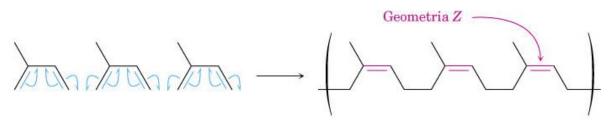
Alcheni: C=C gruppo principale

eta-Carotene (pigmento arancione e precursore della vitamina A)


Alcheni naturali: isoprene e terpeni

2-metil-1,3-butadiene

Terpeni: prodotti dai vegetali (600 mil. ton /anno)

I terpeni sono il prodotto della polimerizzazione delle unità di isoprene

I terpeni sono il prodotto della polimerizzazione delle unità di isoprene

Unità di isoprene

Un segmento di gomma naturale

Alcheni naturali: isoprene e terpeni

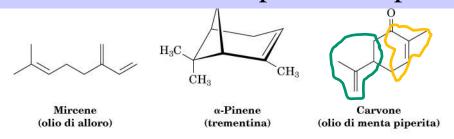
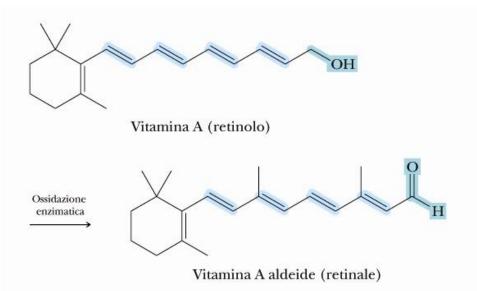
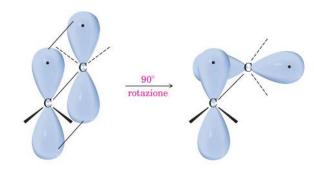



Figura 4.2
Quatro terpeni, ciascuno formato da due unità isopreniche (evidenziate) legate tramite la coda della prima unità e
la testa della seconda unità.
Nel limonene e nel mentolo,
la formazione di un ulteriore
legame carbonio-carbonio
forma un anello a sei termini.

I terpeni sono il prodotto della polimerizzazione delle unità di isoprene

Alcheni naturali: isoprene e terpeni

Produzione industriale degli alcheni


Cracking termico (pirolisi) degli alcani

Processo complesso che coinvolge reazioni di tipo radicalico

Proprietà elettroniche e steriche del legame C=C

FIGURA 6.2 Il legame π deve rompersi perché possa avvenire una rotazione attorno al doppio legame carbonio-carbonio.

Non c'è libera rotazione

Legame π (gli orbitali p sono paralleli)

Rottura del legame π (gli orbitali p sono perpendicolari)

Conseguenza: stereoisomeria cis-trans (E/Z)

FIGURE 6.3 Isomeri cis e trans del 2-butene. L'isomero cis ha i due gruppi metilici dalla stessa parte del doppio legame, mentre l'isomero trans ha i gruppi metilici da parti opposte.

Per avere stereoisomeria *cis/trans* gli atomi di carbonio sp2 devono essere sostituiti da 2 gruppi diversi

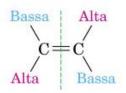
FIGURA 6.4 Requisito per l'isomeria cis-trans negli alcheni. I composti che hanno uno dei loro atomi di carbonio legato a due gruppi identici non possono esistere come isomeri cis-trans. Solo quelli che presentano entrambi gli atomi di carbonio legati a due gruppi differenti possono esistere come isomeri cis-trans.

$$\begin{array}{c}
A \\
C = C
\end{array}$$

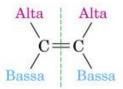
$$\begin{array}{c}
D \\
E
\end{array}$$

$$\begin{array}{c}
B \\
D
\end{array}$$

$$\begin{array}{c}
D \\
B
\end{array}$$


$$\begin{array}{c}
D \\
E
\end{array}$$

$$\begin{array}{c}
D \\
E
\end{array}$$


Questi due composti sono identici; non si tratta di isomeri cis-trans.

