Progettazione di Materiali e Processi

Università degli Studi di Trieste
Facoltà di Ingegneria
Corso di Laurea in Ingegneria di Processo e dei Materiali
A.A. 2021-22

PRODUCT (MATERIALS) AND PROCESS DESIGN

Intro

- Design, Product, Process
- Product Design; Process Design; Product and Process Design
- Material, process, shape, properties, function
- Example
- Fundamentals
- Identification of needs (market; coevolution; true need)
- Types of design
- Design tools
- Databases
- Analytical tools
- Simulation tools
- Selection and design of materials and processes (Lughi)
- Tools for optimal systematic selection
- Design of materials: case studies (nano, meso, microstructures; hybrid materials; composites)
- Design and optimization of chemical processes (Fermeglia)
- Advanced tools and methods (ad-hoc lectures and seminars: FEM, product/process economics, Life Cycle Assessment, ...)
- Special topic seminars (Intellectual Property, product evaluation, materials in industrial design, theory of scenarios, rapid plant assessment, material selection in engines, design for recycle, refurbish, reuse)

Progettazione di Materiali e Processi

Modulo 1
 Selezione sistematica di materiali e processi

Lecture 2

- Selection process
- Materials indexes

The selection process

The selection process

All materials

Innovative choices

FUNCTIONS:

-Carry load
-Transmit load - Transmit heat
-Transmit current - Store energy
-...

OBJECTIVES:

- Minimize mass - Minimize cost - Minimize impact -...

Function - Objectives - Constraints

Function

What does the component do?
e.g.: support load, seal, transmit heat, bycicle fork, etc.

Objective

Constraints
What do we want to maximize (minimize)?
e.g.: minimize cost, maximize energy storage, minimize weight, etc.

What conditions must be met? (non-negotiable or negotiable) e.g. geometry, resist a certain load, resist a certain environment, etc.

- Implicit functions (e.g. tie, beam, shaft, column)
- Constraints often translate to property limits (temperature, conductivity, cost, ...)
- Some constraints are more complex (e.g. stiffness, strength, etc.) as they are coupled with geometry -> need of a specific objective
- Material indices help unravel such complexity

The material index

Material index

If separable:

$$
\text { Performance }=f_{1}(F) f_{2}(G)\left(f_{3}(M)\right.
$$

Material index

Index for a stiff, light tie-rod

Stiff tie of length L and minimum mass

Index for a stiff, light beam

Stiff beam of length L and minimum mass

- Length L is specified
- Must have bending stiffness > S*

Equation for constraint on A:

$$
S=\frac{F}{\delta}=\frac{C E I}{L^{3}}=\frac{C E A^{2}}{12 L^{3}}
$$

Objective
Minimize mass m:

$$
m=A L \rho
$$

,

$$
m=\left(\frac{12 L^{5} S^{*}}{C}\right)^{1 / 2}\left(\frac{\rho}{E^{1 / 2}}\right)
$$

Performance metric m

$$
\begin{aligned}
& m=\text { mass } \\
& A=\text { area } \\
& L=\text { length } \\
& \rho=\text { density } \\
& E=\text { Young's modulus } \\
& I=\text { second moment of area } \\
& \left(I=b^{4} / 12=A^{2} / 12\right) \\
& C=\text { constant }(\text { here, } 48) \\
& S=\text { stiffness }(F / \delta)
\end{aligned}
$$

Chose materials with largest

Square section, area $\mathrm{A}=\mathrm{b}^{2}$

Optimized selection using charts

Plotting indices as functions

Index for a strong, light tie-rod

Strong tie of length L and minimum mass

Material indices

Criteria of excellence: material indices

- Material index = combination of material properties that limit performance
- Sometimes a single property
- Sometimes a combination $\}$

Either is a material index

Minimum weight design

Criteria of excellence: material indices

- Material index = combination of material properties that limit performance
- Sometimes a single property
- Sometimes a combination $\}$

Either is a material index

Minimum cost design

$\rho=$ Density
$\sigma_{\mathbf{y}}=$ Yield strength

What if we change the free variable?

