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Random variables



Random variables

Statistics is about the extraction of information from data that contain an
unpredictable component.

Random variables (r.v.) are the mathematical device employed to build
models of this variability.

A r.v. takes a different value at random each time is observed.
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Distribution of a r.v.

The main tools used to describe the distribution of values taken by a r.v.
are:

1. Probability functions
2. Density functions
3. Cumulative distribution functions
4. Quantile functions
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Discrete distributions



1. Probability functions

Discrete r.v. take values in a discrete set.

The probability (mass) function of a discrete r.v. X is the function f (x)
such that

f (x) = Pr(X = x) .

with 0 ≤ f (x) ≤ 1 and
∑

i f (xi ) = 1.

The probability function defines the distribution of X .
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Mean and variance of a discrete r.v.

For many purposes, the first two moments of a distribution provide a
useful summary.

The mean (expected value) of a discrete r.v. X is

E (X ) =
∑

i
xi f (xi ) ,

and the definition is extended to any function g of X

E{g(X )} =
∑

i
g(xi ) f (xi ) .

The special case g(X ) = (X − µ)2, with µ = E (X ), is the variance of X

var(X ) = E{(X − µ)2} = E (X 2)− µ2.

The standard deviation is just given by
√

var(X ).
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Notable discrete random variables

Discrete r.v. often used in applications:

• Binomial (and Bernoulli) distribution

• Poisson distribution

• Negative binomial distribution

• Geometric distribution

• Hypergeometric distribution

Let us give a closer look to some of them.
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The binomial distribution

Consider n independent binary trials each with success probability p,
0 < p < 1. The r.v. X that counts the number of successes has binomial
distribution with probability function

Pr(X = x) =
(
n
x

)
px (1− p)n−x , x = 0, . . . , n .

The notation is X ∼ Bi (n, p), and E (X ) = np, var(X ) = np(1− p).

The case when n = 1 is known as Bernoulli distribution and a single
binary trial is called Bernoulli trial.
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R lab: the binomial distribution

par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dbinom(0:20, 20, 0.2), xlab = "x", ylab = "f(x)")
plot(0:50, dbinom(0:50, 50, 0.5), xlab ="x", ylab = "f(x)")
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The Poisson distribution

The special case of the binomial distribution with n→∞ and p → 0, while
their product is held constant at λ = np, yields the Poisson distribution.

The probability function is

Pr(X = x) = e−λ λx

x ! , x = 0, 1, 2, . . . .

with λ > 0.

The notation is X ∼ P(λ), and E (X ) = var(X ) = λ.
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R lab: the Poisson distribution

par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dpois(0:20, 5), xlab = "x", ylab = "f(x)")
plot(0:50, dpois(0:50, 10), xlab ="x", ylab = "f(x)")
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Negative binomial distribution

Let us consider a sequence of independent Bernoulli trials with success
probability p, let X be the count of trials necessary to observe the r -th
success. Then X has a Negative binomial (or Pascal) distribution with
parameters p and r .

The probability function is

Pr(X = x) =
(
x − 1
r − 1

)
pr (1− p)x−r x = r , r + 1, r + 2, . . . .

The notation is X ∼ NBi (p, r), and E (X ) = r
p , var(X ) = r(1−p)

p2 .

It can also be defined with support the Natural numbers by simply
considering the variable Y = X − r

The case for r = 1 is known as the Geometric distribution.
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R lab: the Negative Binomial distribution

par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dnbinom(0:20, 5, 0.5), xlab = "x", ylab = "f(x)")
plot(0:50, dnbinom(0:50, 10, 0.5), xlab ="x", ylab = "f(x)")
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R lab: the Geometric distribution

par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dnbinom(0:20, 1, 0.5), xlab = "x", ylab = "f(x)")
plot(0:20, dnbinom(0:20, 1, 0.2), xlab ="x", ylab = "f(x)")
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Continuous distributions



2. Density functions

Continuous r.v. take values from intervals on the real line.

The (probability) density function (p.d.f.) of a continuous r.v. X is the
function f (x) such that, for any constants a ≤ b

Pr(a ≤ X ≤ b) =
∫ b

a
f (x)dx .

