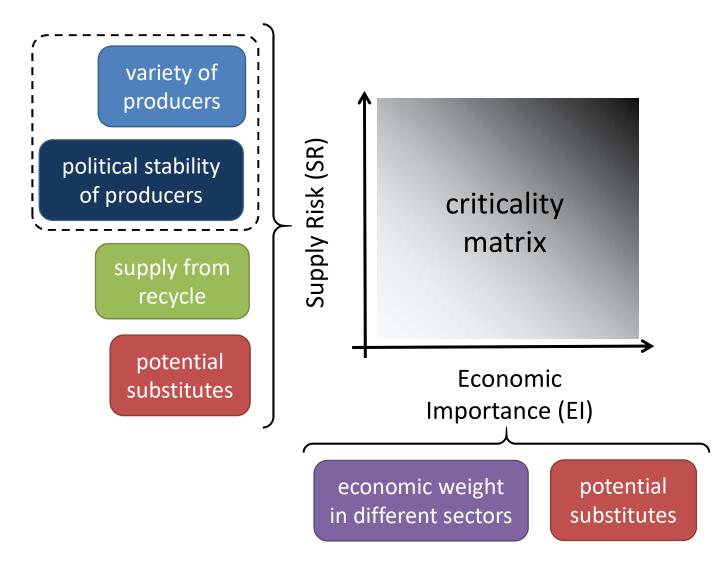
Assessments of materials criticality Indicators used


Resources, Conservation & Recycling 155 (2020) 104617

Assessments of materials criticality Data sources used


Fig. 5. Network visualization of data sources used by the 39 criticality methods examined in this study (China is excluded as data sources are unspecified). Blue nodes represent data sources, their size is shown proportional to the number of times a data source is being used. Red nodes represent the criticality methods assessed. More details are available in SI-B.


Are assessments meaningful? Are they predictive tools?


(from A. King, «Critical Materials», Elsevier 2021, Source Argusmedia)

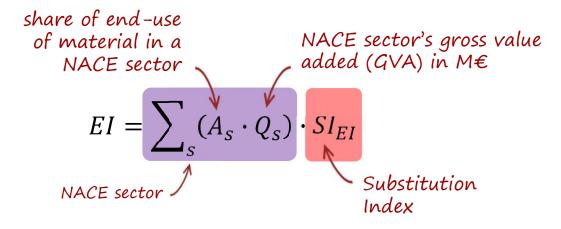
EC 2017 criticality methodology

Economic Importance (EI)

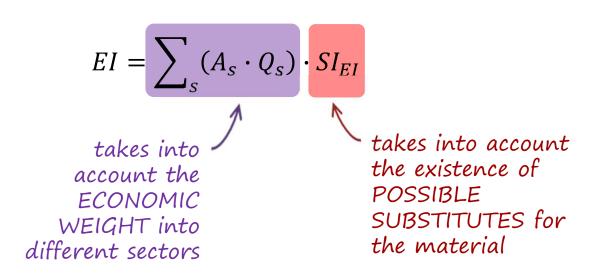
IMPORTANT ASPECTS on the DATA used

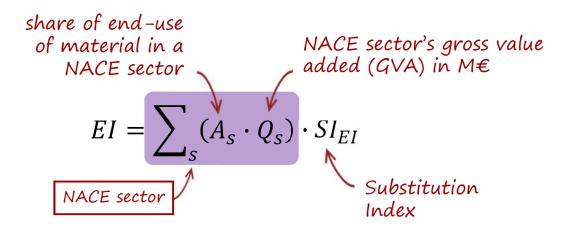
1. data must be <u>public</u>

2. data are <u>prioritized</u>


official EU data > EU state data > non-EU/international data > industry data

3. data are averaged over <u>last 5 years</u>


4. any exception must be reported and justified


a **detailed list** of the data **sources** used for each material is provided in the **materials factsheets**

ECONOMIC IMPORTANCE (EI)

ECONOMIC IMPORTANCE (EI)

Statistical Classification of Economic Activities in the European Community

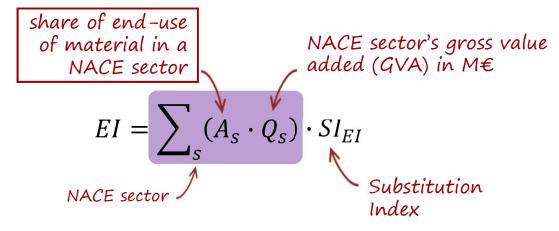
NACE Rev.2

Nomenclature statistique des Activités économiques dans la Communauté Européenne

4 hierarchical levels to classify each sector:

- Level 1: 21 sections identified by alphabetical letters A to U;
- Level 2: 88 divisions identified by two-digit numerical codes (01 to 99);
- Level 3: 272 groups identified by three-digit numerical codes (01.1 to 99.0);
- Level 4: 629 classes identified by four-digit numerical codes (01.11 to 99.00).

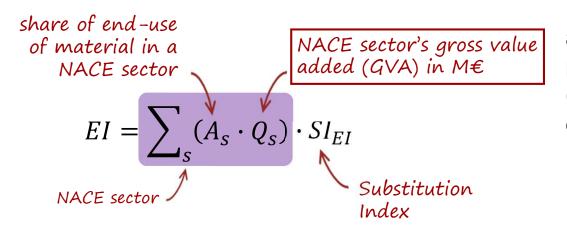
Level 1 Code	Economic Area
A	Agriculture, Forestry and Fishing
В	Mining and Quarrying
С	Manufacturing
D	Electricity, Gas, Steam and Air Conditioning Supply


Level 2 Code (SECTOR)

01 Crop and animal production

02 Forestry and logging

03 Fishing and aquaculture

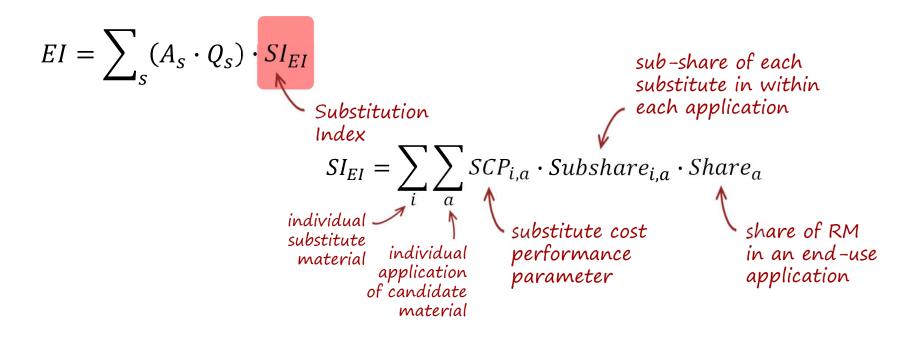

* data from EUROSTAT's Structural Buisiness Statistics

end-use

from PRODCOM (PRODuction COMmunautaire) list of manufactured goods

a measure of the value of goods produced in a sector (overall economic importance of that sector)

example* for Cobalt


$$EI = \sum_{s} (A_s \cdot Q_s) \cdot SI_{EI}$$

how much money are worth the activities in which a material is used

	A_s		Q_s	
Application	Share	2-digit NACE sector	NACE sector GVA (M€)	Contribution to EI (Share x sector GVA)
Source: Cobalt In	stitute	Source: ESTAT	Ē	JRC elaboration*
Superalloys, hardfacing/HSS and other alloys	36%	C25 - Manufacture of fabricated metal products, except machinery and equipment	148,351	53,407
Hard materials (carbides and diamond tools)	14%	C25 - Manufacture of fabricated metal products, except machinery and equipment	148,351	20,324
Pigments and Inks	13%	C20 - Manufacture of chemicals and chemical products	105,514	13,717
Catalysts	12%	C20 - Manufacture of chemicals and chemical products	105,514	12,556
Tyre adhesives and paint dryers	11%	C20 - Manufacture of chemicals and chemical products	105,514	11,290
Magnets	7%	C27 - Manufacture of electrical equipment	80,745	5,329
Battery	3%	C27 - Manufacture of electrical equipment	80,745	2,180
Other – Biotech, Surface Treatment, etc	6%	C20 - Manufacture of chemicals and chemical products 0	105,514	5,803
Total				124,606

