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Random vectors

In statistics multiple variables are usually observed, and vectors of random
variables (random vectors) are required. The two-dimensional case is
useful to illustrate the main concepts, and will be used here.

For continuous r.v., the joint (probability) density function extends the
one-dimensional case: it is the f(x, y) function such that, for any A C R?

Pr{(X,Y) € A} = //Af(x,y)dxdy.

Note that f(x,y) > 0and [~ [% f(x,y)dxdy =1.

The probability density function defines the joint distribution of the
random vector (X, Y).



Marginal distribution

The joint distribution embodies information about each components, so
that the distribution of X, ignoring Y, can be obtained from f(x, y).

The marginal density function of X is given by
f(x) = / f(x,y)dy,
and similarly for the other variable.

(Note: here and elsewhere we always use the symbol f for any p.d.f.,
identifying the specific case by the argument of the function).



Conditional distribution

The conditional density function of Y given X = xo updates the
distribution of Y by incorporating the information that X = xg.

It is given by the important formula

f(X0> )/)
f(xo)

The simplified notation f(y|xo) is often employed.

fly|X =x0) = provide f(xp) > 0.

The conditional p.d.f. is properly defined, since f(y|X = xp) > 0 and
J2o fylxo)dy = 1.

A symmetric definition applies to X given Y = yjq.



Conditional distribution: useful properties

In the two dimensional case, it is readily possible to write
fx,y) = () fylx).

Extensions to higher dimensions require some care:

f(X7Y7Z) = f(X7y|Z) ( )
fix,ylz) = f(x|z)f(ylx,2)
f(x,y,z2) = f(xly,2)f(y,2)
f(x,y,z) = f(xly,z)f(ylz) f(2)
f(xi, X2, .oy xn) = F(x1) fxalx1) F(xalxa, x1) <.« F(Xn|Xn—1, - -, X2, X1)



R lab: simulation from joint distributions (a mixture)

x <- rbinom(1075, size = 1, prob = 0.7)
y <- rnorm(10°5, m = x * 5, s = 1) ### Y| X =z ~ N(z * 5, 1)

hist.scott(y, main = "", xlim = c(-4, 10))
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R lab: simulation from joint distributions (cont’d.)

xx <- seq(-4, 10, 1 = 1000)

ff <- 0.3 * dnorm(xx, 0) + 0.7 * dnorm(xx, 5)
### This is a mizture of normal distributions
hist.scott(y, main = "", xlim = c(-4, 10))
lines(xx, ff, col = "red", lwd = 2)

Density
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Bayes theorem

From the factorization of the joint distribution it readily follows that
f(x,y) = f(x) fylx) = f(y) f(x]y)

from which we obtain the Bayes theorem

Flxly) = L),

This is a cornerstone of statistics, leading to an entire school of statistical

modelling.



Independence and conditional independence

When f(y|x) does not depend on the value of x, the r.v. X and Y are
independent, and

fx,y) = fly) f(x)

More in general, n r.v. are independent if and only if

fxe, %2, xn) = F(xa) F(2) - F(xn) -

Conditional independence arises when two r.v. are independent given a
third one:

fy,x|z) = f(x|z) f(y|z)
An important part of statistical modelling exploits some sort of conditional
independence.
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Example of conditional independence: the Markov property

The general factorization defined above
f(xi, X2, .-y Xn) = F(x1) F(xa)x1) F(xs]x2, x1) oo F(Xn|Xn—1, - -, X2, X1)
will simplify considerably when the first order Markov property holds:
f(xilxy .-y xi—1) = F(xi]xi—1)

which means that X; is independent of Xi,..., X;_» given X;_1. We get

n

Fxe, %2, -, xa) = F(x1) [ FOxilxiza) -

i=2

When the variables are observed over time, this means that the process
has short memory, a property quite useful in the statistical modelling of
time series.
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Mean and variance of linear transformations

For two r.v. X and Y and two constants a, b we get
E(aX+bY)=aE(X)+bE(Y).