Note that f (x) ≥ 0 and
∫∞
−∞ f (x)dx = 1.

The probability density function defines the distribution of X .
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Mean and variance of a continuous r.v.

The definitions given in the discrete case are readily extended.

The mean (expected value) of a continuous r.v. X is

E (X ) =
∫ ∞
−∞

x f (x)dx ,

and the definition is extended to any function g of X

E{g(X )} =
∫ ∞
−∞

g(x) f (x) dx .

This includes the variance as a special case.

Two results, quite useful for continuous r.v., apply to a linear
transformation a + b X , with a, b constants:

E (a + b X ) = a + b E (X )
var(a + b X ) = b2 var(X ) .
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Notable continuous random variables

Important continuous distributions include:

• Normal distribution

• Gamma, exponential and χ2 distribution

• F distribution

• t and Cauchy distributions

• Beta distribution

The normal distribution has a major role in statistics. The χ2, t and F
distributions are relative of the normal distribution.
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The normal distribution

A r.v. X has a normal (or Gaussian) distribution if it has p.d.f.

f (x) = 1√
2π σ

exp
{
− 1
2σ2 (x − µ)2

}
, −∞ < x <∞ .

The notation is X ∼ N (µ, σ2), and E (X ) = µ and var(X ) = σ2, σ2 > 0,
µ ∈ R.

An important property is that for any constants a, b

a + b X ∼ N (a + b µ, b2 σ2) ,

so that Z = (X − µ)/σ ∼ N (0, 1), the standard normal distribution.

Finally, Y = eX has a lognormal distribution, useful for asymmetric
variables with occasional right-tail outliers.
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R lab: the normal distribution

xx <- seq(-10, 10, l=1000)
plot(xx, dnorm(xx, 0, 0.5), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dnorm(xx, 5, 1), col = 2)
lines(xx, dnorm(xx, 0, 1), col = 3)
lines(xx, dnorm(xx, 0, 2), col = 4)
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The Gamma and the exponential distributions

A r.v. X has a Gamma distribution if it has the following pdf

f (x) = λαxα−1 e−λx

Γ(α) , x ≥ 0

where λ, α > 0 and Γ(α) =
∫∞

0 e−xxα−1dx .

The notation is X ∼ Ga(α, λ), E (X ) = α
λ and var(X ) = α

λ2 .

When α is an integer it is also called Erlang distribution.

When α = 1 it is called exponential distribution. The exponential
distribution is related to the Poisson r.v. since X represents the waiting
times between two arrivals in a Poisson process (The process which
generates the Poisson rv)
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Rlab: The Gamma and the exponential distributions

xx <- seq(0, 10, l=1000)
plot(xx, dgamma(xx, 2, 2), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dgamma(xx, 2, 1), col = 2)
lines(xx, dgamma(xx, 2, .5), col = 3)
lines(xx, dgamma(xx, 1, .5), col = 4) # exponential distribution.
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The Beta (and the uniform) distribution

A r.v. X has a Beta distribution if it has the following pdf

f (x) = Γ(α + β)
Γ(α)Γ(β)x

α−1(1− x)β−1, 0 < x < 1

α, β > 0

The notation is X ∼ Be(α, β), E (X ) = α
α+β and var(X ) = αβ

(α+β)2(α+β+1) .

The Uniform distribution on [0, 1] is a special case when α = 1 and β = 1.
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R lab: the Beta distribution

xx <- seq(0, 1, l=1000)
plot(xx, dbeta(xx, 6,2), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dbeta(xx, 1,1), col = 2)
lines(xx, dbeta(xx, 2, 5), col = 3)
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The χ2 distribution

Let Z1, . . . ,Zk be a set of independent N (0, 1) r.v., then X =
∑k

i=1 Z 2
i is

a r.v. with a χ2 distribution with k degrees of freedom.

The notation is X ∼ χ2
k , E (X ) = k and var(X ) = 2k.

It is a special case of the Gamma distribution. In fact a χ2 distribution
with k degrees of freedom is a Gamma distribution with parameters
α = k/2 and λ = 1/2.

