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Course Outline - Reminder

» The physics of semiconductor devices: an introduction
*  Quantum Mechanics: an introduction

Reminder on waves

Waves as particles and particles as waves (the crisis of classical
physics); atoms and the Bohr model

The Schrodinger equation and its interpretation

(1-d) free and confined (infinite well) electron; wave packets,
uncertainty relations; barriers and wells

(3-d) Hydrogen atom, angular momentum, spin
Systems with many particles

» Advanced semiconductor fundamentals (bands, etc...)
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Lectures 12, 13 - outline

1-d applications of Wave Mechanics:
— Plane wave-function for free electrons
— Physical meaning of eigenfunctions and eigenvalues

— More realistic free particle, partially localized in space: wave
packet, uncertainty relations

For details on some of the calculations:
— Blackboard and exercises

— R.F.Pierret, Advanced Semiconductor Fundamentals, section 2.3
(p-33-46)

— J.Bernstein et al., Modern Physics, sections 6-5, 7-1, 7-2, 7-3,
7-4,7-5, 8-1, 8-2, 8-3, 8-4, 8-5

— D.J.Griffiths, Introduction to Quantum Mechanics
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“free particles”

“separable” solution: plane waves
Wave number, phase velocity
Normalization
Momentum and Energy
Summary: problems...
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“free particle” — separable solution

Free particle (constant potential energy U(x)=0): the simplest
possible case? Not really! Surprisingly subtle and tricky...

free particle: constant potential energy U(x)=0. =
oy

9° 2mE
Ry (x)= Ey(x) = g‘l’(x)Jf e Y(x)=0
2, 2712
- %+k2¢=0 with |k =2mE/n’ E=th
X m

general (separable) solution:
[(x) =A™ +Ae™|
lp(x,t) _ lp(x)T(t) _ w(x)e—iEt/h _ A+ei(kx—Et/h) + A_e—i(kx+Et/h)

The general solution looks like a “plane wave”.
All energy values E are allowed
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“free particle” — plane wave

Separable solution including time dependence:

2 2
e ,m&,)

lP(X,f)= A+ei(""“5’/h)+ A emilrEn) _ A+ei["’“2mf) N A_e_i[ L

Interpretation: compare with classical harmonic waves.
travelling in the + x direction with phase velocity v; = w/k

ik(x-ﬂt) . _,-k(“ﬂt) .
i (foc— k\x—v ot —i(kx— —ik\x+v .t
el(kxwt)=€ k =€l( /) ez(kxwt) e k =e ( f)

Wave number k, angular frequency » and phase velocity v; :
k =2mE/n? < k=2w/A
E/h = hk*[2m < w=21v=2a/T T
E & E E=—mv,u

2
v, =— =,]— <= v, =wk=Av
T h 2mE 2m ! / ~ RE
classical =

— =2

Classical velocity is different from v, ?!1?
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[lw(e) e -

+L
f|‘I’(x,t)|2 dx =
)

A+

1 =

“free particle” - normalization

« Strictly speaking, the “plane wave” wave function
is not normalizable! (postulate P.4)

—Take a plane wave propagating to +x (coefficients: A, = 0, A_=0):
extended to =, it is impossible to normalize: one must restrict the
available space (for instance to within = L, with L arbitrarily large) to
have a finite, although small, value for the coefficient A, .

‘I’(x,t) _ A+ei(kx—Et/h)

-
2fdx — o unless |A+|2 -0

1

2L

A

+

|‘I’(x,t)|2 dx = const. => particle position completely undetermined
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‘P(X,t) - A ei(kx—Et/h)

DeBroglie wavelength!

* Energy eigenvalues

“free particle” — momentum and energy

*  Momentum expectation value?

(p.)- z‘P*(x,t)(—ih)%‘P(x,t)dx _ (—ih)ikzll‘*(x,t)‘l’(x,t)dx _

t

“fqrcinq” the normalization to 1

E

F

OKI!

+ ()

Figure 2.3 Encrgy-momentum relationship for a free particle.
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“free particle” — plane wave, summary

» At afirst look the plane wave is OK:
—Well defined momentum expectation value
—Well defined energy eigenvalue
—Momentum-wavelength relationship = DeBroglie!

