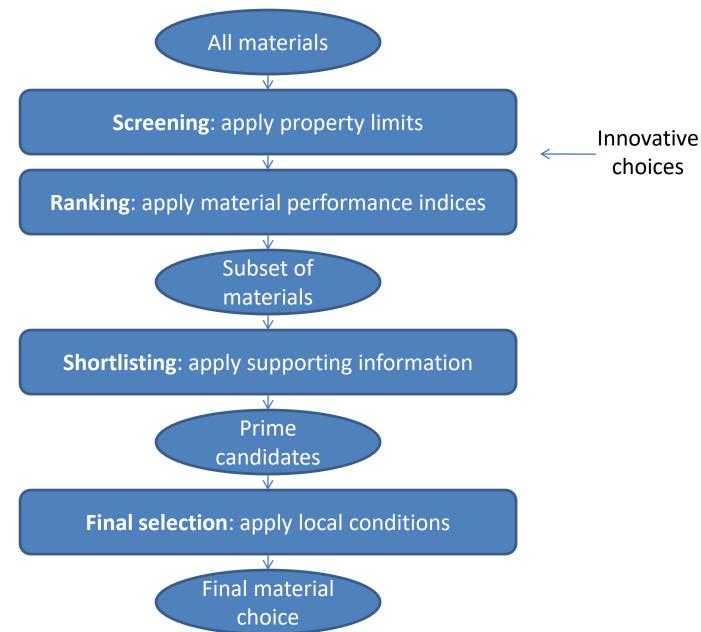
Progettazione di Materiali e Processi

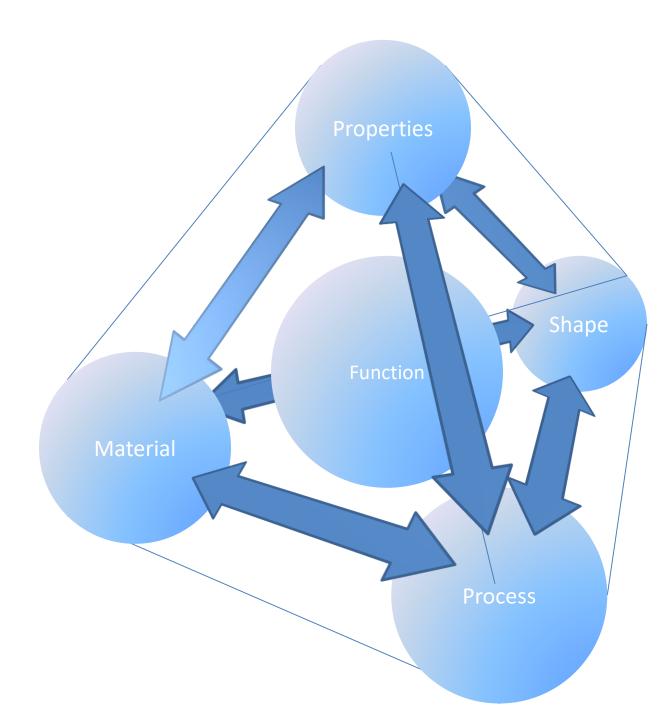
Università degli Studi di Trieste Facoltà di Ingegneria Corso di Laurea in Ingegneria di Processo e dei Materiali A.A. 2021-22

PRODUCT (MATERIALS) AND PROCESS DESIGN

- Design, Product, Process Product Design; Process Design; Product and Process Design Intro ۲ Material, process, shape, properties, function Example **Fundamentals** • Identification of needs (market; coevolution; true need) Design Types of design ۲ **Design tools** process **Databases**
 - Analytical tools
 - Simulation tools
 - Selection and design of materials and processes (Lughi)
 - Tools for optimal systematic selection
 - Design of materials: case studies (nano, meso, microstructures; hybrid materials; composites)
 - Design and optimization of chemical processes (Fermeglia)
 - Advanced tools and methods (ad-hoc lectures and seminars: FEM, product/process economics, Life Cycle Assessment, ...)
 - **Special topic seminars** (Intellectual Property, product evaluation, materials in industrial design, theory of scenarios, rapid plant assessment, material selection in engines, design for recycle, refurbish, reuse)

Progettazione di Materiali e Processi


Modulo 1 Selezione sistematica di materiali e processi


Lecture 2

- Selection process
- Materials indexes

The selection process

The selection process

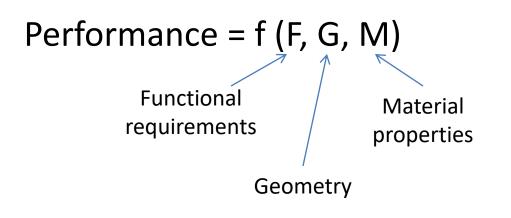
FUNCTIONS:

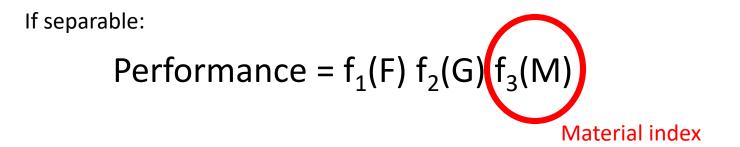
- •Carry load
- •Transmit load
- •Transmit heat
- •Transmit current •Store energy
- •...

OBJECTIVES:

- •Minimize mass
- •Minimize cost
- •Minimize impact
- •...

