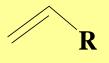


Metal-Catalyzed Polymerizations

Pedro T. Gomes

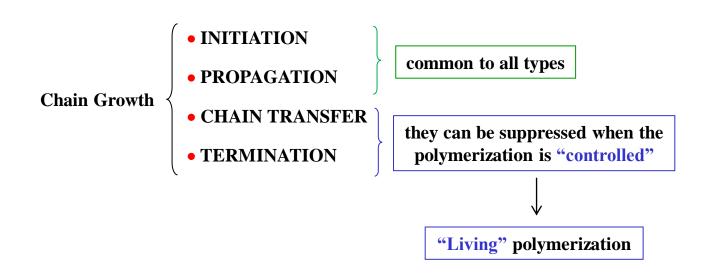


24 and 26-05-2022

Metal-Catalyzed Polymerizations (Coordination Polymerization)

- Polymerization of Olefins (Insertion)
- Polymerization of Dienes (Insertion)
- Polymerization of Alkynes
- Ring Opening Metathesis Polymerization (ROMP)
- Classical Anionic Polymerization
- Ring Opening Polymerization (ROP)
- Metal-mediated Radical Polymerization

POLYMERIZATION OF VINYL MONOMERS



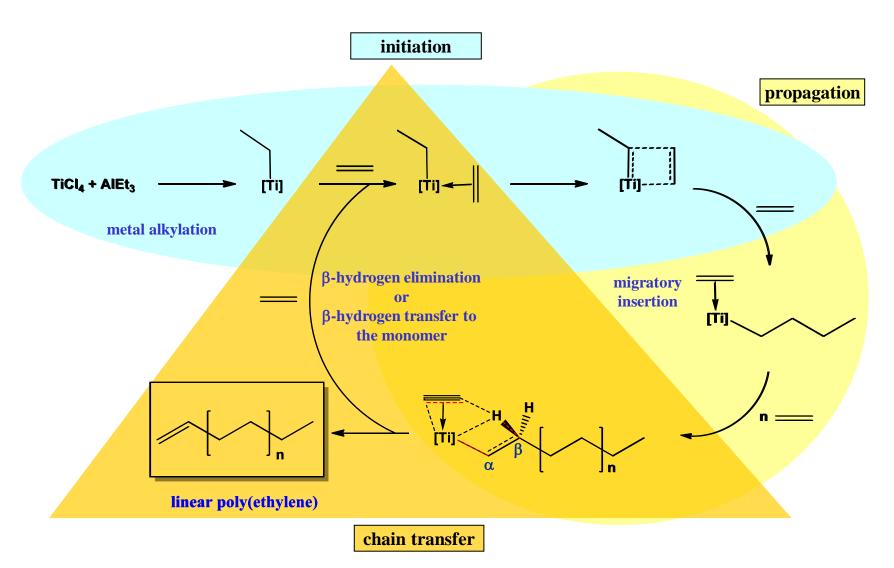
TYPES OF POLYMERIZATION RADICAL
CATIONIC
ANIONIC

COORDINATION

initiators: ROOR, ROOH, R-N≡N-R
initiators: Brönsted acids, Lewis acids, stable cations
initiators: alkyl or aryl lithium or sodium compounds, sodium
catalysts: Ziegler-Natta, metallocenes, post-metallocenic
(the only method that homo- and copolymerizes propylene
and α-olefins)

GENERAL MECHANISM

ZIEGLER-NATTA CATALYSTS

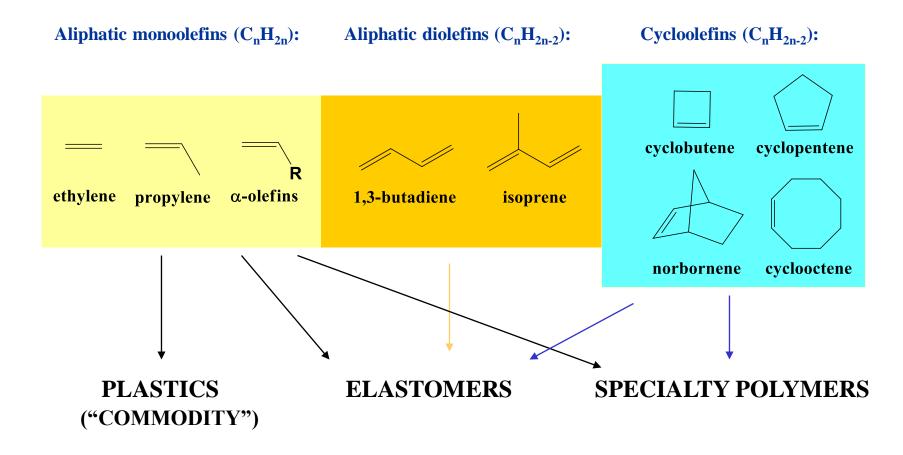

DEFINITION:

(groups 4 - 10)

Transition Metal Compound + Metal Alkyl, Aryl or Hydride (groups 1, 2, 13 and 14)

	IA 1																		VIII 18
1	H 1	IIA 2		Não-metais							IIIB 13	IVB 14	VB 15	VIB 16	VIIB 17	He 2			
2	Li 3	Be 4		— Metais alcalino-terros					terrosos Metais				В 5	C 6	N 7	0 8	F 9	Ne 10	
3	Na 11	М <u>д</u> 12	Щ		IVA 4	VA 5	VIA 6		8		10	IB 11	IIB 12	Al 13	Si 14	P 15	S 16	Cl 17	Ar 18
4	K 19	Ca 20	S 2	С	Ti 22	V 23	Cr 24	Мn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
5	Rb 37	Sr 38) 3	r 9	Zr 40	Nb 41	Мо 42	Тс 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Те 52	І 53	Xe 54
6	Cs 55	Ba 56	L 5		Hf 72	Та 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
7	Fr 87	Ra 88	А 8		Rf 104	Db 105	Sg 106									etaló			
Metais alcalinos Gases nobres																			
La	antai	nídeo	os		Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71	
ŀ	Actin	ídeo	s		Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103	

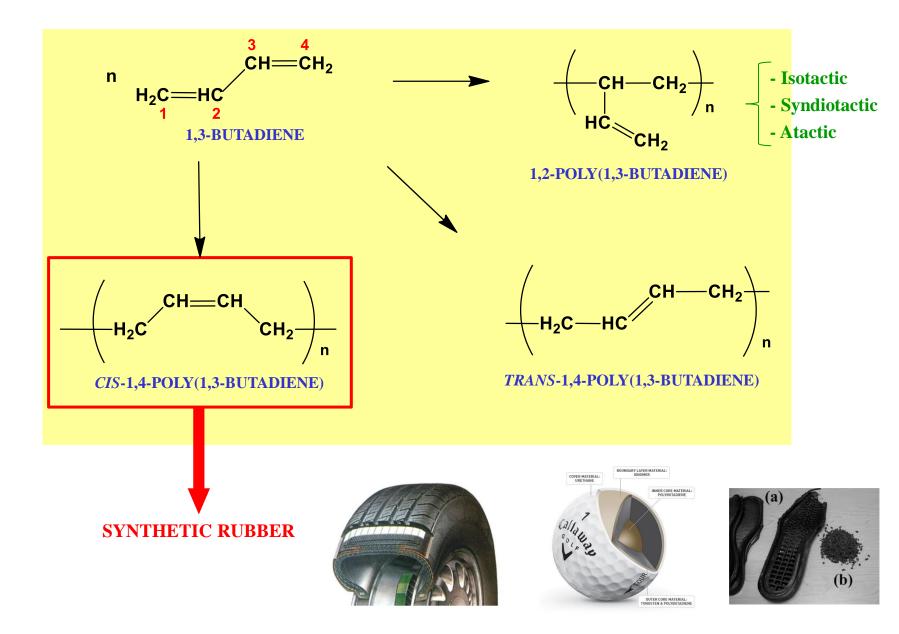
Mechanism of Olefin Polymerization with Ziegler-Natta Catalysts

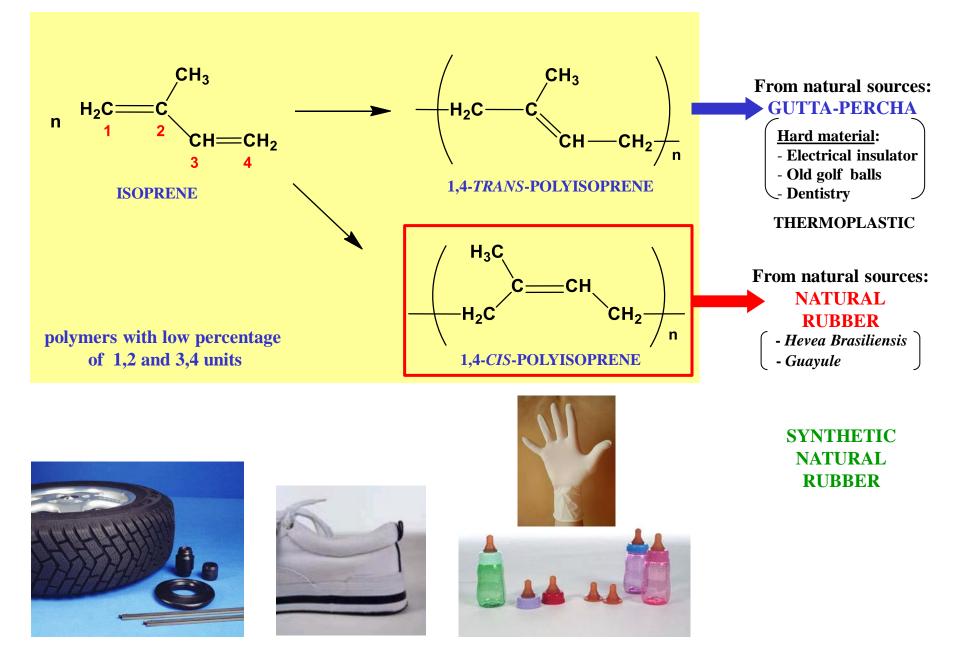


[Ti] = heterogeneous metal site (it can also be a metallocene or a post-metallocene)

POLYOLEFINS

Olefin = unsaturated hydrocarbon = Alkene


Typical Olefin Monomers:



Metal-Catalyzed Polymerization (Coordination Polymerization)

- Polymerization of Olefins (Insertion) 🖌 Prof. Barbara Milani
- Polymerization of Dienes (Insertion)
- Polymerization of Alkynes
- Ring Opening Metathesis Polymerization (ROMP)
- Classical Anionic Polymerization
- Ring Opening Polymerization (ROP)
- Metal-mediated Radical Polymerization

POLYMERIZATION OF DIENES

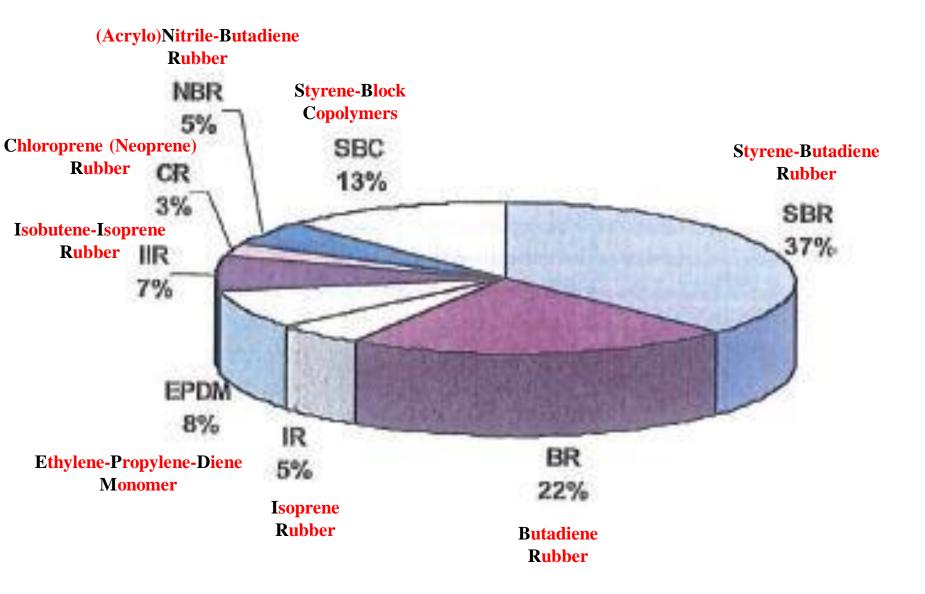
From natural sources:

NATURAL THERMOPLASTIC (1,4-*trans*-polyisoprene)

- Gutta-Percha

NATURAL RUBBER (1,4-*cis*-polyisoprene)

- Hevea Brasiliensis

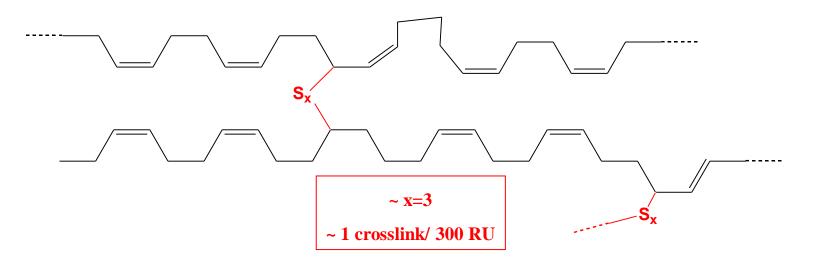


SYNTHETIC RUBBER MARKET

STEREOREGULAR ELASTOMERS

1,4-CIS-POLYBUTADIENE

~3.2 Mton


1,4-CIS-POLYISOPRENE

~0.75 Mton

Production depends on the NATURAL RUBBER market

~10.3 Mton

S₈ Vulcanization

MACROMOLECULAR NETWORK

PolyButadiene Rubber World Producers

Company	Annual Capacity (thousand of metric tons)	% of World Capacity		
LANXESS	488	15,4		
Sinopec	390	12,3		
Goodyear	265	8,4		
Korea Kumho Petrochemicals	222	7,0		
UBE Industries	173	5,5		
PetroChina	160	5,1		
Polimeri Europa	160	5,1		
Firestone Polymers	150	4,7		
Voronezhsynthiezkauchuk	141	4,5		
others	1010	32,0		
Total	3159	100		