The result follows from the more general one

e ) = [ [ et ey xay.
For variances we need first to introduce the covariance between X and Y
cov(X, ¥) = E{(X — 1) (¥ = i)} = E(X ) — pue iy
where i, = E(X) and p, = E(Y). Then
var(aX + b Y) = a® var(X) + b var(Y) + 2 abcov(X, Y).

Note: for X, Y independent it follows that cov(X, Y) = 0. The reverse is
not true, unless the joint distribution of X and Y is multivariate normal.
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Mean vector

For a random vector X = (X1, Xz, ..., X,) ", the mean vector is just
E(X1)
E(X2)
E(X) = .
E(Xx)

The mean vector has the same properties of the scalar case, so that for
example E(X+Y) = E(X) + E(Y), and for A and b a n x n matrix and a
n x 1 vector, respectively, it follows that

E(AX+b)=AE(X)+b.
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Variance-covariance matrix

The variance-covariance matrix of the random vector X collects all the
variances (on the main) diagonal and all the pairwise covariances (off the
main diagonal), being the n x n symmetric semi-definite matrix

var(X1)  cov(Xi, Xz) -+ cov(Xy, Xp)
E = () (Xopg) Ty = | T8 Var(:XZ) COV()?’X”)
cov(Xl,Xn) COV(XZ,XH) Var(-X,,)
Useful properties:
Taxib = AXAT
Txtax = HM,Ap, +ir(AX)
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Transformation of random variables and random vectors

Given a continuous r.v. X and a transformation Y = g(X), with g an
invertible function, it readily follows that

dx
dy

f,(y) = f{e ' (y)}

The result is extended to two continuous random vectors with the same
dimension

A(Y) = fx{g ' (Y)} Y],

For discrete r.v., the results are simpler, with no need of including the
Jacobian of the transformation.
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The multivariate normal
distribution




The multivariate normal distribution

Start from a set of ni.i.d. Z; ~ N(0,1), so that E(z) = 0 and covariance
matrix 1,. If B is m x n matrix of coefficients and p a m-vector of
coefficients, then the m-dimensional random vector X

X=Bz+pu

has a multivariate normal distribution with covariance matrix
> =BB'.

The notation is
X~N(p, X).
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Joint p.d.f.

Using basic results on transformation of random vectors, starting from the
joint p.d.f of Z1, 25, ..., Z, we obtain

_ 1 _— Ixo Tt x or m
MX) = p{-3-wTET(X-wf.  frxern,

provide that X has full rank m. The result can be extended to singular X
by recourse to the pseudo-inverse of X: this is used, for example, in the
analysis of compositional data.

A useful property which holds only for this distribution: two r.v. with
multivariate normal distribution and zero covariance are independent.
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Example: bivariate case

We take g = pp = 0, 02 = 10, 05 = 10, 0o = 15

0.0157

n.0167

0.0057

-10
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Linear transformations

It is simple to verify that if X ~ N (u, X) and A is a k X m matrix of
constants then
AX~N(Apu,AZAT).

A special case is obtained when k = 1, in that for a m-dimensional vector a

a' X~N(@  p,a’ Xa).

Note that for suitable choices of a (when all the elements Os or 1s) it
follows that the marginal distribution of any subvector of X is
multivariate normal.

Normality of the marginal distributions, instead, does not imply
multivariate normality.
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Conditional distributions

Consider two random vectors X and Y with multivariate normal joint
distribution, and partition their joint covariance matrix as

s - Zxx ny 7
zyX zy}’

and similarly for the mean vector p = (1, 1) "

Using results on partitioned matrices, it follows that the conditional
distributions are multivariate normal.

For instance

Y|X ~ N(Uy + Xy Z;xl (X = p), Zyy — Xy }:;<1 Iy).
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Statistics




Random sample

The collection of r.v. Xi, X5,..., X, is said to be a random sample of
size n if they are independent and identically distributed, that is

= Xy, X5,..., X, are independent r.v.
= They have the same distribution, namely the same c.d.f.

