Review of some probability concepts: random variables

(A quick tour)

L. Egidi

Fall 2021

University of Trieste

Random variables

Discrete distributions

Continuous distributions

C.d.f. and quantile functions

Random variables

Statistics is about the extraction of information from data that contain an *unpredictable* component.

Random variables (r.v.) are the mathematical device employed to build *models* of this variability.

A r.v. takes a different value at random each time is observed.

The main tools used to describe the **distribution** of values taken by a r.v. are:

- 1. Probability functions
- 2. Density functions
- 3. Cumulative distribution functions
- 4. Quantile functions

Discrete distributions

Discrete r.v. take values in a discrete set.

The **probability (mass) function** of a discrete r.v. X is the function f(x) such that

$$f(x) = \Pr(X = x).$$

with $0 \le f(x) \le 1$ and $\sum_i f(x_i) = 1$.

The probability function defines the **distribution** of X.

Mean and variance of a discrete r.v.

For many purposes, the first two moments of a distribution provide a useful summary.

The mean (expected value) of a discrete r.v. X is

$$E(X)=\sum_i x_i f(x_i),$$

and the definition is extended to any function g of X

$$E\{g(X)\}=\sum_i g(x_i) f(x_i).$$

The special case $g(X) = (X - \mu)^2$, with $\mu = E(X)$, is the **variance** of X

$$\operatorname{var}(X) = E\{(X - \mu)^2\} = E(X^2) - \mu^2.$$

The standard deviation is just given by $\sqrt{\operatorname{var}(X)}$.

Discrete r.v. often used in applications:

- Binomial (and Bernoulli) distribution
- Poisson distribution
- Negative binomial distribution
- Geometric distribution
- Hypergeometric distribution

Let us give a closer look to some of them.

Consider *n* independent binary trials each with success probability *p*, 0 . The r.v.*X*that counts the number of successes has**binomialdistribution**with probability function

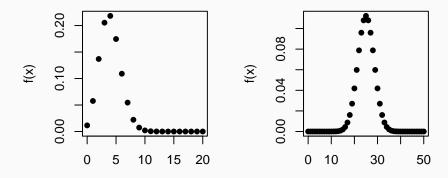
$$\Pr(X=x) = \binom{n}{x} p^x (1-p)^{n-x}, \qquad x = 0, \dots, n.$$

The notation is $X \sim \mathcal{B}_i(n, p)$, and E(X) = np, var(X) = np(1-p).

The case when n = 1 is known as **Bernoulli distribution** and a single binary trial is called **Bernoulli trial**.

R lab: the binomial distribution

par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dbinom(0:20, 20, 0.2), xlab = "x", ylab = "f(x)")
plot(0:50, dbinom(0:50, 50, 0.5), xlab = "x", ylab = "f(x)")



х

Х

9

The special case of the binomial distribution with $n \to \infty$ and $p \to 0$, while their product is held constant at $\lambda = np$, yields the **Poisson distribution**.

The probability function is

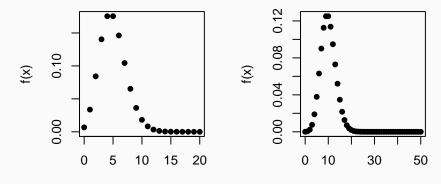
$$\Pr(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}, \qquad x = 0, 1, 2, \dots$$

with $\lambda > 0$.

The notation is $X \sim \mathcal{P}(\lambda)$, and $E(X) = \operatorname{var}(X) = \lambda$.

R lab: the Poisson distribution

par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dpois(0:20, 5), xlab = "x", ylab = "f(x)")
plot(0:50, dpois(0:50, 10), xlab = "x", ylab = "f(x)")



х

х

Let us consider a sequence of independent Bernoulli trials with success probability p, let X be the count of trials necessary to observe the r-th success. Then X has a **Negative binomial** (or Pascal) distribution with parameters p and r.