North America	Central and South America	Western Europe	Central and Western Europe	Asia*	Middle East/ Africa/Oceania	Total
755	93	355	421	1520	45	3159

*China, Taiwan, India, Japan, Korea, Thailandia

• ZIEGLER-NATTA CATALYSTS

	High content (>90%) in:	
1,4-cis	1,4- <i>trans</i>	1,2 (syndiotactic)
$TiI_4 + Al(iBu)_3 (1:4-5), 30 °C$	γ -TiCl ₃ + AlEt ₃	Ti(OR) ₄ + AlEt ₃ (1:7), 15 °C
$CoCl_2 + Al_2Cl_3Et_3 (1:1000), 5 °C$	VCl ₃ + AlEt ₃ (1:2), 15 °C	$V(acac)_3 + AlEt_3 (1:6-10), 15^{\circ}C$
$Co(acac)_2 + AlEt_2Cl + H_2O$ (branched polymer)	VCl ₄ + AlEt ₃ (1:1.8), 15 °C	$Cr(C_6H_5CN) + AlEt_3 (1:2)$ $Cr(C_6H_5CN) + AlEt_3 (1:10) \text{ (isot.)}$
Ni(octanoate) ₂ + AlEt ₃ + $BF_3 \cdot OEt_2$ (1:17:15), 50 °C	$V(acac)_3 + AlEt_2Cl + Cl_3CCO_2H, 80 \ ^{\circ}C$	$Co(acac)_3 + AlEt_3 (1:50), 16^{\circ}C$
$U(OR)_4 + AlEt_2Cl$	$VOCl_3 + AlEt_3$	$Co(acac)_3 + AlEt_3 + H_2O + CS_2$
Nd(neodecanoate) ₃ + AlR ₂ Cl + AlR ₃ , 60 °C	$V(acac)_3 + MAO (1:1000)$	

ZIEGLER-NATTA CATALYSTS

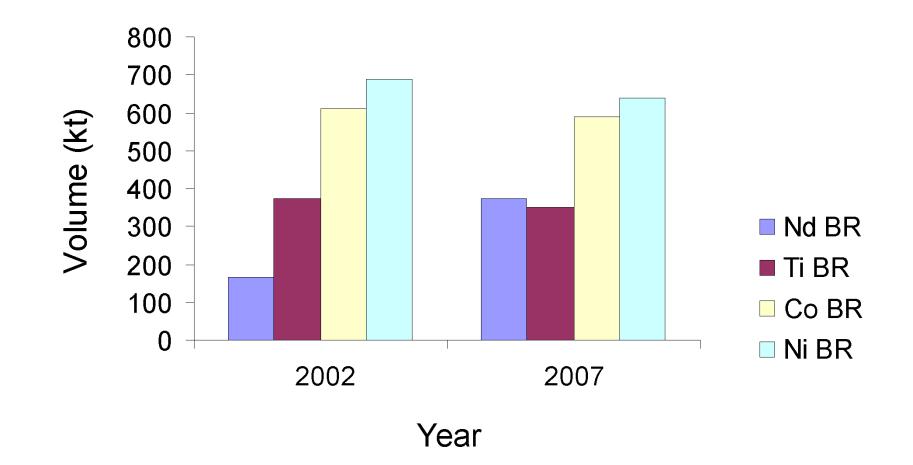
DEFINITION:

(groups 4 - 10)

Transition Metal Compound + Metal Alkyl, Aryl or Hydride (groups 1, 2, 13 and 14)

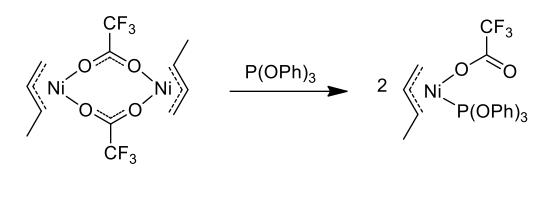
Transition Metal Compound+Metal Alkyl, Aryl or Hydride
(groups 4-10)(groups 4-10)(groups 1, 2, 13 and 14)

	IA 1																	VIII 18
1	H 1	IIA 2		Moto	vio ol	oolin	o-ter	roco		ío-m	etais		IIIB 13	IVB 14	VB 15	VIB 16	VIIB 17	He 2
2	Li 3	Be 4		NEC	ແຣ ຝ	Callin	io-tei	rosc	15	M	etais		В 5	C 6	N 7	0 8	F 9	Ne 10
3	Na	Mg	IIIA	IVA	VA						IB	IIB	AI	Si	Ρ	S	CI	Ar
Ŭ	11	12	3	- 4 -	5	6	- 7 -	8	- 9	10	11	12	13	14	15	16	17	18
a	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
- 4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
_	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
5	37	38	39	40	41	42		44	45	46	47	48	49	50	51	52	53	54
	Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
_	Fr	Ra	Ac	Rf	Db	Sg										,		
7	87	88	89													bides		
				,	,		,								Halo	génio	os ¹ –	
																ses i		
		مزمام		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
Lâ	antal	nídeo	JS	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
F	ACTIN	ídeos	5	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
					,		,	,	,							,	,	


• ZIEGLER-NATTA CATALYSTS

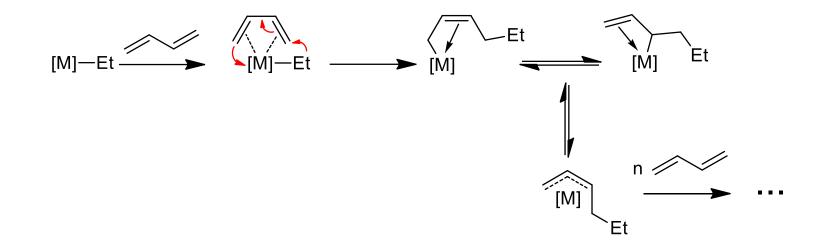
Μ

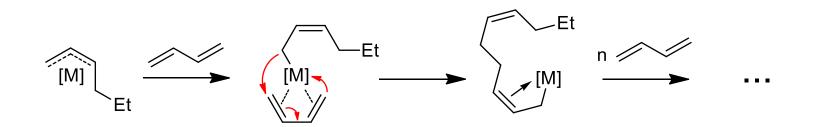
	High content (>90%) in:	
1,4-cis	1,4- <i>trans</i>	1,2 (syndiotactic)
$TiI_4 + Al(iBu)_3 (1:4-5), 30 °C$	γ -TiCl ₃ + AlEt ₃	$Ti(OR)_4 + AlEt_3$ (1:7), 15 °C
$CoCl_2 + Al_2Cl_3Et_3 (1:1000), 5 °C$	VCl ₃ + AlEt ₃ (1:2), 15 °C	$V(acac)_3 + AlEt_3 (1:6-10), 15^{\circ}C$
$Co(acac)_2 + AlEt_2Cl + H_2O$ (branched polymer)	VCl ₄ + AlEt ₃ (1:1.8), 15 °C	$Cr(C_6H_5CN) + AlEt_3 (1:2)$ $Cr(C_6H_5CN) + AlEt_3 (1:10) \text{ (isot.)}$
Ni(octanoate) ₂ + AlEt ₃ + BF ₃ ·OEt ₂ (1:17:15), 50 °C	$V(acac)_3 + AlEt_2Cl + Cl_3CCO_2H, 80 \ ^{\circ}C$	$Co(acac)_3 + AlEt_3 (1:50), 16^{\circ}C$
$U(OR)_4 + AlEt_2Cl$	$VOCl_3 + AlEt_3$	$Co(acac)_3 + AlEt_3 + H_2O + CS_2$
Nd(neodecanoate) ₃ + AlR ₂ Cl + AlR ₃ , 60 °C	$V(acac)_3 + MAO (1:1000)$	


• ALLYL METAL CATALYSTS (<u>Aluminium-free catalysts</u> = without Alkyl Aluminium cocatalyst)

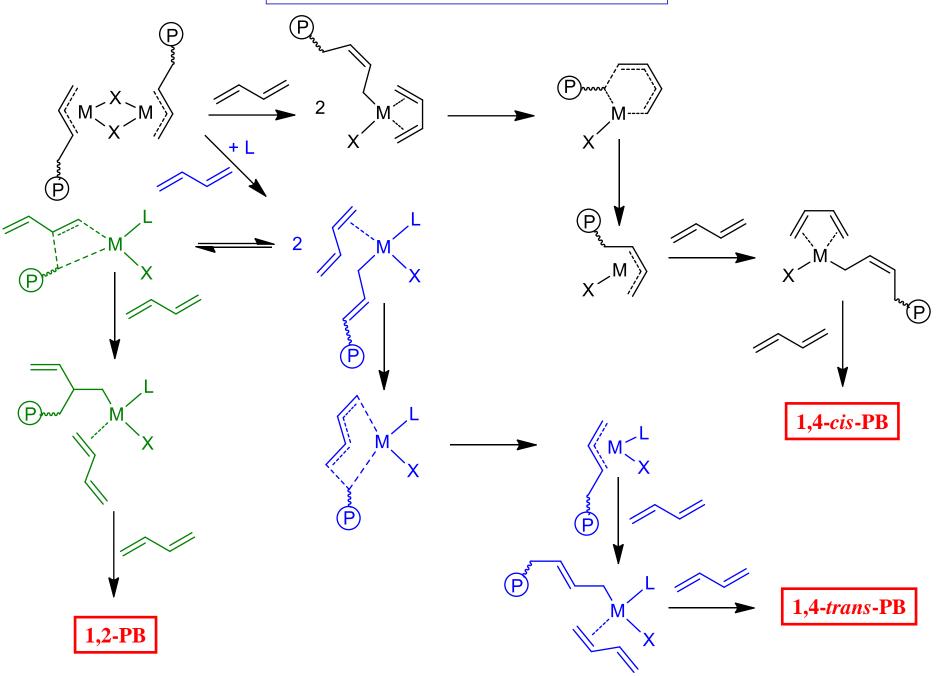
M=Cr, Co, Nb, W, Rh, U, Ni

EXAMPLES OF ALLYL NICKEL STEREOSPECIFIC CATALYSTS


/	X	1,4- <i>cis</i>	1,4-trans	1,2
	Cl	92	6	2
	Br	72	25	3
/	Ι	0	97	3


1,4-cis971,4-trans21,21

0 96 4 **STEREOREGULATION MECHANISM**

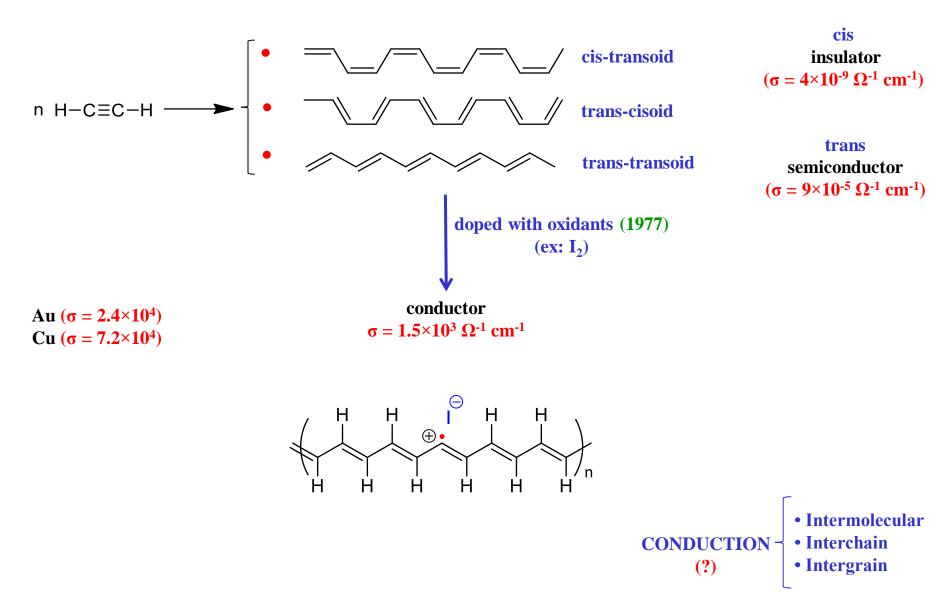

• INITIATION (Z-N CATALYSTS)

• **PROPAGATION**

STEREOREGULATION MECHANISM

STEREOSPECIFIC CATALYSTS - POLYISOPRENE

• ZIEGLER-NATTA CATALYSTS


High content (>90%) in:						
1,4-cis	1,4-trans	3,4				
$\overline{\text{TiCl}_4 + \text{AlEt}_3 (\text{Al}/\text{Ti} > 1)}$	$TiCl_4 + AlEt_3 (Al/Ti < 1)$	$Ti(OR)_4 + AlEt_3$				
	α -TiCl ₃ + AlR ₃					
	$VCl_3 + AlEt_3$					

Metal-Catalyzed Polymerization (Coordination Polymerization)

- Polymerization of Olefins (Insertion) 🖌 Prof. Barbara Milani
- Polymerization of Dienes (Insertion)
- Polymerization of Alkynes
- Ring Opening Metathesis Polymerization (ROMP)
- Classical Anionic Polymerization
- Ring Opening Polymerization (ROP)
- Metal-mediated Radical Polymerization

POLYMERIZATION OF ALKYNES

(POLYMERIZATION OF ACETYLENE)

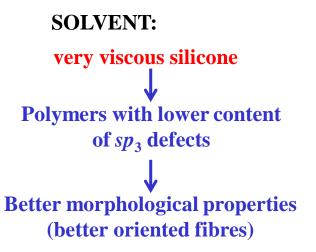
POLYACETYLENE

- Insoluble (in organic solvents)
- Unstable in air (double bonds oxidation)
- Bad mechanical properties (poorly processable)

the objective was to make conducting films

• SYNTHESIS - CATALYSTS

- Ti(OBu)₄ + AlEt₃ (Natta, 1958)
- Ti(OBu)₄ + AlEt₃ (Al/Ti ~ 4) (Shirakawa, 1974) good films when [Ti]<10⁻³ M
- $Ti(OBu)_4$ + LiBu ($Li/Ti \sim 2$)


high trans %

- $MoCl_5 + SnPh_4$
- $WCl_6 + SnPh_4$
- NiX₂(PR₃)₂ (X= Cl, Br, I)

high trans %

POLYACETYLENE

- **BASF METHOD** (best commercial polyacetylene)
- $Ti(OBu)_4$ + $AlEt_3$ ($Al/Ti \sim 4$)
- $Ti(OBu)_4$ + LiBu ($Li/Ti \sim 2$)

