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Random vectors



Random vectors

In statistics multiple variables are usually observed, and vectors of random
variables (random vectors) are required. The two-dimensional case is
useful to illustrate the main concepts, and will be used here.

For continuous r.v., the joint (probability) density function extends the
one-dimensional case: it is the f (x , y) function such that, for any A ⊆ R2

Pr{(X ,Y ) ∈ A} =
∫ ∫

A
f (x , y)dx dy .

Note that f (x , y) ≥ 0 and
∫∞
−∞

∫∞
−∞ f (x , y)dx dy = 1.

The probability density function defines the joint distribution of the
random vector (X ,Y ).
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Marginal distribution

The joint distribution embodies information about each components, so
that the distribution of X , ignoring Y , can be obtained from f (x , y).

The marginal density function of X is given by

f (x) =
∫ ∞
−∞

f (x , y)dy ,

and similarly for the other variable.

(Note: here and elsewhere we always use the symbol f for any p.d.f.,
identifying the specific case by the argument of the function).
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Conditional distribution

The conditional density function of Y given X = x0 updates the
distribution of Y by incorporating the information that X = x0.

It is given by the important formula

f (y |X = x0) = f (x0, y)
f (x0) , provide f (x0) > 0 .

The simplified notation f (y |x0) is often employed.

The conditional p.d.f. is properly defined, since f (y |X = x0) ≥ 0 and∫∞
−∞ f (y |x0)dy = 1.

A symmetric definition applies to X given Y = y0.
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Conditional distribution: useful properties

In the two dimensional case, it is readily possible to write

f (x , y) = f (x) f (y |x) .

Extensions to higher dimensions require some care:

f (x , y , z) = f (x , y |z) f (z)
f (x , y |z) = f (x |z) f (y |x , z)
f (x , y , z) = f (x |y , z) f (y , z)
f (x , y , z) = f (x |y , z) f (y |z) f (z)

f (x1, x2, . . . , xn) = f (x1) f (x2|x1) f (x3|x2, x1) . . . f (xn|xn−1, . . . , x2, x1)

6



R lab: simulation from joint distributions (a mixture)

x <- rbinom(10^5, size = 1, prob = 0.7)
y <- rnorm(10^5, m = x * 5, s = 1) ### Y| X = x ~ N(x * 5, 1)
hist.scott(y, main = "", xlim = c(-4, 10))
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R lab: simulation from joint distributions (cont’d.)

xx <- seq(-4, 10, l = 1000)
ff <- 0.3 * dnorm(xx, 0) + 0.7 * dnorm(xx, 5)
### This is a mixture of normal distributions
hist.scott(y, main = "", xlim = c(-4, 10))
lines(xx, ff, col = "red", lwd = 2)
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Bayes theorem

From the factorization of the joint distribution it readily follows that

f (x , y) = f (x) f (y |x) = f (y) f (x |y)

from which we obtain the Bayes theorem

f (x |y) = f (x) f (y |x)
f (y) .

This is a cornerstone of statistics, leading to an entire school of statistical
modelling.
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Independence and conditional independence

When f (y |x) does not depend on the value of x , the r.v. X and Y are
independent, and

f (x , y) = f (y) f (x)

More in general, n r.v. are independent if and only if

f (x1, x2, . . . , xn) = f (x1) f (x2) . . . f (xn) .

Conditional independence arises when two r.v. are independent given a
third one:

f (y , x |z) = f (x |z) f (y |z)

An important part of statistical modelling exploits some sort of conditional
independence.
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Example of conditional independence: the Markov property

The general factorization defined above

f (x1, x2, . . . , xn) = f (x1) f (x2|x1) f (x3|x2, x1) . . . f (xn|xn−1, . . . , x2, x1)

will simplify considerably when the first order Markov property holds:

f (xi |x1, . . . , xi−1) = f (xi |xi−1)

which means that Xi is independent of X1, . . . ,Xi−2 given Xi−1. We get

f (x1, x2, . . . , xn) = f (x1)
n∏

i=2
f (xi |xi−1) .

When the variables are observed over time, this means that the process
has short memory, a property quite useful in the statistical modelling of
time series.
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Mean and variance of linear transformations

For two r.v. X and Y and two constants a, b we get

E (a X + b Y ) = a E (X ) + b E (Y ) .

The result follows from the more general one

E{g(X ,Y )} =
∫ ∞
−∞

∫ ∞
−∞

g(x , y) f (x , y) dx dy .