* from EC, 2020, Study on the EU list of Critical Raw Materials - Final Report

↑ high SI: no substitutes ↓ low SI: many substitutes RATIONALE: the availability of **substitute materials** could mitigate the risk of supply disruptions.

only proven substitutes that are available today

0.7

0.8

↑ high SI: no substitutes↓ low SI: many substitutes

Similar or lower costs

RATIONALE: the availability of **substitute materials** could mitigate the risk of supply disruptions.

$$EI = \sum_{s} (A_{s} \cdot Q_{s}) \cdot SI_{EI}$$
sub-share of each
substitute in within
each application
Index

$$SI_{EI} = \sum_{i} \sum_{a} SCP_{i,a} \cdot Subshare_{i,a} \cdot Share_{a}$$
substitute cost
substitute cost
substitute cost
share of RM
in an end-use
performance
Substitute material technical
Substitute material technica

1

↑ high SI: no substitutes↓ low SI: many substitutes

RATIONALE: the availability of **substitute materials** could mitigate the risk of supply disruptions.

$$EI = \sum_{s} (A_{s} \cdot Q_{s}) \cdot \underbrace{SI_{EI}}_{Substitution}$$

for Cobalt, $SI_{El} = 0.92$

example* for Cobalt

* from EC, 2020, Study on the EU list of Critical Raw Materials - Final Report

$$EI = \sum_{s} (A_s \cdot Q_s) \cdot SI_{EI}$$

$$0.92$$

$$124.060 \text{ M} \in$$

 $EI = \sum_{s} (A_s \cdot Q_s) \cdot SI_{EI} = 124.606 \, M \in \cdot \, 0,92 = 114.733 \, M \in$

$$EI_{scaled} = \frac{114.733 \, M \in}{106.055 \, M \in} \cdot 10 = 5,85 \quad (on \ a \ O-10 \ scale)$$

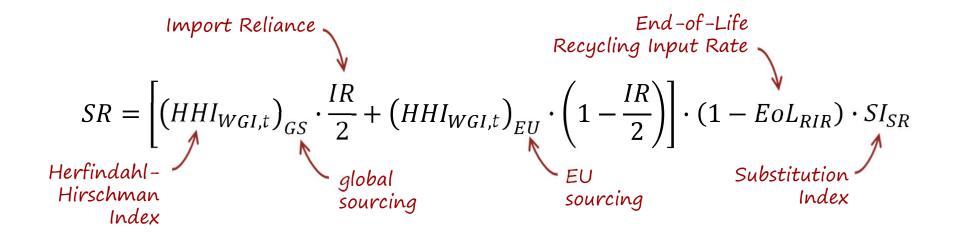
$$highest \ value \ for$$

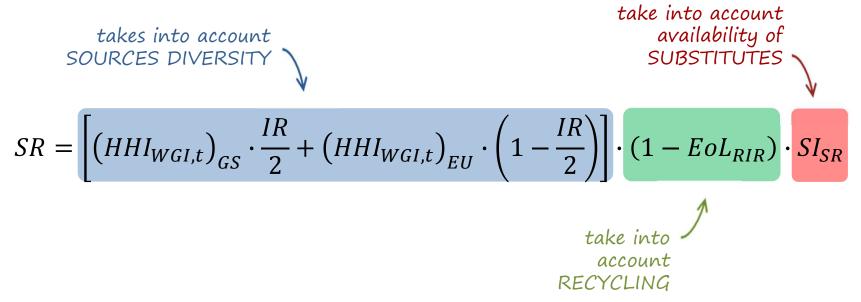
$$a \ NACE \ sector$$

SUPPLY RISK (SR)

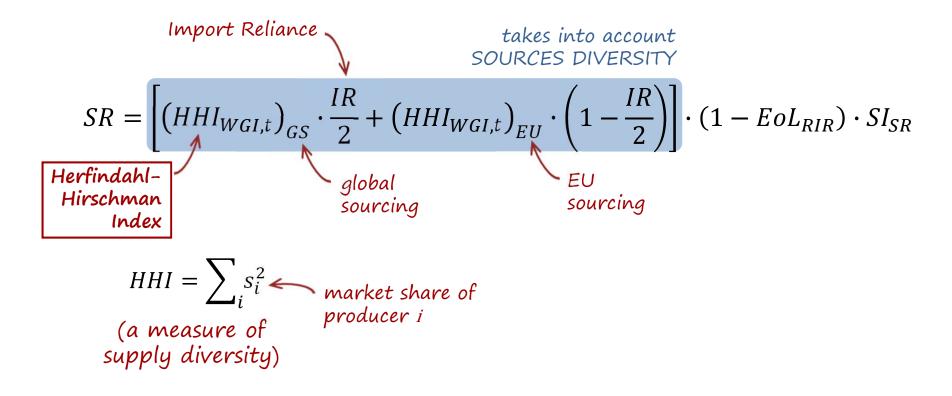
2 different stages considered

Stage I (Extraction, stage E)

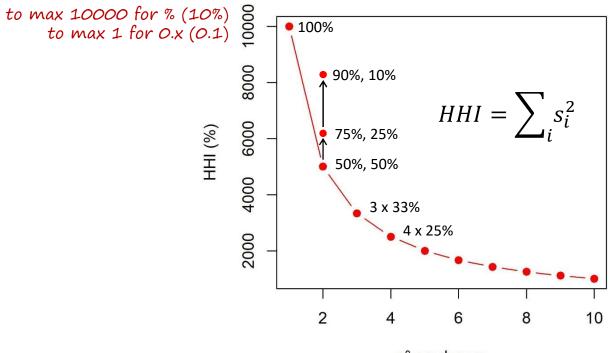

Stage II (Processing, stage P)



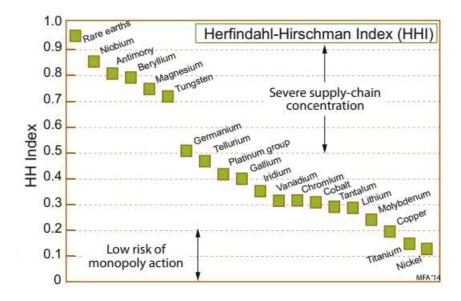
SR is calculated for **both stages**: only **bottleneck stage SR** (i.e. the stage with the **highest SR value**) considered for analysis


SUPPLY RISK (SR)

SUPPLY RISK (SR)



SUPPLY RISK (SR)