* But:
—Not normalizable: probability interpretation?
—Particle position completely undetermined?

—Wave-function phase velocity different from classical particle velocity
by factor 2 ?1?

+ All 3 problems will be solved by “wave packets”
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Wave Packets
and the
Uncertainty Relations

Plane wave: problems
Wave packets
examples
Expectation values, uncertainties
Uncertainty relations
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Wave packets (1-d)

* Plane-wave problems:
— Not normalizable: probability interpretation?
— Particle position completely undetermined?

— Wave-function phase velocity different from classical particle velocity
by factor 2 ?1?

» Solution: wave-packets
— “superposition” of plane waves, with “weights” depending on k:

1
"weights": ——=¢| k)dk
® (o nk* )
17 2w 2mE
Yix,t)=— ke dk, k==
(v1)= 5= [9l8) 2
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Wave packets (1-d)

*  We recognize a Fourier transform and an inverse transform:

atf =0, given the wavefunction W(x,0) one can find ¢(k)

+00

W(x,0)= ﬁjj(p(k)e”“dk = ¢(k)= ﬁf‘P(x,O)e’“dx

at later times, the wavefunction ‘P(x,t) evolves according to the S.eq.,
that is:

+ Let'ssee
—Two examples of “weights”
—Group velocity and uncertainties in x and p, ; (time evolution...)
400 (k)

W(x,1) = ﬁ [ok)e" " ae

—00
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Wave packets: Fourier transform pairs

e From Fourier transform tables:
—“square” k “weights”:

N
N

’ <—Ap—> ~

—> N
E

B |k — k| < Ak/2
0 |k—k|> Ak/2

Ak sin(x-Ak/2) |
W(x,0)= tox
(x.0) Jox a2

[ix)2

—the “spreads” in x and k are inversely
proportional!

£
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Wave packets: Gaussian

* Another example: at {=0 the space part of the wave function is a
gaussian, representing the uncertainty in the knowledge of the
position appropriately by the “standard deviation” a

x2

A e_ﬁe
a2

* From Fourier transform tables:
—“gaussian” weights: both gaussian!
—In all cases the “spreads” in x and k are inversely proportional!

iko.x

‘P(x,O) =

aji e 4 M < q)(k)=Ae‘“z(k_k(’)2
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Precisely determined momentum

Wave packet qualitative illustrations - 1
From: HyperPhysics (©C.R. Nave, 2003)

A sine wave of wavelength A implies that the
momentum p is precisely known: @R
But the wavefunction andthe P =5 i
probability of finding the particle "%

#\y is spread over all of space. P Precise
YV is sp pa X unknown

Adding several waves of different wavelength
together will produce an interference
pattern which begins to localize the wave.

-
I ;\'avg

- AX
but that process spreads the momentum
values and makes it more uncertain, This
is an inherent and inescapable increase
in the uncertainty Ap when Ax is

decreases. h

5/12-10-2015
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A continuous distribution
of wavelengths can produce
a localized "wave packet".

1A

A

Wave packet qualitative illustrations - 2

From: HyperPhysics (©C.R. Nave, 2003)

WWWWWWWA
VWA

WY
VWV
AVAVAVAVA

Ah Each different wavelength

— AX —
| |

i

Superposition of different
wavelengths is necessary

to localize the position.

A wider spread of wavelengths

h represents a different ’
p= p value of momentum according contributes to a smaller Ax.
- to the DeBroglie relationship. AXAp > %
5/12-10-2015 L.Lanceri - Complementi di Fisica - Lectures 7-10 16

L.Lanceri - Complementi di Fisica

05/12-10-2015



Complementi di Fisica - Lectures 7-10 05/12-10-2015

Gaussian wave packet: time evolution?