The probability function is

$$\Pr(X = x) = {\binom{x-1}{r-1}} p^r (1-p)^{x-r} \qquad x = r, r+1, r+2, \dots$$

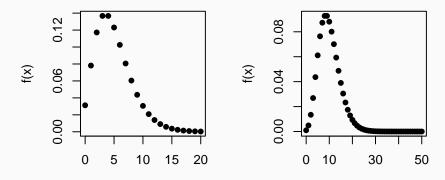
The notation is $X \sim \mathcal{NB}_i(p, r)$, and $E(X) = \frac{r}{p}$, $\operatorname{var}(X) = \frac{r(1-p)}{p^2}$.

It can also be defined with support the Natural numbers by simply considering the variable Y = X - r

The case for r = 1 is known as the **Geometric** distribution.

R lab: the Negative Binomial distribution

par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dnbinom(0:20, 5, 0.5), xlab = "x", ylab = "f(x)")
plot(0:50, dnbinom(0:50, 10, 0.5), xlab ="x", ylab = "f(x)")

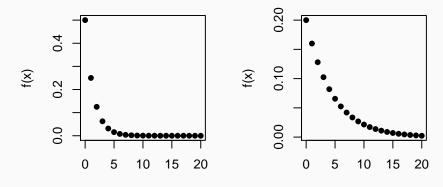


х

Х

R lab: the Geometric distribution

par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dnbinom(0:20, 1, 0.5), xlab = "x", ylab = "f(x)")
plot(0:20, dnbinom(0:20, 1, 0.2), xlab = "x", ylab = "f(x)")



Х

х

Continuous distributions

Continuous r.v. take values from intervals on the real line.

The **(probability) density function** (p.d.f.) of a continuous r.v. X is the function f(x) such that, for any constants $a \le b$

$$\Pr(a \le X \le b) = \int_a^b f(x) dx \, .$$

Note that $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x) dx = 1$.

The probability density function defines the **distribution** of X.

Mean and variance of a continuous r.v.

The definitions given in the discrete case are readily extended.

The mean (expected value) of a continuous r.v. X is

$$E(X)=\int_{-\infty}^{\infty}x\,f(x)dx\,,$$

and the definition is extended to any function g of X

$$E\{g(X)\}=\int_{-\infty}^{\infty}g(x)\,f(x)\,dx\,.$$

This includes the **variance** as a special case.

Two results, quite useful for continuous r.v., apply to a *linear* transformation a + bX, with a, b constants:

$$E(a + bX) = a + bE(X)$$

var(a + bX) = b² var(X).

Important continuous distributions include:

- Normal distribution
- Gamma, exponential and χ^2 distribution
- *F* distribution
- t and Cauchy distributions
- Beta distribution

The normal distribution has a major role in statistics. The χ^2 , t and F distributions are *relative* of the normal distribution.

A r.v. X has a normal (or *Gaussian*) distribution if it has p.d.f.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}, \qquad -\infty < x < \infty.$$

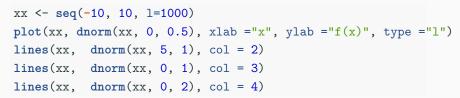
The notation is $X \sim \mathcal{N}(\mu, \sigma^2)$, and $E(X) = \mu$ and $var(X) = \sigma^2$, $\sigma^2 > 0$, $\mu \in \mathbb{R}$.

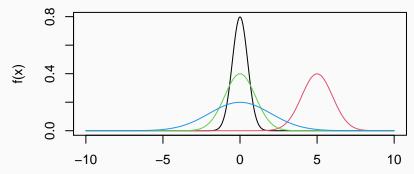
An important property is that for any constants a, b

$$a + b X \sim \mathcal{N}(a + b \mu, b^2 \sigma^2),$$

so that $Z = (X - \mu)/\sigma \sim \mathcal{N}(0, 1)$, the standard normal distribution. Finally, $Y = e^X$ has a lognormal distribution, useful for asymmetric variables with occasional right-tail outliers.

R lab: the normal distribution





Х

A r.v. X has a Gamma distribution if it has the following pdf

$$f(x) = rac{\lambda^{lpha} x^{lpha - 1} e^{-\lambda x}}{\Gamma(lpha)}, \qquad x \ge 0$$

where $\lambda, \alpha > 0$ and $\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha-1} dx$.