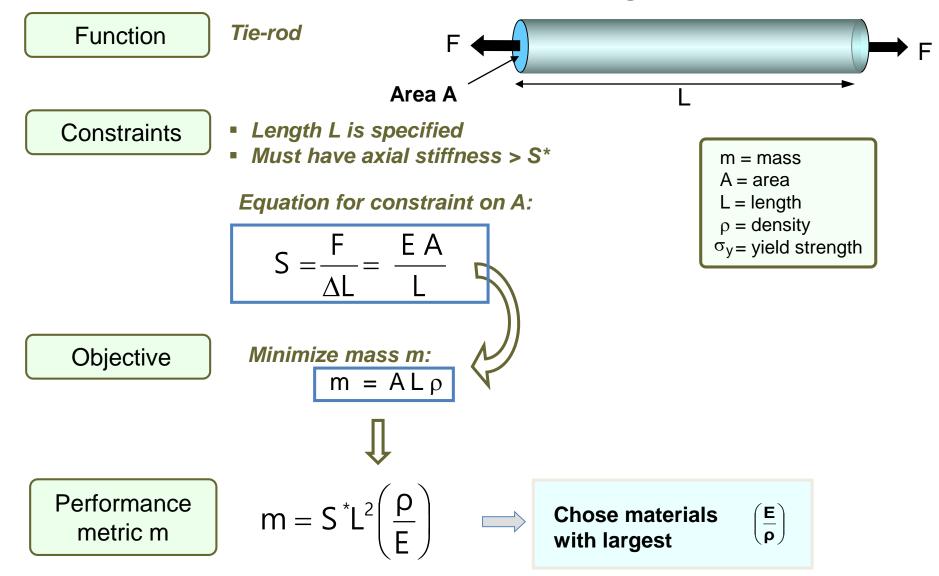
Function – Objectives - Constraints

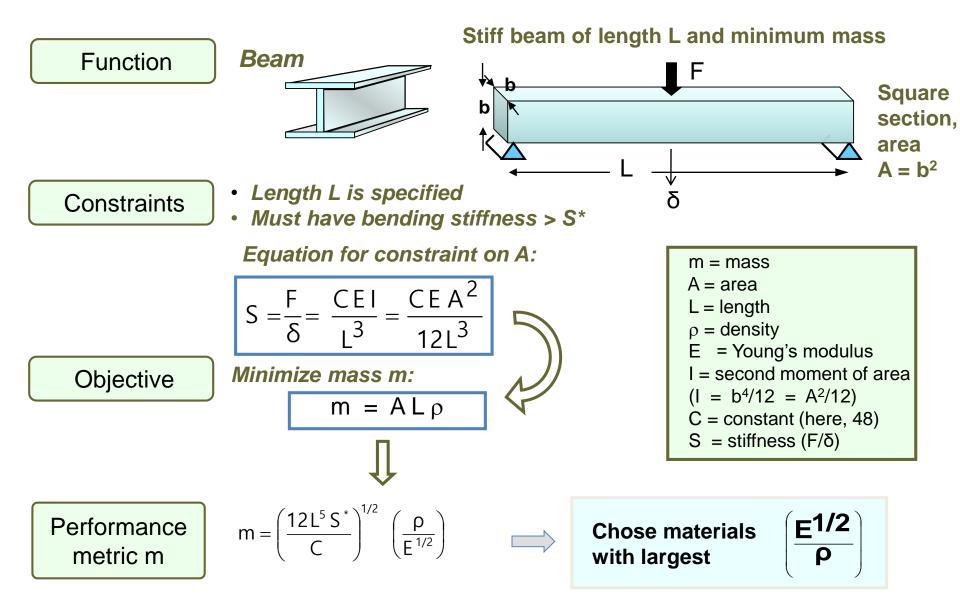

Function	What does the component do? e.g.: support load, seal, transmit heat, bycicle fork, etc.
Objective	What do we want to maximize (minimize)? e.g.: minimize cost, maximize energy storage, minimize weight, etc.
Constraints	What conditions must be met? (non-negotiable or negotiable) e.g. geometry, resist a certain load, resist a certain environment, etc.


• Implicit functions (e.g. tie, beam, shaft, column)

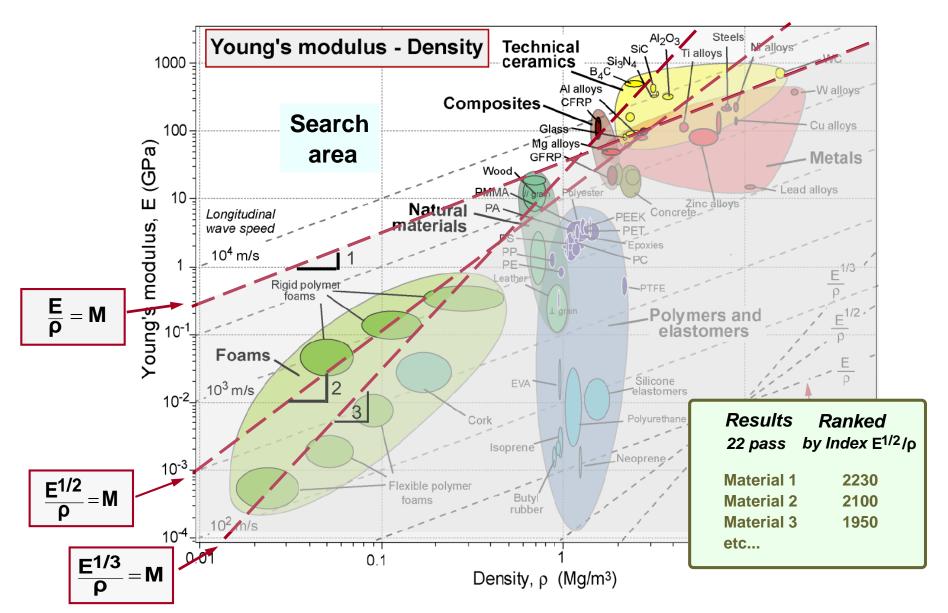
- Constraints often translate to property limits (temperature, conductivity, cost, ...)
- Some constraints are more complex (e.g. stiffness, strength, etc.) as they are coupled with geometry -> need of a specific objective
- Material indices help unravel such complexity