Questi due composti non sono identici; si tratta di isomeri cis-trans.

La nomenclatura E/Z segue le regole di priorità della nomenclatura R/S

Doppio legame *E* (I gruppi a priorità più alta si trovano su lati opposti.)

Doppio legame Z (I gruppi a priorità più alta si trovano sullo stesso lato.)

La nomenclatura E/Z segue le regole di priorità della nomenclatura R/S

Per esempio:

La nomenclatura E/Z segue le regole di priorità della nomenclatura R/S

$$\begin{array}{c} H \\ C = C \\ H_3C \\ CH_2OH \end{array}$$

Nomenclatura IUPAC degli alcheni

Notare!

 Il doppio legame C=C, il triplo legame C≡C e l'anello aromatico sono considerati gruppi funzionali pur avendo solo carboni e idrogeni perché sono siti di reattività.

Costruzione del nome IUPAC: negli alcheni i legami C=C sono il gruppo funzionale principale

```
prefisso + infisso + suffisso

a) numero di carboni (but-, pent- ecc.)

b) presenza di doppi legami (en-)

c) classe chimica (-e)
```

et-en-e
$$H_2C = CH - CH_2CH_2CH_2CH_3$$
 1-esene
$$esan\phi + ene = esene$$

posizione del doppio legame

Negli alcheni i legami C=C sono il gruppo funzionale principale e devono essere contenuti nella catena principale

Regole generali: Identificazione catena principale

- a. deve contenere il gruppo principale
- b. deve contenere il massimo numero di gruppi sussidiari (legami doppi e tripli)
- c. deve contenere il numero massimo di carboni
- d. deve contenere il numero massimo di sostituenti

Negli alcheni i legami C=C sono il gruppo funzionale principale: la numerazione della catena deve conferire al C=C il numero più basso possibile

Numerazione catena principale

- a. Partire dalla direzione che conferisce <u>il numero più basso al gruppo</u> <u>principale</u>
- b. Se il punto "a" non è discriminante, si attribuisce il numero più basso al sostituente incontrato per primo
- d. Se "b" non è discriminante si opera la scelta in funzione dell'ordine alfabetico

$$CH_3CH_2$$
 $^2C = C^1$
 $CH_3CH_2CH_2$
 $^2C = C^1$

2-Etil-1-pentene

$$H_3C$$
— CH = CH — CH_3
2-butene

$$5 \underbrace{\begin{array}{c} 6 \\ 1 \\ 2 \end{array}}_{2} CH_{3}$$

1-Metilciloesene

1,5-Dimetilciclopentene

Numerazione catena principale

- a. Partire dalla direzione che conferisce il numero più basso al gruppo principale
- b. Se il punto "a" non è discriminante, si attribuisce il numero più basso al sostituente incontrato per primo
- d. Se "b" non è discriminante si opera la scelta in funzione dell'ordine alfabetico

Dieni

1,4-Cicloesadiene

$$H$$
 $C=CH_2$
 H_3C
 CH_3

(E)-3-Metil-1,3-pentadiene

$$\begin{array}{c} {\rm CH_3} \\ {\rm H_3C-CH} \\ {\rm C=C} \\ {\rm H_2C=C} \\ {\rm H} \end{array}$$

(E)-1-Bromo-2-isopropil-1,3-butadiene

Notare!

 Una molecola può possedere un solo gruppo funzionale (molecola monofunzionale) o più di uno (molecola polifunzionale).