Stretching 7× the original length

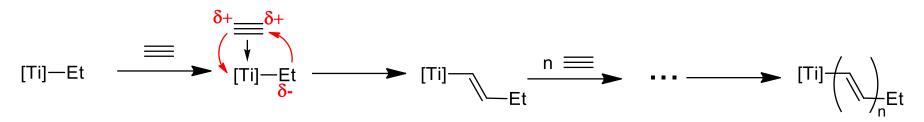
Highly oriented transparent films

Doping with I₂

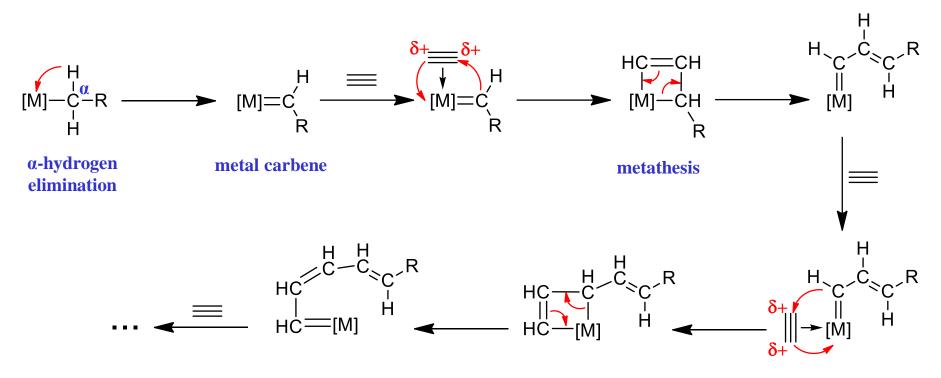
 $\begin{array}{ll} \text{Ti/Al catalyst:} & \sigma = 2 \times 10^4 \, \Omega^{-1} \, \text{cm}^{-1} & (20 \; \mu m \; \text{film}) \\ & \sigma = 8 \times 10^3 \, \Omega^{-1} \, \text{cm}^{-1} & (0.1 \; \mu m \; \text{film}) \end{array}$

Ti/Li catalyst: $\sigma \sim 10^5 \Omega^{-1} \text{ cm}^{-1}$

BASF abandoned this process with the appearance of new conducting polymers (more stable and processable) POLYMERIZATION OF SUBSTITUTED ACETYLENES

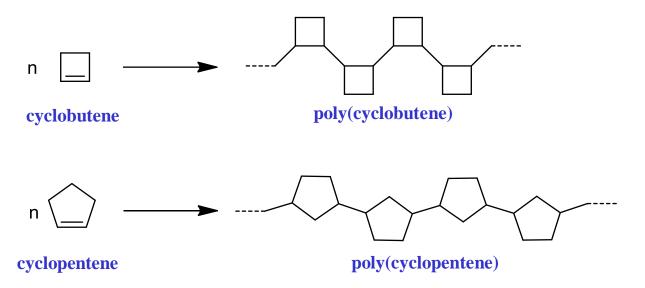

$$H-C\equiv C-R$$
 or $R-C\equiv C-R$

• CATALYSTS


 $\left. \begin{array}{c} \operatorname{MoCl}_{5} + \operatorname{SnPh}_{4} \\ \operatorname{WCl}_{6} + \operatorname{SnPh}_{4} \end{array} \right] \qquad \operatorname{Small} R \text{ groups} \\ \left. \operatorname{NbCl}_{5} + \operatorname{SnPh}_{4} \\ \operatorname{TaCl}_{5} + \operatorname{SnPh}_{4} \end{array} \right] \qquad \operatorname{Bulky} R \text{ groups (ex: -SiR_3)} \\ \end{array}$

• Ti ZIEGLER-NATTA CATALYSTS (insertion mechanism)

• Mo, W, Nb, Ta (Groups 5 and 6) ZIEGLER-NATTA CATALYSTS (metathesis mechanism ??)

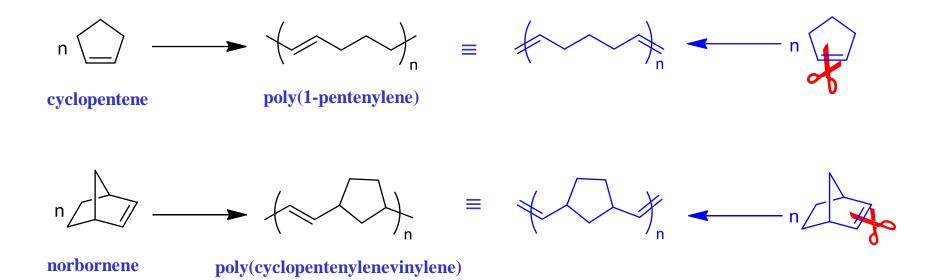

Metal-Catalyzed Polymerization (Coordination Polymerization)

- Polymerization of Olefins (Insertion) 🖌 Prof. Barbara Milani
- Polymerization of Dienes (Insertion)
- Polymerization of Alkynes
- Ring Opening Metathesis Polymerization (ROMP)
- Classical Anionic Polymerization
- Ring Opening Polymerization (ROP)
- Metal-mediated Radical Polymerization

RING-OPENING METATHESIS POLYMERIZATION (ROMP)

MONOMERS: Cycloolefins and Cycloalkynes

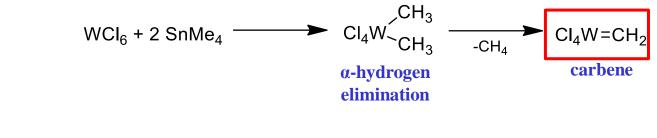
When <u>Ziegler-Natta</u> or <u>metallocene</u> catalysts based on <u>Group 4 metals</u> (Ti, Zr, Hf) or <u>post-metallocene</u> catalysts are used the polymerization occurs by <u>Insertion (or Vinyl-addition)</u> Polymerization:

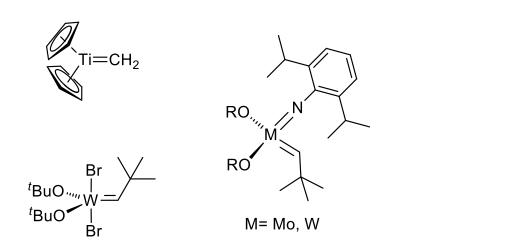


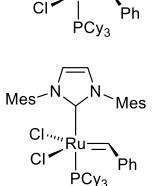
- The polymers do not have double bonds in the main chain
- Very rigid polymers (high melting temperatures)
- May copolymerize with linear α-olefins (metallocene catalysts) to give amorphous copolymers

BUT...

RING-OPENING METATHESIS POLYMERIZATION (ROMP)


When <u>Ziegler-Natta</u> catalysts based on <u>Group 6 metal</u> (Mo, W) or <u>metal carbene</u> catalysts are used the polymerization occurs by <u>Ring-Opening Methathesis Polymerization</u>:

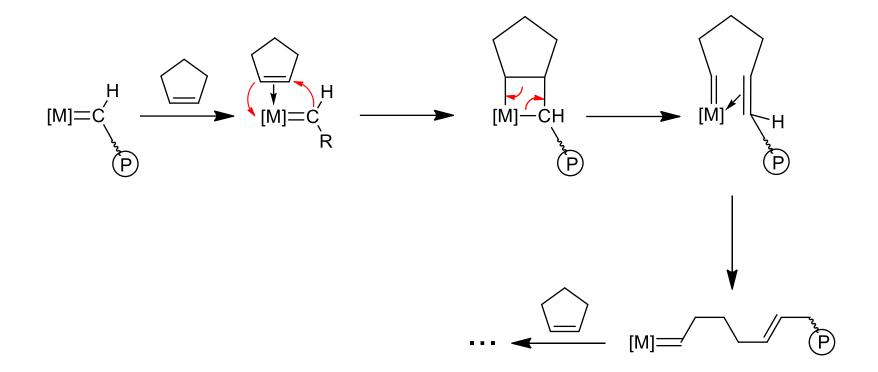

- The monomer double bond is retained in the polymer main chain
- The polymerization has a living character
- Easy block-copolymerization
- **Ring tension favours ROMP** (thermodynamically)


• ZIEGLER-NATTA CATALYSTS

- $WCl_6 + SnMe_4$
- $WCl_6 + ZnMe_2$
- MoO_3 / γ -Al₂O₃ - $MoCl_5$ + AlEt₃ (\checkmark , Natta, 1964)

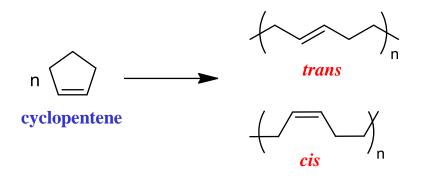
• WELL-DEFINED CARBENE CATALYSTS

PCy₃

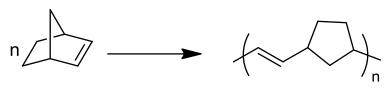

Cl^{.,,},, Ru

Schrock type catalysts

Grubbs type catalysts

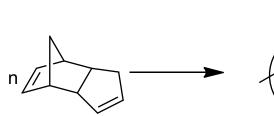


• **PROPAGATION**



Living polymerization

ASSORTED EXAMPLES OF ROMP



poly(1-pentenylene)

norbornene

poly(cyclopentenylenevinylene)

endodicyclopentadiene poly(dicyclopentadiene)

good elastomer

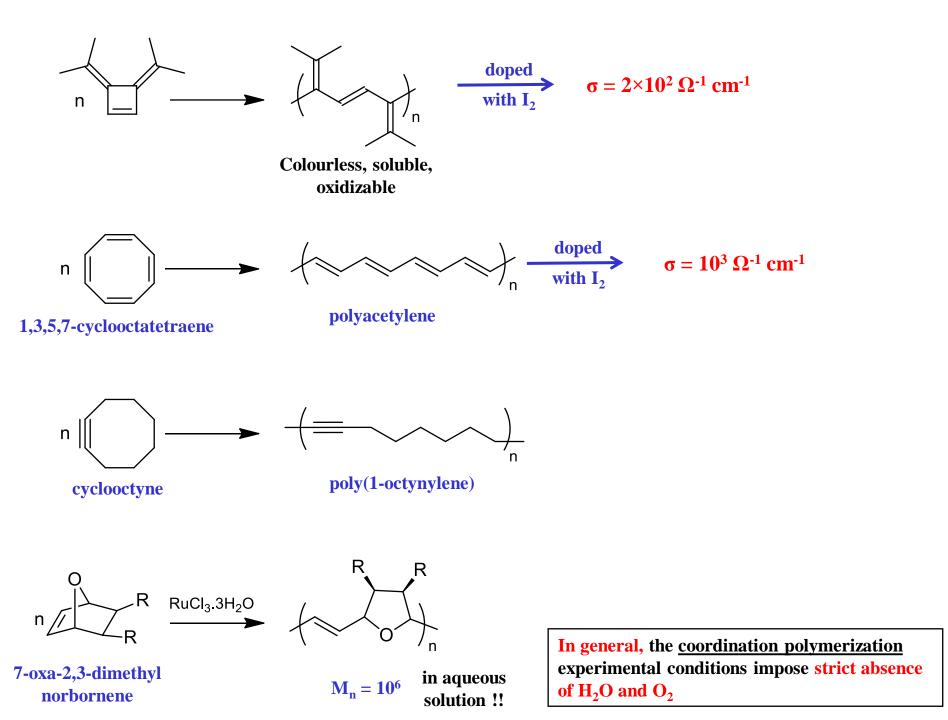
good elastomer

- Tires

Norsorex[®]

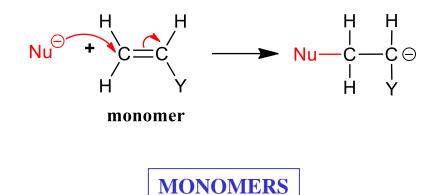
- Oil superabsorbent (400% elongation)
- Cleaning up oil spills
- Acoustic insulator
- Gaskets

- Anti-vibration material
- Shock absorption material

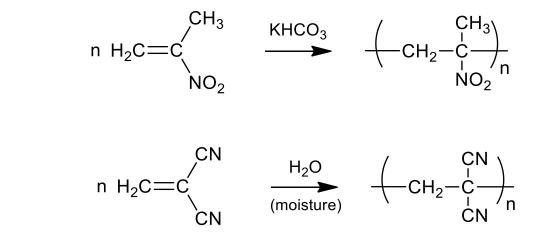

Metton[®]

- Commercial engineering plastic for moulding

Vestenamer[®]


- Minor component in elastomer blends with SBR for gaskets, brake hoses and printing rollers

Metal-Catalyzed Polymerization (Coordination Polymerization)


- Polymerization of Olefins (Insertion) 🖌 Prof. Barbara Milani
- Polymerization of Dienes (Insertion)
- Polymerization of Alkynes
- Ring Opening Metathesis Polymerization (ROMP)
- Classical Anionic Polymerization
- Ring Opening Polymerization (ROP)
- Metal-mediated Radical Polymerization

ANIONIC POLYMERIZATION

Most convenient monomers: those containing Y substituents that stabilize carbanions (electron withdrawing by induction and/or resonance). Exs: nitro, cyano, carboxyl, vinyl, phenyl

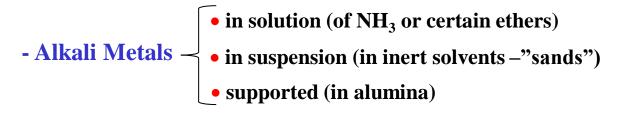
The more electron attractor group Y is, the less need for strong bases in the initiation:

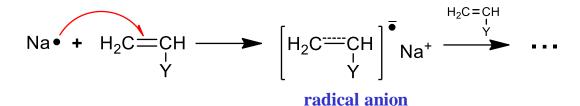
Exs:

ANIONIC INITIATORS

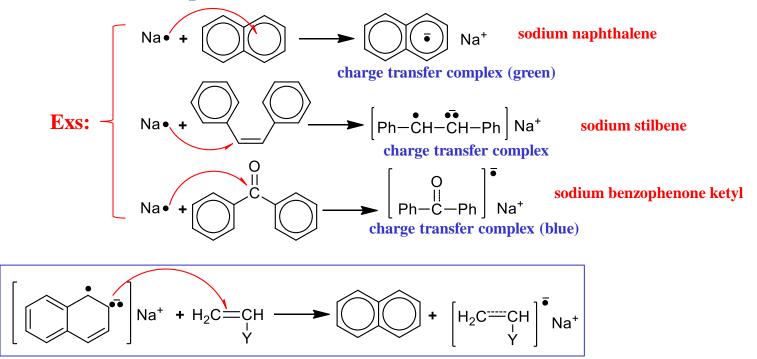
ADDITION OF A NEGATIVE ION TO THE MONOMER ELECTRON TRANSFER TO THE MONOMER

• INITIATION BY ADDITION OF A NEGATIVE ION TO THE MONOMER

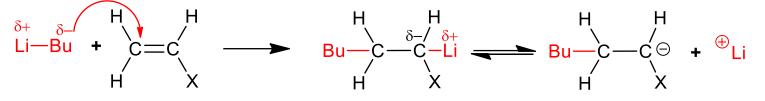

• Organolithium compounds


Exs: Li-CH₃ (LiMe), Li-CH₂-CH₂-CH₂-CH₃ (LiBu) (soluble in inert solvents)

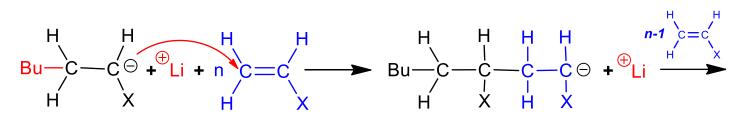
LESS USED

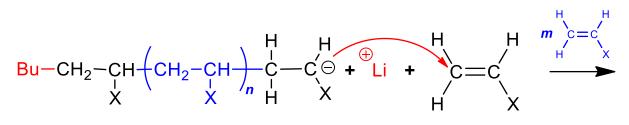

- Organometallic compounds of the higher alkali metals (Na, K, Rb,...)
 - higher ionic character than those based on Li
 - less soluble (generally heterogeneous)
- <u>Organometallic compounds of the alkaline earth metals</u> (Ca, Ba)
- <u>Grignard Reagents</u> (RMgX)

• INITIATION BY ELECTRON TRANSFER TO THE MONOMER



- Alkali Metal Complexes (soluble in inert solvents)




MECHANISM AND KINETICS

- INITIATION BY ANIONIC SPECIES Exs: Li-CH₃ (LiMe), Li-CH₂-CH₂-CH₂-CH₃ (LiBu)
- Initiation

• **Propagation**

living polymer

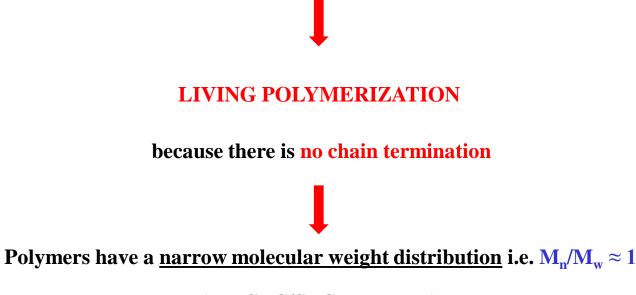
tight <u>ion-pair</u>

MECHANISM AND KINETICS

• INITIATION BY ANIONIC SPECIES

Exs: Li-CH₃ (LiMe), Li-CH₂-CH₂-CH₂-CH₃ (LiBu)

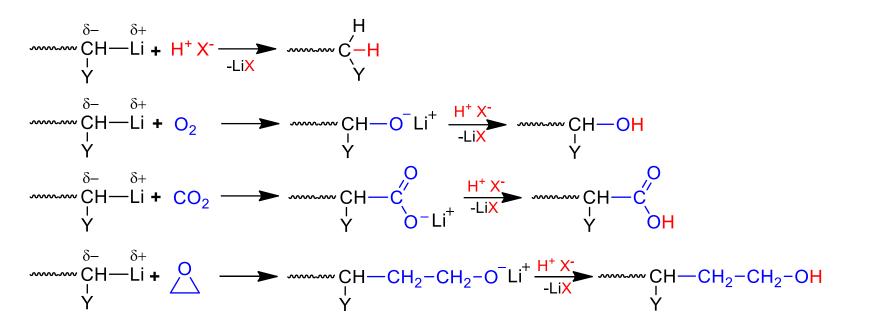
$$\begin{split} & \stackrel{\bigcirc}{\mathbf{I}} + \mathbf{M} \xrightarrow{k_{i}} \mathbf{P}_{1}^{\bigcirc} \\ & \stackrel{\frown}{\mathbf{P}_{i}} + \mathbf{M} \xrightarrow{k_{p}} \mathbf{P}_{i+1}^{\bigcirc} \\ & \stackrel{\frown}{\mathbf{P}_{i}} + \mathbf{M} \xrightarrow{k_{p}} \mathbf{P}_{i+1}^{\ominus} \\ & \stackrel{\frown}{\mathbf{N}_{i+1}} \\ & \stackrel{\frown}{\mathbf{N}_{i}} + \mathbf{M} \xrightarrow{k_{p}} \mathbf{P}_{i+1}^{\ominus} \\ & \stackrel{\frown}{\mathbf{N}_{i+1}} \\ & \stackrel{\frown}{\mathbf{N}_{i}} = \mathbf{C}_{i} \\ & \stackrel{\frown}{\mathbf{M}_{i}} \\ & \stackrel{\frown}{\mathbf{N}_{i}} = \mathbf{C}_{i} \\ & \stackrel{\frown}{\mathbf{M}_{i}} \\ & \stackrel{\frown}{\mathbf{N}_{i}} = \mathbf{C}_{i} \\ & \stackrel{\frown}{\mathbf{M}_{i}} \\ & \stackrel{\frown}{\mathbf{D}_{i}} = \frac{\overline{M}_{i}}{\overline{\mathbf{N}_{i}}} \\ & \stackrel{\frown}{\mathbf{D}_{i}} = \overline{x} = \frac{[\mathbf{M}]_{0} - [\mathbf{M}]}{[\mathbf{I}]_{0}} = \frac{p[\mathbf{M}]_{0}}{[\mathbf{I}]_{0}} \\ & \stackrel{\frown}{\mathbf{D}_{i}} \\ &$$


If the monomer is totally consumed $[p = \text{conversion} = 1 \ (i.e. \ 100\%)]$:

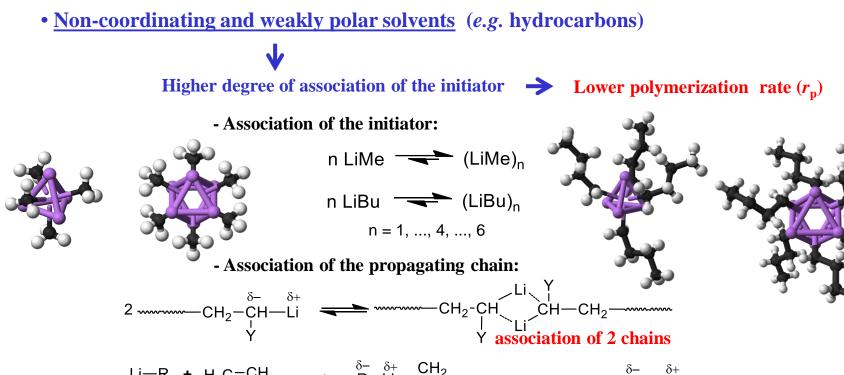
$$\overline{DP}_n = \frac{[\mathbf{M}]_{\mathbf{o}}}{[\mathbf{I}]_{\mathbf{o}}}$$

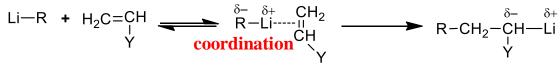
 $\frac{\overline{M}_{w}}{\overline{M}_{n}} = 1 + \frac{1}{\overline{DP}_{n}}$ Poisson distribution

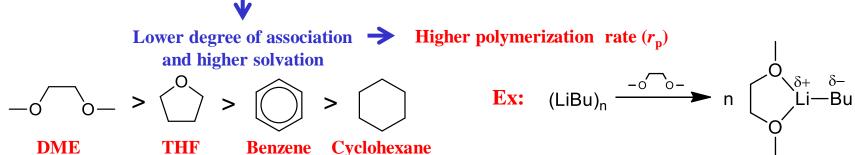
per polymer chain)


• If the there are no transfer agents in the reaction medium (including impurities in the solvent):

(e.g. GPC/SEC standards)


• If there is no termination, the chain end is living and can be used for:

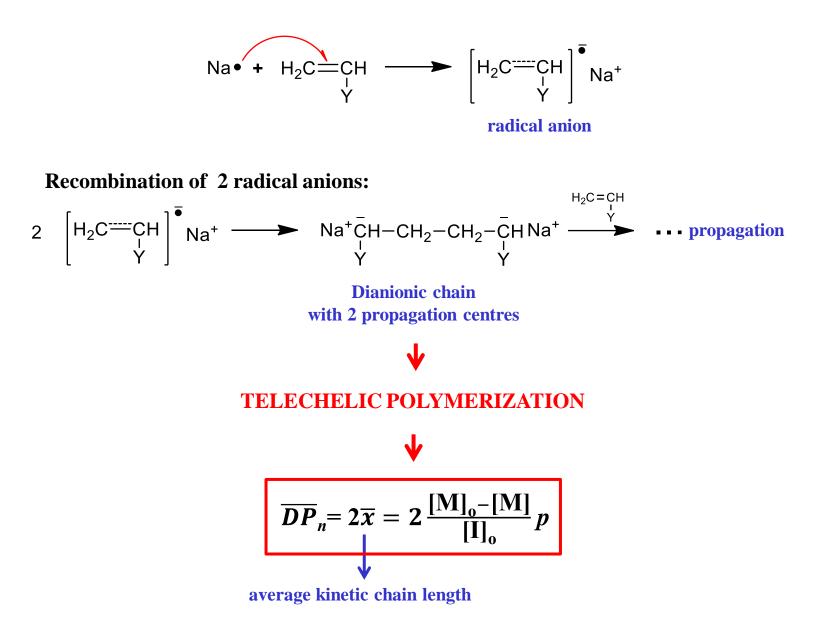

chain end functionalization
 block copolymerization


• Easy control of the molecular weight:

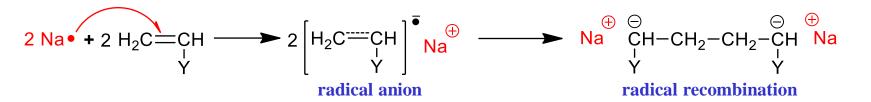
• Stoichiometry $(\overline{DP}_n = \frac{[M]_o}{[I]_o})$ • Termination at time *t* with addition of a terminating agent • Addition of a chain transfer agent \rightarrow to decrease M_n • Addition of a chain transfer agent \rightarrow to decrease M_n • Ex: $\dots \bigoplus_{\substack{b=-\\ CH} \xrightarrow{b+} CH} \xrightarrow{CH_3} \xrightarrow{H_2C} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow} \underset{i}{\overset{b--}{\downarrow}} \xrightarrow{b+} \underset{i}{\overset{b--}{\downarrow} \underset{i}{\overset{b--}{\overset{b--}{\downarrow}} \overset{i}{\overset{b--}{\overset{i}} \underset{i}{\overset{i}{\overset{i}{\overset{i}} \underset{i}{\overset{i}{\overset{i}{\overset{i}$ • The rate of propagation can be influenced by the <u>degree of association</u> between anion and cation, which depends strongly on the SOLVENT:

• <u>More coordinating and/or more polar solvents</u> (e.g. ethers)

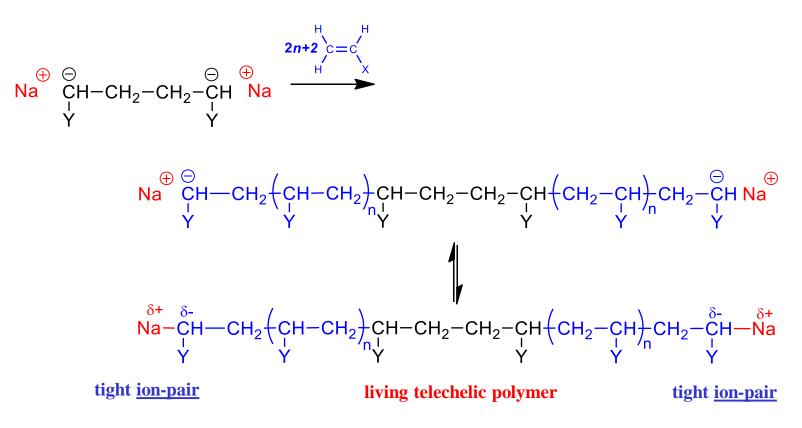
TABLE 7.4. Representative Anionic Propagation Rate Constants, k_p , for Polystyrene^a


Counterion	Solvent	$k_p \ (L/mol \ s)^{\mathrm{b}}$
Na ⁺	Tetrahydrofuran	80
Na^+	1,2-Dimethoxyethane	3600
Li ⁺	Tetrahydrofuran	160
Li ⁺	Benzene	10^{-3} - 10^{-1} c
Li ⁺	Cyclohexane	$(5-100) \times 10^{-5}$ c

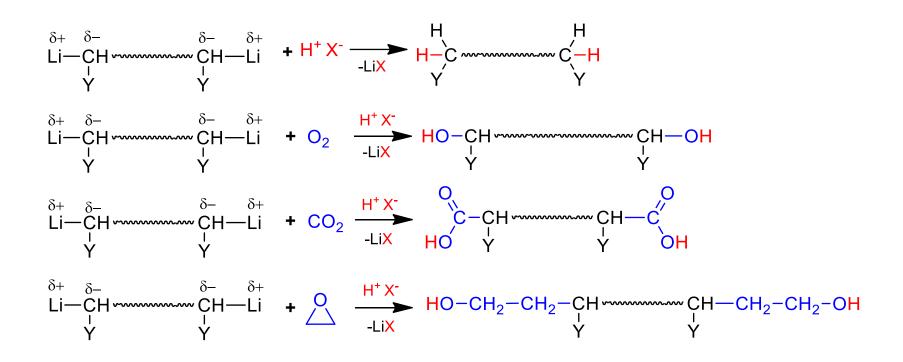
^aData from Morton.³⁰


^bAt 25°C unless otherwise noted.

