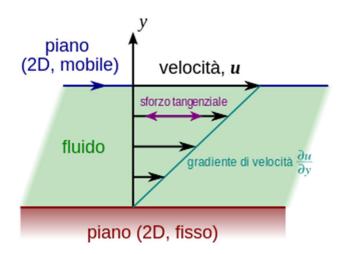
Corso di misure meccaniche, termiche e collaudi

Misura della viscosità di un olio lubrificante

Misura del Flash point e del Fire point di un olio lubrificante

Bozza 2019


Prof. Rodolfo Taccani

Viscosità

Nell'ambito dei fenomeni di trasporto la viscosità è una grandezza fisica che indica la resistenza di un fluido allo scorrimento.

La viscosità viene solitamente indicata con la lettera greca μ (mi)

Viene detta spesso viscosità dinamica per distinguerla dalla viscosità cinematica, che è una grandezza simile alla viscosità dinamica, ma dimensionalmente differente.

Viscosità

La viscosità si può pensare come una misura della forza che occorre applicare ad uno strato piano di fluido, facendolo muovere con velocità v rispetto ad un piano fisso posto a distanza (y). Un fluido in un tubo scorre a velocità diverse: la velocità minima è nel bordo della sezione (a causa dell'attrito) e la velocità massima è al centro. La viscosità dinamica è definita come:

 $\tau = \mu d u / d y$ (comportamento fluido Newtoniano)

- τ è lo "sforzo di deformazione" esercitato dal fluido e calcolato in Pascal [Pa];
- μ è la viscosità (dinamica) del fluido

• d u /d y è il gradiente di velocità perpendicolare alla direzione della deformazione, in [s-1].

(2D, mobile)

fluido

velocità, u

piano (2D, fisso)

diente di velocità

Viscosità – Unità di misura

Viscosità dinamica µ

Nel Sistema SI Poiseuille (PI),

Nel Sistema cgs (centimetro, grammo, secondo) Poise (**P**) (deriva da Jean Léonard Marie Poiseuille). Il Poiseuille, raramente usato, è equivalente al pascal-secondo (Pa·s), o (N·s)/m², o kg/(m·s).

Per esempio, l'acqua a 20 °C ha una viscosità di 1.002 mPa·s, mentre un olio motore 250 mPa·s.

Le unità usate nella pratica sono il Pa·s e i sui sottomultipli e nel Sistema cgs con il Poise e i suoi sottomultipli.

Sempre per l'acqua: 1.002 mPa·s = 1.0020 cP.

```
1PI (Poiseuille )= 1Pa·s

1 P (Poise) = 0.1 Pa·s= 0.1 kg·m-1·s^{-1}

1 cP (centipoise)= 1 mPa·s = 0.001 Pa·s = 0.001 N·s·m^{-2} = 0.001 kg·m^{-1}·s^{-1}.
```

Viscosità – Unità di misura

Viscosità cinematica

Nel SI: m²/s.

Nel cgs: stokes (St), (George Gabriel Stokes). Spesso espresso in termini di centistokes (cSt).

1 St = 1 cm²·s⁻¹ =
$$10^{-4}$$
 m²·s⁻¹.

1 cSt = 1 mm²·s⁻¹ =
$$10^{-6}$$
 m²·s⁻¹.

L'acqua a 20 °C ha una viscosità cinematica di 10-6 m²·s⁻¹ o 1 cSt.

Oli lubrificanti

Per una più semplice identificazione viene comunemente usata la scala SAE

.