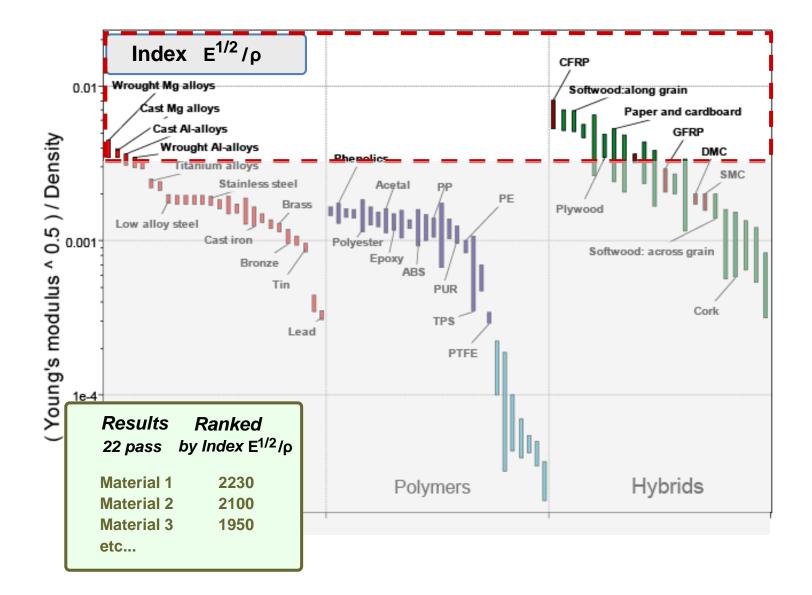
The material index


Material index

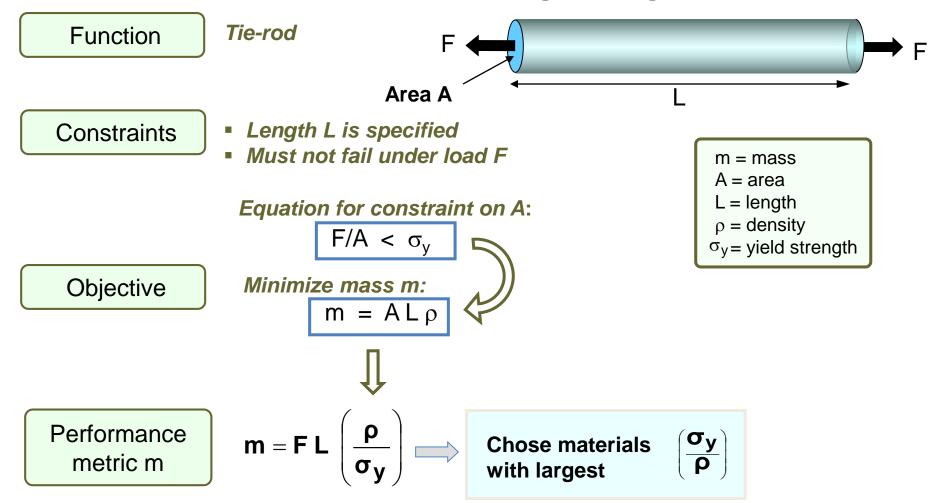


Index for a stiff, light tie-rod

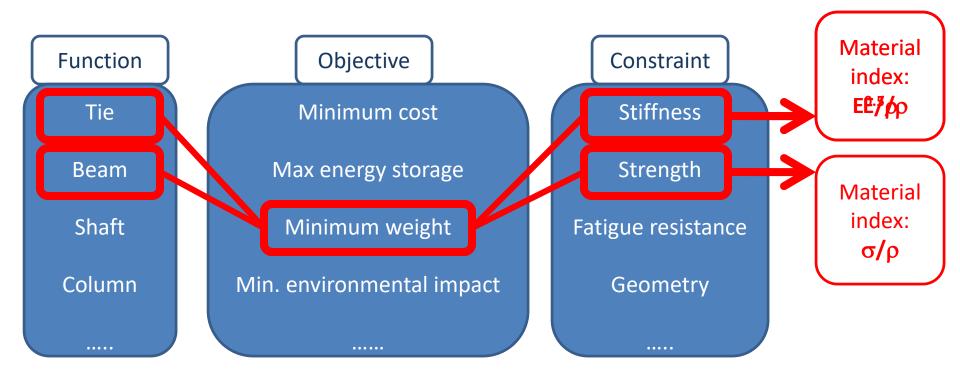

Stiff tie of length L and minimum mass


Index for a stiff, light beam

Optimized selection using charts

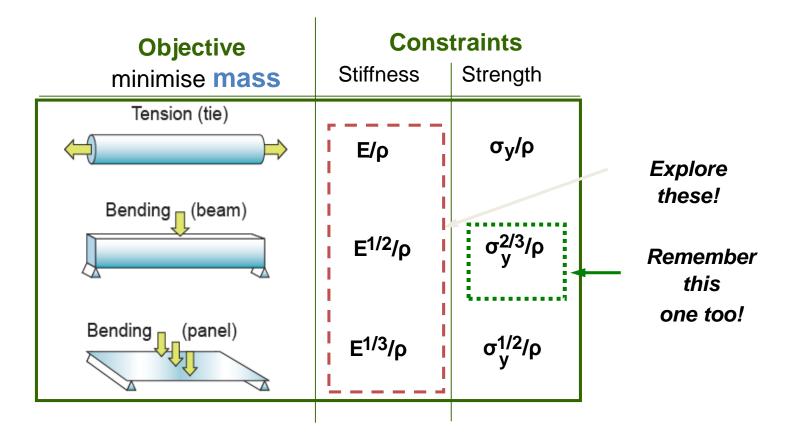


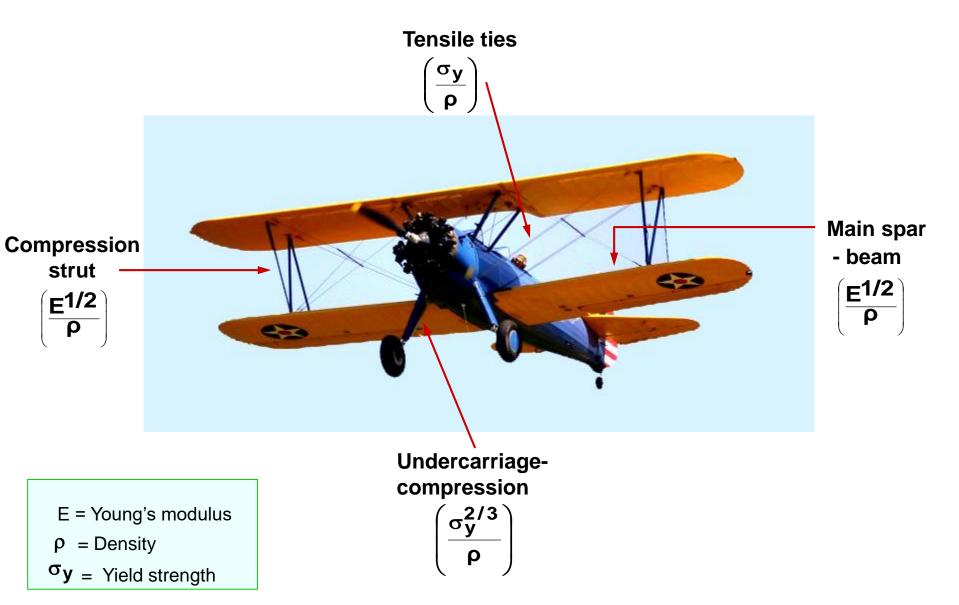
Plotting indices as functions



Index for a strong, light tie-rod

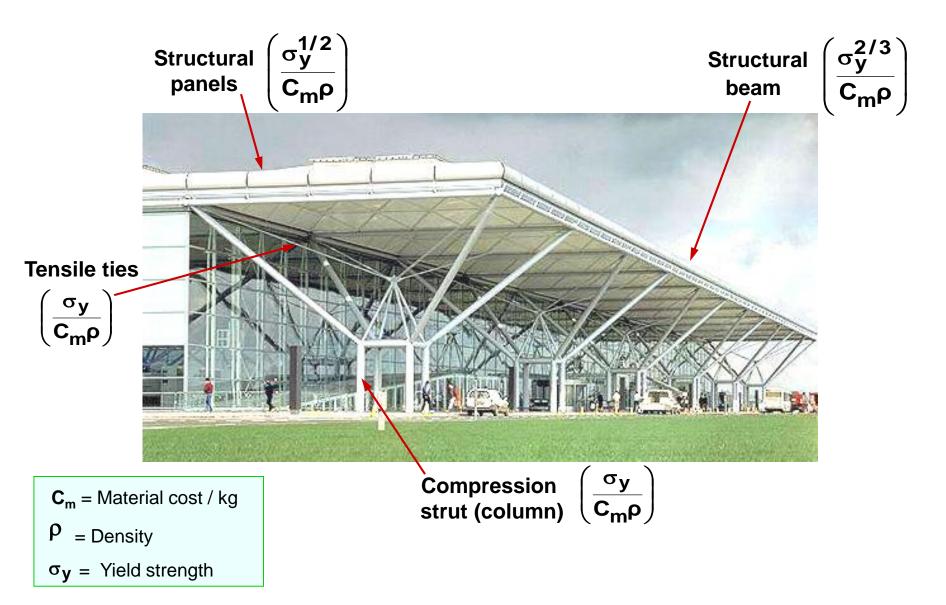
Strong tie of length L and minimum mass


Material indices


Criteria of excellence: material indices

- Material index = combination of material properties that limit performance
- Sometimes a single property
- Sometimes a combination

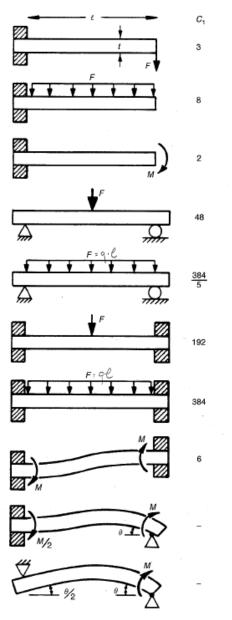
Either is a material index


Minimum weight design

Criteria of excellence: material indices

- Material index = combination of material properties that limit performance
- Sometimes a single property ` Either is a material index • Sometimes a combination **Constraints Objective** Material cost/kg Stiffness Strength minimise cost Tension (tie) ΕʹϹ_mρ $\sigma_y/C_m\rho$ Bending (beam) $E^{1/2}/C_m\rho$ $\sigma_v^{2/3}/C_m\rho$ Bending (panel) $\sigma_v^{1/2}/C_m\rho$ E^{1/3}/C_mρ

Minimum cost design



What if we change the free variable?

Table 7.1 Moments of areas of sections for common snapes					
Section Shape	$A(m^2)$	$I_{xx}(m^4)$	<i>K</i> (<i>m</i> ⁴)	$Z(m^3)$	$Q(m^3)$
210	πr^2	$\frac{\pi}{4}r^4$	$\frac{\pi}{2}r^4$	$\frac{\pi}{4}r^3$	$\frac{\pi}{2}r^3$
	b^2	$\frac{b^4}{12}$	$0.14b^4$	$\frac{b^3}{6}$	0.21 <i>b</i> ³