↑ high HHI: few producers (low supply diversity)
 ↓ low HHI: many producers (high supply diversity)

the Herfindahl-Hirschman Index (HHI)

n° producers

the Herfindahl-Hirschman Index (HHI)

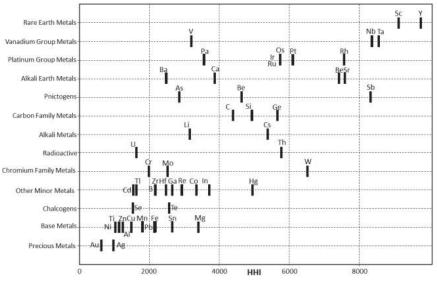
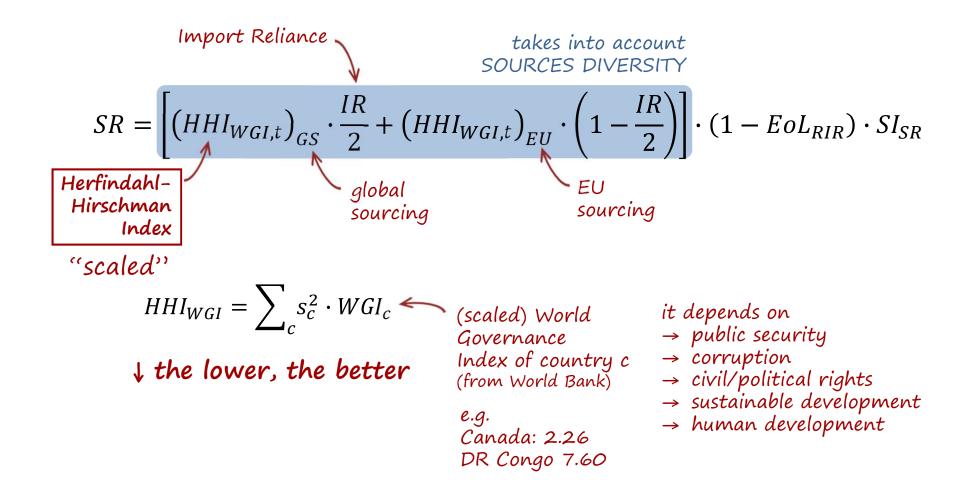
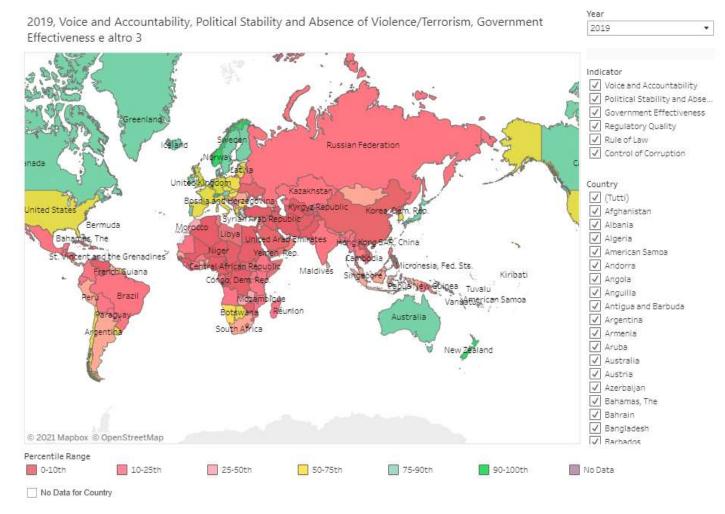
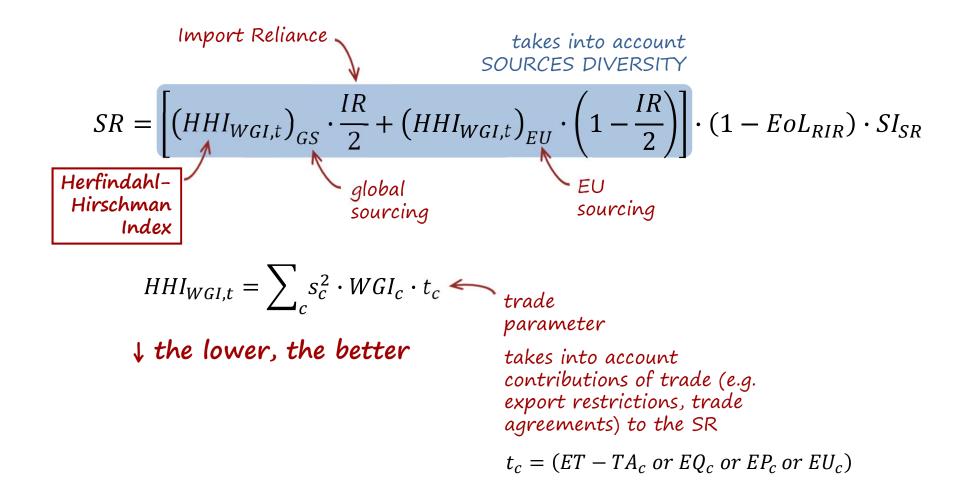



Fig. 7.4. Illustration of the Herfindahl-Hirschman Index for materials based on 2010 production data from the British Geological Survey and the U.S. Geological Survey.

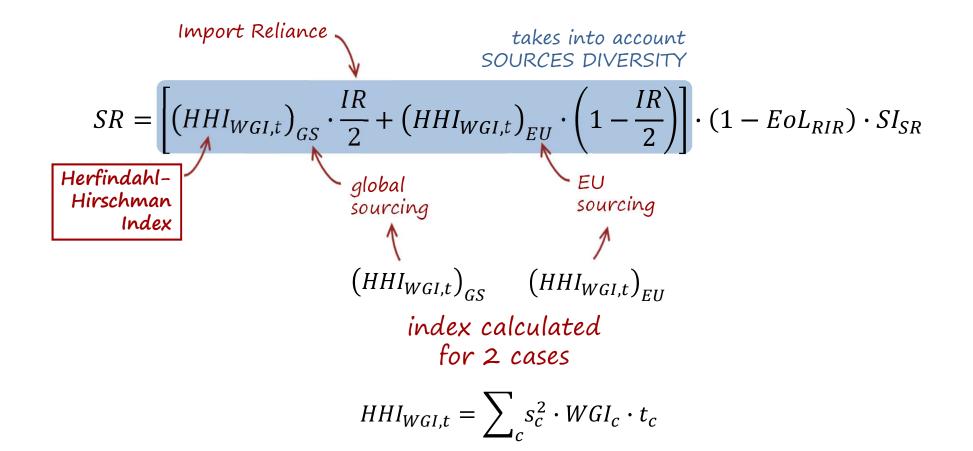
(from M.Ashby, "Materials and Sustainable Development", Elsevier 2016)


(from S.E.Offerman. Ed., "Critical Materials", World Scientific 2019)

SUPPLY RISK (SR)


the World Governance Index (WGI)

(also World Governance Indicator)



(source worldbank.org)

SUPPLY RISK (SR)

SUPPLY RISK (SR)

SUPPLY RISK (SR)

