Prova scritta del 27 novembre 2018

- 1) Un recipiente della capacità di 1.00 L e contenente un gas A alla pressione di 10.0 kPa viene connesso ad un altro recipiente avente il volume di 3.00 L con all'interno un gas B a 20.0 kPa. La temperature dei recipiente è la stessa. Calcolare qual è la pressione totale e le frazioni molari di ciascun gas nella miscela.
 - a) $p_t=17.5 \text{ kPa}, x_A=0.143, x_B=0.857$
 - b) $p_t=32.7 \text{ kPa}, x_A=0.345, x_B=0.655$
 - c) $p_t=21.3 \text{ kPa}, x_A=0.581, x_B=0.419$
 - d) $p_t=9.8 \text{ kPa}, x_A=0.857, x_B=0.143$

soluzione

Dalle relazioni $n_A = \frac{p_A V_A}{RT} = \frac{1.2028}{T}$ e $n_B = \frac{p_B V_B}{RT} = \frac{7.2167}{T}$ si ottiene $n_t = \frac{8.4195}{T}$. Dalla relazione $p_t V_t = n_t RT$ si ottiene $p_t = 1.75 \times 10^4 \mathrm{Pa}$. Inoltre $x_A = \frac{1.2028}{8.4195} = 0.14286$.

- 2) Qual è la densità dell'azoto molecolare (MM = 28.01g mol⁻¹) gassoso presente in un contenitore di 50 L a 126.85 °C ed avente una pressione di 20 atm?
 - a) 12.53gL^{-1}
 - b) 17.07gL^{-1}
 - c) 23.18gL⁻¹
 - $d) 28.08 gL^{-1}$

soluzione

Si usi la relazione $\delta = \frac{p(MM)}{RT} = 17.069 \mathrm{gL}^{-1}$

- 3) Alla T di 373 K, una mole di ossigeno segue un ciclo secondo il motore ideale di Carnot. Si espande isotermicamente al doppio del volume iniziale, poi adiabaticamente fino a tre volte il volume iniziale poi viene compresso a metà del volume raggiunto e quindi adiabaticamente fino a tornare allo stato iniziale. Assumento $\gamma=1.4$, calcolare il lavoro totale e il rendimento del ciclo stesso.
 - a) +115.72 J, 10%
 - b) -321.84 J, 15%
 - c) -113.12 J, 18%
 - d) 0.0 J, 23%

soluzione

Consideriamo i quattro stadi separatamente:

- i) Espansione isoterma a T=T₁, da V₁ a V₂=2V₁: $w_1 = -\int_{V_1}^{V_2} p dV = -RT_1 \log \left(\frac{V_2}{V_1}\right) = -RT_1 \log(2);$ $q_1 = -w_1$
- ii) Espansione adiabatica da V_2 a $V_3=3V_1$ (la T passa da T_1 a T_2): $q_2=0,\ w_2=C_{V,m}(T_2-T_1)$
- iii) Compressione isoterma a T=T₂, da V₃=3V₁ a V₄= $\frac{3}{2}$ V₁: $w_3 = -\int_{V_3}^{V_4} p dV = -RT_2 \log \left(\frac{V_4}{V_3}\right) = RT_2 \log(2)$; $q_3 = -w_3$
- iv) Compressione adiabatica da V₄ a V₁ (la T passa da T₂ a T₁): q₄=0, $w_4=C_{V,m}(T_1-T_2)=-w_2$ Si ha che $w=w_1+w_2+w_3+w_4=R\log(2)(T_2-T_1)$ mentre il rendimento del ciclo $\eta=\frac{T_1-T_2}{T_1}$ con T₁=373 K. Per trovare T₂ si usa l'equazione:

$$\frac{T_2}{T_1} = \left(\frac{V_2}{V_3}\right)^{\gamma - 1} = \left(\frac{2V_1}{3V_1}\right)^{1.4 - 1} = 0.85028$$

da cui $T_2=0.85028T_1=317.15K$. Con questi dati si ottiene w=-319.84 J e $\eta=0.14879$.

- 4) Quale delle seguenti affermazioni non è vera riguardo ad un sistema che ha raggiunto la temperatura critica?
 - a) Il sistema deve essere chiuso
 - b) Il sistema può essere descritto come un fluido omogeneo
 - c) La temperatura critica dipende dalla pressione
 - d) Non esiste superficie di separazione tra liquido e vapore
- 5) Una mole di gas perfetto viene scaldata in modo isobaro fino a raggiungere un volume doppio di quello iniziale. Viene quindi fatta espandere isotermicamente fino a quando la pressione viene dimezzata. Infine a seguito di un raffreddamento isocoro si ritorna alla temperatura iniziale. Quale è la variazione di entropia totale?
 - a) 11.53 JK^{-1}
 - b) 15.72 JK^{-1}
 - c) 21.13 JK^{-1}
 - d) 0.0 JK^{-1}

Si utilizzi il fatto che S è una funzione di stato e si consideri la espansione isoterma che porta il sistema dallo stato iniziale allo stato finale. Indicando con 1, 2, e 3, lo stato iniziale, intermedio e finale rispettivamente, valgono le seguenti relazioni: $pV_1=RT_1$, $pV_2=2pV_1=RT_2$, e $\frac{p}{2}V_3=RT_1$. Facendo il rapporto tra le ultime due relazioni si ottiene $\frac{V_3}{V_1}=4$. Si ottiene quindi $\Delta S=R\int_{V_1}^{V_3}\frac{dV}{V}=R\log\left(\frac{V_3}{V_1}\right)=R\log(4)=11.526$ JK⁻¹.