	лав	$\frac{\pi}{4}a^{3}b$	$\frac{\pi a^3 b^3}{(a^2+b^2)}$	$\frac{\pi}{4}a^2b$	$\frac{\pi a^2 b}{2}$ $(a < b)$
	bh	$\frac{bh^3}{12}$	$\frac{b^3h}{3}\left(1-0.58\frac{b}{h}\right)$ $(h>b)$	$\frac{bh^2}{6}$	$\frac{b^2h^2}{3h+1.8b}$ $(h > b)$
	$\frac{\sqrt{3}}{4}a^2$	$\frac{a^4}{32\sqrt{3}}$	$\frac{a^4\sqrt{3}}{80}$	$\frac{a^3}{32}$	$\frac{a^3}{20}$
	$\pi (r_o^2 - r_i^2)$ $\approx 2\pi rt$	$\frac{\pi}{4}(r_o^4 - r_i^4) \\ \approx \pi r^3 t$	$\frac{\pi}{2}(r_o^4 - r_i^4) \\\approx 2\pi r^3 t$	$\frac{\pi}{4r_o}(r_o^4 - r_i^4) \\\approx \pi r^2 t$	$\frac{\pi}{2r_o}(r_o^4 - r_i^4) \approx 2\pi r^2 t$
	4bt	$\frac{2}{3}b^3t$	$b^3t\left(1-\frac{t}{b}\right)^4$	$\frac{4}{3}b^2t$	$2b^2t\left(1-\frac{t}{b}\right)^2$
	$\pi(a+b)t$	$\frac{\pi}{4}a^3t\left(1+\frac{3b}{a}\right)$	$\frac{4\pi(ab)^{5/2}t}{(a^2+b^2)}$	$\frac{\pi a^2 t}{4} \left(1 + \frac{3b}{a} \right)$	$2\pi t (a^3 b)^{1/2}$ $(b > a)$
	$b(h_o - h_i)$ $\approx 2bt$	$\frac{b}{12}(h_o^3 - h_i^3) \\\approx \frac{1}{2}bth_o^2$		$\frac{b}{6h_o}(h_o^3 - h_i^3)$ $\approx bth_o$	
	2t(h+b)	$\overline{6}^{n}\left(1+\frac{1}{h}\right)$	$\frac{1}{2}\frac{2}{3}bt^3\left(1+\frac{4n}{b}\right)$	$\frac{h^2t}{3}\left(1+\frac{3b}{h}\right)$	$\frac{2tbh}{\Box} \frac{\mathbf{I}}{\frac{2}{3}bt^2\left(1+\frac{4h}{b}\right)}$
	2t(h+b)	$\frac{t}{6}(h^3+4bt^2)$	$\frac{t^{3}}{3}(8b+h) \qquad H$ $\vdash \qquad \frac{2}{3}ht^{3}\left(1+\frac{4b}{h}\right)$	$\frac{t}{3h}(h^3+4bt^2)$	$\frac{t^2}{3}(8b+h) \qquad H$ $\vdash \frac{2}{3}ht^2\left(1+\frac{4b}{h}\right)$
	$t\lambda\left(1+rac{\pi^2 d^2}{4\lambda^2} ight)$	$\frac{t\lambda d^2}{8}$	·	$\frac{t\lambda d}{4}$	