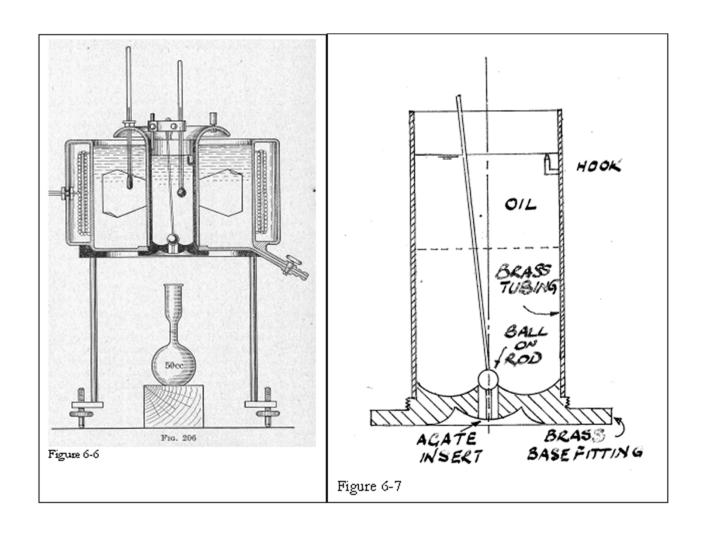
Il cSt è l'unità di misura utilizzata nelle specifiche SAE (Society of Automotive Engineers). Nel caso di oli multigradi, che sono oggi i più diffusi, alla sigla "SAE" seguono due numeri, di cui uno seguito da "W". Questa lettera significa che l'olio è stato testato anche a basse temperature e ne indica la viscosità relativa. Per quanto riguarda il numero che non è seguito dalla "W", l'indice di viscosità è stato misurato alla temperatura standard di 100°C, che è approssimativamente considerata la temperatura media di funzionamento di un motore a 4 tempi. Ad esempio un olio 10W-30 ha la stessa viscosità a 100° C di un olio 5W-30, ma ciò che cambia è la performance a basse temperature.

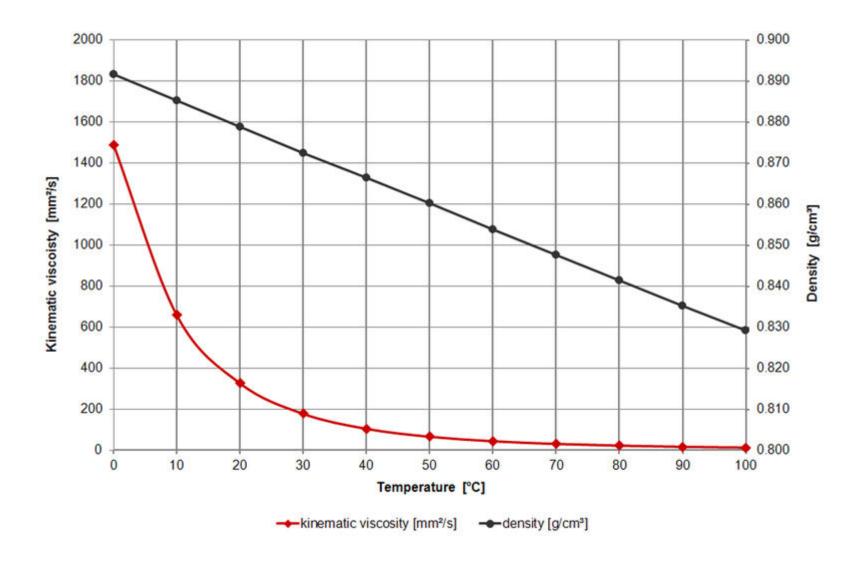
Così, se un motore viene avviato a freddo a bassa temperatura un olio con basso indice "W" si manterrà sufficientemente fluido per raggiungere in breve tempo i componenti meccanici da lubrificare.

Pertanto, alle basse temperatura un olio 5W-30 è meglio di un 10W-30. Per utilizzo alle alte temperature un olio 10W-50 è da preferirsi però a un 5W-30 così come a un 10W-40 Le tabelle qui di seguito mostrano il grado di viscosità degli oli a caldo ed a freddo secondo le misurazioni SAE.