The concept is central in statistics, and it is the suitable mathematical
model for the outcome of sampling units from a very large population.
The definition is, however, more general.

(For more details: https:
/ /www.probabilitycourse.com/chapter8/8_1_1_random_sampling.php)
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Statistics

A statistic is a r.v. defined as a function of a set of r.v.
Obvious examples are the sample mean and variance of data y1,y>,..., Vs

I R 2 1 < —\2
}/ZE;M, S :n—lz()/i_)/) :

i=1

Consider a random vector Y with p.d.f. fp(Y) depending on a vector 6
(which is the parameter, as we will see).

If a statistic t(Y) is such that fo(Y) can be written as

fo(Y) = h(Y) ge{t(Y)},
where h does not depend on 0, and g depends on Y only through ¢(Y),

then t is a sufficient statistic for 8: all the information available on 6
contained in Y is supplied by t(Y).

The concepts of information and sufficiency are central in statistical

inference.
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Example: sufficient statistic for the normal distribution

Given a vector of independent normal r.v. Y; ~ N(u,0?), it follows that
0 = (u,0?) and

By some simple algebra, it is possible to show that the two-dimensional
statistic t(Y) = (v, s?) is sufficient for (u, 0?).
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Moment generating function

The moment generating function (m.g.f.) characterises the distribution
of ar.v. X, and it is defined as

Mx(t) = E(e™), for t real.

The name derives from the fact the k" derivative of the m.gf. at t =0
gives the k™ uncentered moment:

dk Mx(t)

d tk le=0 = E(X*).

Two useful properties:

s |If Mx(t) = My(t) for some small interval around t = 0, then X and
Y have the same distribution.

= If X and Y are independent, Mxy(t) = Mx(t) My(t).

24



The central limit theorem

Foriid. rv. Xi,Xo,..., X, with mean y and finite variance o2, the
central limit theorem states that for large n the distribution of the r.v.
X, =", Xi/n is approximately

X, ~ N(u,0%/n).

More formally, the theorem says that for any x € R the c.d.f. of

Z, = (X, — p)/~/a?/n satisfies

X 1 2
lim Fz (x) = e 72z,
n—o00 Z"( ) /oo 2

The proof is simple, and it uses the m.g.f.
The theorem generalizes to multivariate and non-identical settings.

It has a central importance in statistics, since it supports the normal
approximation to the distribution of a r.v. that can be viewed as the sum
of other r.v.

25



The law of large numbers

Consider i.i.d. (independent and identically distributed) r.v. Xi,..., X,
with mean g and (E|Xj|) < oo.

The strong law of large numbers states that, for any positive ¢
Pr(lim \Y,,fu\<e> =i,
n—o00
namely X, converges almost surely to .

With the further assumption var(X;) = o2, the weak law of large
numbers follows

lim Pr (| X, — pu| >€) =0.

n— oo
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Proof of the weak law of large numbers

First we recall the Chebyshev’s inequality: given a r.v. X such that
E(X?) < 0o and a constant a > 0, then

Pr(|X| > a) < E(:f).

We apply the inequality to the case of interest, so that

- E{(X, — p)? var(X o?
er (K > ) < EWF0—iP) ) _

which tends to zero when n — oo.

The result may hold also for non-i.i.d. cases, provided var(X,) — 0 for

large n.
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Jensen’s inequality

This is another useful result, that states that for a r.v. X and a concave
function g

g{E(X)} = E{g(X)}.
(Note: a concave function is such that
glaxi+(1—a)x} > aglha)+ (1 —a)glo),

for any xq,xz, and 0 < o < 1).

An example is g(x) = —x?, so that
—E(X)> > —E(X?) = E(X)*<E(X?),

which is obviously true since E(X?) = var(X) + E(X)?.
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