 Table 7.1
 Moments of areas of sections for common shapes

Elastic bending of beams

 C_2

2

6

16

24

з

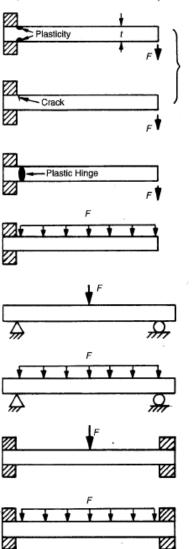
 $\delta = deflection (m)$ F = force (N)M =moment (Nm) $\ell = \text{length} (m)$ b = width (m) $t = \text{depth}(\mathbf{m})$ $\theta = \text{end slope } (-)$ $I = \text{see Table 2 (m^4)}$ y = distance from N.A. (m)

R = radius of curvature (m)

 $\frac{\sigma}{y} = \frac{M}{I} = \frac{E}{R}$

С

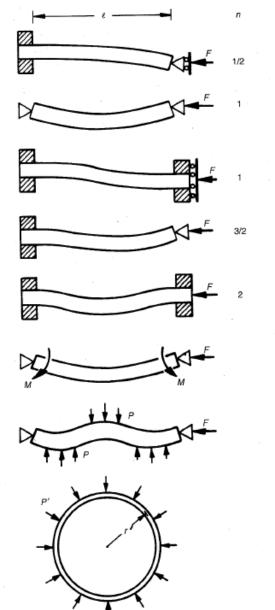
1

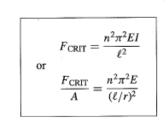

1

2

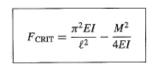
8

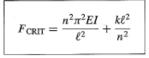
8

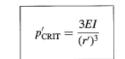

16

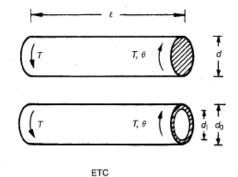


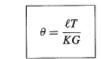
$$M_{f} = \left(\frac{I}{y_{m}}\right)\sigma^{*} \text{ (Onset)}$$
$$M_{f} = H\sigma_{y} \text{ (Full plasticity)}$$
$$F_{f} = C\left(\frac{I}{y_{m}}\right)\frac{\sigma^{*}}{\ell} \text{ (Onset)}$$
$$F_{f} = \frac{CH\sigma_{y}}{\ell} \text{ (Full plasticity)}$$


 $M_f =$ failure moment (Nm) F_f = force at failure (N) $\ell = \text{length} (m)$ t = depth (m)b = width (m) $I = \text{see Table 2 (m^4)}$ $\frac{I}{y_m}$ = see Table 2 (m³) $H = \text{see Table 2 (m^3)}$ $\sigma_{\nu} =$ yield strength (N/m²) $\sigma_f = \text{modulus of rupture (N/m^2)}$ $\sigma^* = \sigma_y$ (plastic material) $= \sigma_f$ (brittle material)


Buckling of columns and plates

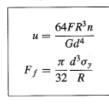



- F =force (N)
- M = moment (Nm)
- E = Young's modulus (N/m²)
- $\ell = \text{length}(m)$
- $A = \text{section area} (\text{m}^2)$ $I = \text{see Table 2 (m^4)}$
- r =gyration rad. $\left(\frac{I}{A}\right)^{1/2}$ (m)
- k = foundation stiffness (N/m²)
- n = half-wavelengths in buckled shape
- $p' = \text{pressure (N/m^2)}$

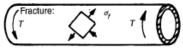

Torsion of shafts

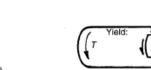
F,u

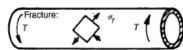
Elastic deflection

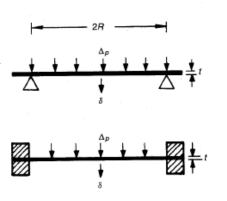


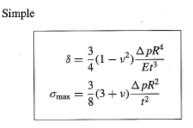
Failure

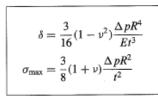

$$T_{f} = \frac{K\sigma_{y}}{d_{0}} \text{ (Onset of yield)}$$
$$T_{f} = \frac{2K\sigma_{f}}{d_{0}} \text{ (Brittle fracture)}$$


T = torque (Nm) $\theta = angle of twist$ $G = \text{shear modulus (N/m^2)}$ $\ell = \text{length}(m)$ d = diameter (m) $K = \text{see Table 1 (m^4)}$ $\sigma_y =$ yield strength (N/m²) $\sigma_f = \text{modulus of rupture (N/m^2)}$