Table 7.1 Moments of areas of sections for common shapes

Tables

Section Shape	$A\left(m^{2}\right)$	$I_{x x}\left(m^{4}\right)$	$K\left(m^{4}\right)$	$Z\left(m^{3}\right)$	$Q\left(m^{3}\right)$
	πr^{2}	$\frac{\pi}{4} r^{4}$	$\frac{\pi}{2} r^{4}$	$\frac{\pi}{4} r^{3}$	$\frac{\pi}{2} r^{3}$
	b^{2}	$\frac{b^{4}}{12}$	$0.14 b^{4}$	$\frac{b^{3}}{6}$	$0.21 b^{3}$
$\begin{gathered} \text { TaUPIIB } \\ 5-2 b \rightarrow-1 \end{gathered}$	$\pi a b$	$\frac{\pi}{4} a^{3} b$	$\frac{\pi a^{3} b^{3}}{\left(a^{2}+b^{2}\right)}$	$\frac{\pi}{4} a^{2} b$	$\begin{gathered} \frac{\pi a^{2} b}{2} \\ (a<b) \end{gathered}$
?	$b h$	$\frac{b h^{3}}{12}$	$\begin{gathered} \frac{b^{3} h}{3}\binom{\left.1-0.58 \frac{b}{h}\right)}{(h>b)} \\ (h) \end{gathered}$	$\frac{b h^{2}}{6}$	$\frac{b^{2} h^{2}}{\substack{h+1.8 b \\(h>b)}}$
	$\frac{\sqrt{3}}{4} a^{2}$	$\frac{a^{4}}{32 \sqrt{3}}$	$\frac{a^{4} \sqrt{3}}{80}$	$\frac{a^{3}}{32}$	$\frac{a^{3}}{20}$
	$\begin{gathered} \pi\left(r_{o}^{2}-r_{i}^{2}\right) \\ \approx 2 \pi r t \end{gathered}$	$\begin{gathered} \frac{\pi}{4}\left(r_{o}^{4}-r_{i}^{4}\right) \\ \approx \pi r^{3} t \end{gathered}$	$\begin{gathered} \frac{\pi}{2}\left(r_{o}^{4}-r_{i}^{4}\right) \\ \approx 2 \pi r^{3} t \end{gathered}$	$\begin{gathered} \frac{\pi}{4 r_{o}}\left(r_{o}^{4}-r_{i}^{4}\right) \\ \quad \approx \pi r^{2} t \end{gathered}$	$\begin{gathered} \frac{\pi}{2 r_{o}}\left(r_{o}^{4}-r_{i}^{4}\right) \\ \quad \approx 2 \pi r^{2} t \end{gathered}$
	$4 b t$	$\frac{2}{3} b^{3} t$	$b^{3} t\left(1-\frac{t}{b}\right)^{4}$	$\frac{4}{3} b^{2} t$	$2 b^{2} t\left(1-\frac{t}{b}\right)^{2}$
	$\pi(a+b) t$	$\frac{\pi}{4} a^{3} t\left(1+\frac{3 b}{a}\right)$	$\frac{4 \pi(a b)^{5 / 2} t}{\left(a^{2}+b^{2}\right)}$	$\frac{\pi a^{2} t}{4}\left(1+\frac{3 b}{a}\right)$	$\begin{aligned} & 2 \pi t\left(a^{3} b\right)^{1 / 2} \\ & \quad(b>a) \end{aligned}$
	$\begin{gathered} b\left(h_{o}-h_{i}\right) \\ \approx 2 b t \end{gathered}$	$\begin{gathered} \frac{b}{12}\left(h_{o}^{3}-h_{i}^{3}\right) \\ \approx \frac{1}{2} b t h_{o}^{2} \end{gathered}$	-	$\begin{gathered} \frac{b}{6 h_{o}}\left(h_{o}^{3}-h_{i}^{3}\right) \\ \quad \approx b t h_{o} \end{gathered}$	\cdots
	$2 t(h+b)$	$\frac{1}{6} h^{3} t\left(1+\frac{3 b}{h}\right)$	$\begin{aligned} & \approx \frac{2 t b^{2} h^{2}}{h+b} \\ & \square \\ & \frac{2}{3} b t^{3}\left(1+\frac{4 h}{b}\right) \end{aligned}$	$\frac{h^{2} t}{3}\left(1+\frac{3 b}{h}\right)$	
	$2 t(h+b)$	$\frac{t}{6}\left(h^{3}+4 b t^{2}\right)$	$\begin{aligned} & \frac{t^{3}}{3}(8 b+h) \\ & \frac{2}{3} h t^{3}\left(1+\frac{4 b}{h}\right) \end{aligned}$	$\frac{t}{3 h}\left(h^{3}+4 b t^{2}\right)$	$\begin{array}{ll} \frac{t^{2}}{3}(8 b+h) & \mathrm{H} \\ 1 & \frac{2}{3} h t^{2}\left(1+\frac{4 b}{h}\right) \end{array}$
	$t \lambda\left(1+\frac{\pi^{2} d^{2}}{4 \lambda^{2}}\right)$	$\frac{t \lambda d^{2}}{8}$	-	$\frac{t \lambda d}{4}$	-