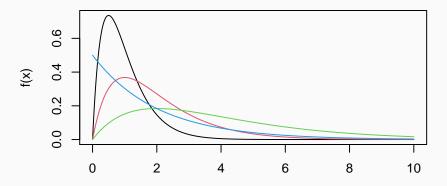
The notation is $X \sim Ga(\alpha, \lambda)$, $E(X) = \frac{\alpha}{\lambda}$ and $var(X) = \frac{\alpha}{\lambda^2}$.

When α is an integer it is also called **Erlang** distribution.

When $\alpha = 1$ it is called **exponential** distribution. The exponential distribution is related to the Poisson r.v. since X represents the waiting times between two arrivals in a Poisson process (The process which generates the Poisson rv)

Rlab: The Gamma and the exponential distributions

xx <- seq(0, 10, l=1000)
plot(xx, dgamma(xx, 2, 2), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dgamma(xx, 2, 1), col = 2)
lines(xx, dgamma(xx, 2, .5), col = 3)
lines(xx, dgamma(xx, 1, .5), col = 4) # exponential distribution</pre>



A r.v. X has a Beta distribution if it has the following pdf

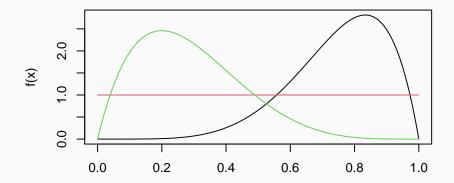
$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \qquad 0 < x < 1$$

 $\alpha,\beta > \mathbf{0}$

The notation is $X \sim Be(\alpha, \beta)$, $E(X) = \frac{\alpha}{\alpha+\beta}$ and $var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$. The **Uniform** distribution on [0, 1] is a special case when $\alpha = 1$ and $\beta = 1$.

R lab: the Beta distribution

xx <- seq(0, 1, l=1000)
plot(xx, dbeta(xx, 6,2), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dbeta(xx, 1,1), col = 2)
lines(xx, dbeta(xx, 2, 5), col = 3)</pre>



Let Z_1, \ldots, Z_k be a set of independent $\mathcal{N}(0, 1)$ r.v., then $X = \sum_{i=1}^k Z_i^2$ is a r.v. with a χ^2 distribution with k degrees of freedom.

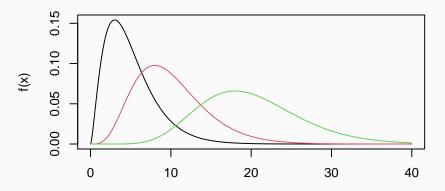
The notation is $X \sim \chi_k^2$, E(X) = k and var(X) = 2k.

It is a special case of the Gamma distribution. In fact a χ^2 distribution with k degrees of freedom is a Gamma distribution with parameters $\alpha = k/2$ and $\lambda = 1/2$.

It plays an important role in the theory of hypothesis testing in statistics.

R lab: the χ^2 distribution

xx <- seq(0, 40, l=1000)
plot(xx, dchisq(xx, 5), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dchisq(xx, 10), col = 2)
lines(xx, dchisq(xx, 20), col = 3)</pre>



Let $X \sim \chi^2_n$ and $Y \sim \chi^2_m$, independent, then the r.v.

$$\overline{r} = \frac{X/n}{Y/m}$$

has an F distribution with n and m degrees of freedom.

The notation is $F \sim \mathcal{F}_{n,m}$, and E(F) = m/(m-2) provided that m > 2.

The distribution is almost never used as a model for observed data, but it has a central role in hypothesis testing involving linear models.

R lab: the *F* distribution

xx <- seq(0, 10, l=1000)
plot(xx, df(xx, 10, 10), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, df(xx, 5, 2), col = 2)
lines(xx, df(xx, 10, 5), col = 3)</pre>



Let $Z \sim \mathcal{N}(0,1)$ and $X \sim \chi^2_n$, independent, then the r.v.

$$T = \frac{Z}{\sqrt{\frac{X}{n}}}$$

has an t distribution with n degrees of freedom.

The notation is $T \sim t_n$, and E(T) = 0 provided that n > 1, whereas var(T) = n/(n-2) provided that n > 2.

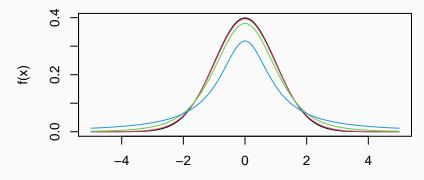
 t_{∞} is $\mathcal{N}(0,1)$, while for *n* finite the distribution has heavier tails than the standard normal distribution.