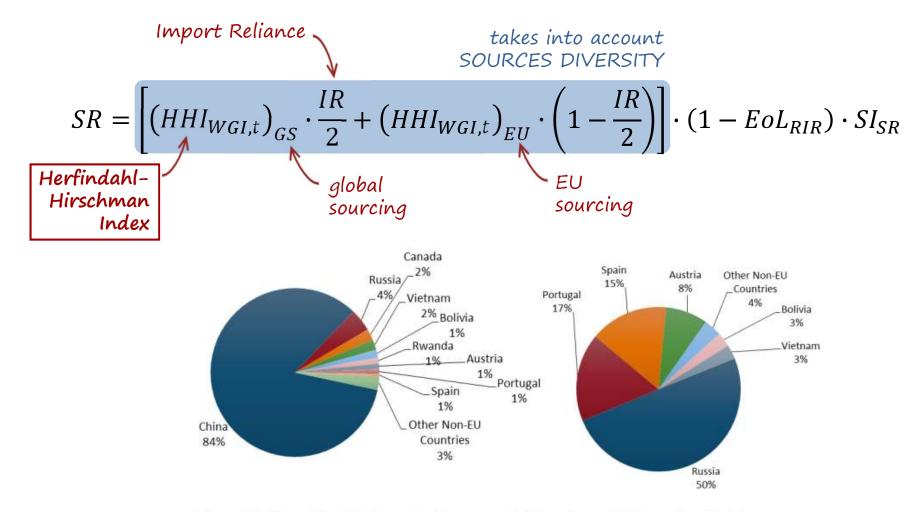


Figure 1b: Example: global supply of tungsten (left) and actual EU sourcing (right).

 t_{C}

 $s_C WGI_C$

Table 19: Stage I (ores and intermediates). Concentration risk for global supply: Global Supply Risk – $(\rm HHI_{WGI-t})_{GS}$

Country Share of production WGIscaled Contribution to (HHIscales) T (rade variable)* to (HHIscales) Source: WMD Source: WorldBank JRC elaboration 2.88 DR Congo 58.7% 7.60 2.62 1.10 2.88 China 7% 5.83 0.03 1.10 0.03 Canada 5% 2.26 0.01 1.00 0.01 Australia 4% 2.36 <0.01 1.00 <0.01 Zambia 4% 5.40 0.01 1.00 <0.01 Guiana 3% 3.23 <0.01 1.00 <0.01 Cuba 3% 5.87 <0.01 1.00 <0.01 Madagascar 2% 5.49 <0.01 1.00 <0.01 Russia 2% 5.08 <0.01 1.00 <0.01 Indonesia 1% 5.94 <0.01 1.00 <0.01 Russia 2% 5.08 <0.01 1.00 <						
Source: WorldBank RC elaboration DR Congo 58.7% 7.60 2.62 1.10 2.88 China 7% 5.83 0.03 1.10 0.03 Canada 5% 2.26 0.01 1.00 0.01 Australia 4% 2.36 <0.01 1.00 <0.01 Zambia 4% 5.40 0.01 1.00 <0.01 French 3% 3.23 <0.01 1.00 <0.01 Cuba 3% 5.87 <0.01 1.00 <0.01 Madagascar 2% 5.49 <0.01 1.00 <0.01 Russia 2% 5.08 <0.01 1.00 <0.01 Russia 2% 6.20 <0.01 1.00 <0.01 Russia 1% 5.47 <0.01 1.00 <0.01 Russia 1% 5.48 <0.01 1.00 <0.01 Morocco 1% 5.47 <0.01	Country		WGI _{scaled}			Contribution to (HHI _{WGI-} t) _{GS}
China 7% 5.83 0.03 1.10 0.03 Canada 5% 2.26 0.01 1.00 0.01 Australia 4% 2.36 <0.01 1.00 <0.01 Zambia 4% 5.40 0.01 1.00 <0.01 Zambia 4% 5.40 0.01 1.10 <0.01 Erench Guiana 3% 3.23 <0.01 1.00 <0.01 Cuba 3% 5.87 <0.01 1.00 <0.01 Philippines 2% 5.49 <0.01 1.00 <0.01 Madagascar 2% 6.26 <0.01 1.00 <0.01 Russia 2% 5.08 <0.01 1.00 <0.01 Indonesia 1% 5.47 <0.01 1.00 <0.01 Finland 1% 5.47 <0.01 1.00 <0.01 Guinea 1% 5.48 <0.01 1.00 <0.01 Guinea <	Source	: WMD			JRC elaboration	
Canada 5% 2.26 0.01 1.00 0.01 Australia 4% 2.36 <0.01	DR Congo	58.7%	7.60	2.62	1.10	2.88
Australia 4% 2.36 <0.01 1.00 <0.01 Zambia 4% 5.40 0.01 1.10 0.01 French Guiana 3% 3.23 <0.01 1.00 <0.01 French Guiana 3% 5.87 <0.01	China	7%	5.83	0.03	1.10	0.03
Zambia 4% 5.40 0.01 1.10 0.01 French Guiana 3% 3.23 <0.01	Canada	5%	2.26	0.01	1.00	0.01
French Guiana 3% 3.23 <0.01 1.00 <0.01 Cuba 3% 5.87 <0.01	Australia	4%	2.36	<0.01	1.00	<0.01
Guiana 3% 3.23 <0.01 1.00 <0.01 Cuba 3% 5.87 <0.01	Zambia	4%	5.40	0.01	1.10	0.01
Philippines 2% 5.49 <0.01 1.00 <0.01 Madagascar 2% 6.26 <0.01 1.00 <0.01 Brazil 2% 5.08 <0.01 1.00 <0.01 Russia 2% 6.20 <0.01 1.00 <0.01 Russia 2% 6.20 <0.01 1.00 <0.01 Finland 1% 6.20 <0.01 0.80 <0.01 Indonesia 1% 5.47 <0.01 1.00 <0.01 Papua New 1% 5.47 <0.01 1.00 <0.01 Morocco 1% 5.48 <0.01 1.00 <0.01 South Africa 1% $2.92 <0.01 1.00 <0.01 United States <0\% 3.89 <0.01 1.00 <0.01 Vietnam <0\% 5.75 <0.01 1.00 <0.01 Uganda <0\%$		3%	3.23	<0.01	1.00	<0.01
Madagascar 2% 6.26 <0.01 1.00 <0.01 Brazil 2% 5.08 <0.01 1.00 <0.01 Russia 2% 6.20 <0.01 1.00 <0.01 Finland 1% 6.20 <0.01 1.00 <0.01 Finland 1% 1.98 <0.01 0.80 <0.01 Indonesia 1% 5.47 <0.01 1.10 <0.01 Papua New 1% 5.94 <0.01 1.00 <0.01 Morocco 1% 5.48 <0.01 1.00 <0.01 South Africa 1% 4.65 <0.01 1.00 <0.01 United States $<0\%$ 2.92 <0.01 1.00 <0.01 Zimbabwe $<0\%$ 7.17 <0.01 1.00 <0.01 Vietnam $<0\%$ 5.75 <0.01 1.00 <0.01	Cuba	3%	5.87	<0.01	1.00	<0.01
Brazil 2% 5.08 <0.01 1.00 <0.01 Russia 2% 6.20 <0.01	Philippines	2%	5.49	<0.01	1.00	<0.01
Russia 2% 6.20 <0.01 1.00 <0.01 Finland 1% 1.98 <0.01	Madagascar	2%	6.26	<0.01	1.00	<0.01
Finland 1% 1.98 <0.01 0.80 <0.01 Indonesia 1% 5.47 <0.01	Brazil	2%	5.08	<0.01	1.00	<0.01
Index Index <th< td=""><td>Russia</td><td>2%</td><td>6.20</td><td><0.01</td><td>1.00</td><td><0.01</td></th<>	Russia	2%	6.20	<0.01	1.00	<0.01
Papua Guinea New 1% 1% 5.94 <0.01 1.00 <0.01 Morocco 1% 5.48 <0.01	Finland	1%	1.98	<0.01	0.80	<0.01
Guinea 1% 5.94 And 1.00 And 1.00 And An	Indonesia	1%	5.47	<0.01	1.10	<0.01
South Africa 1% 4.65 <0.01 1.00 <0.01 United States <0%		1%	5.94	<0.01	1.00	<0.01
United States <0% 2.92 <0.01 1.00 <0.01 Zimbabwe <0%	Morocco	1%	5.48	<0.01	1.00	<0.01
Zimbabwe <0% 7.17 <0.01 1.00 <0.01 Botswana <0%	South Africa	1%	4.65	<0.01	1.00	<0.01
Botswana <0% 3.89 <0.01 1.00 <0.01 Vietnam <0%	United States	<0%	2.92	<0.01	1.00	<0.01
Vietnam <0% 5.75 <0.01 1.00 <0.01 Uganda <0%	Zimbabwe	<0%	7.17	<0.01	1.00	<0.01
Uganda <0% 5.99 <0.01 1.00 <0.01	Botswana	<0%	3.89	<0.01	1.00	<0.01
	Vietnam	<0%	5.75	<0.01	1.00	<0.01
2,68 2.95	Uganda	<0%	5.99	<0.01	1.00	<0.01
				2.68		2.95