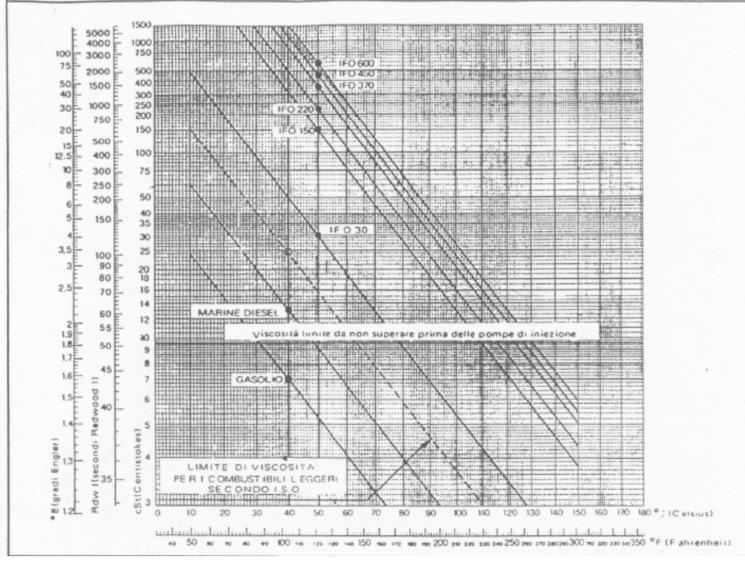
Per quanto riguarda la viscosità a caldo, maggiore è la gradazione SAE migliori saranno le caratteristiche dell'olio alla alte temperature