- 6) A quanto ammonta il lavoro fatto nella reazione di 1 mole di Ni a 75°C in un recipiente aperto: Ni(s) + 4CO(g) \rightarrow Ni(CO)₄ (g). Assumere un comportamento ideale per i gas. R = 8.31 J/K mol
 - a) $1.80 \times 10^3 \text{ J}$
 - b) $8.68 \times 10^3 \text{ J}$
 - c) -1.80×10^3 J
 - d) -8.68×10^3 J

soluzione

Si usa la relazione $w = -p\Delta V = -\Delta nRT$ con $\Delta n = -3$. Si ottiene: $w = -(1-4) \times 8.31 \frac{J}{Kmol} \times (273.15 + 75)K = 8.6794 \times 10^3$ J.

- 7) Utilizzando le costanti critiche ed il principio degli stati corrispondenti, determinare la pressione ridotta di 3 mol di ossigeno contenute in un recipiente di 60 L alla temperatura di 27 °C. Le costanti di van der Waals per l'ossigeno sono $a=1.36 \text{ L}^2\text{mol}^{-2}$ e $b=3.18\times10^{-2} \text{ L mol}^{-1}$.
 - a) 0.01253
 - b) 0.02469
 - c) 0.00584
 - d) 0.05953

soluzione

Si usino le relazioni: $V_c=3b=0.095400$ L mol $^{-1}$; $p_c=\frac{a}{27b^2}=49.811$ atm, e $T_c=\frac{8a}{27Rb}=154.42$ K. Da questi si ottiene: $T_r=\frac{T}{T_c}=1.9437$, e $V_r=\frac{V_m}{V_c}=209.64$. Usando l'equazione:

$$p_r = \frac{8T_r}{3V_r - 1} - \frac{3}{V_r^2}$$

si ottiene $p_r = 0.024695$.

8) Una sfera del diametro di 50 cm contiene una miscela di Ne ed Ar al 50% in volume. La temperatura è di 20 °C e la pressione risulta essere 2 bar. Calcolare la percentuale in peso dei due gas nella miscela.

- a) 14.76% Ne
- b) 66.44% Ar
- c) 72.05% Ne
- d) 54.09% Ar

Si noti come la percentuale in volume sia pari alla frazione molare, ovvero $\frac{n_{Ne}}{n_t}=0.50$. Dobbiamo quindi calcolare il numero totale di moli di gas, n_t . Il volume della sfera è pari a $V=\frac{1}{6}\pi d^3=65.450$ L, da cui, usando l'equazione del gas ideale si ottiene $n_t=\frac{pV}{RT}=5.3708$ mol. Usando le masse atomiche di Ne e Ar, si ottiene quindi $m_{Ne}=54.191$ g e $m_{Ar}=107.28$ g. Da questi dati si ottiene %m Ne=0.33561 e %m Ar=0.66439.

- 9) Nella combustione del benzene in un recipiente a volume costante a 25°C si liberano 780.5 kcal mol⁻¹. Quale sarebbe la quantità di calore che si libererebbe se la combustione avvenisse a pressione costante?
 - a) $-780.5 \text{ kcal mol}^{-1}$
 - b) $-781.4 \text{ kcal mol}^{-1}$
 - c) $-779.6 \text{ kcal mol}^{-1}$
 - d) mancano dati per risolvere il problema

soluzione

Si usa la relazione: $\Delta H = \Delta U + \Delta nRT$ dove per la reazione: $C_6H_6(l) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(l)$, $\Delta n = -\frac{3}{2}$. Quindi:

 $\Delta H = 780.5~\rm kcal~mol^{-1} - \frac{3}{2} \times 1.9871 \times 10^{-3}~\rm kcal~mol^{-1}K^{-1} \times 298.15~K = -781.39~kcal~mol^{-1}K^{-1} \times 10^{-1}K^{-1} \times 10$

- 10) Stabilire se $dq = (\frac{RT}{p})dp RdT$ è un differenziale esatto e se lo è il corrispondente rapporto $\frac{dq}{T}$
 - a) sono ambedue differenziali esatti
 - b) dq è un differenziale esatto e $\frac{dq}{T}$ non lo è
 - c) $\frac{dq}{T}$ è un differenziale esatto e d
q non lo è
 - d) nessuno dei due è un differenziale esatto

soluzione

 $dq = (\frac{RT}{p})dp - RdT$ non è un differenziale esatto dal momento che $\left(\frac{\partial \frac{RT}{p}}{\partial T}\right)_p = \frac{R}{p}$ mentre $\left(-\frac{\partial R}{\partial p}\right)_T = 0$. Il rapporto $\frac{dq}{T}$ è un differenziale esatto

11) La capacità termica dellossigeno, in unità di JK⁻¹mol⁻¹, nell'intervallo di temperatura compreso tra 300 K e 1200 K à data dalla seguente relazione:

$$C_P(T) = 25.72 + 12.98 \times 10^{-3} T - 38.62 \times 10^{-7} T^2$$

Calcolare la variazione di entropia quando una mole di O₂(g) à riscaldata a pressione costante da 400K a 1000K.