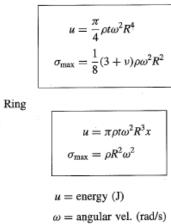

Spring deflection and failure


F = force (N)u = deflection (m)R = coil radius (m)n = number of turns

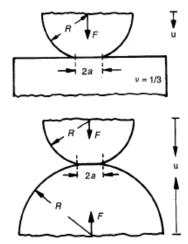


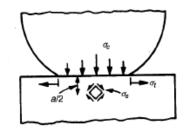


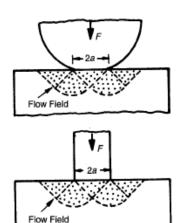
Static and spinning discs

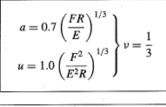


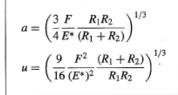
Clamped

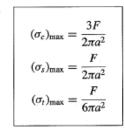

- $\delta = deflection (m)$
- E = Young's modulus (N/m)
- $\Delta p = \text{pressure diff. (N/m)}$
 - v = Poisson's ratio

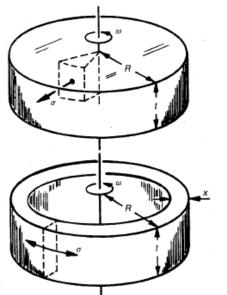


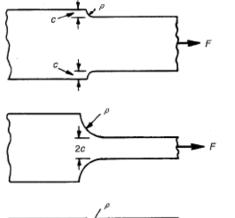


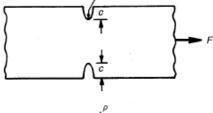

 $\rho = \text{density kg/m}^3$

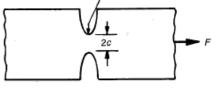

Contact stresses

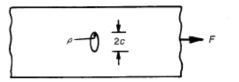


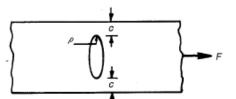


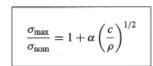

- R_1R_2 radii of spheres (m)
- E_1E_2 modulii of spheres (N/m²)
- v_1v_2 Poisson's ratios
- F load (N)
- a radius of contact (m)
- u displacement (m)
- σ stresses (N/m²)
- σ_y yield stress (N/m²)

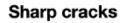

$$E^* = \left(\frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2}\right)^{-1}$$

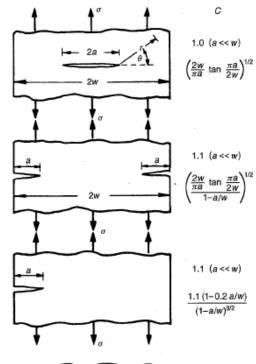

 $\frac{F}{\pi a^2} = 3\sigma_y$

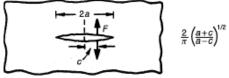


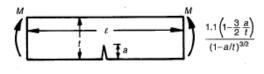

Estimates for stress concentrations

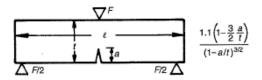











- F =force (N)
- $A_{\min} = \text{minimum section (m}^2)$ $\sigma_{\text{nom}} = F/A_{\min} \text{ (N/m}^2)$ $\rho = \text{radius of curvature (m)}$
 - c = characteristic length (m)
 - $\alpha \approx 0.5$ (tension)
 - $\alpha \approx 2.0$ (torsion)

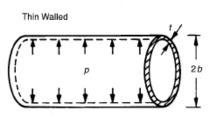
$$K_1 = C\sigma\sqrt{\pi a}$$

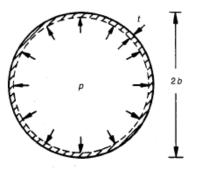
failure when
 $K_1 \ge K_{IC}$

 $K_1 = \text{stress intensity (N/m^{3/2})}$ $\sigma = \text{remote stress (N/m^2)}$ F = load (N) M = moment (Nm) a = crack half-length = surface crack length (m) w = half-width (centre) (m) = width (edge crack) (m) b = sample depth (m)t = beam thickness (m)

point load on crack face:

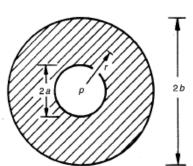
$$\sigma = \frac{F}{2al}$$

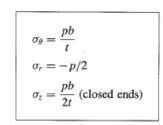

moment on beam:


 $\sigma = \frac{6M}{bt}$

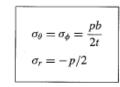
3-point bending:

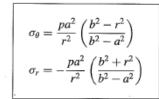
 $\sigma = \frac{3F\ell}{2bt}$

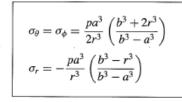

Pressure vessels



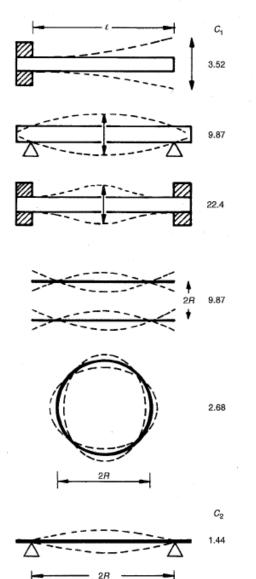
Thick Walled



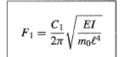

Cylinder



Sphere

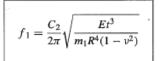


- $p = \text{pressure (N/m^2)}$ t = wall thickness (m)a = inner radius (m)
- b =outer radius (m)
- r = radial coordinate (m)



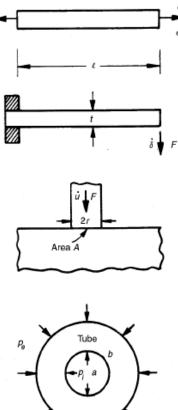
Vibrating beams, tubes and discs

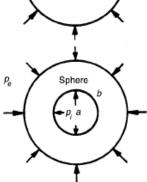
Beams, tubes

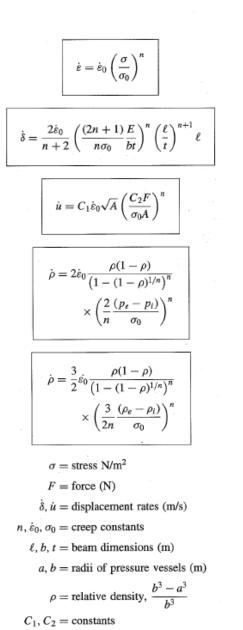


f = natural frequency (s⁻¹) $m_0 = \rho A =$ mass/length (kg/m) $\rho =$ density (kg/m³) A = section area (m²) I = see Table A1