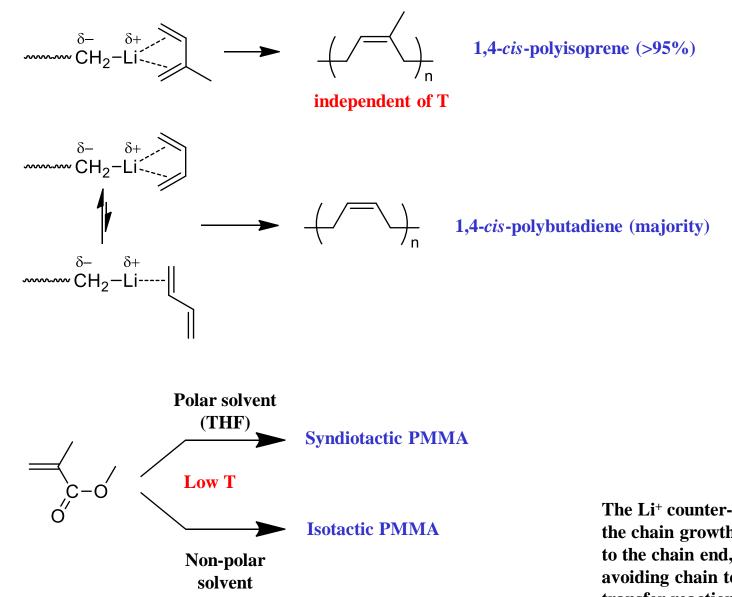
^cVariable temperature.


• INITIATION BY ELECTRON TRANSFER

• Initiation

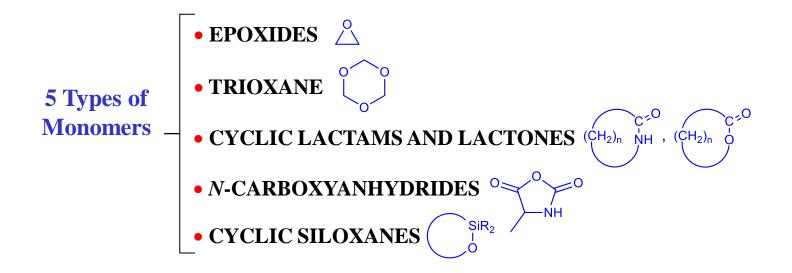


• **Propagation**

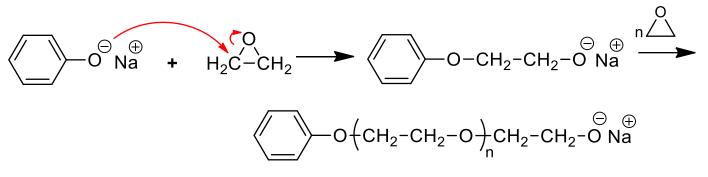


<u>Telechelic chain growth</u> (chain growth at both ends)

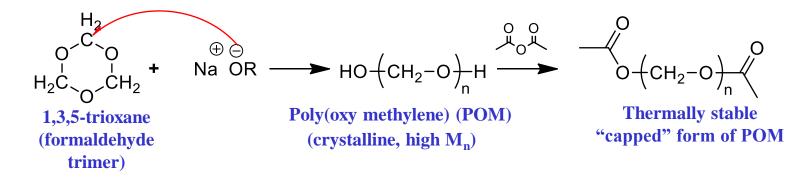
• Functionalization of both chain ends:



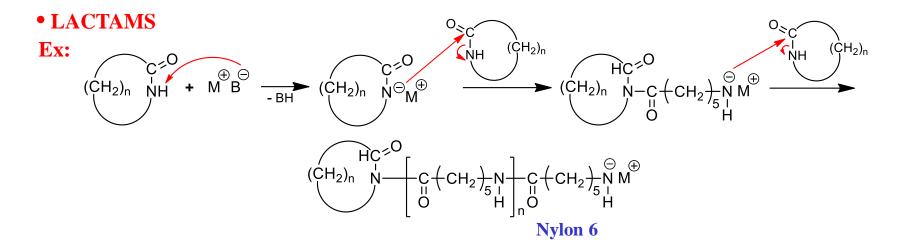
STEREOCHEMISTRY OF PROPAGATION

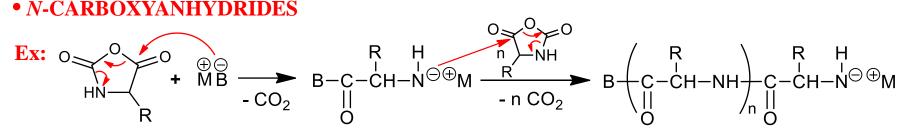

The Li⁺ counter-cation always assists the chain growth by bonding covalently to the chain end, protecting it and avoiding chain termination or chain transfer reactions

ANIONIC RING OPENING POLYMERIZATION

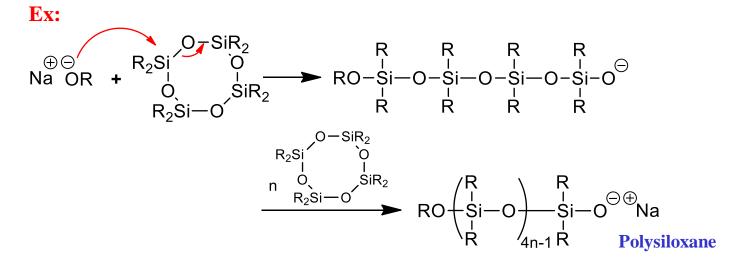

• EPOXIDES

Ex:

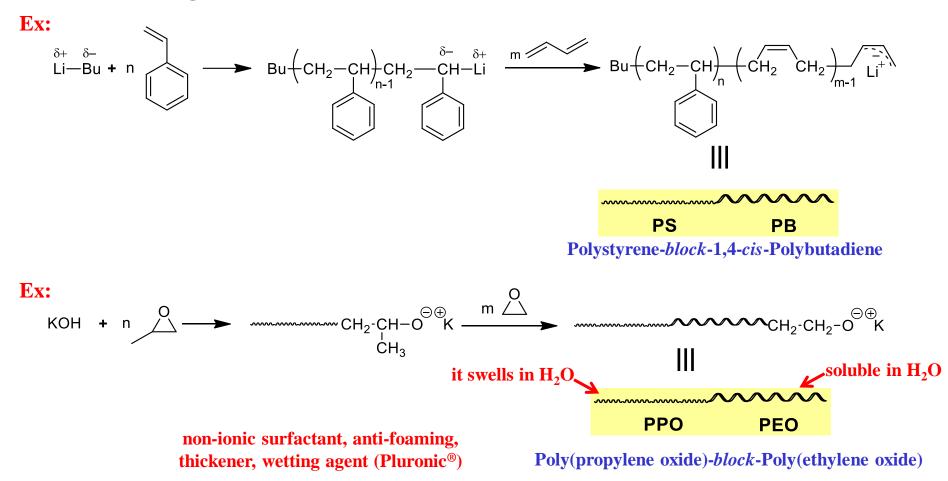


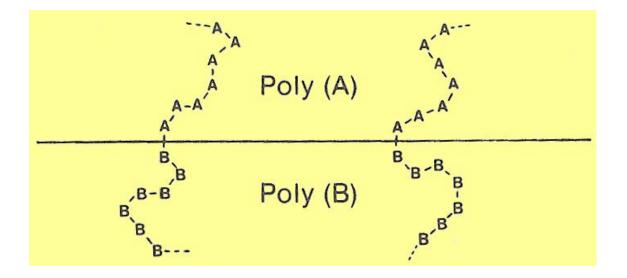

Poly(ethylene oxide) (PEO)

• FORMALDEHYDE TRIMER (TRIOXANE)


replaces metals in medium duty parts, springs, zipper closures, etc.

Polypeptide (M_n ~10⁶)


• CYCLIC SILOXANES


• BLOCK COPOLYMERIZATION (COMONOMERS ADDED SEQUENTIALLY)

Owing to the living nature of anionic polymerization (absence of chain transfer and chain termination reactions) and easy control of molecular weight, this technique is very much used in block copolymerization

• From mononegative chains

COMPATIBILIZERS OF IMMISCIBLE POLYMER BLENDS

AB BLOCK COPOLYMERS ARE COMPATIBILIZERS

Example: commercial SB (polystyrene-*b*-polybutadiene)

Blends of polybutadiene and polystyrene are immiscible

AB copolymers improve the adhesion between phases and compatibilize them

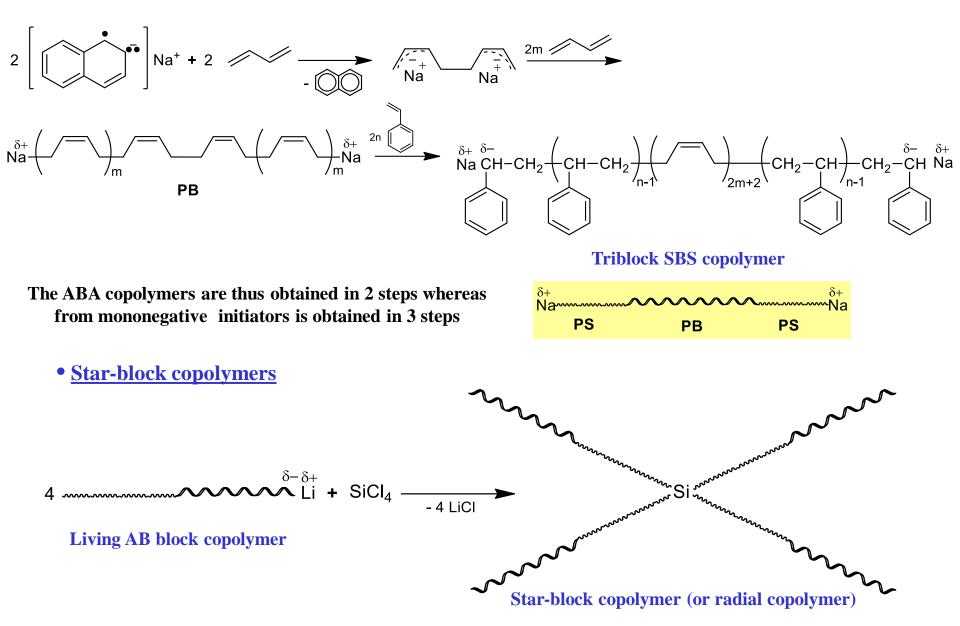
Sequential polymerization of different monomers (with total monomer consumption) is possible due to the living nature of the polymeric chain end. The preparation of the following types of block copolymers can be performed:

MAAAAABBBBBB

DIBLOCK AB TYPE

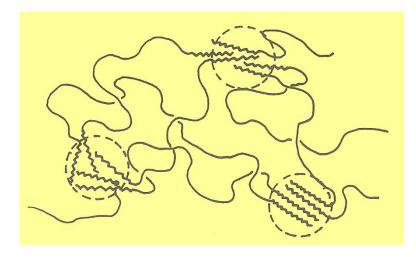
MAAAAABBBB BBBBCCCCCCC

TRIBLOCK ABC TYPE


MAAAAABBBBMBBBBBAAAAAAA MMA

TRIBLOCK ABA TYPE

-[-----AAAAAABBBBBBB------]n


MULTIBLOCK [AB] TYPE

• From dinegative chains

When melted, star-block copolymers exhibit lower viscosities, even when M_n are high

THERMOPLASTIC ELASTOMERS (TPE)

ABA BLOCK COPOLYMERS ARE THERMOPLASTIC ELASTOMERS (A= rigid polymer; B= flexible polymer)

Example: commercial SBS (polystyrene-*b*-polybutadiene-*b*-polystyrene)

- PB blocks – ca. $M_n = 50000 - 70000$

- PS blocks - ca. $M_n = 10000 - 15000$

Semicrystalline blocks at the ends (S) tend to aggregate in microdomains, whereas amorphous central blocks (B) form the matrix

Aggregation \equiv elastic behaviour \equiv physical crosslinks

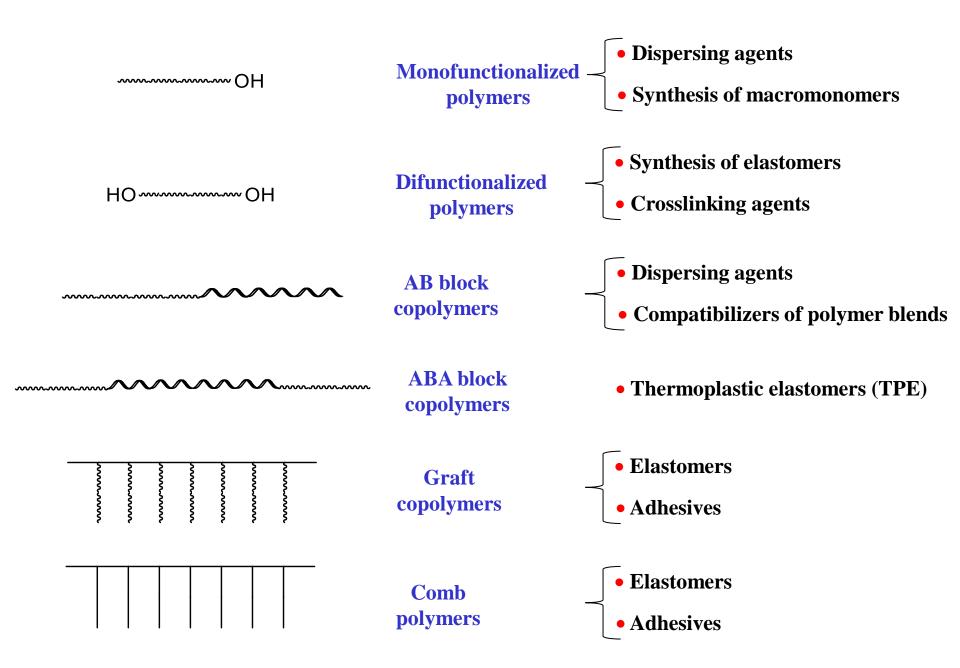
• NORMAL COPOLYMERIZATION (COMONOMERS MIXED IN THE FEED)

