Programmazione Informatica 3. Algebra Booleana

RICCARDO ZAMOLO rzamolo@units.it

Università degli Studi Trieste Ingegneria Civile e Ambientale

A.A. 2020-21

Algebra Booleana: postulati di Huntington

- Utilizzata per trattare i segnali binari ($\mathscr{B} = \{0,1\}$), cioè quelli che vengono utilizzati materialmente nel calcolatore.
- Principi generali pubblicati nel 1854 da George Boole (1815-1864).
- Postulati di Huntington (1874-1952): dato un insieme S ed una relazione di uguaglianza che gode delle proprietà riflessiva (x=x), simmetrica $(x=y\Leftrightarrow y=x)$ e transitiva $(x=y,y=z\Rightarrow x=z)$, si suppone S sia dotato delle seguenti proprietà:
- A₁, A₂. Sono definite due leggi di composizione:
 - somma logica "+" $+: S \times S \rightarrow S, (x, y) \mapsto x + y$
 - prodotto logico " · " · : $S \times S \rightarrow S, \, (x,y) \mapsto x \, \cdot \, y$
- B₁, B₂. Esistono due elementi di S, denominati zero (0) e unità (1), tali che:

$$x + 0 = x$$
 e $x \cdot 1 = x$

 C_1 , C_2 . Proprietà commutativa di "+" e " · ":

$$x + y = y + x$$
 e $x \cdot y = y \cdot x$

 D_1 , D_2 . Proprietà distributiva di "+" rispetto a " · " e viceversa:

$$x + (y \cdot z) = (x + y) \cdot (x + z)$$
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

E. Per ogni $x \in S$ esiste un $\bar{x} \in S$, denominato complemento di x, tale che:

$$x + \bar{x} = 1$$
 e $x \cdot \bar{x} = 0$

F. Esiste almeno una coppia di elementi $x \in y$ di S tali che $x \neq y$.

Algebra Booleana, modello binario

- I postulati di Huntington definiscono sull'insieme S una struttura algebrica denominata Algebra Booleana.
- La compatibilità dei postulati di Huntington può essere verificata con l'esistenza di modelli per i quali i postulati sono validi e non si contraddicono.
- Modello binario (algebra binaria) dove $S = \mathcal{B} = \{0,1\}$ e dove le due operazioni logiche fondamentali "+" e " · " sono definite da:

	OR			A	AND				MOT	п
+	0	1			0	1			ГОИ 0	
0	0	1	•	0	0	0	- ⇒		1	
1	1	1		1	0	1		\boldsymbol{x}	1	U

- il complemento (NOT) può essere costruito dalla definizione delle due operazioni logiche "+" e "·" soddisfando il postulato E;
- il postulato F vale per la definizione di $S = \mathcal{B} = \{0, 1\};$
- le operazioni logiche "+" e " · " così definite rispettano i postulati A_1 , A_2 , B_1 , B_2 , C_1 , C_2 ;
- la proprietà distributiva (postulati D₁ e D₂) va verificata.

ALGEBRA BOOLEANA, MODELLO BINARIO (CONT.)

• Verifica della proprietà distributiva D_1 e D_2 . Va effettuata per tutte le $2^n = 8$ combinazioni dei possibili valori delle n = 3 variabili x, y e z:

u = x + (y	$u\!=\!x\!\cdot\!(y\!+\!z)$							
v = (x+y)	$)\cdot (x+$	-z)	v =	= (x	$\cdot y)$	+(x	$\cdot z)$	
x y z	u	v	x	y	z	u	v	
0 0 0	0	0	0	0	0	0	0	
$0 \ 0 \ 1$	0	0	0	0	1	0	0	
$0 \ 1 \ 0$	0	0	0	1	0	0	0	
0 1 1	1	1	0	1	1	0	0	
1 0 0	1	1	1	0	0	0	0	
1 0 1	1	1	1	0	1	1	1	
1 1 0	1	1	1	1	0	1	1	
1 1 1	1	1	1	1	1	1	1	

- I postulati di Huntington applicati al modello binario costituiscono un sistema compatibile.
- Dai postulati è possibile dedurre infiniti *teoremi*, cioè delle identità tra due termini Booleani basati sugli operatori somma, prodotto e complemento logici applicati alle variabili ed alle costanti fondamentali (zero e unità).

ALGEBRA BOOLEANA, ALCUNI TEOREMI

• Teoremi fondamentali dell'Algebra Booleana:

Teorema	Base (1)	Duale (2)
T1	x + x = x	$x \cdot x = x$
T2	x + 1 = 1	$x \cdot 0 = 0$
T3	$x + (x \cdot y) = x$	$x \cdot (x + y) = x$
$\mathrm{T4}$	$x + (\bar{x} \cdot y) = x + y$	$x \cdot (\bar{x} + y) = x \cdot y$
T5	$\overline{(ar{x})}$ =	=x
T6	$\overline{(x+y)} = \bar{x} \cdot \bar{y}$	$\overline{(x\cdot y)} = \bar{x} + \bar{y}$

T1,T2 e T5 sono verificabili in maniera diretta;