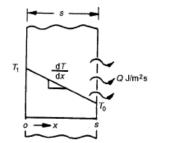
$$\begin{cases} \text{with } A = 2\pi R \\ I = \pi R^3 i \\ \\ \text{with } A = \frac{\ell t^3}{12} \end{cases}$$

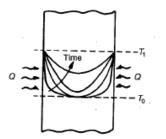

Discs

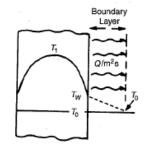

2.94



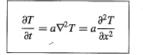
 $m_1 = \rho t = \text{mass/area} (\text{kg/m}^2)$ t = thickness (m) R = radius (m) $\nu = \text{Poisson's ratio}$


Creep and creep fracture

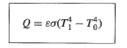




Flow of heat and matter



$$Q = -\lambda \nabla T = -\lambda \frac{\mathrm{d}T}{\mathrm{d}x}$$


- $Q = heat flux (J/m^2s)$
- T =temperature (K)
- x = distance (m)
- $\lambda =$ thermal conductivity (W/mK)

t = time (s) ρ = density (kg/m³) C = specific heat (J/m³K) a = thermal diffusivity, $\frac{\lambda}{\rho c}$ (m²/s)

Q = b	$h(T_w -$	$T_0)$

 T_w = surface temperature (K) T = fluid temperature (K) h = heat transfer coeff. (W/m²K) = 5-50 W/m²K in air = 1000-5000 W/m²K in water

- $\varepsilon = \text{emissivity} (1 \text{ for black body})$
- $\sigma = \text{Stefan constant}$
- $= 5.67 \times 10^{-8} \,\text{W/m}^2\text{K}^4$

Solutions for diffusion equations

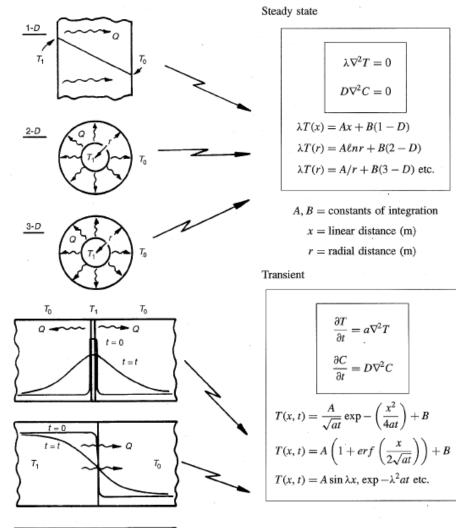


Table B1 Stiffness-limited design at minimum mass (cost, energy, environmental impact*)

E/ρ $G^{1/2}/\rho$
$G/ ho G^{1/3}/ ho$
$E^{1/2}/ ho E/ ho E^{1/3}/ ho$
$E^{1/2}/\rho$
$E^{1/3}/ ho$
$E^{1/3}/\rho$
E/p
$E/(1-\nu)\rho$

where C_m is the material cost per kg. To minimize energy content, use the above criteria for minimum weight replacing density ρ by $q\rho$ where q is the energy content per kg. To minimize environmental impact, replace density ρ by $I_e\rho$ instead, where I_e is the eco-indicator value for the material (references [1] and [4]).

[†]E = Young's modulus for tension, the flexural modulus for bending or buckling; G = shear modulus; ρ = density, q = energy content/kg; I_q = eco-indicator value/kg.

Table B7	Electro-mechanical	design
----------	--------------------	--------

Function and constraints	Maximize*
Bus bars	
minimum life-cost; high current conductor	$1/\rho_e \rho C_m$
Electro-magnet windings	
maximum short-pulse field; no mechanical failure	σ_y
maximize field and pulse-length, limit on temperature rise	$C_{p}^{\sigma_{y}}\rho_{e}$
Windings, high-speed electric motors	
maximum rotational speed; no fatigue failure	σ_e/ρ_e
minimum ohmic losses; no fatigue failure	$1/\rho_e$
Relay arms	
minimum response time; no fatigue failure	$\sigma_e / E \rho_e$
minimum ohmic losses; no fatigue failure	$\sigma_e / E \rho_e$ $\sigma_e^2 / E \rho_e$

 C_m = material cost/kg; E = Young's modulus; ρ = density; ρ_e = electrical resistivity; σ_v = yield strength; σ_e = endurance limit. Table B2 Strength-limited design at minimum mass (cost, energy, environmental impact*)

Function and constraints*‡	$Maximize^{\dagger}$
Tie (tensile strut) stiffness, length specified; section area free	σ_f/ρ
Shaft (loaded in torsion)	
load, length, shape specified, section area free	$\sigma_{f}^{2/3} / \rho$
load, length, outer radius specified; wall thickness free	$\sigma_f/\rho_{1/2}$
load, length, wall-thickness specified; outer radius free	σ_{f}^{\prime}/ρ
Beam (loaded in bending)	2.0
load, length, shape specified; section area free	$\sigma_{f}^{2/3} / \rho$
load length, height specified; width free	σ_f / ρ $\sigma_f^{1/2} / \rho$
load, length, width specified; height free	σ_f^{\prime}/ρ
Column (compression strut) load, length, shape specified; section area free	σ_f/ρ
Panel (flat plate, loaded in bending)	,,,,
stiffness, length, width specified, thickness free	$\sigma_f^{1/2}/\rho$
Plate (flat plate, compressed in-plane, buckling failure)	
collapse load, length and width specified, thickness free	$\sigma_f^{1/2}/ ho$
Cylinder with internal pressure	
elastic distortion, pressure and radius specified; wall thickness free	σ_f/ρ
Spherical shell with internal pressure	
elastic distortion, pressure and radius specified, wall thickness free	σ_f / ρ
Flywheels, rotating discs	
maximum energy storage per unit volume; given velocity	ρ
maximum energy storage per unit mass; no failure	σ_f / ρ

*To minimize cost, use the above criteria for minimum weight, replacing density ρ by $C_m\rho$, where C_m is the material cost per kg. To minimize energy content, use the above criteria for minimum weight replacing density ρ by $q\rho$ where q is the energy content per kg. To minimize environmental impact, replace density ρ by $I_e\rho$ instead, where I_e is the eco-indicator value for the material (references [1] and [4]).