Tables

Elastic bending of beams

Failure of beams and panels

$$
\begin{aligned}
M_{f} & =\left(\frac{I}{y_{m}}\right) \sigma^{*} \text { (Onset) } \\
M_{f} & =H \sigma_{y} \text { (Full plasticity) } \\
F_{f} & =C\left(\frac{I}{y_{m}}\right) \frac{\sigma^{*}}{\ell} \text { (Onset) } \\
F_{f} & =\frac{C H \sigma_{y}}{\ell} \text { (Full plasticity) }
\end{aligned}
$$

$M_{f}=$ failure moment (Nm)
$F_{f}=$ force at failure (N)
$\ell=$ length (m)
$t=$ depth (m)
$b=$ width (m)
$I=$ see Table $2\left(\mathrm{~m}^{4}\right)$
$\frac{I}{y_{m}}=$ see Table $2\left(\mathrm{~m}^{3}\right)$
$H=$ see Table $2\left(\mathrm{~m}^{3}\right)$
$\sigma_{y}=$ yield strength $\left(\mathrm{N} / \mathrm{m}^{2}\right)$.
$\sigma_{f}=$ modulus of rupture ($\mathrm{N} / \mathrm{m}^{2}$)
$\sigma^{*}=\sigma_{y}$ (plastic material)
$=\sigma_{f}($ brittle material $)$

Tables

Buckling of columns and plates

Torsion of shafts

$$
F_{\mathrm{CRIT}}=\frac{\pi^{2} E I}{\ell^{2}}-\frac{M^{2}}{4 E I}
$$

$$
F_{\mathrm{CRIT}}=\frac{n^{2} \pi^{2} E I}{\ell^{2}}+\frac{k \ell^{2}}{n^{2}}
$$

$$
p_{\text {CRIT }}^{\prime}=\frac{3 E I}{\left(r^{\prime}\right)^{3}}
$$

Spring deflection and failure

$$
\begin{aligned}
u & =\frac{64 F R^{3} n}{G d^{4}} \\
F_{f} & =\frac{\pi}{32} \frac{d^{3} \sigma_{y}}{R}
\end{aligned}
$$

$$
F=\text { force }(\mathrm{N})
$$

$$
u=\text { deflection (m) }
$$

$$
R=\text { coil radius }(\mathrm{m})
$$

$$
n=\text { number of turns }
$$

Tables

Static and spinning discs

Simple

$$
\begin{aligned}
\delta & =\frac{3}{4}\left(1-v^{2}\right) \frac{\Delta p R^{4}}{E t^{3}} \\
\sigma_{\max } & =\frac{3}{8}(3+v) \frac{\Delta p R^{2}}{t^{2}}
\end{aligned}
$$