example for Cobalt (E stage, GS)

$$HHI_{WGI,t} = \sum_{c} \frac{s_c^2}{WGI_c} \cdot t_c$$

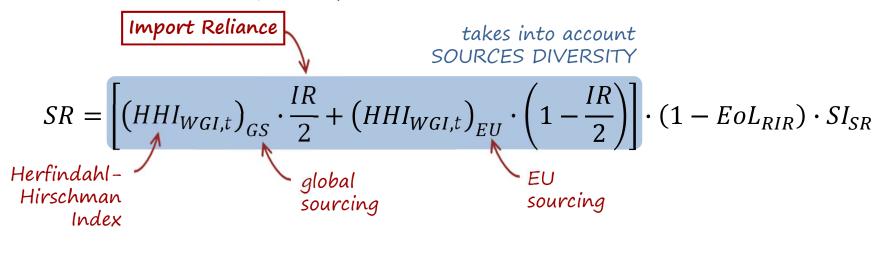
2.95 $(HHI_{WGI,t})_{GS} = 2.95$

 t_{C}

 $s_C WGI_C$

Table 19: Stage I (ores and intermediates). Concentration risk for global supply: Global Supply Risk – $(\rm HHI_{WGI^-t})_{GS}$

Country	Share of production	WGI _{scaled}	Contribution to (HHI _{WGI}) _{GS}	T (trade variable)*	Contribution to (HHI _{wGI} - t) _{GS}
Source: WMD		Source: WorldBank	JRC elaboration		
DR Congo	58.7%	7.60	2.62	1.10	2.88
China	7%	5.83	0.03	1.10	0.03
Canada	5%	2.26	0.01	1.00	0.01
Australia	4%	2.36	<0.01	1.00	<0.01
Zambia	4%	5.40	0.01	1.10	0.01
French Guiana	3%	3.23	<0.01	1.00	<0.01
Cuba	3%	5.87	<0.01	1.00	<0.01
Philippines	2%	5.49	<0.01	1.00	<0.01
Madagascar	2%	6.26	<0.01	1.00	<0.01
Brazil	2%	5.08	<0.01	1.00	<0.01
Russia	2%	6.20	<0.01	1.00	<0.01
Finland	1%	1.98	<0.01	0.80	<0.01
Indonesia	1%	5.47	<0.01	1.10	<0.01
Papua New Guinea	1%	5.94	<0.01	1.00	<0.01
Morocco	1%	5.48	<0.01	1.00	<0.01
South Africa	1%	4.65	<0.01	1.00	<0.01
United States	<0%	2.92	<0.01	1.00	<0.01
Zimbabwe	<0%	7.17	<0.01	1.00	<0.01
Botswana	<0%	3.89	<0.01	1.00	<0.01
Vietnam	<0%	5.75	<0.01	1.00	<0.01
Uganda	<0%	5.99	<0.01	1.00	<0.01
			2.68		2.95


example for Cobalt

$$HHI_{WGI,t} = \sum_{c} \frac{s_c^2}{s_c} \cdot WGI_c \cdot t_c$$

$$(HHI_{WGI,t})_{GS} = 1.61 (HHI_{WGI,t})_{EU} = 0.54$$
 stage II (P)

SUPPLY RISK (SR)

(how much do we rely on import)

$$(from O \ to 1) IR = \frac{(Import - Export)}{Domestic \ production + (Import - Export)}$$

Iow IR: no need to import (domestic production is high) high IR: rely on import (domestic production is low)

for cobalt: IR (stage I) = 86% IR (stage II) = 27%

SUPPLY RISK (SR)

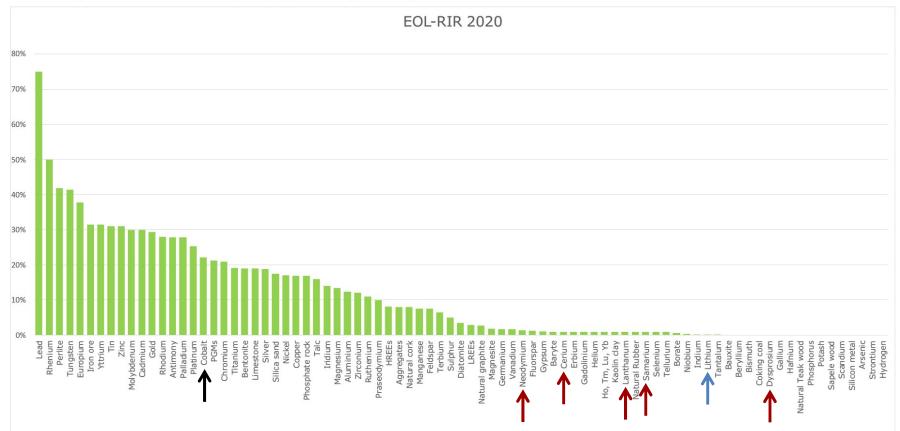
$$SR = \left[\left(HHI_{WGI,t} \right)_{GS} \cdot \frac{IR}{2} + \left(HHI_{WGI,t} \right)_{EU} \cdot \left(1 - \frac{IR}{2} \right) \right] \cdot \left(1 - EoL_{RIR} \right) \cdot SI_{SR}$$