 $\dagger \sigma_f$ = failure strength (the yield strength for metals and ductile polymers, the tensile strength for ceramics, glasses and brittle polymers loaded in tension; the flexural strength or modulus of rupture for materials loaded in bending); ρ = density.

[‡]For design for infinite fatigue life, replace σ_f by the endurance limit σ_e .

Table B3 Strength-limited design: springs, hinges etc. for maximum performance*

Function and constraints* [‡]	$Maximize^{\dagger}$
Springs maximum stored elastic energy per unit volume; no failure maximum stored elastic energy per unit mass; no failure	σ_f^2/E $\sigma_f^2/E\rho$
Elastic hinges radius of bend to be minimized (max flexibility without failure)	σ_f/E
Knife edges, pivots minimum contact area, maximum bearing load	σ_f/E σ_f^3/E^2 and H
Compression seals and gaskets maximum conformability; limit on contact pressure	$\sigma_f^{3/2}/E$ and $1/E$
Diaphragms maximum deflection under specified pressure or force	$\sigma_{f}^{3/2}/E$
Rotating drums and centrifuges maximum angular velocity; radius fixed; wall thickness free	σ_f/ρ

*To minimize cost, use the above criteria for minimum weight, replacing density ρ by $C_{m\rho}$, where C_m is the material cost per kg. To minimize energy content, use the above criteria for minimum weight replacing density ρ by $q\rho$ where q is the energy content per kg. To minimize environmental impact, replace density ρ by $I_e\rho$ instead, where I_e is the eco-indicator value for the material (references [1] and [4]).

 $^{\dagger}\sigma_f$ = failure strength (the yield strength for metals and ductile polymers, the tensile strength for ceramics, glasses and brittle polymers loaded in tension; the flexural strength or modulus of rupture for materials loaded in bending); ρ = density; H = hardness.

[‡]For design for infinite fatigue life, replace σ_f by the endurance limit σ_e .

Table B4	Vibration-limited	desian
----------	-------------------	--------

Function and constraints	Maximize*
Ties, columns maximum longitudinal vibration frequencies	E/ρ
Beams, all dimensions prescribed maximum flexural vibration frequencies Beams, length and stiffness prescribed maximum flexural vibration frequencies	E/ ho $E^{1/2}/ ho$
Panels, all dimensions prescribed maximum flexural vibration frequencies Panels, length, width and stiffness prescribed maximum flexural vibration frequencies	E/ ho $E^{1/3}/ ho$
Ties, columns, beams, panels, stiffness prescribed minimum longitudinal excitation from external drivers, ties minimum flexural excitation from external drivers, beams minimum flexural excitation from external drivers, panels	$\eta E/ ho \\ \eta E^{1/2}/ ho \\ \eta E^{1/3}/ ho$

*E = Young's modulus for tension, the flexural modulus for bending; G = shear modulus; ρ = density; η = damping coefficient (loss coefficient).

Table B5 Damage-tolerant design

Function and constraints	$Maximize^*$
Ties (tensile member) Maximize flaw tolerance and strength, load-controlled design Maximize flaw tolerance and strength, displacement-control Maximize flaw tolerance and strength, energy-control	K_{Ic} and σ_f K_{Ic}/E and σ_f K_{Ic}^2/E and σ_f
Shafts (loaded in torsion) Maximize flaw tolerance and strength, load-controlled design Maximize flaw tolerance and strength, displacement-control Maximize flaw tolerance and strength, energy-control	K_{Ic} and σ_f K_{Ic}/E and σ_f K_{Ic}^2/E and σ_f
Beams (loaded in bending) Maximize flaw tolerance and strength, load-controlled design Maximize flaw tolerance and strength, displacement-control Maximize flaw tolerance and strength, energy-control	K_{Ic} and σ_f K_{Ic}/E and σ_f K_{Ic}^2/E and σ_f
Pressure vessel Yield-before-break Leak-before-break	$\frac{K_{lc}/\sigma_f}{K_{lc}^2/\sigma_f}$

* K_{Ic} = fracture toughness; E = Young's modulus; σ_f = failure strength (the yield strength for metals and ductile polymers, the tensile strength for ceramics, glasses and brittle polymers loaded in tension; the flexural strength or modulus of rupture for materials loaded in bending).

Table B6 Thermal and thermo-mechanical design

Function and constraints	Maximize*
Thermal insulation materials minimum heat flux at steady state; thickness specified minimum temp rise in specified time; thickness specified minimize total energy consumed in thermal cycle (kilns, etc)	$1/\lambda 1/a = \rho C_p/\lambda \sqrt{a}/\lambda = \sqrt{1/\lambda\rho C_p}$
Thermal storage materials maximum energy stored/unit material cost (storage heaters) maximize energy stored for given temperature rise and time	$\frac{C_p/C_m}{\lambda/\sqrt{a} = \sqrt{\lambda\rho C_p}}$
Precision devices minimize thermal distortion for given heat flux	λ/α
Thermal shock resistance maximum change in surface temperature; no failure	$\sigma_f/E\alpha$
Heat sinks maximum heat flux per unit volume; expansion limited maximum heat flux per unit mass; expansion limited	λ/Δα λ/ρΔα
Heat exchangers (pressure-limited) maximum heat flux per unit area; no failure under Δp maximum heat flux per unit mass; no failure under Δp	$\lambda \sigma_f \ \lambda \sigma_f / ho$

 $^{*}\lambda$ = thermal conductivity; a = thermal diffusivity; C_p = specific heat capacity; C_m = material cost/kg; T_{max} = maximum service temperature; α = thermal expansion coeff.; E = Young's modulus; ρ = density; σ_f = failure strength (the yield strength for metals and ductile polymers, the tensile strength for ceramics, glasses and brittle polymers).