COME TRATTARE I GRUPPI FUNZIONALI NELLA NOMENCLATURA ALIFATICA

I gruppi

Si distinguono:

- •gruppi principali
- •gruppi sussidiari (doppi e tripli legami)
- •sostituenti

- i doppi e tripli legami all'interno della catena principale non fungono mai da sostituenti (o gruppi principali o gruppi sussidiari)

I legami C=C come gruppi sussidiari

```
prefisso + infisso + suffisso
```

- a) numero di carboni (prop-)
- b) presenza di doppi legami (en-)
- c) classe chimica, gruppo principale (-olo)

H₂C=CHCH₂OH

2-propen-1-olo

COME COSTRUIRE IL NOME DELLE MOLECOLE CHE CONTENGONO VARI GRUPPI FUNZIONALI

I gruppi:

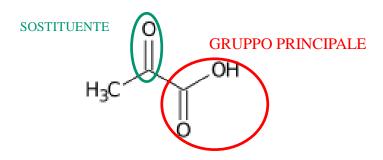
- -gli alogeni e il gruppo nitro non fungono mai da gruppi principali
- i doppi e tripli legami non fungono mai da sostituenti (o gruppi principali o gruppi sussidiari)
- gli altri gruppi funzionali possono fungere da gruppo principale o da sostituente e in tal caso assumono un nome diverso

Come si riconoscono i gruppi principali dai gruppi sostituenti?

Esiste un ordine di priorità tra i gruppi funzionali

Priorità dei gruppi funzionali

0	ACIDO BUTAN OICO
CH ₃ -CH ₂ -CH ₂ -C-OH	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -SO ₃ H	ACIDO BUTAN SOLFONICO
0	METILBUTAN OATO
CH ₃ -CH ₂ -CH ₂ -C-O-CH ₃	
0	CLORURO DI BUTAN OILE
CH ₃ -CH ₂ -CH ₂ -C CI	
0	BUTANAMMIDE
CH ₃ -CH ₂ -CH ₂ -C-NH ₂	
0	BUTAN ALE
CH ₃ -CH ₂ -CH ₂ -C-H	
CH ₃ -CH ₂ -CE N	BUTANONITRILE
0	BUTAN ONE
CH ₃ -CH ₂ -C-CH ₃	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	1-BUTAN OLO
CH ₃ -CH ₂ -CH ₂ - CH ₂ -NH ₂	1-BUTAN AMMINA
CH ₃ -CH ₂ -O-CH ₂ -CH ₃	DIETIL ETERE (ETOSSIETANO)
CH ₃ -C≡ C-CH ₃	2-BUT INO
CH ₃ -CH=CH-CH ₃	2-BUT ENE

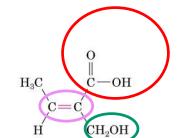

I gruppi funzionali come sostituenti

CARBOSSI

P

.с-он	
-SO ₃	SOLFO
P	METOSSICARBAMOIL
-с-о-сн₃	
Ŷ	CLOROFORMIL
-C-CI	
Q.	CARBAMOIL
$\bigcap_{\text{-C-NH}_2}$	
0	FORMIL
-C-H	
-C≡ N	CIANO
0	osso
0 -c-	
-ОН	IDROSSI
-NH ₂	AMMINO
-O-CH ₂ -CH ₃	ETOSSI

Gruppi principali e gruppi sostituenti



acido 2-ossopropanoico

I legami C=C come gruppi sussidiari

prefisso + infisso + suffisso

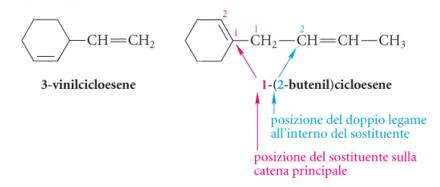
- a) numero di carboni (but-)
- b) presenza di doppi legami (en-)
- c) classe chimica (acido -oico)

SOSTITUENTE

GRUPPO PRINCIPALE

acido (Z)- 2-idrossimetil-2-butenoico

Sostituenti alchenilici (presentano il gruppo C=C)


H₂C≠

 $H_2C=CH \rightarrow H_2C=CH-CH_2 \rightarrow$

Gruppo metilenico

Gruppo vinilico

Gruppo allilico