Clamped

$$
\begin{aligned}
\delta & =\frac{3}{16}\left(1-v^{2}\right) \frac{\Delta p R^{4}}{E t^{3}} \\
\sigma_{\max } & =\frac{3}{8}(1+v) \frac{\Delta p R^{2}}{t^{2}}
\end{aligned}
$$

$$
\delta=\text { deflection }(\mathrm{m})
$$

$$
E=\text { Young's modulus (N/m) }
$$

$$
\Delta p=\text { pressure diff. }(\mathrm{N} / \mathrm{m})
$$

$$
v=\text { Poisson's ratio }
$$

Disc

Ring

$u=$ energy (J)
$\omega=$ angular vel. ($\mathrm{rad} / \mathrm{s}$)
$\rho=$ density $\mathrm{kg} / \mathrm{m}^{3}$

Contact stresses

$$
\left.\begin{array}{l}
a=0.7\left(\frac{F R}{E}\right)^{1 / 3} \\
u=1.0\left(\frac{F^{2}}{E^{2} R}\right)^{1 / 3}
\end{array}\right\} v=\frac{1}{3}
$$

$$
\begin{aligned}
& a=\left(\frac{3}{4} \frac{F}{E^{*}} \frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right)}\right)^{1 / 3} \\
& u=\left(\frac{9}{16} \frac{F^{2}}{\left(E^{*}\right)^{2}} \frac{\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}\right)^{1 / 3}
\end{aligned}
$$

$$
\begin{aligned}
\left(\sigma_{c}\right)_{\max } & =\frac{3 F}{2 \pi a^{2}} \\
\left(\sigma_{s}\right)_{\max } & =\frac{F}{2 \pi a^{2}} \\
\left(\sigma_{t}\right)_{\max } & =\frac{F}{6 \pi a^{2}}
\end{aligned}
$$

$R_{1} R_{2} \quad$ radii of spheres (m)
$E_{1} E_{2}$ modulii of spheres $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
$\nu_{1} \nu_{2}$ Poisson's ratios
$F \quad \operatorname{load}(\mathrm{~N})$
a. radius of contact (m)
u displacement (m)
$\sigma \quad$ stresses $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
$\sigma_{y} \quad$ yield stress $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
$E^{*}\left(\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}\right)^{-1}$

$$
\frac{F}{\pi a^{2}}=3 \sigma_{y}
$$

Tables

Estimates for stress concentrations

Sharp cracks

$$
K_{1}=C \sigma \sqrt{\pi a}
$$

failure when

$$
K_{1} \geq K_{I C}
$$

$K_{1}=$ stress intensity $\left(\mathrm{N} / \mathrm{m}^{3 / 2}\right)$
$\sigma=$ remote stress $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
$F=\operatorname{load}(\mathrm{N})$
$M=$ moment (Nm)
$a=$ crack half-length
$=$ surface crack length (m)
$w=$ half-width (centre) (m)
$=$ width (edge crack) (m)
$b=$ sample depth (m)
$t=$ beam thickness (m)
point load on crack face:

$$
\sigma=\frac{F}{2 a b}
$$

moment on beam:

$$
\sigma=\frac{6 M}{b t}
$$

3-point bending:

$$
\sigma=\frac{3 F \ell}{2 b t}
$$

Tables

Pressure vessels

Thin Walled

Thick Walled

Cylinder

$$
\begin{aligned}
\sigma_{\theta} & =\frac{p b}{t} \\
\sigma_{r} & =-p / 2 \\
\sigma_{z} & =\frac{p b}{2 t}(\text { closed ends })
\end{aligned}
$$