It plays an important role in the theory of hypothesis testing in statistics.
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R lab: the χ2 distribution

xx <- seq(0, 40, l=1000)
plot(xx, dchisq(xx, 5), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dchisq(xx, 10), col = 2)
lines(xx, dchisq(xx, 20), col = 3)
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The F distribution

Let X ∼ χ2
n and Y ∼ χ2

m, independent, then the r.v.

F = X/n
Y /m

has an F distribution with n and m degrees of freedom.

The notation is F ∼ Fn,m, and E (F ) = m/(m − 2) provided that m > 2.

The distribution is almost never used as a model for observed data, but it
has a central role in hypothesis testing involving linear models.
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R lab: the F distribution

xx <- seq(0, 10, l=1000)
plot(xx, df(xx, 10, 10), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, df(xx, 5, 2), col = 2)
lines(xx, df(xx, 10, 5), col = 3)
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The t and Cauchy distributions

Let Z ∼ N (0, 1) and X ∼ χ2
n, independent, then the r.v.

T = Z√
X
n

has an t distribution with n degrees of freedom.

The notation is T ∼ tn, and E (T ) = 0 provided that n > 1, whereas
var(T ) = n/(n − 2) provided that n > 2.

t∞ is N (0, 1), while for n finite the distribution has heavier tails than the
standard normal distribution.

The case t1 is the Cauchy distribution.

The distribution has a central role in statistical inference; at times it is
used for modelling phenomena presenting outliers.
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R lab: the t and Cauchy distributions

xx <- seq(-5, 5, l=1000)
plot(xx, dnorm(xx, 0, 1), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dt(xx, 30), col = 2)
lines(xx, dt(xx, 5), col = 3)
lines(xx, dt(xx, 1), col = 4)
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C.d.f. and quantile functions



3. Cumulative distribution functions

The cumulative distribution function (c.d.f.) of a r.v. X is the function
F (x) such that

F (x) = Pr(X ≤ x) ,

and it can be obtained from the probability function or the density
function: the c.d.f. identifies the distribution.

From the definition of F it follows that F (−∞) = 0, F (∞) = 1, F (x) is
monotonic.

A useful property is that if F is a continuous function then U = F (X ) has
a uniform distribution.
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R lab: uniform transformation

x <- rnorm(10^5) ### simulate values from N(0,1)
xx <- seq(min(x), max(x), l = 1000)
hist.scott(x, main = "") ### from MASS package
lines(xx, dnorm(xx), col = "red", lwd = 2)
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R lab: uniform transformation (cont’d.)

u <- pnorm(x) ### that's the uniform transformation
hist.scott(u, prob = TRUE, main="")
segments(0, 1, 1, 1, col = 2, lwd = 2)
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The quantile function

The inverse of the c.d.f. is defined as

F−(p) = min (x |F (x) ≥ p) , 0 ≤ p ≤ 1 .

This is the usual inverse function of F when F is continuous.

Another useful property is that if U ∼ U(0, 1), namely it has a uniform
distribution in [0,1], then the r.v. X = F−(U) has c.d.f. F .

This provides a simple method to generate random numbers from a
distribution with known quantile function: it is the inversion sampling
method, that only requires the ability to simulate from a uniform
distribution.
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Example: normal cdf and quantile functions

Let us consider the case of X ∼ N (5, 22), with c.d.f. and quantile
functions given by pnorm and qnorm
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R lab: inversion sampling

u <- runif(10^4); y <- qnorm(u, m = 5, s = 2)
par(pty = "s", cex = 0.8)
qqnorm(y, pch = 16, main = "")
qqline(y)
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Side note: quantile-quantile plot

The previous slide demonstrated the usage of the quantile function to
build a tool for model goodness-of-fit.

The quantile-quantile plot visualizes the plausibility of a theoretical
distribution for a set of observations y = (y1, . . . , yn).

This is done by comparing the quantile function of the assumed model
with the sample quantiles, which are the points that lie on the inverse of
the empirical distribution function

F̂n(t) = number of elements of y ≤ t
n .

If the agreement between the data and the theoretical distribution is good,
the points on the plot would approximately lie on a line.
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