Olii lubrificanti

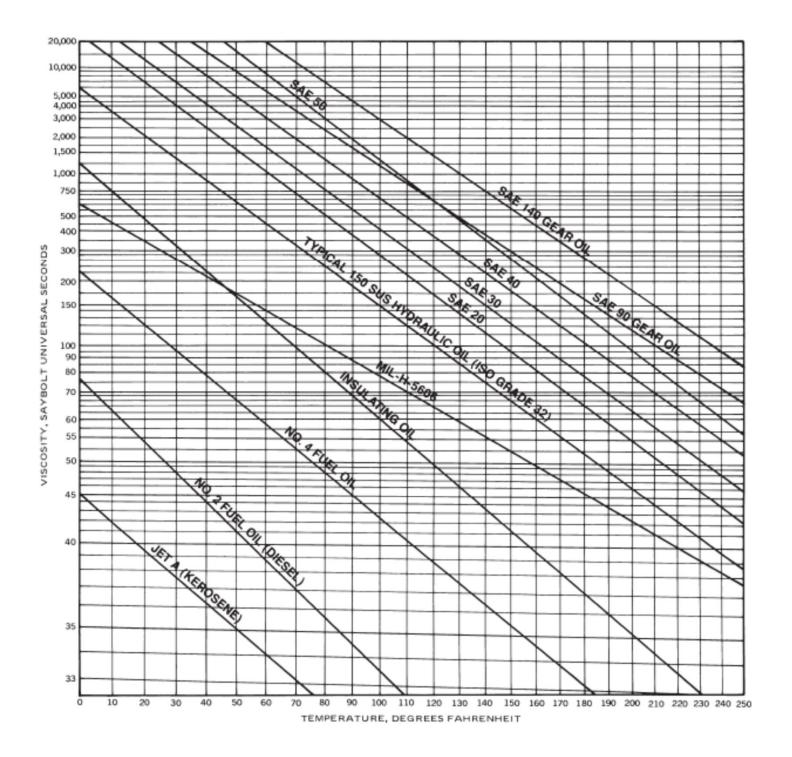

Tabella di definizione dei Gradi SAE

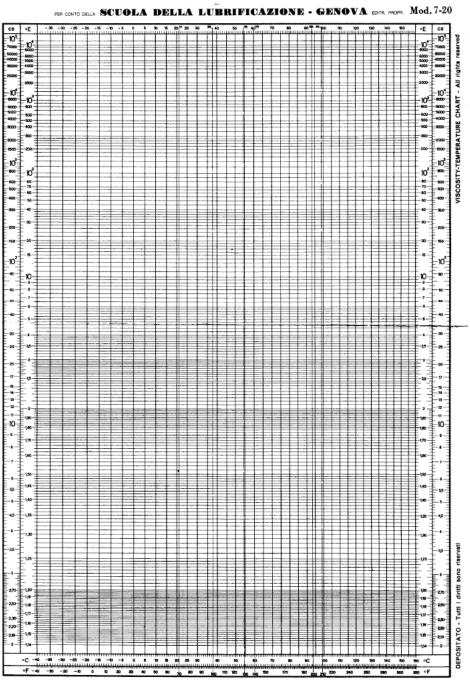

Gradi SAE	Viscosità (centipoise)	Temperatura	Temperatura Limite Pompabilità	Viscosità (centisto	a 100°C ke)
	max	°C	°C max	min	max
θW	3250	-30	-40	3.8	-
5W	3500	-25	-35	3.8	
10W	3500	-20	-30	4.1	-
15W	3500	-15	-25	5.6	-
20W	4500	-10	-20	5.6	-
25W	6000	-5	-15	9.3	-
20	-	-	-	5.6	<9.3
30	_	-	-	9.3	<12.5
40	-	-	-	12.5	<16.3
40	_	_	-	12.5	<16.3
50	_	_	-	16.3	<21.9
60	_	_	-	21.9	<26.1

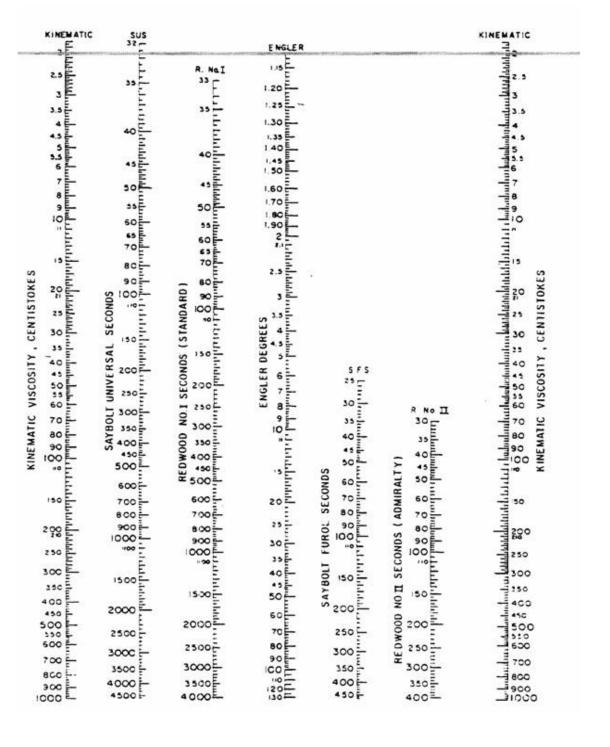
Viscosimetro Engler



Viscosimetro Redwood




Engine Oil SAE 15W-40 - kinematic viscosity and density over temperature



		GASOLIO		COMBUSTIBILI RESIDU					1	
	DENOMINAZIONI (1)		DIESEL	IFO 30	IFO 150	IFO 220	IFO 370	IFO 450	IFO 600	
			(2)	13)	(4)	(5)	(51	(5:	(5)	(5)
	Densitá a 15°C kg/lit	urax	0.85	0.87	0,93	0.99	0,99	0.99	0.99	0,99
	Viscosità cSt a 40°C	max	7	13		-	-	-		
w	Viscositá cSt a 50°C (6)	max			. 30	150	220	370	450	600
핑	Viscositá Sec. Rdw. 1 a 100°F	max	45.6	65	200	1300	2000	3500	4500	6000
ĭ	Punto infiamm. V.C. *C (7)	min	60	60	60	60	60	60	60	60
RISTI	Zolfo %peso	max	1,0	1,8	2,5	3	3,5	4	4.5	5
TEF	Ceneri % peso	max	0,01	0,02	0,05	0,1	0,15	0,2	0,2	0,2
밁	Residuo Conradson % peso (8)	max	0,35	1,5	6	9	10	13	15	20
BA	Asfalteni % peso	max		-	4	6	6	8	10	14
N.	Acqua e sedimenti % vol.	max	0.05	0.3	0,5	-	_	_	-	
7	Acqua % vol.	max	_	-	-	1	1	1	1	1
-	Sodio ppm	max		-	-	15	15	15	15	-
	Vanadio ppm	max			-	100	200	200	200	-