Sphere

$$
\begin{aligned}
\sigma_{\theta} & =\sigma_{\phi}=\frac{p b}{2 t} \\
\sigma_{r} & =-p / 2
\end{aligned}
$$

$p=$ pressure ($\mathrm{N} / \mathrm{m}^{2}$)
$t=$ wall thickness (m)
$a=$ inner radius (m)
$b=$ outer radius (m)
$r=$ radial coordinate (m)

$$
\begin{aligned}
\sigma_{\theta} & =\frac{p a^{2}}{r^{2}}\left(\frac{b^{2}-r^{2}}{b^{2}-a^{2}}\right) \\
\sigma_{r} & =-\frac{p a^{2}}{r^{2}}\left(\frac{b^{2}+r^{2}}{b^{2}-a^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{\theta} & =\sigma_{\phi}=\frac{p a^{3}}{2 r^{3}}\left(\frac{b^{3}+2 r^{3}}{b^{3}-a^{3}}\right) \\
\sigma_{r} & =-\frac{p a^{3}}{r^{3}}\left(\frac{b^{3}-r^{3}}{b^{3}-a^{3}}\right)
\end{aligned}
$$

Vibrating beams, tubes and discs

Tables

Creep and creep fracture

Flow of heat and matter

$$
\begin{aligned}
\sigma & =\text { stress } \mathrm{N} / \mathrm{m}^{2} \\
F & =\text { force }(\mathrm{N})
\end{aligned}
$$

$\dot{\delta}, \dot{u}=$ displacement rates $(\mathrm{m} / \mathrm{s})$
$n, \dot{\varepsilon}_{0}, \sigma_{0}=$ creep constants
$\ell, b, t=$ beam dimensions (m)
$a, b=$ radii of pressure vessels (m)

$$
\rho=\text { relative density, } \frac{b^{3}-a^{3}}{b^{3}}
$$

$C_{1}, C_{2}=$ constants

$$
\begin{array}{r}
\dot{\rho}=\frac{3}{2} \dot{\varepsilon}_{0} \frac{\rho(1-\rho)}{\left(1-(1-\rho)^{1 / n}\right)^{n}} \\
\times\left(\frac{3}{2 n} \frac{\left(\rho_{e}-\rho_{i}\right)}{\sigma_{0}}\right)^{n}
\end{array}
$$

$-2-2$

$$
Q=-\lambda \nabla T=-\lambda \frac{\mathrm{d} T}{\mathrm{~d} x}
$$

$$
Q=\text { heat flux }\left(\mathrm{J} / \mathrm{m}^{2} \mathrm{~s}\right)
$$

$T=$ temperature (K)
$x=$ distance (m)
$\lambda=$ thermal conductivity (W / mK)

$$
\frac{\partial T}{\partial t}=a \nabla^{2} T=a \frac{\partial^{2} T}{\partial x^{2}}
$$

$t=$ time (s)
$\rho=$ density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$C=$ specific heat $\left(\mathrm{J} / \mathrm{m}^{3} \mathrm{~K}\right)$
$a=$ thermal diffusivity, $\frac{\lambda}{\rho c}\left(\mathrm{~m}^{2} / \mathrm{s}\right)$

$$
Q=h\left(T_{w}-T_{0}\right)
$$

$T_{w}=$ surface temperature (K)
$T=$ fluid temperature (K)
$h=$ heat transfer coeff. (W/m²K)

$$
=5-50 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \text { in air }
$$

$=1000-5000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ in water

$$
Q=\varepsilon \sigma\left(T_{1}^{4}-T_{0}^{4}\right)
$$

$\varepsilon=$ emissivity (1 for black body)
$\sigma=$ Stefan constant
$=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$