For the given wave function at t=0,
find the Fourier “weights” (Fourier transform)

x2

‘P(x,O) - aAz o 4 okt o ¢<k) _ Ae—az(k—k0)2

Then “plug in” the time dependent term

W(x,r) = ﬁj‘ogb(k)e" e
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Wave packet: time evolution

e.m. wave packet in vacuum:
 Detailed calculation is rather ~ Velocijty ¢, no dispersion

lengthy: result, for the
“gaussian envelope”:

c=0 x=ct x

Schrodinger wave ﬂacket propagation

X5 x=ut

* In general: the group b S O . i ”
velocity is OK. and (explicit derivation in the back-up slides™)

X

corresponds to the classical w E1 w1 #k 1
velocity Ve = " = Tk = om k = m = Evcmmz
Velocity v, =dw/dk,  _do _d (h’\ _hk_,
dispersion w(k) S gk diklom | m 1 = Velassical
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Uncertainty Relations

For the gaussian wave packet, the product of the spreads

(“uncertainties”) of position and momentum is minimal: taking

the usual definitions, one can show that, for any packet:

Ax=o0, o’ =<x2>—<x>2

ap.=o, o, =(p)-(p.)

h
AxAp =—
D, >

In general, for non-commuting (“incompatible”) observables,
one can show similar “Heisenberg Uncertainty Relations”.

The well known energy-time uncertainty relation has an
entirely different origin ! (see discussion in Griffiths, section

3.4.3): ATAE - n
2
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The Physical Meaning
of Eigenfunctions and Eigenvalues

Generalizing
from the specific example
of the Hamiltonian operator
and its “eigenvalues” and “eigenstates”

05/12-10-2015

L.Lanceri - Complementi di Fisica

10



Complementi di Fisica - Lectures 7-10 05/12-10-2015

The Physical Meaning
of Eigenfunctions and Eigenvalues - 1

+ If a particle state ¥, is the eigenfunction of the operator corresponding
to a dynamical variable, the outcome of a measurement of that
variable is “certain” (uncertainty = 0) and is equal to the
corresponding eigenvalue o

a¥, =aV¥,

Y-y = a§=<&2>—<&>2=a2—a2=0

* One can show that two different dynamical variables can have
simultaneously “certain” measured values only if their operators share
the same eigenfunctions; this happens only when the corresponding
operators commute. If they don’t, we call them “incompatible
observables” (for instance, x and p,)
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The Physical Meaning

of Eigenfunctions and Eigenvalues - 2

One can also show that a generic state can be represented by a
linear combination of eigenfunctions of a given observable, and
deduce useful relations based on the coefficients of the combination
(probabilities and expectation values)

The quantum theory of measurement says also that:

immediately after a measurement, the wave function is “collapsed” to
the eigenfunction corresponding to the measured eigenvalue

immediate repetition of the measurement gives the “same” value

Waiting long enough, the wave function evolves according to the
Schrédinger equation and will in general change to a different
superposition of eigenfunctions; the result of the same measurement
will no longer be “certain”
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Lectures 10, 11, 12 - summary

*  We discussed some 1-d problems that can be solved with Wave
Mechanics, in particular:
—“free” particles (electrons)
—“bound” particles (electrons)

« This allowed us to investigate examples of two fundamental
properties of g.m. related to the measurement process:
—The meaning of the eigenfunctions and eigenvalues of an  observable
dynamical variable
—Uncertainty Relations for “non-commuting” observables

» To become familiar with the method, you can complete the study
of some special cases on your own. Several interesting variations
of these problems have applications in advanced semiconductor
devices! Our next steps: potential barriers, tunneling and then
“periodic potential” and “energy bands”
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Lecture 12, 13 - exercises

* Exercise 12.1: Consider a particle of mass m, bound in a one-
dimensional “infinite potential well” of width a, and assume that its wave
function is the ground energy eigenfunction, with n=1. Compute the
corresponding uncertainties in position Ax and momentum Ap,. (Hint: this
problem is discussed in Bernstein, example 6-4, p.166-167)

» Exercise 12.2: Consider a gaussian wave packet specified at t=0 by
¢(k)=Cexp(-a®x?) , where C is a suitable normalization constant, k is the wave
number and a is a parameter with dimensions [a]J=[L] . Write the wave
function ¥(x,0) at {=0 and find the corresponding uncertainties in position Ax
and momentum Ap,. (Hint: this problem is discussed in Bernstein, example
7-3, 7-5).