For variances we need first to introduce the covariance between X and Y

cov(X ,Y ) = E{(X − µx ) (Y − µy )} = E (X Y )− µx µy ,

where µx = E (X ) and µy = E (Y ). Then

var(a X + b Y ) = a2 var(X ) + b2 var(Y ) + 2 ab cov(X ,Y ) .

Note: for X ,Y independent it follows that cov(X ,Y ) = 0. The reverse is
not true, unless the joint distribution of X and Y is multivariate normal.
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Mean vector

For a random vector X = (X1,X2, . . . ,Xn)>, the mean vector is just

E (X) =


E (X1)
E (X2)

...
E (Xn)

 .

The mean vector has the same properties of the scalar case, so that for
example E (X+Y) = E (X) + E (Y), and for A and b a n× n matrix and a
n × 1 vector, respectively, it follows that

E (AX + b) = AE (X) + b .
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Variance-covariance matrix

The variance-covariance matrix of the random vector X collects all the
variances (on the main) diagonal and all the pairwise covariances (off the
main diagonal), being the n × n symmetric semi-definite matrix

Σ = E{(X−µx ) (X−µx )>} =


var(X1) cov(X1,X2) · · · cov(X1,Xn)

cov(X1,X2) var(X2) · · · cov(X2,Xn)
...

...
...

...
cov(X1,Xn) cov(X2,Xn) · · · var(Xn)


Useful properties:

ΣAX+b = AΣA>

ΣX>AX = µ>x Aµx + tr(AΣ)
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Transformation of random variables and random vectors

Given a continuous r.v. X and a transformation Y = g(X ), with g an
invertible function, it readily follows that

fy (y) = fx{g−1(y)}
∣∣∣∣dxdy

∣∣∣∣ .
The result is extended to two continuous random vectors with the same
dimension

fY(Y) = fX{g−1(Y)} |J| ,

with Jij = ∂xi/∂yj .

For discrete r.v., the results are simpler, with no need of including the
Jacobian of the transformation.
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The multivariate normal
distribution



The multivariate normal distribution

Start from a set of n i.i.d. Zi ∼ N (0, 1), so that E (z) = 0 and covariance
matrix In. If B is m × n matrix of coefficients and µ a m-vector of
coefficients, then the m-dimensional random vector X

X = Bz + µ

has a multivariate normal distribution with covariance matrix
Σ = BB>.

The notation is
X ∼ N (µ,Σ) .
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Joint p.d.f.

Using basic results on transformation of random vectors, starting from the
joint p.d.f of Z1,Z2, . . . ,Zn we obtain

fX(X) = 1√
(2π)m |Σ|

exp
{
−1
2 (X− µ)>Σ−1 (X− µ)

}
, for X ∈ Rm ,

provide that Σ has full rank m. The result can be extended to singular Σ
by recourse to the pseudo-inverse of Σ: this is used, for example, in the
analysis of compositional data.

A useful property which holds only for this distribution: two r.v. with
multivariate normal distribution and zero covariance are independent.
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Example: bivariate case

We take µ1 = µ2 = 0, σ2
1 = 10, σ2

2 = 10, σ12 = 15
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Linear transformations

It is simple to verify that if X ∼ N (µ,Σ) and A is a k ×m matrix of
constants then

AX ∼ N (Aµ,AΣA>) .

A special case is obtained when k = 1, in that for a m-dimensional vector a

a>X ∼ N (a> µ, a>Σa) .

Note that for suitable choices of a (when all the elements 0s or 1s) it
follows that the marginal distribution of any subvector of X is
multivariate normal.

Normality of the marginal distributions, instead, does not imply
multivariate normality.
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Conditional distributions

Consider two random vectors X and Y with multivariate normal joint
distribution, and partition their joint covariance matrix as

Σ =
(

Σxx Σxy

Σyx Σyy

)
,

and similarly for the mean vector µ = (µx ,µy )>.

Using results on partitioned matrices, it follows that the conditional
distributions are multivariate normal.

For instance

Y|X ∼ N (µy + Σyx Σ−1
xx (X− µx ),Σyy −Σyx Σ−1

xx Σxy ) .
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Random sample

The collection of r.v. X1,X2, . . . ,Xn is said to be a random sample of
size n if they are independent and identically distributed, that is

• X1,X2, . . . ,Xn are independent r.v.
• They have the same distribution, namely the same c.d.f.