Tables

Solutions for diffusion equations

Steady state

$A, B=$ constants of integration
$x=$ linear distance (m)
$r=$ radial distance (m)
Transient

$$
\begin{gathered}
\begin{array}{c}
\frac{\partial T}{\partial t}=a \nabla^{2} T \\
\frac{\partial C}{\partial t}=D \nabla^{2} C \\
T(x, t)=\frac{A}{\sqrt{a t}} \exp -\left(\frac{x^{2}}{4 a t}\right)+B \\
T(x, t)=A\left(1+\operatorname{erf}\left(\frac{x}{2 \sqrt{a t}}\right)\right)+B \\
T(x, t)=A \sin \lambda x, \exp -\lambda^{2} a t \text { etc. }
\end{array} \text { }
\end{gathered}
$$

Table B1 Stiffness-limited design at minimum mass (cost, energy, environmental impact*)
Function and constraints* ${ }^{*} \quad$ Maximize ${ }^{\dagger}$

Tie (tensile strut)

stiffness, length specified; section area free E/

Shaft (loaded in torsion)

stiffness, length, shape specified, section area free stiffness, length, outer radius specified; wall thickness free stiffness, length, wall-thickness specified; outer radius free
$G^{1 / 2} / \rho$

$$
\begin{gathered}
G / \rho \\
G^{1 / 3} / \rho
\end{gathered}
$$

Beam (loaded in bending)

stiffness, length, shape specified; section area free stiffness, length, height specified; width free
stiffness, length, width specified; height free

$$
E^{1 / 2} / \rho
$$

$$
E / \rho
$$

$$
E^{1 / 3 / \rho} / \rho
$$

Column (compression strut, failure by elastic buckling) buckling load, length, shape specified; section area free
$E^{1 / 2} / \rho$
Panel (flat plate, loaded in bending)
stiffness, length, width specified, thickness free $\quad E^{1 / 3} / \rho$
Plate (flat plate, compressed in-plane, buckling failure)
collapse load, length and width specified, thickness free

Cylinder with internal pressure

elastic distortion, pressure and radius specified; wall thickness free E / ρ

Spherical shell with internal pressure

elastic distortion, pressure and radius specified, wall thickness free $\quad E /(1-v) \rho$
*To minimize cost, use the above criteria for minimum weight, replacing density ρ by $C_{m} \rho$, where C_{m} is the material cost per kg . To minimize energy content, use the above criteria for minimum weight replacing density ρ by $q \rho$ where q is the energy content per kg . To minimize environmental impact, replace density ρ by $I_{e} \rho$ instead, where I_{e} is the eco-indicator value for the material (references [1] and [4]).
${ }^{\dagger} E=$ Young's modulus for tension, the flexural modulus for bending or buckling; $\mathrm{G}=$ shear modulus; $\rho=$ density, $q=$ energy content $/ \mathrm{kg} ; I_{\sigma}=$ eco-indicator value $/ \mathrm{kg}$.

Table B7 Electro-mechanical design

Function and constraints	Maximize ${ }^{*}$
Bus bars minimum life-cost; high current conductor	$1 / \rho_{e} \rho C_{m}$
Electro-magnet windings maximum short-pulse field; no mechanical failure maximize field and pulse-length, limit on temperature rise	$C_{p} \rho / \rho_{e}$
Windings, high-speed electric motors maximum rotational speed; no fatigue failure minimum ohmic losses; no fatigue failure	σ_{e} / ρ_{e}
Relay arms minimum response time; no fatigue failure minimum ohmic losses; no fatigue failure	$1 / \rho_{e}$

${ }^{*} C_{m}=$ material cost/kg; $E=$ Young's modulus; $\rho=$ density; $\rho_{e}=$ electrical resistivity; $\sigma_{y}=$ yield strength; $\sigma_{e}=$ endurance limit.