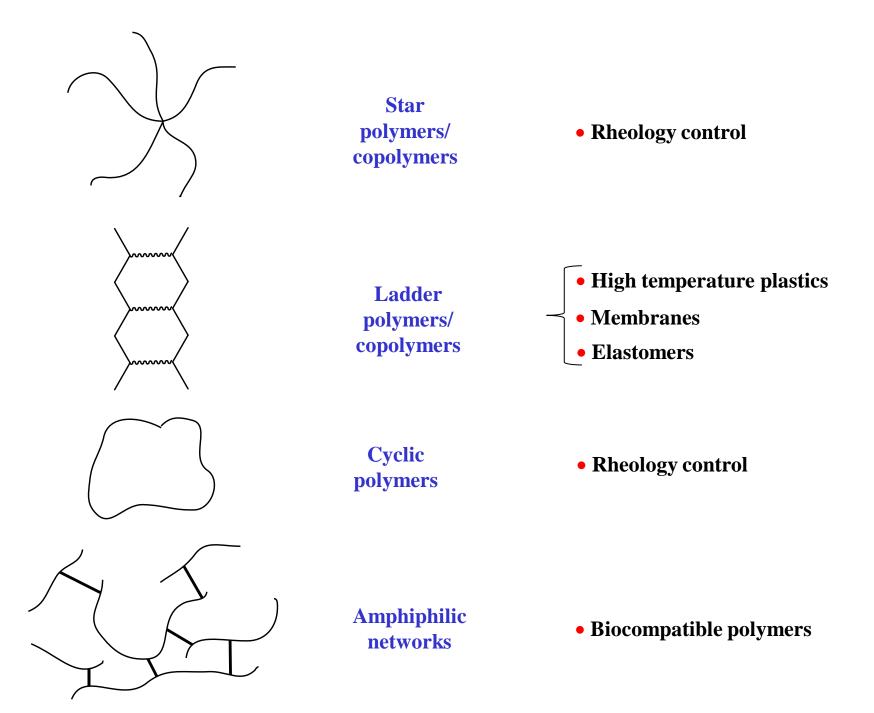
Relatively few reactivity ratios have been determined for anionic "normal" copolymerization

Monomer 1	Monomer 2	Initiator ^b	Solvent ^c	Temperature ^d (°C)	r_{I}	<i>r</i> ₂
Styrene	Methyl methacrylate	Na	NH ₃		0.12	6.4
		n-BuLi	None		e	e
	Butadiene .	n-BuLi	None	25	0.04	11.2
		n-BuLi	Hexane	25	0.03	12.5
		n-BuLi	Hexane	50	0.04	11.8
		n-BuLi	THF	25	4.0	0.3
		n-BuLi	THF	-78	11.0	0.4
		EtNa	Benzene		0.96	1.6
	Isoprene	n-BuLi	Cyclohexane	40	0.046	16.6
	Acrylonitrile	RLi	None		0.12	12.5
	Vinyl acetate	Na	NH ₃		0.01	0.01
Butadiene	Isoprene	n-BuLi	Hexane	50	3.38	0.47
Methyl methacrylate	Acrylonitrile	NaNH ₂	NH ₃		0.25	7.9
		RLi	None		0.34	6.7
	Vinyl acetate	NaNH ₂	NH ₃		3.2	0.4

TABLE 7.5. Representative Anionic Reactivity Ratios $(r)^a$

^aData from Morton.³⁰

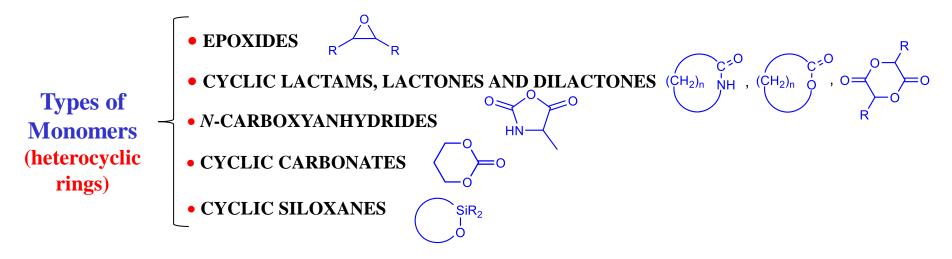

 ${}^{b}Bu = butyl$, Et = ethyl, R = alkyl.


 $^{c}THF = tetrahydrofuran.$

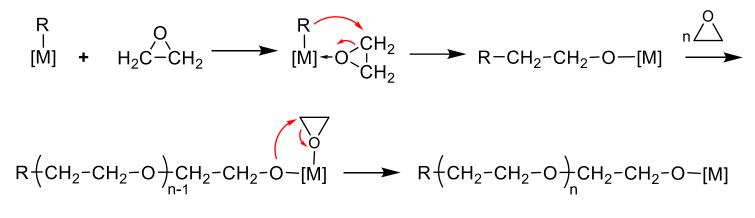
^dTemperature not specified in some instances.

^eNo detectable styrene in polymer.

POLYMER ARCHITECTURES ACCESSIBLE BY LIVING POLYMERIZATION



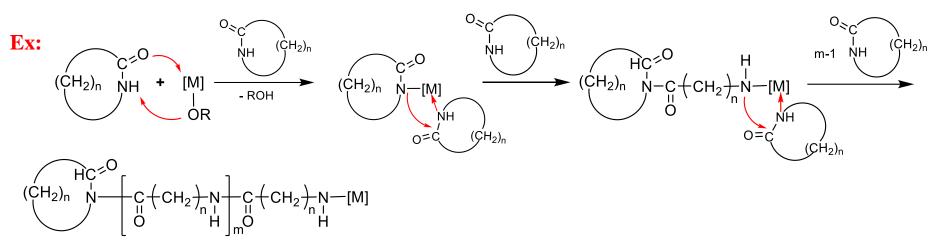
Metal-Catalyzed Polymerization (Coordination Polymerization)


- Polymerization of Olefins (Insertion) 🖌 Prof. Barbara Milani
- Polymerization of Dienes (Insertion)
- Polymerization of Alkynes
- Ring Opening Metathesis Polymerization (ROMP)
- Classical Anionic Polymerization
- Ring Opening Polymerization (ROP)
- Metal-mediated Radical Polymerization

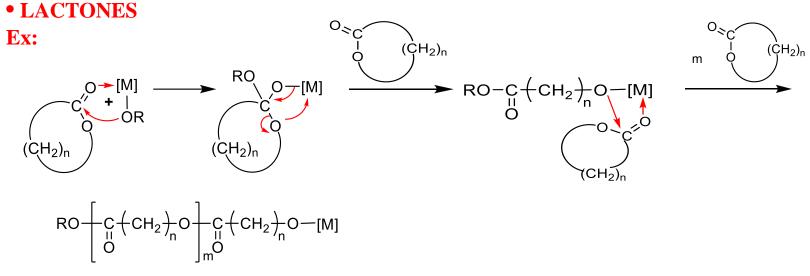
RING-OPENING POLYMERIZATION (ROP)

• EPOXIDES

Ex:

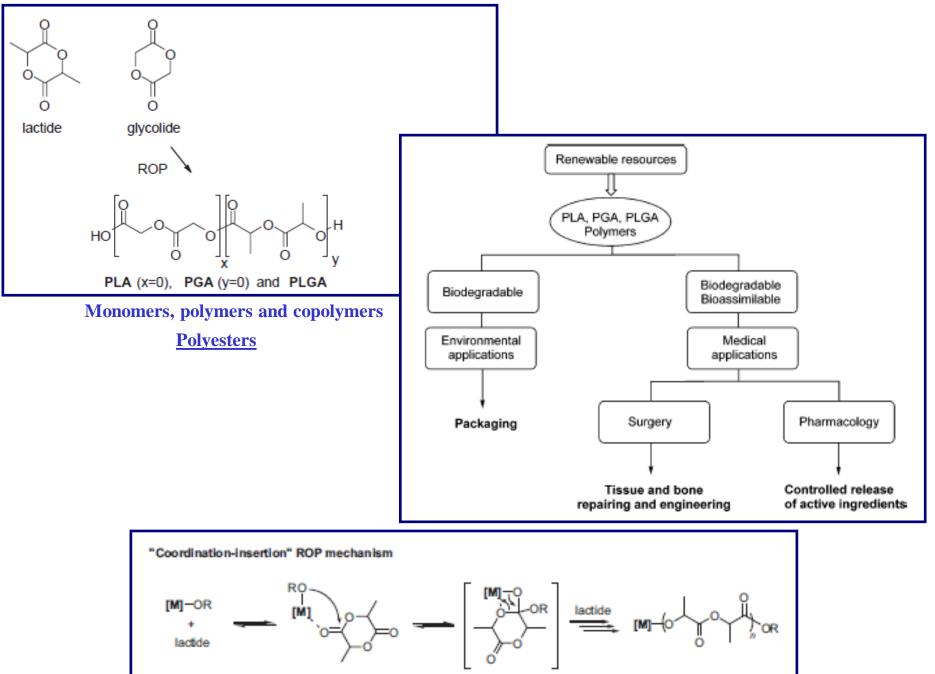


Polyethers [Poly(ethylene oxide) (PEO)]


Main catalytic systems used for the coordination ROP of epoxides

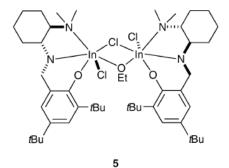
Monomer	Catalysts
Methyloxirane	FeCl ₃ /POx, ZnEt ₂ /H ₂ O, AIEt ₃ /H ₂ O/pyridine, and others
Phenyloxirane	$ZnEt_2(H_2O)$
(Haloalkyl)oxiranes (e.g., ECH)	FeCl ₃ /POx, AIEt ₃ /H ₂ O(/pyridine)
Oxiranes substituted with acetal groups	ZnEt ₂ /MeOH, ZnEt ₂ /cyclohexanol
Oxiranes substituted with ester groups	AIEt ₃ /H ₂ O/acetylacetone
Oxiranes substituted with organosilane or organosiloxane	ZnEt ₂ /H ₂ 0
Oxiranes substituted with nitrile	AI(i-Bu) ₃ /H ₂ O/acetylacetone
2,3-Dimethyloxirane	AI(<i>i</i> -Bu) ₃ /H ₂ O, ZnEt ₂ /H ₂ O
bis(Chloromethyl)oxirane	AI(<i>i</i> -Bu) ₃ /H ₂ O
1,2-Epoxycyclohexane	ZnEt ₂ , (EtZnOMe) ₄ , AI(<i>i</i> -Bu) ₃ /H ₂ O, AIEt ₃ /H ₂ O/acetylacetone, and others
Others (ethyl, <i>tert</i> -butyl, neopentyl, allyl amines, sulfones, ether, amides)	ZnEt ₂ /H ₂ 0

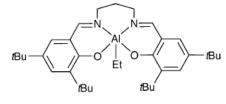
• LACTAMS

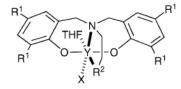


Polyamides [nylon 6 or poly(ɛ-caprolactam) (n=5)]

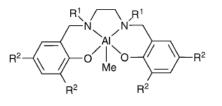
<u>Polyesters</u> [poly(ε-caprolactone)] (n=5)


• DILACTONES

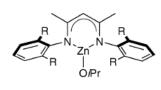

Catalysts used for coordination ROP of lactide

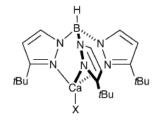


1a: X = O*i*Pr 1b: X = OMe

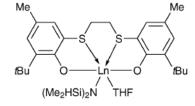


3

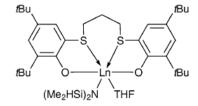



9a: R¹ = CMe₃; R² = OMe; X = N(SiHMe₂)₂ **9b**: $R^1 = CPhMe_2$; $R^2 = OMe$; $X = N(SiHMe_2)_2$ 9c: R¹ = CPhMe₂; R² = OMe; X = O/Pr 9d: R¹ = Me; R² = OMe; X = N(SiMe₃)₂ **9e**: $R^1 = CMe_3$; $R^2 = NMe_2$; $X = CH_2SiMe_3$ 9f: R¹ = CMe₃; R² = NEt₂; X = CH₂SiMe₃

2


4a: R¹ = Me, R² = H **4b**: $R^1 = CH_2Ph$, $R^2 = H$ 4c: $R^1 = CH_2Ph$, $R^2 = CI$ 4d: R¹ = Me, R² = Me