- 1) La denominazione IFO data ai combustibili residui seguita da un numero indica rispettivamente il termine "Intermediate Fuel Oit" e la viscosità in Centistokes a 50°C come prescritto dalla ciassificazione internazionale I.S.O. in accordo a tale classificazione la viscosità del gasolio e dei combustibili leggeri deve essere inferita a 40°C, fino al valore timite di 24 cSt.
- 2) Le caratteristiche dei combustibili ASTM-D 975 N° 2D e BSS-2869-A2 soddisfano le prescrizioni GMT per il gasolio. E' inoltre opportuno che tale combustibile abbia una viscosità superiore a 2,1 cSt a 40°C per evitare possibili inconvenienti all'apparato iniezione.
- 3) Le caratteristiche del combustibile BSS-2869-B2 soddisfano le prescrizioni GMT per il Marine Diesel.
- 4) Le caratteristiche dei combustibili fluidissimo della classificazione italiana, ASTM-D 396-N * 4 e ASTM-D975-N * 4D soddisfano le prescrizioni GMT per il combustibile residuo IFO 30. Gli standard internazionali non definiscono valori limite per il Residuo Conradson e gli Asfalteni. Per tali caratteristiche è necessario non superare il valore massimo previsto dalla GMT.
- 51 I combustibili tipo IFO 150, IFO 220, IFO 370, IFO 450 e IFO 600, non trovano corrispondenza con gli standard ASTM, BSS, ecc. Per il pompaggio, depurazione e iniezione essi devono essere riscaldati. In particolare per ottenere la viscosità prescritta all'apparato iniezione le temperature di riscaldamento sono riportate in tabella B 9802.
- 6) La viscosità massima dei combustibili, per il corretto proporzionamento delle tubazioni di impianto, delle pompe di alimento e dei filtri a loro protezione, è di 150 cSt (20°E); il grado di filtraggio è di 150 μm con Δp non superiore a 0,5 kg/cm²
- 7) Il limite minimo per l'infiammabilità V.C. dei combustibili è stato fissato dal RINa per motivi di sicurezza.
- 8) Il valore di Residuo Conradson per il gasolio è relativo al 10% di residuo di distrilazione.

Olii combustibili

Prodotto: OLIO COMBUSTIBILE

DENSO BTZ Sigla: OC-BTZ

Caratteristiche	Metodo di analisi	Unità ^{di}	Limiti	
Caratteristiche	Metodo di anansi	misura	min.	max.
Densità a 15 °C	EN ISO 3675	kg/m³		995.0
Punto di infiammabilità P.M.	EN ISO 2719	့ပ	65 (5)	
Distillazione				
-Evaporato a 300 °C	EN ISO 3405	% vol		60.0 (2)
-Evaporato a 350 °C		% vol		<85.0 (2)
Zolfo	UNI EN ISO 8754	% peso		1.0 (1)
Viscosità cinem. a 50°C	EN ISO 3104	mm²/s	90,9	378,8 (4)
Punto di scorrimento	ISO 3016	°C		30
Acqua	ISO 3733	%vol		0,5
Sedimenti	ISO 3735	% peso		0.2
Ceneri	UNI EN ISO 6245	% peso		0.08
Potere calorifico inferiore	ASTM D 240/API 14 A.1 .1	kcal/kg	9600	
Residuo carbonioso Conradson	ISO 6615/ISO 10370	% peso		13
Contenuto di Nichel + Vanadio	UNI EN 13131	mg/kg		≤ 180 (1)
Contenuto in PCB Contenuto di PCT	EN 12766-2 e -3	mg/kg		<4 (1) <10 (1)

20%

Cerca in tutto il catalogo...