Table B2 Strength-limited design at minimum mass (cost, energy, environmental impact*)

Function and constraints ${ }^{*} \ddagger$	Maximize ${ }^{\dagger}$
Tie (tensile strut) stiffness, length specified; section area free	σ_{f} / ρ
Shaft (loaded in torsion) load, length, shape specified, section area free load, length, outer radius specified; wall thickness free load, length, wall-thickness specified; outer radius free Beam (loaded in bending) load, length, shape specified; section area free load length, height specified; width free load, length, width specified; height free	$\sigma_{f}^{2 / 3} / \rho$
Column (compression strut)	$\sigma_{f}^{1 / 2} / \rho$
load, length, shape specified; section area free	$\sigma_{f}^{2 / 3} / \rho$
Panel (flat plate, loaded in bending) stiffness, length, width specified, thickness free	
Plate (flat plate, compressed in-plane, buckling failure) collapse load, length and width specified, thickness free	$\sigma_{f}^{1 / 2} / \rho$
Cylinder with internal pressure elastic distortion, pressure and radius specified; wall thickness free	σ_{f} / ρ
Spherical shell with internal pressure elastic distortion, pressure and radius specified, wall thickness free	$\sigma_{f}^{1 / 2} / \rho$
Flywheels, rotating discs maximum energy storage per unit volume; given velocity maximum energy storage per unit mass; no failure	$\sigma_{f}^{1 / 2} / \rho$

*To minimize cost, use the above criteria for minimum weight, replacing density ρ by $C_{m} \rho$, where C_{m} is the material cost per kg . To minimize energy content, use the above criteria for minimum weight replacing density ρ by $q \rho$ where q is the energy content per kg . To minimize environmental impact, replace density ρ by $I_{\epsilon} \rho$ instead, where I_{e} is the eco-indicator value for the material (references [1] and [4]).
$\dagger^{\sigma_{f}}=$ failure strength (the yield strength for metals and ductile polymers, the tensile strength for ceramics, glasses and brittle polymers loaded in tension; the flexural strength or modulus of rupture for materials loaded in bending); $\rho=$ density.
${ }^{\text {F }}$ For design for infinite fatigue life, replace σ_{f} by the endurance limit σ_{e}.

Table B3 Strength-limited design: springs, hinges etc. for maximum performance*
Function and constraints* ${ }^{\star} \quad$ Maximize †

Springs

maximum stored elastic energy per unit volume; no failure
maximum stored elastic energy per unit mass; no failure

$$
\begin{gathered}
\sigma_{f}^{2} / E \\
\sigma_{f}^{2} / E \rho
\end{gathered}
$$

Elastic hinges

radius of bend to be minimized (max flexibility without failure)

$$
\sigma_{f} / E
$$

Knife edges, pivots

σ_{f}^{3} / E^{2} and
minimum contact area, maximum bearing load
H
Compression seals and gaskets
maximum conformability; limit on contact pressure
$\sigma_{f}^{3 / 2} / E$ and
$1 / E$

Diaphragms

maximum deflection under specified pressure or force

$$
\sigma_{f}^{3 / 2} / E
$$

Rotating drums and centrifuges

maximum angular velocity; radius fixed; wall thickness free
${ }^{\text {TT }}$ To minimize cost, use the above criteria for minimum weight, replacing density ρ by $C_{m} \rho$, where C_{m} is the material cost per kg . To minimize energy content, use the above criteria for minimum weight replacing density ρ by $q \rho$ where q is the energy content per kg . To minimize environmental impact, replace density ρ by $I_{e} \rho$ instead, where I_{e} is the eco-indicator value for the material (references [1] and [4]).
$\dagger_{\sigma_{f}}=$ failure strength (the yield strength for metals and ductile polymers, the tensile strength for ceramics, glasses and brittle polymers loaded in tension; the flexural strength or modulus of rupture for materials loaded in bending); $\rho=$ density; $H=$ hardness.
${ }^{\text {For }}$ Fosign for infinite fatigue life, replace σ_{f} by the endurance limit σ_{ε}.