T3₁:
$$x + (x \cdot y) \stackrel{\text{B2}}{=} (x \cdot 1) + (x \cdot y) \stackrel{\text{D2}}{=} x \cdot (1 + y) \stackrel{\text{T2}_{1}}{=} x$$
T3₂: $x \cdot (x + y) \stackrel{\text{B1}}{=} (x + 0) \cdot (x + y) \stackrel{\text{D1}}{=} x + (0 \cdot y) \stackrel{\text{T2}_{2}}{=} x$
T4₁: $x + (\bar{x} \cdot y) \stackrel{\text{D1}}{=} (x + \bar{x}) \cdot (x + y) \stackrel{\text{E}}{=} x + y$
T4₂: $x \cdot (\bar{x} + y) \stackrel{\text{D2}}{=} (x \cdot \bar{x}) + (x \cdot y) \stackrel{\text{E}}{=} x \cdot y$

T6 (De Morgan) con verifica diretta:

\boldsymbol{x}	y	$\overline{x+y}$	$ar{x}\cdotar{y}$	\boldsymbol{x}	y	$\overline{x\cdot y}$	$\bar{x} + \bar{y}$
0	0	1	1			1	
0	1	0	0	0	1	1	1
		0	0	1	0	1	1
1	1	0	0	1	1	0	0

ALGEBRA BOOLEANA, FUNZIONI

- Variabile Booleana: $x \in \mathcal{B} = \{0, 1\};$
- Funzione Booleana f di n variabili Booleane x_1, \ldots, x_n :

$$f: \mathcal{B}^n \to \mathcal{B}$$

 $(x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n)$

- Le funzioni Booleane si possono epsrimere algebricamente tramite operatori logici (somma, prodotto, complemento) applicati alle variabili Booleane ed alle costanti 0 e 1. Ad esempio $f(x, y, z) = \bar{x} \cdot y + z$.
- Essendo \mathcal{B} un insieme finito, è possibile definire una funzione booleana anche per mezzo di una tabella di verità che riporta il valore di f per ogni combinazione dei valori binari delle variabili x_1, \ldots, x_n :

x_1		x_n	$f(x_1,\ldots,x_n)$
0	0	0	$f(0,\ldots,0)$
0	0	1	$f(0,\ldots,1)$
:	:	:	:
1	1	1	f(1,,1)

- Le righe della precedente tabella sono $m=2^n$, ossia il numero delle n-uple Booleane in \mathcal{B}^n .
- \bullet Il numero delle possibili funzioni Booleane di nvariabili Booleane è quindi $2^m=2^{2^n}.$

ALGEBRA BOOLEANA, FUNZIONI (CONT.)

• Funzioni di una variabile $(n = 1, 2^{2^1} = 4 \text{ possibili funzioni})$:

• Funzioni di due variabili $(n = 2, 2^{2^2} = 16 \text{ possibili funzioni})$:

		$ f_0 $	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
			AND					XOR	OR	NOR	XNOF	t				NANI)
\boldsymbol{x}	y	0			\boldsymbol{x}		y	\oplus	+	\downarrow	\odot	\bar{y}		\bar{x}			1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
_1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- Oltre alle funzioni OR e AND già viste, assumono particolare interesse pratico le seguenti funzioni, simmetriche rispetto ai due ingressi x e y:
 - XOR (OR esclusivo): $x \oplus y$
 - NOR (OR negato): $x \downarrow y = \overline{x+y} = \bar{x} \cdot \bar{y}$
 - XNOR (XOR negato): $x \odot y = \overline{x \oplus y}$
 - NAND (AND negato): $x|y = \overline{x \cdot y} = \overline{x} + \overline{y}$

ALGEBRA BOOLEANA, FUNZIONI: APPLICAZIONI

ullet Addizione di due cifre binarie x e y con riporto, tabella di verità:

		Somma	Riporto
\boldsymbol{x}	y	s	r
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

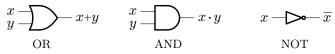
- s ed r: funzioni Booleane da determinare algebricamente.
- La somma s è equivalente alla funzione XOR:

$$s = x \oplus y = \underbrace{(\bar{x} \cdot y) + (x \cdot \bar{y})}^{s_1} = \underbrace{(x+y) \cdot (\bar{x} \cdot y)}_{s_2} = \underbrace{(x+y) \cdot (\bar{x} + \bar{y})}_{s_3}$$

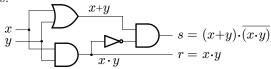
- Il riporto r è equivalente alla funzione AND: $r = x \cdot y$.
- Numero di blocchi logici necessari per l'addizione:
 - s_1 : 6 blocchi (2 AND, 1 OR e 2 complementi per s_1 ; 1 AND per r);
 - s_2 : 4 blocchi (2 AND $[x \cdot y]$ contato una volta sola per $s_2 \in r$], 1 OR e 1 complemento per s_2);
 - s_3 : 6 blocchi (1 AND, 2 OR e 2 complementi per s_3 ; 1 AND per r);
- La forma s_2 per la funzione Booleana somma consente l'uso del minor numero di blocchi logici per la realizzazione dell'addizione di due cifre binarie con riporto.

Algebra Booleana, funzioni: applicazioni (cont.)

• Alcuni simboli circuitali (porte logiche):



- Le porte logiche vengono realizzate materialmente impiegando dispositivi elettronici come diodi, transistor, resistenze e C-MOS.
- Funzioni Booleane più articolate si ottengono combinando gli ingressi e le uscite delle porte logiche fondamentali (OR, AND, NOT, NAND, NOR), dando origine alle *reti logiche*.
- Esempio di rete logica che realizza l'addizione di due cifre binarie x e y con riporto (Half-adder), utilizzando la forma $s_2 = (x+y) \cdot \overline{(x \cdot y)}$ per la somma s:



• Tali reti logiche vengono impiegate nei calcolatori elettronici per realizzare determinate funzioni Booleane che permettono di operare sui segnali binari.