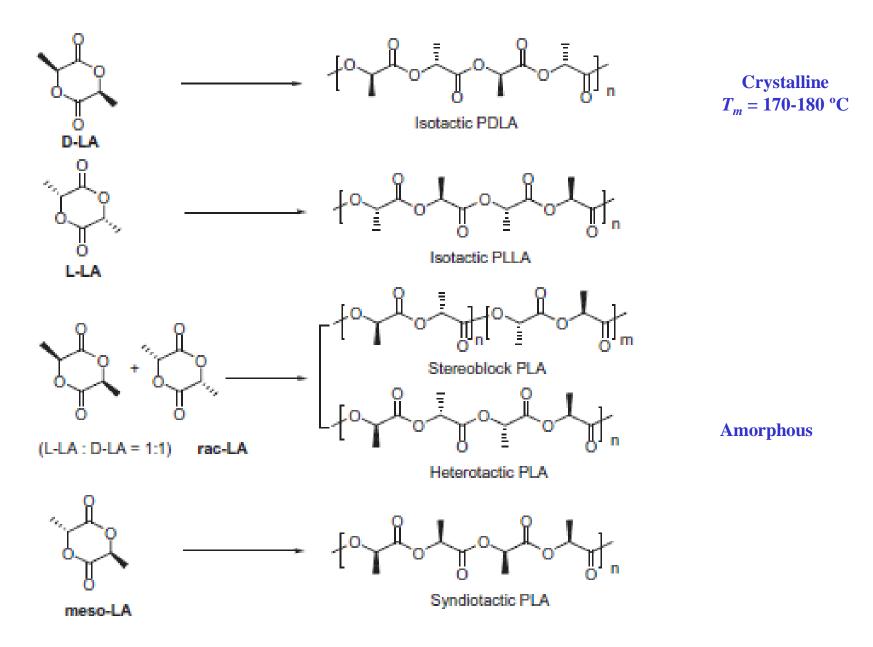
6a: R = Et 6b: R = *n*Pr 6c: R = *i*Pr


7a: X = N(SiMe₃)₂ 7b: X = OC₆H₃-2,6-*i*Pr₂

10a: Ln = Sc

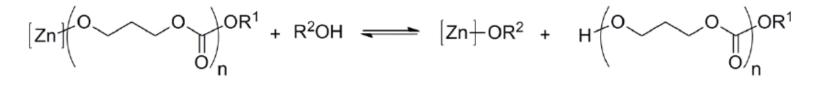
10b: Ln = Lu

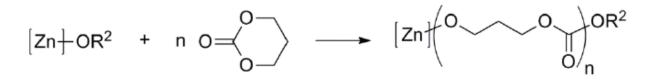
10c: Ln = Y

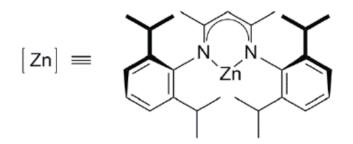

11a: Ln = Sc

11b: Ln = Lu

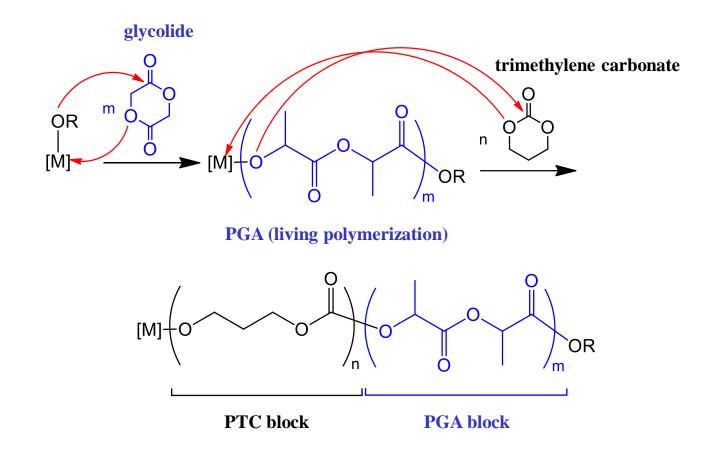
11c: Ln = Y

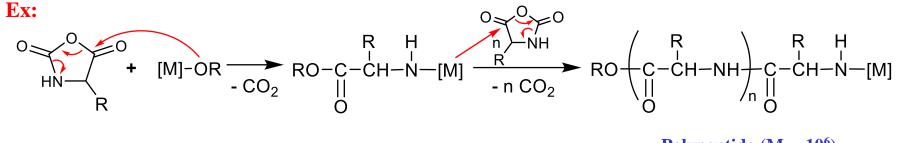



Synthesis of stereoregular PLAs by ROP



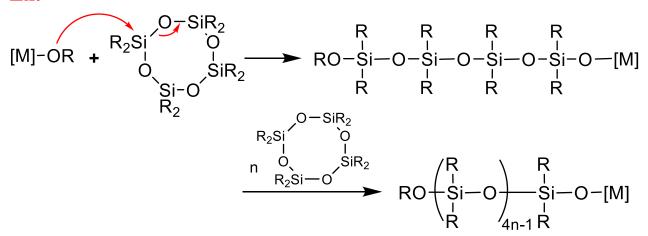
Synthesis of polycarbonates by ROP




[Zn] mediated living ROP of trimethylene carbonate

Synthesis of PGA-PTC diblock copolymer by ROP

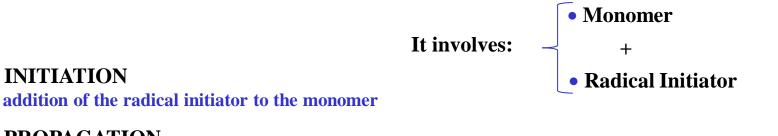
PGA-PTC diblock copolymer is the material of the <u>Maxon[™]</u> suture, a monofilament resorbable suture (also used in other resorbable medical devices)


• N-CARBOXYANHYDRIDES

Polypeptide (M_n ~10⁶)

CYCLIC SILOXANES

Ex:



Polysiloxane

Metal-Catalyzed Polymerization (Coordination Polymerization)

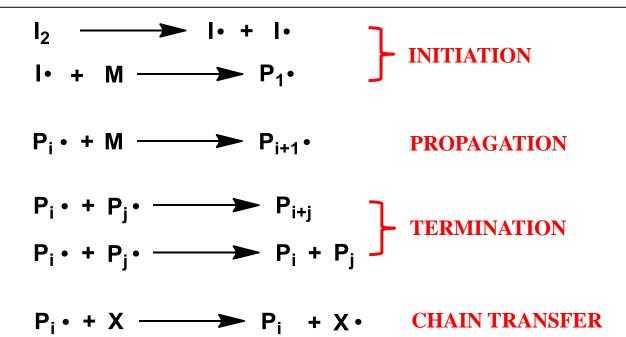
- Polymerization of Olefins (Insertion) 🖌 Prof. Barbara Milani
- Polymerization of Dienes (Insertion)
- Polymerization of Alkynes
- Ring Opening Metathesis Polymerization (ROMP)
- Classical Anionic Polymerization
- Ring Opening Polymerization (ROP)
- Metal-mediated Radical Polymerization

FREE RADICAL POLYMERIZATION

STEPS

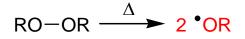
• CHAIN TERMINATION

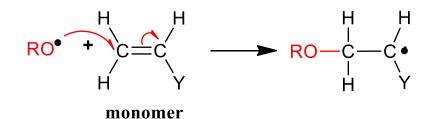
"death" of the radical propagating species by reaction with other radical species


radical chain growth by sequential addition of monomers

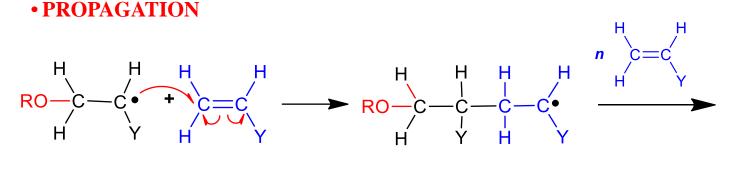
CHAIN TRANSFER

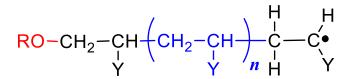
INITIATION


PROPAGATION


growing chain reacts with a neutral molecule and abstracts one of its atoms, the latter becoming a new radical

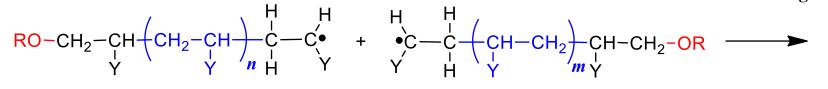
MECHANISM OF CLASSICAL 'FREE RADICAL POLYMERIZATION' (GENERAL)


• INITIATION



Initiator decomposition

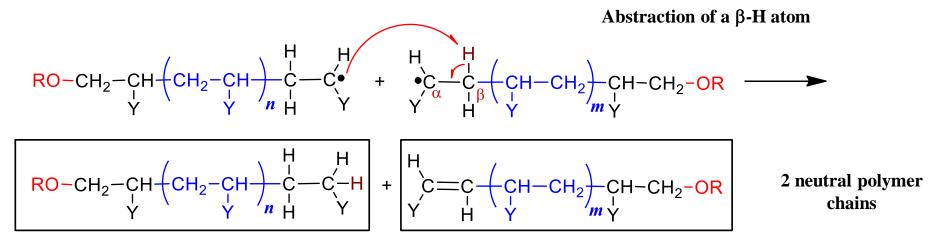
Addition of initiator radical to monomer



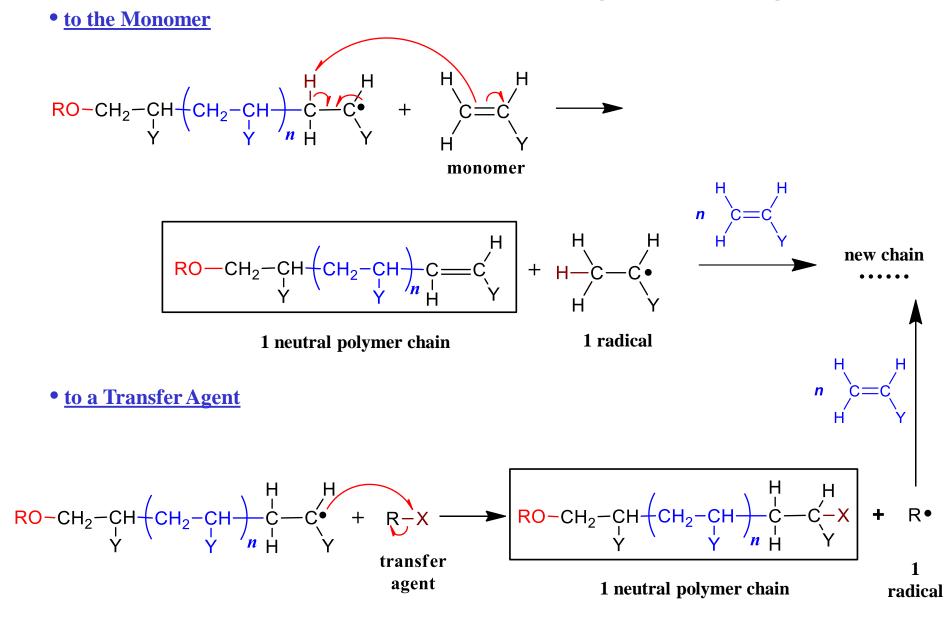
Sequential addition of monomers to radical growing chain CHAIN GROWTH

• TERMINATION

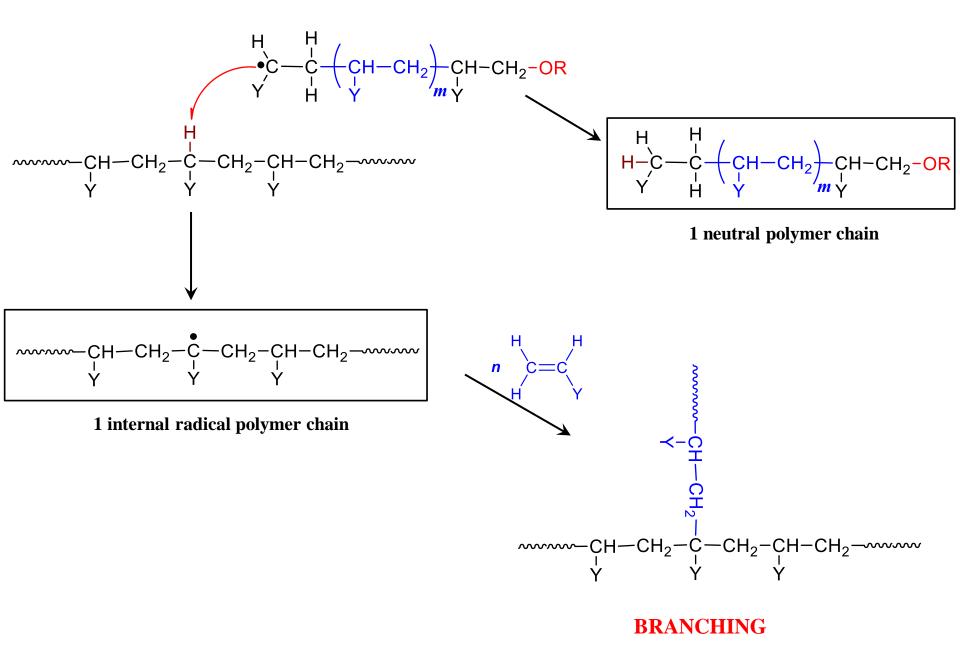
• <u>Recombination (or Coupling)</u> (*low* temperatures)


Recombination of 2 radical growing chains

$$\begin{array}{c} \mathsf{RO}-\mathsf{CH}_{2}-\mathsf{CH} + \mathsf{CH}_{2}-\mathsf{CH} + \mathsf{CH}_{2}-\mathsf{CH} + \mathsf{CH}_{2}-\mathsf{CH}_{2}$$

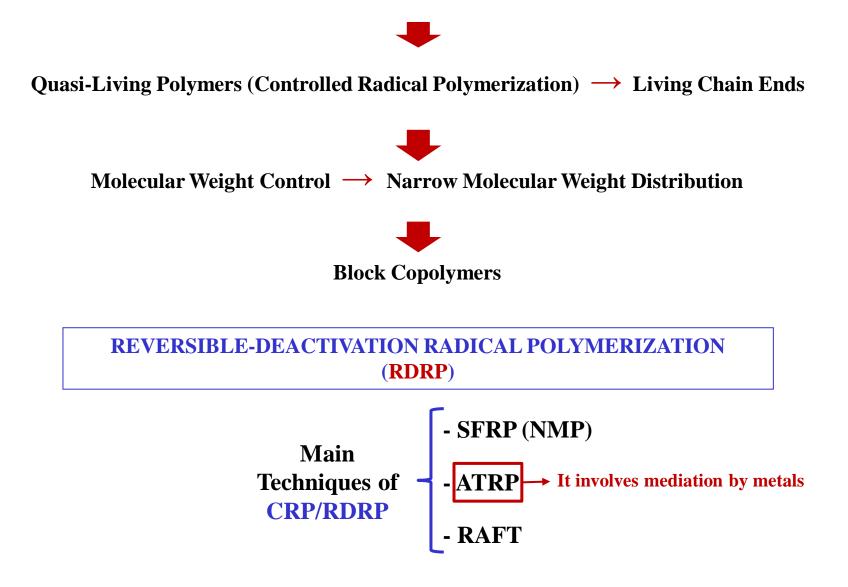

1 neutral chain (molecular weight doubles)