$$input of recycled material$$

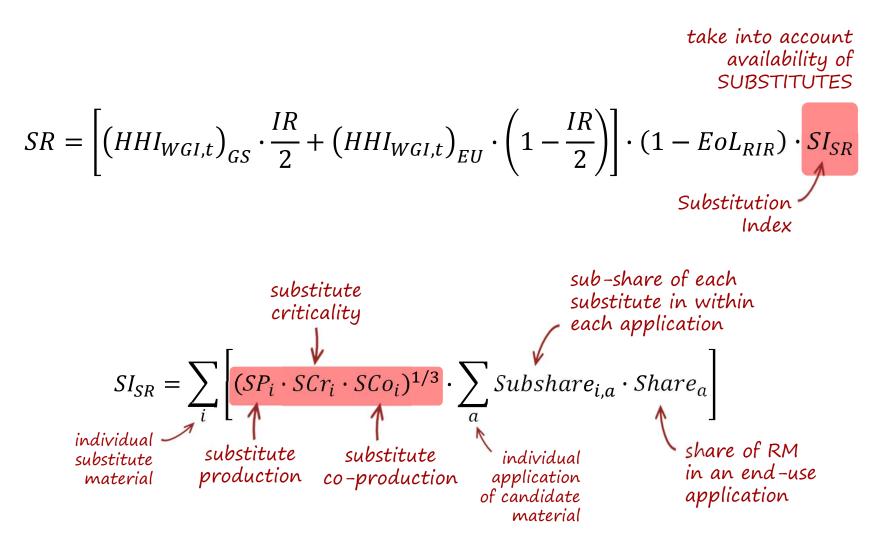
$$IRECYCLING$$

$$IRECYCLING$$

$$IRECYCLING$$


$$IRECYCLING$$

$$IRECYCLING$$


↓ low EoL_{RIR}: low fraction supply from recycling ↑ high EoL_{RIR}: high fraction of supply from recycling (the higher, the better) (for Cobalt, EoL_{RIR} = 22%)

EOL-RIR values

Figure 12: End of life recycling input rate (EOL-RIR)

SUPPLY RISK (SR)

SUPPLY RISK (SR)

take into account availability of SUBSTITUTES

$$SR = \left[\left(HHI_{WGI,t} \right)_{GS} \cdot \frac{IR}{2} + \left(HHI_{WGI,t} \right)_{EU} \cdot \left(1 - \frac{IR}{2} \right) \right] \cdot \left(1 - EoL_{RIR} \right) \cdot \frac{SI_{SR}}{Substitution}$$

SP = 0.8 *if the annual global production of the substitute material is higher than that of the candidate material;*

SP = 1 *if the annual global production of the substitute material is similar or lower than that of the candidate material.*

$$SI_{SR} = \sum_{i} \left[(SP_i \cdot SCr_i \cdot SCo_i)^{1/3} \cdot \sum_{a} Subshare_{i,a} \cdot Share_{a} \right]$$
substitute
production
(market size of RM
compared to that of
substitute)

SUPPLY RISK (SR)

take into account availability of SUBSTITUTES

$$SR = \left[\left(HHI_{WGI,t} \right)_{GS} \cdot \frac{IR}{2} + \left(HHI_{WGI,t} \right)_{EU} \cdot \left(1 - \frac{IR}{2} \right) \right] \cdot \left(1 - EoL_{RIR} \right) \cdot \frac{SI_{SR}}{\Lambda}$$

Substitution / Index

Substitute criticality (SCr)	Rationale
SCr = 1	If the substitute material was on the last EU list of CRM , this material is not expected to contribute to the reduction of the SR of the candidate material.
SCr = 0.8	If the substitute material was not critical in the last EU assessment or was not screened in the previous exercise , this material is expected to contribute to the reduction of the SR of the candidate material.
SCr = 1	If no substitute material is available, no reduction of the SR is assumed.

$$SI_{SR} = \sum_{i} \left[(SP_i \cdot SCr_i \cdot SCo_i)^{1/3} \cdot \sum_{a} Subshare_{i,a} \cdot Share_{a} \right]$$
substitute
criticality

SUPPLY RISK (SR)

take into account availability of SUBSTITUTES

Substitution /

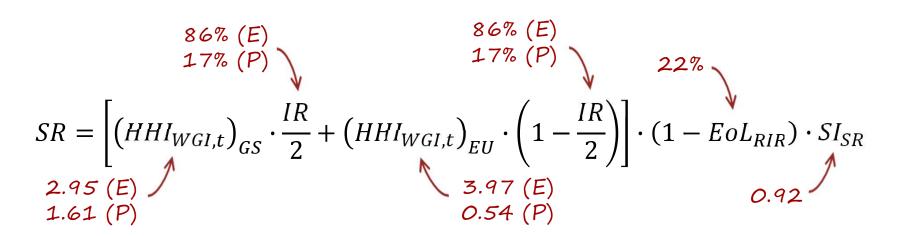
Index

$$SR = \left[\left(HHI_{WGI,t} \right)_{GS} \cdot \frac{IR}{2} + \left(HHI_{WGI,t} \right)_{EU} \cdot \left(1 - \frac{IR}{2} \right) \right] \cdot \left(1 - EoL_{RIR} \right) \cdot \frac{SI_{SR}}{\Lambda}$$

Substitute co- production (SCo)	Rationale		
SCo = 1	<i>If the substitute material is mined only as a by-product or co-product — no reduction of the SR of the candidate material is assumed.</i>		
SCo = 0.8	If the substitute material is mined as a primary material — up to 20 % reduction of the SR is assumed.		
SCo = 0.9	If the substitute material is mined both as a primary material, but also as a by-/co-product (e.g. the case of Molybdenum) — up to 10% reduction of the SR is assumed.		
SCo = 1	If no substitute material is available, no reduction of the SR is assumed.		

$$SI_{SR} = \sum_{i} \left[(SP_i \cdot SCr_i \cdot \frac{SCo_i}{1})^{1/3} \cdot \sum_{a} Subshare_{i,a} \cdot Share_{a} \right]$$
substitute
co-production

SUPPLY RISK (SR)


$$SR = \left[\left(HHI_{WGI,t} \right)_{GS} \cdot \frac{IR}{2} + \left(HHI_{WGI,t} \right)_{EU} \cdot \left(1 - \frac{IR}{2} \right) \right] \cdot \left(1 - EoL_{RIR} \right) \cdot \frac{SI_{SR}}{Substitution}$$

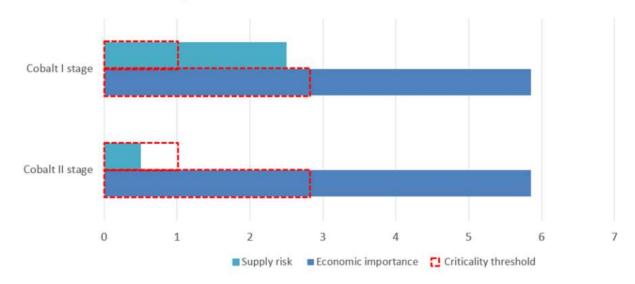
$$Substitution$$

$$Index$$

$$SI_{SR} = \sum_{i} \left[(SP_i \cdot SCr_i \cdot SCo_i)^{1/3} \cdot \sum_{a} Subshare_{i,a} \cdot Share_{a} \right]$$