- a) $8.95 \text{ JK}^{-1} \text{ mol}^{-1}$
- b) $12.43 \text{ JK}^{-1} \text{ mol}^{-1}$
- c) $18.86 \text{ JK}^{-1} \text{ mol}^{-1}$
- d) $29.73 \text{ JK}^{-1} \text{ mol}^{-1}$

$$\Delta S = \int_{T_i}^{T_f} C_p(T) \frac{dT}{T} = \int_{T_i}^{T_f} \left(a + bT + cT^2 \right) \frac{dT}{T} = a \log \left(\frac{T_f}{T_i} \right) + b(T_f - T_i) + \frac{c}{2} (T_f^2 - T_i^2)$$

Usando i valori $a{=}25.72 \mathrm{JK^{-1}},\ b=12.98 \times 10^{-3} \mathrm{JK^{-2}}$ e $c=-38.62 \times 10^{-7} \mathrm{JK^{-3}},\ T_i{=}400$ K e $T_f{=}1000 \mathrm{K},$ si ottiene $\Delta S{=}29.733\ \mathrm{JK^{-1}\ mol^{-1}}$

- 12) Dei seguenti criteri di spontaneità di un processo solo uno si applica alle condizioni di temperatura e pressione costante (x, y=T,p):
 - a) $dS_{x,y} \geq 0$
 - b) $dU_{x,y} \leq 0$
 - c) $dG_{x,y} \leq 0$
 - $d) dA_{x,y} \le 0$
- 13) Calcolare Δ_r G° per la reazione: $2SO_2(g)+O_2(g) \longrightarrow 2SO_3(g)$, sapendo che: Δ_f G° per $SO_3(g)=-370.4$ kJmol⁻¹ e Δ_f G° per $SO_2(g)=-300.4$ kJmol⁻¹.
 - a) -70 kJ
 - b) +70 kJ
 - c) -140 kJ
 - d) +140 kJ

soluzione

Dal momento che $\Delta_f G^{\circ}[O_2(g)] = 0.0 \text{kJmol}^{-1}$, avremo che:

$$\Delta_r G^{\circ} = 2 \times \Delta_f G^{\circ} [SO_3(g)] - 2 \times \Delta_f G^{\circ} [SO_2(g)] = -140 \text{ kJmol}^{-1}$$

- 14) Un campione (A) di 35.0 g di acqua alla temperatura di 25.0°C viene mescolato con un campione (B) di 160.0 g di acqua a 86.0°C, in un recipiente adiabatico. Sapendo che la capacità termica molare a pressione costante dell'acqua è 75.3 JK⁻¹mol⁻¹, calcolare la variazione di entropia totale dell'intero sistema.
 - a) 1.6 JK^{-1}
 - b) 3.2 JK^{-1}
 - c) 2.0 JK^{-1}
 - d) 7.3 JK^{-1}

soluzione

 $n_A=\frac{35.0g}{18.016g/mol}$ =1.9444mol; n_B =8.8889 mol. La temperatura finale si ottiene dalla relazione:

$$T_f = \frac{n_A T_{i,A} + n_B T_{B,i}}{n_A + n_B} = 75.051^{\circ} C$$

Quindi:

$$\Delta S_A = n_A C_{p,m} \log \left(\frac{T_f}{T_{A,i}} \right) = 22.721 J/K mol$$

$$\Delta S_B = n_B C_{p,m} \log \left(\frac{T_f}{T_{B,i}} \right) = -20.723 J/Kmol$$

Quindi $\Delta S_t = \Delta S_A + \Delta S_B = 1.9983 \text{ JK}^{-1} \text{mol}^{-1}$

- 15) Un campione di 6.0 mol di un gas ideale monoatomico viene riscaldato a volume costante da 17.0° C a 35.0° C. Calcolare la variazione di entropia.
 - a) $1.1 \ \rm{JK^{-1}}$
 - b) 4.5 JK^{-1}
 - c) 7.2 JK^{-1}
 - d) 10.8 JK^{-1}

Dal momento che il gas è monoatomico, $C_{V,m} = \frac{3}{2}R$. Si ha che:

$$\Delta S = nC_{V,m} \int_{T_i}^{T_f} \frac{dT}{T} = nC_{V,m} \log \left(\frac{T_f}{T_i}\right) = 6.0 mol \times \frac{3}{2} \times 8.314 \frac{J}{Kmol} \log \left(\frac{273.15 + 35.0K}{273.15 + 17.0K}\right)$$
$$= 4.5037 J/K$$