» Exercise 12.3: study the time evolution of a gaussian wave packet, and
in particular (a) the velocity and (b) show that the width of the packet
increases with time. (Hint: see the next “back-up” slides)
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Back-up slides

Wavefunction normalization

» A detail: finding normalization factors

| Example 6—2  Consider the pulselike wave function i/(x) = A exp(—x*/24%), where
7 is a constant with the dimensions of length. What value of A is needed to normalize
this wave function?

Solution  The constant A is determined by the requirement that

2

- hoc floc [t A2
1= / |pr(x)[* dx = AZ/ exp( az )dx.

The integral is a standard integral found in Appendix B.2:

centered atx =10
standard deviation

% gty ~ | normalized Gaussian
/ cxp( ) dx =aVm.

o
a

With this result, our first equation reads

co=a
i 2 1/2 . -
1= Afa(m)", At the given time
an equation easily solved for A: /
A = (a)23(m) VA
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Exercise 10.3 - 1

’3(3. Consider a free particle of mass m whose wave function at time ¢ = 0 is given by

b b - (k—kp) /4 ikx
w(x, 0) = W V&e =kg)74 k% g (3.13.1)
Calculate the time-evolution of the wave-packet W(x, #) and the probability density [w(x, t)[z. Sketch
qualitatively the probability density for # <0, r = 0, and # > 0. You may use the following identity: For
any complex number o and B such that —n/4 < arg () < /4,

2
J OB gy o Wf‘ (3.13.2)
: s e s : AJa T e
The wave-packet at 7 = 0 is a superposition of plane waves e"* with coefficients e o 7% this is
perp: (2m)¥*

a Gaussian curve centered at k = k,. The time-evolution of a plane wave ¢** has the form e**e E0¥% =

5ot/ We set (k) = fik?/2m, so using the superposition principle, the time-evolution of the wave-packet
y(x, 0) is

2 : )
) = (7[;7." B, (.13.3)
s

Our aim is to transform this integral into the form of (3.13.2). Therefore, we rearrange the terms in the exponent:
2

2 2eees *2
a 2
—T =k +i[kx—0(1] = —(%+%)k2+(%ko+ia¢)k—%k§

2 2 2 2
2 S+ ix ("—k +ix) 2
I 0 0
——(a—+g‘-’) = et -ZE 3134
A ale e )
4t m Z " m
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Exercise 10.3 - 2

Substituting in (3.13.4) and using (3.13.2) yields

( azk:“,) & 2
as G ('2—k0+ix)

e . 3.13.5
v D Jaz ifit o az+2’_.ﬁt ; :
47 2m
The conjugate complex of (3./3.5) is
( azkg) 22 2
: RN (7k0— ix)
V(X1 = 27 Jaz = exp az_2i_ﬁt (3.13.6)
T 2m m
Hence,
( azkgj a’k, 2 a*k, 2
o t)IZ % exp\-—— oE —.Jf2+iazkﬂx+ ST —xz—-iazkox
o, 0" = exp
I 2T ﬁaz iﬁ,)(az m,j &%+ 2ikt/m a*-2iht/m
' %% % on
a2k 2 2 A\ Ahkd
Tﬂ(f+4h1t)+2a2(\—2—u—x')+ vt
D i ? G
= xp | —
’\l"dzdl + 47 2 /mia’ P PR
9 1 24° (x—hkyt/m) g
- = —— (3.13.7)
na? 1 + 4% 2/ m2a* a +4Rt/m
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Exercise 10.3 -3

W (x, NI?

2
na

Fig. 3-4

The probability density is a Gaussian curve for every time 7 entered at x. = (%k,/m) 1. (i.e., the wave-packet
moves with a velocity V, = #ik,/m.) The value of [y(x, #)|” is maximal for # = 0 and tends to zero when ¢ — s.
The width of the wave-packet is minimal for # = 0 and tends to e when t — <o; see Fig. 3-4.
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