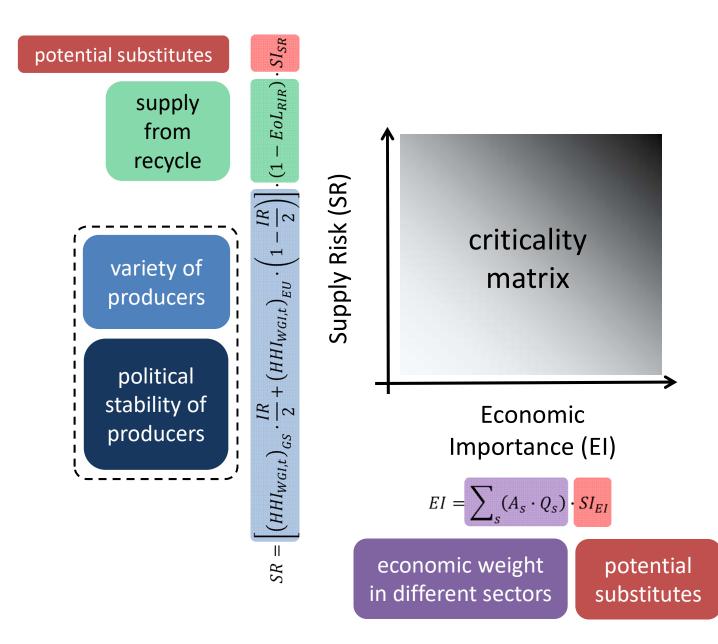
SUPPLY RISK (SR) for Cobalt

$$SR_{(E)} = \left[2.95 \cdot \frac{86}{2} + 3.97 \cdot \left(1 - \frac{86}{2}\right)\right] \cdot (1 - 22) \cdot 0.92 = 2.5$$
for stage I (E)


$$SR = \left[1.61 \cdot \frac{17}{2} + 0.54 \cdot \left(1 - \frac{17}{2} \right) \right] \cdot (1 - 22) \cdot 0.92 = 0.5$$

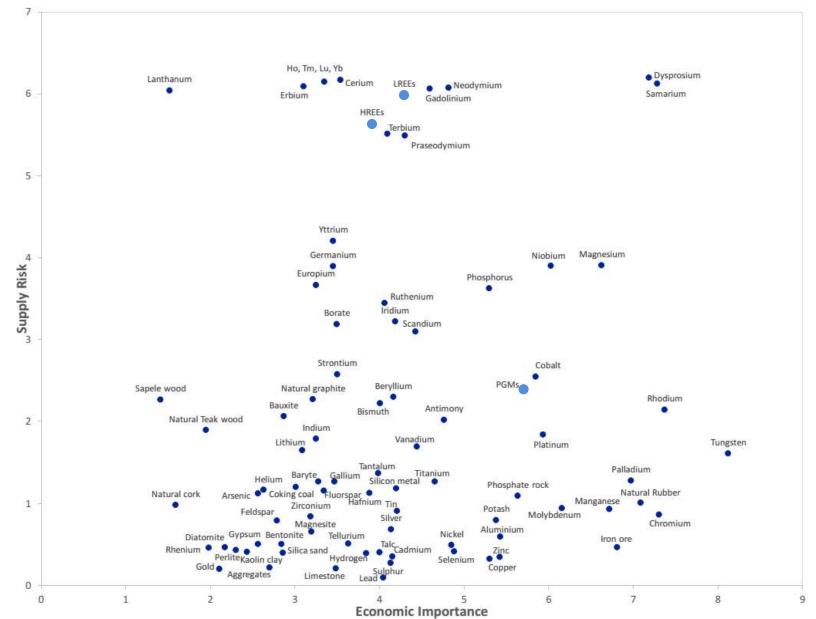
(P) for stage II (P)

CRITICALITY ANALYSIS for Cobalt

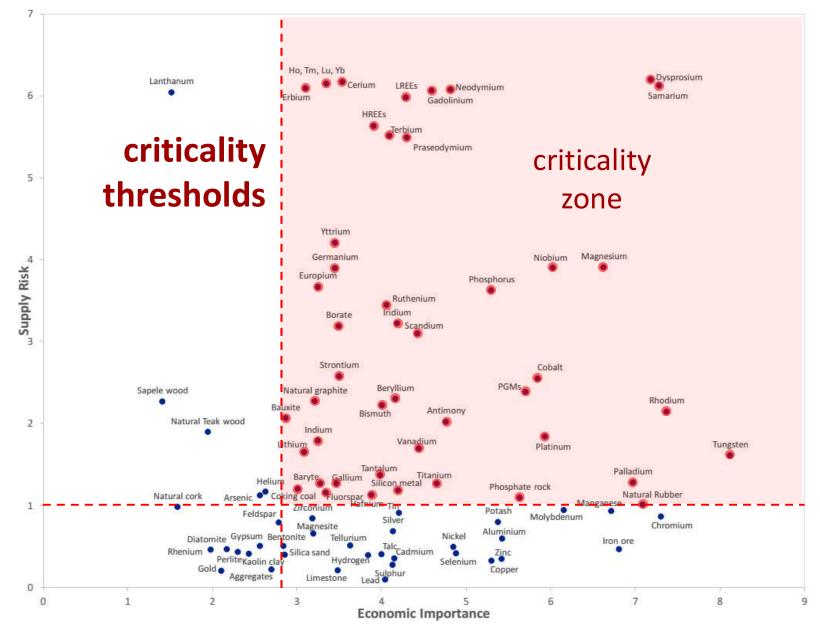

Table 23: EI and SR results for cobalt

I stage (ores and intermediates)	II stage (metal)
EI = 5.9	EI = 5.9
SR = 2.5	SR = 0.5

Figure 15: EI and SR results for cobalt


EC 2017 criticality methodology

candidate materials considered for analysis


Industrial and construction minerals	aggregates, baryte, bentonite, borates, diatomite, feldspar, fluorspar, gypsum, kaolin clay, limestone, magnesite, natural graphite, perlite, phosphate rock, phosphorus, potash, silica sand, sulphur, talc				
Iron and ferro- alloy metals	chromium, cobalt, manganese, molybdenum, nickel, niobium, tantalum, titanium, tungsten, vanadium				
Precious metals	gold, silver, and Platinum Group Metals (iridium, palladium, platinum, rhodium, ruthenium)				
Rare earths	Heavy rare earths (dysprosium, erbium, europium, gadolinium, holmium, lutetium, terbium, thulium, ytterbium, yttrium); Light rare earths (cerium, lanthanum, neodymium, praseodymium and samarium); and scandium				
Other non-ferrous metals	aluminium, antimony, arsenic, beryllium, bismuth, cadmium, copper, gallium, germanium, gold, hafnium, indium, lead, lithium, magnesium, rhenium, selenium, silicon metal, silver, strontium, tellurium, tin, zinc, zirconium				
Bio and other materials	natural cork, natural rubber, natural teak wood, sapele wood, coking coal, hydrogen and helium				

EC 2020 CRMs Final Report (results!)