The case t_1 is the **Cauchy distribution**.

The distribution has a central role in statistical inference; at times it is used for modelling phenomena presenting *outliers*.

R lab: the *t* and Cauchy distributions

xx <- seq(-5, 5, l=1000)
plot(xx, dnorm(xx, 0, 1), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dt(xx, 30), col = 2)
lines(xx, dt(xx, 5), col = 3)
lines(xx, dt(xx, 1), col = 4)</pre>



Х

C.d.f. and quantile functions

The **cumulative distribution function** (c.d.f.) of a r.v. X is the function F(x) such that

 $F(x) = \Pr(X \leq x),$

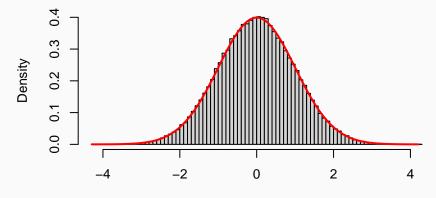
and it can be obtained from the probability function or the density function: the c.d.f. *identifies* the distribution.

From the definition of F it follows that $F(-\infty) = 0$, $F(\infty) = 1$, F(x) is monotonic.

A useful property is that if F is a continuous function then U = F(X) has a uniform distribution.

R lab: uniform transformation

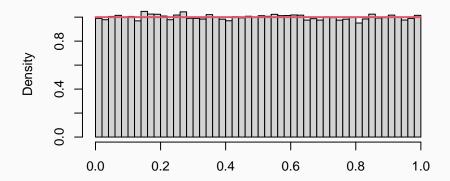
x <- rnorm(10⁵) ### simulate values from N(0,1) xx <- seq(min(x), max(x), l = 1000) hist.scott(x, main = "") ### from MASS package lines(xx, dnorm(xx), col = "red", lwd = 2)



х

R lab: uniform transformation (cont'd.)

u <- pnorm(x) ### that's the uniform transformation hist.scott(u, prob = TRUE, main="") segments(0, 1, 1, 1, col = 2, lwd = 2)



u

The inverse of the c.d.f. is defined as

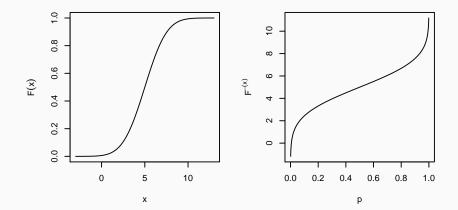
$$F^{-}(p) = \min(x|F(x) \ge p)$$
, $0 \le p \le 1$.

This is the usual inverse function of F when F is continuous.

Another useful property is that if $U \sim U(0,1)$, namely it has a *uniform* distribution in [0,1], then the r.v. $X = F^{-}(U)$ has c.d.f. F.

This provides a simple method to generate random numbers from a distribution with known quantile function: it is the **inversion sampling method**, that only requires the ability to simulate from a uniform distribution.

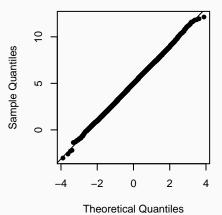
Let us consider the case of $X \sim \mathcal{N}(5,2^2)$, with c.d.f. and quantile functions given by pnorm and qnorm



34

R lab: inversion sampling

```
u <- runif(10<sup>4</sup>); y <- qnorm(u, m = 5, s = 2)
par(pty = "s", cex = 0.8)
qqnorm(y, pch = 16, main = "")
qqline(y)</pre>
```



The previous slide demonstrated the usage of the quantile function to build a tool for **model goodness-of-fit**.

The *quantile-quantile plot* visualizes the plausibility of a theoretical distribution for a set of observations $y = (y_1, \ldots, y_n)$.

This is done by comparing the quantile function of the assumed model with the sample quantiles, which are the points that lie on the inverse of the **empirical distribution function**

$$\widehat{F}_n(t) = rac{\text{number of elements of } y \leq t}{n}$$

If the agreement between the data and the theoretical distribution is good, the points on the plot would approximately lie on a line.