Table B4 Vibration-limited design

Function and constraints	Maximize*
Ties, columns maximum longitudinal vibration frequencies	E / ρ
Beams, all dimensions prescribed maximum flexural vibration frequencies Beams, length and stiffness prescribed maximum flexural vibration frequencies	E / ρ
Panels, all dimensions prescribed maximum flexural vibration frequencies Panels, length, width and stiffness prescribed maximum flexural vibration frequencies	$E^{1 / 2} / \rho$
Ties, columns, beams, panels, stiffness prescribed minimum longitudinal excitation from external drivers, ties minimum flexural excitation from external drivers, beams minimum flexural excitation from external drivers, panels	E / ρ

${ }^{*} E=$ Young's modulus for tension, the flexural modulus for bending; $G=$ shear modulus; $\rho=$ density; $\eta=$ damping coefficient (loss coefficient).

Table B5 Damage-tolerant design

Function and constraints	Maximize
Ties (tensile member)	
Maximize flaw tolerance and strength, load-controlled design	$K_{l c}$ and σ_{f}
Maximize flaw tolerance and strength, displacement-control	$K_{I c} / E$ and σ_{f}
Maximize flaw tolerance and strength, energy-control	$K_{I c}^{2} / E$ and σ_{f}
Shafts (loaded in torsion)	
Maximize flaw tolerance and strength, load-controlled design	$K_{I c}$ and σ_{f}
Maximize flaw tolerance and strength, displacement-control	$K_{I c} / E$ and σ_{f}
Maximize flaw tolerance and strength, energy-control	$K_{I c}^{2} / E$ and σ_{f}
Beams (loaded in bending)	
Maximize flaw tolerance and strength, load-controlled design	$K_{I c}$ and σ_{f}
Maximize flaw tolerance and strength, displacement-control	$K_{I c} / E$ and σ_{f}
Maximize flaw tolerance and strength, energy-control	$K_{I c}^{2} / E$ and σ_{f}
Pressure vessel	
Yield-before-break	$K_{l c} / \sigma_{f}$
Leak-before-break	$K_{I c}^{2} / \sigma_{f}$

${ }^{*} K_{I c}=$ fracture toughness; $E=$ Young's modulus; $\sigma_{f}=$ failure strength (the yield strength for metals and ductile polymers, the tensile strength for ceramics, glasses and brittle polymers loaded in tension; the flexural strength or modulus of rupture for materials loaded in bending).

Table B6 Thermal and thermo-mechanical design
Function and constraints Maximize*

Thermal insulation materials

minimum heat flux at steady state; thickness specified
$1 / \lambda$
minimum temp rise in specified time; thickness specified

$$
1 / a=\rho C_{p} / \lambda
$$

minimize total energy consumed in thermal cycle (kilns, etc)

$$
\sqrt{a} / \lambda=\sqrt{1 / \lambda \rho C_{p}}
$$

Thermal storage materials

maximum energy stored/unit material cost (storage heaters)
maximize energy stored for given temperature rise and time

$$
C_{p} / C_{m}
$$

Precision devices

minimize thermal distortion for given heat flux
λ / α
Thermal shock resistance
$\sigma_{f} / E \alpha$
maximum change in surface temperature; no failure

Heat sinks

maximum heat flux per unit volume; expansion limited $\quad \lambda / \Delta \alpha$ maximum heat flux per unit mass; expansion limited
$\lambda / \rho \Delta \alpha$
Heat exchangers (pressure-limited)
maximum heat flux per unit area; no failure under $\Delta p \quad \lambda \sigma_{f}$
maximum heat flux per unit mass; no failure under $\Delta p \quad \lambda \sigma_{f} / \rho$

[^0]
[^0]: ${ }^{*} \lambda=$ thermal conductivity; $a=$ thermal diffusivity; $C_{p}=$ specific heat capacity; $C_{\mathrm{m}}=$ material $\operatorname{cost} / \mathrm{kg} ; T_{\max }=$ maximum service temperature; $\alpha=$ thermal expansion coeff.; $E=$ Young's modulus; $\rho=$ density; $\sigma_{f}=$ failure strength (the yield strength for metals and ductile polymers, the tensile strength for ceramics, glasses and brittle polymers).