all other relevant data in a table

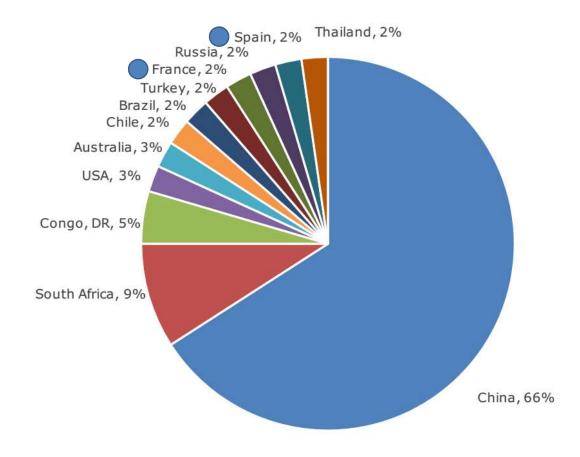
bottleneck stage (highest SR)		Import Reliance			Recycle Input Rate	Substit. Indexes		type of SR used
Material	Stage	Supply Risk	EI	IR (%)	EoL-RIR (%)	SI_{SR}	SI _{EI}	Supply used in SR calc.
Aggregates	Extraction	0.2	2.7	1	8	0.93	0.97	EUS only
Aluminium	Processing	0.6	5.4	59	12	0.80	0.88	GS + EUS
Antimony	Extraction	2.0	4.8	100	28	0.92	0.94	GS + EUS
Arsenic	Processing	1.2	2.6	32	0	0.85	0.94	GS + EUS
Baryte	Extraction	1.3	3.3	70	1	0.95	0.96	GS + EUS
Bauxite	Extraction	2.1	2.9	87	0	0.99	1.00	GS + EUS
Bentonite	Extraction	0.5	2.8	15	19	0.99	0.99	GS + EUS
Beryllium	Extraction	2.3	4.2	0	0	0.99	0.99	GS only
Bismuth	Processing	2.2	4.0	50	0	0.96	0.94	GS + EUS
Borate	Extraction	3.2	3.5	100	1	1.00	1.00	GS + EUS
Cadmium	Processing	0.3	4.2	0	30	0.92	0.91	EUS only
Cerium	Processing	6.2	3.5	100	1	0.95	0.99	EUS only
Chromium	Processing	0.9	7.3	66	21	1.00	1.00	GS + EUS
Cobalt	Extraction	2.5	5.9	86	22	0.92	0.92	GS + EUS
Coking coal	Extraction	1.2	3.0	62	0	0.99	0.99	GS + EUS
Copper	Extraction	0.3	5.3	44	17	0.93	0.93	GS + EUS

criticality thresholds

(we don't know how they are determined) «The decision of thresholds is perhaps the most sensible element in the context of the EU policies, and DG GROW (i.e. Directorate-General) keeps this decision for itself.»

> a co-author of the Report, personal communication

«The determination of the threshold value is not a scientific excercise but can be motivated politically»


Schrijvers et al., Res. Conserv. Recycl. 155 (2020) 104617

main result: CRMs list (for EU!)

Table 5: 2020 Critical raw materials for the EU

2020 Critical Raw Materials (30)						
Antimony	Fluorspar	Magnesium	Silicon Metal			
Baryte	Gallium	Natural Graphite	Tantalum			
Bauxite	Germanium	Natural Rubber	Titanium			
Beryllium	Hafnium	Niobium	Tungsten			
Bismuth	HREEs	PGMs	Vanadium			
Borates	Indium	Phosphate rock	Strontium			
Cobalt	Lithium	Phosphorus				
Coking Coal	LREEs	Scandium				

Figure 8: Main global suppliers of CRMs (based on number of CRMs supplied), average from 2012-2016

global suppliers of CRMs

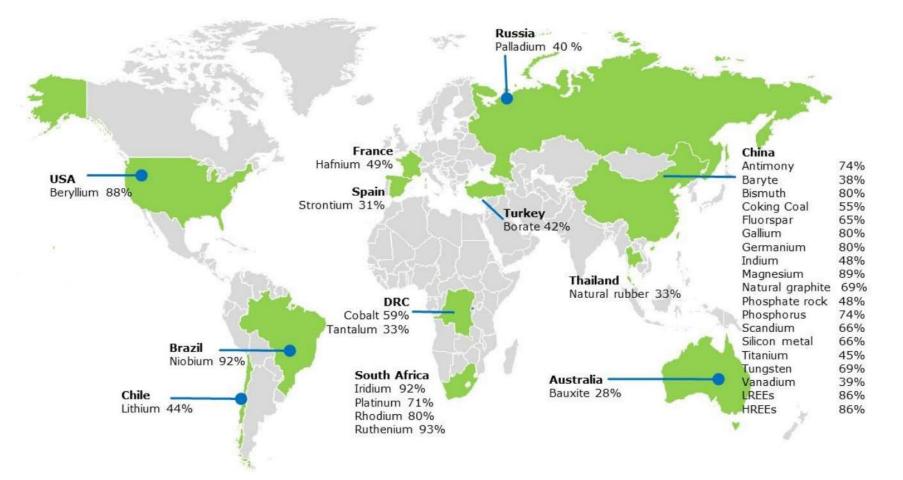
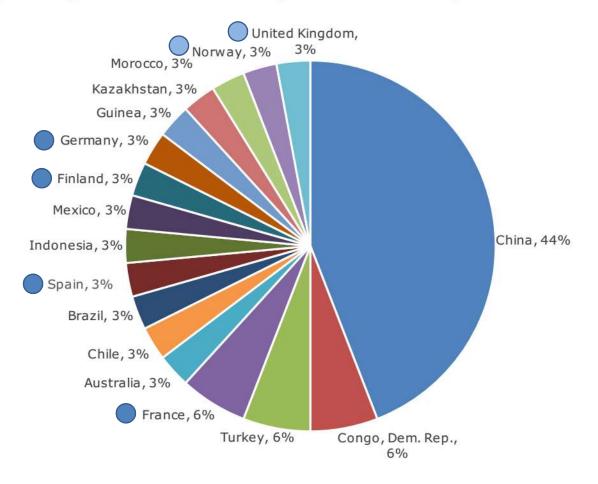
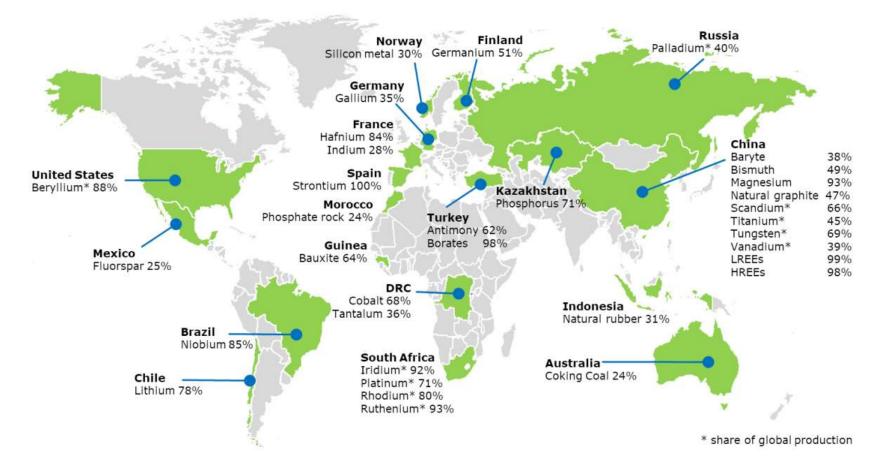




Figure B: Countries accounting for largest share of global supply of CRMs

Figure 9: Main EU sourcing countries of CRMs (based on number of CRMs supplied), average from 2012- 2016 (REEs 2016-2018).

EU suppliers of CRMs

Figure E: Countries accounting for largest share of EU sourcing of CRMs

Figure D: EU producers of CRMs, in brackets shares of global supply, 2012-2016⁹

major output: **CRMs FACTSHEETS**

819 pages

- Market analysis, trade and prices
- for Uses and end-uses in EU Substitutes Geology
- CRM Recycling
 Environmental & Health issues
 - Socio-economic issues
 - (...)