Home | Chi siamo | Associazione

Normazione

Catalogo

Formazione

Aree di lavoro

Notizie

Home > Catalogo > Catalogo Norme > UNI EN ISO 2719:2016

Le norme PDF scaricabili da UNI Store sono protette da Digital Rights Management (DRM). E' possibile scaricare e aprire ogni file solo sul primo computer o dispositivo sul quale è stato aperto la prima volta.

Leggere attentamente le istruzioni prima di effettuare il download.

Norma UNI

UNI EN ISO 2719:2016

Stato	Disponibilità Ritiro	Azione	Lingua	Formato	Acquista
₽	06/10/16		Inglese	₹ PDF (0.71MB)	€ 55,00 ≒
2	06/10/16		Inglese	CARTA (36)	€ 55,00
se ne hai	diritto, verranno applicati a	utomaticamente i se	eguenti scont	i:	
Sconto Soc	ci Effettivi UNI Per saperne d	più			
			(più IVA	di legge se applicabile	e al cliente

Norma numero: UNI EN ISO 2719:2016

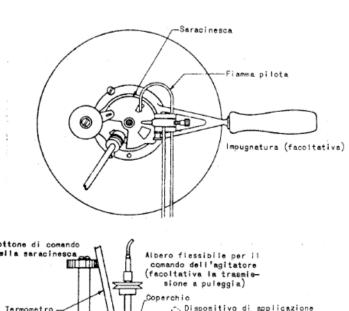
Titolo: Determinazione del punto di infiammabilità - Metodo Pensky Martens in vaso chiuso

Chi compra questa norma compra anche...

- ✓ UNI EN 14175-2:2004
- UNI EN 14175-4:2005
- ✓ UNI EN 14175-6:2006

Carrello UNIstore

Non ci sono articoli nel tuo carrello.


Flash Point e Fire Point

Apparecchio Cleveland

Flash Point e Fire Point

Apparecchio Pensky - Martens

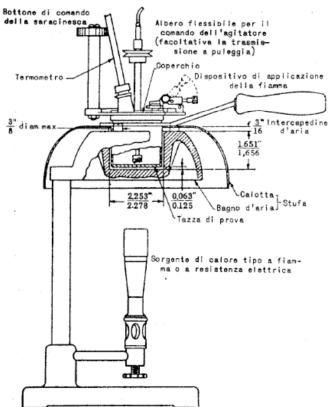


Figura Al - Apparecchio per la determinazione del punto di infiammabilità in vaso chiuso Pensky-Martens.

Apparecchio Pensky - Martens

8. PRESSIONE BAROMETRICA

- Si legge e si annota la pressione barometrica.
- Si apportano correzioni con i seguenti criteri:
- si aggiungono 0,9 °C (1,6 °F) alla temperatura di infiammabilità per ogni 25 mm di pressione al di sotto di 760 mm;
- si sottraggono 0,9 °C (1,6 °F) alla temperatura di infiammabilità per ogni 25 mm di pressione al di sopra di 760 mm.

Apportata la correzione si arrotonda al più vicino numero intero e si riporta questo come punto di infiammabilità corretto.

Materiale	Punto di Inflammabilità	Ripetibilità		
Sospensioni di solidi	da 35°C (95°F) a 43°C (110°F)	2°C (4°F)		
Tutti gli	inferiore a 105°C (220°F) superiore a 105°C (220°F)	2°C (4°F) 5°C (10°F)		

 b) Riproducibilità: risultati ottenuti da due laboratori non devono differire più di:

Materiale	Punto di inflammabilità	Riproducibilità		
Sospensioni di solidi	da 35 °C (95 °F) a 43 °C (110 °F)	3°C (6°F)		
Tutti gli	inferiore a 105°C (220°F) superiore a 105°C (220°F)	3°C (6°F) 7°C (15°C)		