• <u>Disproportionation</u> (*high* temperatures)

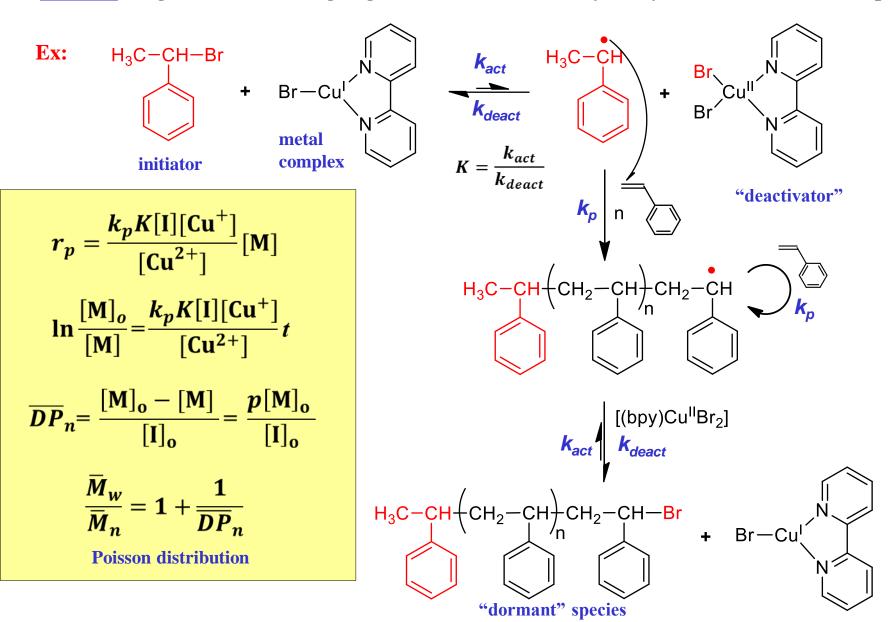


CHAIN TRANSFER

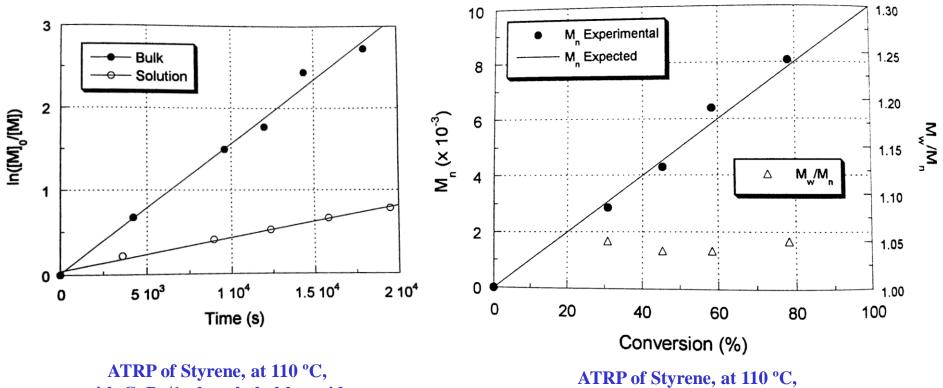
Step responsible for the decrease in molecular weight and for the broadening of the molecular weight distribution



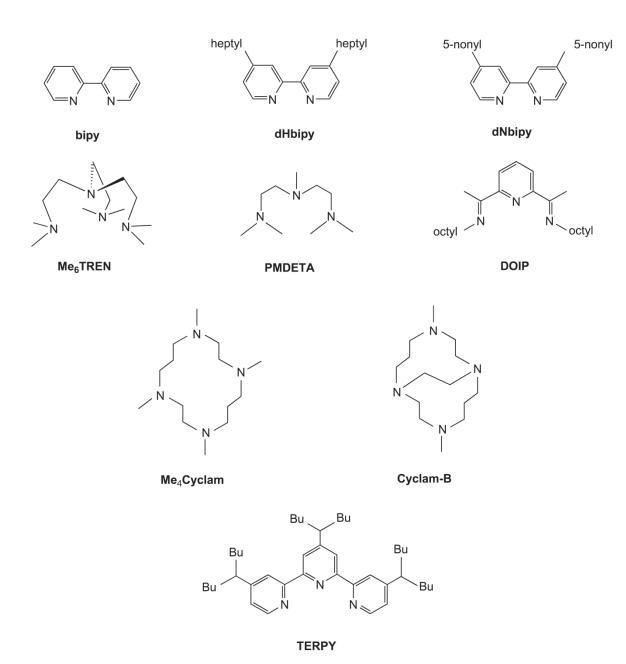
• <u>to the Polymer (very high temperatures)</u>


CONTROLLED RADICAL POLYMERIZATION (CRP)

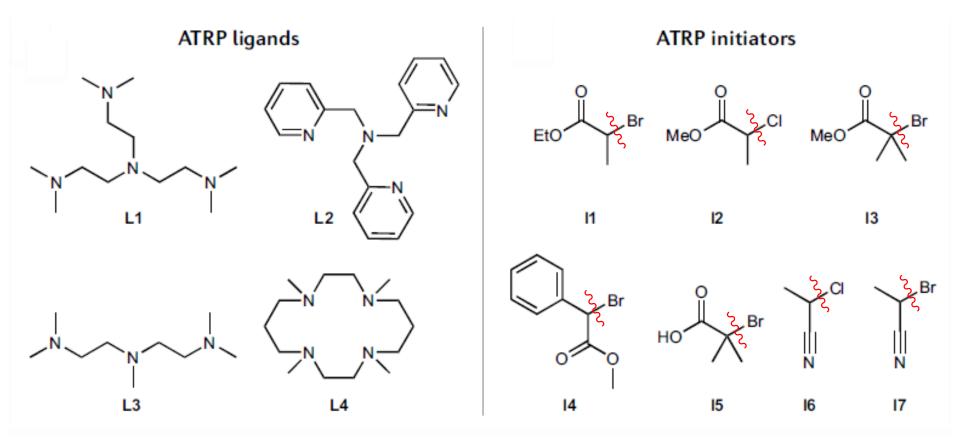
Controlled/Minimized TERMINATION and CHAIN TRANSFER reactions


ATOM-TRANSFER RADICAL POLYMERIZATION (ATRP)

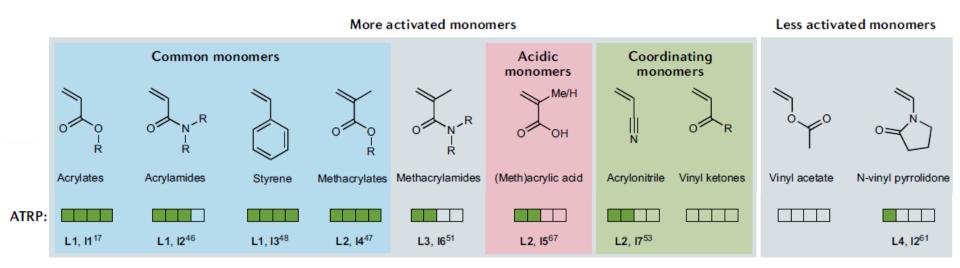
Initiator: Organic halide undergoing a reversible redox catalyzed by a transition-metal complex


1st order kinetics

Linear plot M_n vs p



with CuBr/1-phenylethyl bromide (bulk and solvent: diphenyl ether) ATRP of Styrene, at 110 °C, with CuBr/1-phenylethyl bromide (bulk)


• COMMON LIGANDS (L) OF ATRP

MOST COMMON LIGANDS (L) AND COMMON INITIATORS OF ATRP

• MONOMERS

Comparison of radical polymerization processes						
Property	Free-radical polymerization	Ideal Living polymerization	Reversible-deactivation radical polymerization (e.g. ATRP)			
Concn. of initiating species	Falls off only slowly	Falls off very rapidly	Falls off very rapidly			
Concn. of chain carriers (Number of growing chains)	Instantaneous steady state (Bodenstein approximation applies) decreasing throughout reaction	Constant throughout reaction	Constant throughout reaction			
Lifetime of growing chains	~ 10^{-3} s	Same as reaction duration	Same as reaction duration			
Main form of termination	Radical combination or radical disproportionation	Termination reactions are precluded	Termination reactions are minimized but not precluded			
Degree of polymerization	Broad range $(D \ge 1.5)$ Schulz-Flory distribution	Narrow range (D < 1.5) Poisson distribution	Narrow range (D < 1.5) Poisson distribution			
Dormant states	None	Rare	Predominant			

Polymer	Principal Stereochemistry	Typical Uses
		<u>Bili se di Standard de la compania.</u> Bili se de la seste de la compania
Plastics		Dettles design size and the short
Polyethylene, high	그는 그는 것을 가지?	Bottles, drums, pipe, conduit, sheet,
density (HDPE)		film, wire and cable insulation
Polyethylene, ultrahigh		Surgical prostheses, machine
molecular weight		parts, heavy-duty liners
(UHMWPE)		
Polypropylene	Isotactic.	Automobile and appliance parts, rope, cordage, webbing, carpeting, film
Poly(1-butene)	Isotactic	Film, pipe
Poly(4-methyl-1-	Isotactic	Packaging, medical supplies, lighting
pentene) ^a		
Polystyrene	Syndiotactic	Specialty plastics
1,4-Polybutadiene	trans	Metal can coatings, potting compounds for transformers
1,4-Polyisoprene	trans	Golf ball covers, orthopedic devices
Ethylene-1-alkeneb		Blending with LDPE, packaging
copolymer (linear low-		film, bottles
density polyethylene, LLDPE)		
Ethylene-propylene	Isotactic	Food packaging, automotive trim,
block copolymers		toys, bottles, film, heat-sterilizable
(polyallomers)		containers
Polydicyclopentadiene ^c	1. j 	Reaction injection molding (RIM) structural plastics
Elastomers		Structural pression
1,4-Polybutadiene	cis	Tires, conveyer belts, wire and cable insulation, footware
1,4-Polyisoprene	cis	Tires, footware, adhesives, coated fabrics
Poly(1-octenylene) (polyoctenamer) ^c	trans	Blending with other elastomers
Poly(1,3-cyclo-	trans	Molding compounds, engine mounts,
pentenylenevinylene)		car bumper guards
(norbornene polymer) ^c		
Polypropylene		Asphalt blends, sealants, adhesives,
(amorphous)		cable coatings
Ethylene-propylene		Impact modifier for polypropylene,
copolymer (EPM, EPR)		car bumper guards
Ethylene-propylene-		Wire and cable insulation, weather
diene copolymer (EPDM)		stripping, tire side walls, hose, sea

TABLE 8.1. Commercially Available Polymers Synthesized with Complex Coordination Catalysts

^aUsually copolymerized with small amounts of 1-pentene.

^b I-Butene, I-hexene, and I-octene.

^cSynthesized by ring-opening metathesis polymerization of the corresponding cycloalkene.

Monomer	Initiator			
	Free radical	Anionic	Cationic	Co-ordina- tion
Ethylene (\checkmark			\checkmark
Propylene (and other α -olefins \mathbb{R})				\checkmark
Isobutylene			\checkmark	
				×
Styrene	\checkmark	\checkmark	\checkmark	\checkmark
Butadiene and isoprene	~ ~	\checkmark		. √
Acrylates and methacrylates	\checkmark	\checkmark		
Acrylonitrile (CN)	\checkmark	\checkmark		
Vinyl ethers (CR)			\checkmark	
Vinyl halides (Hal)	\checkmark			
Fluorocarbons (e.g. TFE, $CF_2 = CF_2$)	\checkmark			
Vinyl esters (e.g. acetate OCOCH ₃)	\checkmark			
Formaldehyde (CH ₂ $=$ O)			\checkmark	21
Formaldehyde trimer (trioxan $\begin{pmatrix} O \\ I \\ CH_2 \end{pmatrix}$	*	\checkmark		\checkmark
Ethylene oxide $\begin{pmatrix} 0 \\ CH_2 - CH_2 \end{pmatrix}$		\checkmark		\sim
Cyclic ethers (e.g. THF CH_2CH_2 CH_2CH_2)			\checkmark	
Cyclic lactams and lactones $\left(\begin{pmatrix} CONH \\ (CH_2) \end{pmatrix}, \begin{pmatrix} -CO \\ (CH_2) \end{pmatrix} \right)$	$\binom{O}{2n}$	\checkmark		\checkmark
Cyclic siloxanes ($R_2 SiO_{3 \text{ or } 4}$)		\checkmark		
Cycloalkenes and cycloalkynes				~
Alkynes (=-R)				. √

 Table 4.2
 Initiation modes of various monomers

BIBLIOGRAPHY

- M. P. Stevens, "Polymer Chemistry - An Introduction", 3rd ed., Oxford Univ. Press, 1999

- G. Odian, "Principles of Polymerization", 4th ed., Wiley-Interscience, N.Y., 2004

- B. Cornils, W. A. Herrmann (Eds.), "Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Three Volumes", 2nd ed., Volume 1, Wiley-VCH, Weinheim, 2002; Ch. 2.3

- G. W. Coates, M. Sawamoto (Eds.), "Chain Polymerization of Vinyl Monomers", Volume 3 of K. Matyjaszewski, M Möller (Eds.), "Polymer Science: a Comprehensive Reference", Elsevier, Amsterdam, 2012

- S. Penczek, R. Grubbs (Eds.), "Ring-Opening Polymerization and Special Polymerization Processes", Volume 4 of K. Matyjaszewski, M Möller (Eds.), "Polymer Science: a Comprehensive Reference", Elsevier, Amsterdam, 2012

- M. Michalovic, K. Anderson, L. Mathias, "The Macrogalleria", Polymer Site Learning Center site of the University of Southern Mississippi) (<u>http://www.pslc.ws/macrog/</u>)