The concept is central in statistics, and it is the suitable mathematical
model for the outcome of sampling units from a very large population.
The definition is, however, more general.

(For more details: https:
//www.probabilitycourse.com/chapter8/8_1_1_random_sampling.php)
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Statistics

A statistic is a r.v. defined as a function of a set of r.v.

Obvious examples are the sample mean and variance of data y1, y2, . . . , yn

y = 1
n

n∑
i=1

yi , s2 = 1
n − 1

n∑
i=1

(yi − y)2 .

Consider a random vector Y with p.d.f. fθ(Y) depending on a vector θ

(which is the parameter, as we will see).

If a statistic t(Y) is such that fθ(Y) can be written as

fθ(Y) = h(Y) gθ{t(Y)} ,

where h does not depend on θ, and g depends on Y only through t(Y),
then t is a sufficient statistic for θ: all the information available on θ

contained in Y is supplied by t(Y).

The concepts of information and sufficiency are central in statistical
inference.
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Example: sufficient statistic for the normal distribution

Given a vector of independent normal r.v. Yi ∼ N (µ, σ2), it follows that
θ = (µ, σ2) and

fθ(Y) =
n∏

i=1

1√
2π σ

exp
{
− 1
2σ2 (yi − µ)2

}

= 1(√
2π
)n
σn

exp
{
− 1
2σ2

∑
i

(yi − µ)2

}
.

By some simple algebra, it is possible to show that the two-dimensional
statistic t(Y) = (y , s2) is sufficient for (µ, σ2).
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Moment generating function

The moment generating function (m.g.f.) characterises the distribution
of a r.v. X , and it is defined as

MX (t) = E (etX ) , for t real .

The name derives from the fact the k th derivative of the m.g.f. at t = 0
gives the k th uncentered moment:

dk MX (t)
d tk |t=0 = E (X k) .

Two useful properties:

• If MX (t) = MY (t) for some small interval around t = 0, then X and
Y have the same distribution.

• If X and Y are independent, MX+Y (t) = MX (t)MY (t).
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The central limit theorem

For i.i.d. r.v. X1,X2, . . . ,Xn with mean µ and finite variance σ2, the
central limit theorem states that for large n the distribution of the r.v.
X n =

∑n
i=1 Xi/n is approximately

X n ∼ N (µ, σ2/n) .

More formally, the theorem says that for any x ∈ R the c.d.f. of
Zn = (X n − µ)/

√
σ2/n satisfies

lim
n→∞

FZn (x) =
∫ x

−∞

1√
2π

e−z2/2 dz .

The proof is simple, and it uses the m.g.f.

The theorem generalizes to multivariate and non-identical settings.

It has a central importance in statistics, since it supports the normal
approximation to the distribution of a r.v. that can be viewed as the sum
of other r.v.
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The law of large numbers

Consider i.i.d. (independent and identically distributed) r.v. X1, . . . ,Xn,
with mean µ and (E |Xi |) <∞.

The strong law of large numbers states that, for any positive ε

Pr
(

lim
n→∞
|X n − µ| < ε

)
= 1 ,

namely X n converges almost surely to µ.

With the further assumption var(Xi) = σ2, the weak law of large
numbers follows

lim
n→∞

Pr
(
|X n − µ| ≥ ε

)
= 0 .
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Proof of the weak law of large numbers

First we recall the Chebyshev’s inequality: given a r.v. X such that
E (X 2) <∞ and a constant a > 0, then

Pr(|X | ≥ a) ≤ E (X 2)
a2 .

We apply the inequality to the case of interest, so that

Pr
(
|X n − µ| ≥ ε

)
≤ E{(X n − µ)2}

ε2
= var(X n)

ε2
= σ2

n ε2 ,

which tends to zero when n→∞.

The result may hold also for non-i.i.d. cases, provided var(X n)→ 0 for
large n.
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Jensen’s inequality

This is another useful result, that states that for a r.v. X and a concave
function g

g{E (X )} ≥ E{g(X )} .

(Note: a concave function is such that

g{α x1 + (1− α) x2} ≥ α g(x1) + (1− α) g(x2) ,

for any x1, x2, and 0 ≤ α ≤ 1).

An example is g(x) = −x2, so that

−E (X )2 ≥ −E (X 2) ⇒ E (X )2 ≤ E (X 2) ,

which is obviously true since E (X 2) = var(X ) + E (X )2.
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