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The concept of statistical model



Intro: Aim of statistical inference

Statistics aims to extract information from data, and in particular on
the process that generated the data.

Two intrinsic difficulties:

= |t may be hard to infer what we wish to know from the available data;

= Most data contain some random variability: by replicating the
data-gathering process several times we would obtain different data

on each occasion.

We search for conclusions drawn from a single data set that are generally
valid, and not the result of random peculiarities of that data set.



Role of statistical models

Statistics is able to draw conclusions from random data mainly though the
use of statistical models.

A statistical model can be thought as a mathematical cartoon describing
how our data might have been generated, if the unknown features of the
data-generating process were actually known.

If the unknowns were known, a good model can generate data resembling
the main features of observed data.

The purpose of statistical inference is to use the statistical model to go
in the reverse direction: to infer the model unknowns that are consistent
with the observed data.



Mathematical aspects

Notation:

= y random vector containing the observed data
= @ vector of parameters of unknown value

We assume that knowing the parameters would answer the question of
interest about the process generating the data.

The model specifies how data akin to y may be simulated, implicitly
defining the distribution of y and how it depends on 6.

Moreover, a statistical model may depend on some known parameters ~y
and some further data x, treated as known and denoted as covariates or
predictor variables.



Visually
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Figure 1: Taken from Wood's book, page 20



An example

Consider the following record of 60 mean annual temperatures in New
Haven, expressed in °C

y <- (nhtemp - 32) / 1.8
plot(1912:1971, y, pch = 16, xlab = "Year", ylab = "y")
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Example: Model 1

A first model simply assumes that the data are a random sample from a
normal distribution namely they are the observation of i.i.d. r.v. from

N(p, 0?).

It follows that the distribution for the entire data vector is the product of
the single contributions

H ¢ {(yi—m)/o},

where ¢ is the N'(0,1) p.d.f.



Example: Model 2

A second model retains the random sample assumption, but replaces the
normal distribution with a heavier-tailed ts5 distribution, assuming

Yi—p

~ ts.

The distribution of the data becomes

n

) =TT 5 fo {0 = /o)

i=1

where f;, is the t5 p.d.f.
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Example: Model 3

The third model relaxes the assumption of identical distribution, assuming
a linear trend over time: after setting t; = year; — 1911, i =1,...,60; we
then take

yi=Bo+Biti+¢i, ei ~N(0,07).

The independence between observations still holds, so that

) =TT = 640~ fo— fa t)/o}
i=1
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Example: Model 4

The last model maintains the trend assumption, but also includes
autocorrelation for the error term, meaning that we assume

yi=PBo+Biti+¢i, gi = pei—1+ v,

with v; ~ N(0,02), and the autocorrelation p € (0, 1).

The model also requires to specify the distribution for the first observation,
here taken as Y; ~ N'{5,02/(1 — p?)}, so that all the variables in the
sample have the same variance.
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Example: Model 4 (cont’d.)

The model is an instance of a linear regression model with
autocorrelated errors. The r.v. of the sample are not longer
independent, yet the distribution of Y can be found with some algebra.

It is possible to verify that Y is multivariate normal, with mean vector
given by the linear trend

E(Y;) = pi = po+ b1 ti,

and covariance matrix

1 p pnfl
2 p 1 pn—2
r- S :
(1-p?) :
pn—l pn—2 1

so that f(y) = ¢n(y; 1, X), being ¢, the multivariate normal p.d.f.
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Example: model parameters

It is useful to write down the vector parameters 6 for each of the four
model specifications proposed:

= Model 1: 0 = (,0?)

= Model 2: 8 = (y,0?)

= Model 3: 8 = (8o, B1,02)

= Model 4: 8 = (5o, f1, p, 02)

Note that the meaning of each parameter depends on the chosen model:
02 = var(Y;) in Model 1, but 02 = 0.6 var(Y;) in Model 2.
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Simulation from a statistical
model
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Example: Model 1

For Model 1, the parameters 1 and o2 are readily estimated by y and s2.
Then, a further dataset can be simulated using such values

set.seed(2018); ysim <- rnorm(length(y), m = mean(y), s = sd(y))
plot(1912:1971, y, pch = 16, xlab = "Year", ylab = "y")
points(1912:1971, ysim, col = 2, pch = 16)
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Example: what should we look for?

In order to evaluate whether the simulated dataset is similar to the
observed one, we should focus on some important features.

For example, climate changes over time may suggest that the temperature
of a given year may be positively correlated with the temperature of the
subsequent year, an example of positive autocorrelation.

We can quantify this point by computing the sample autocorrelation

n—1 — _
n= Yim Vi —Y) i1 —Y)

iy —y)?

which is computed by the R function acf.

For the original data set r; = 0.31, whereas for the simulated data from
Model 1 r = —0.12. This is just a single data set, though.
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Example: Simulated sample autocorrelation

We simulate 10,000 samples from each of the four models, and each time
we compute the r; coefficient. The sample distributions obtained are
displayed in the plot below. Model 4 is better at reproducing
autocorrelation, as expected.
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The problems of statistical
inference: an overview
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Inferential questions

Given a statistical model for data y, with model parameters 0, there are
some basic questions to ask (pasted from the CS book):

1. What values of @ are most consistent with y? [Point estimation]
2. What range of values of 0 are consistent with y? [Interval estimation]

3. Is some prespecified restriction on @ consistent with y? [Hypothesis
testing]

4. Is the model consistent with the data for any value of @ at all?
[Model checking]

Question 4 can be enlarged to include which of several alternative models
is most consistent with y? This is point of model selection, which partially
overlaps with model checking.

The central issue is the acknowledgment of the intrinsic uncertainty
inherent in trying to learn about 6.

20



A further question

For settings where some control over the data-gathering process is
possible, a further question arises:

5. How might the data-gathering process be organized to produce data
that enables answers to the preceding questions to be as accurate and
precise as possible?

This is the core of experimental and survey design methods.

It represents an often neglected question, of central importance in many
traditional fields where statistics is routinely applied (medical sciences,
industrial research, biosciences ...). It is also very relevant for business
and web analytics, like in A/B testing.
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Approaches to statistical inference

There are two classes of methods providing an answer to questions 1-4,
namely the frequentist and Bayesian approach.

They differ mainly for the role of model parameters 8, which are treated as
fixed constants in the former approach and as r.v. in the latter one.

The difference may appear remarkable, and there has been controversy
over the years about the merits of each approach.

Yet, from a a practical perspective the two approaches have much in
common, and tend to give similar answers when properly applied, especially
when compared to approaches that are not based on a statistical model.

22



In the rest of this course, a brief overview of classical frequentist methods
for point estimation, interval estimation, hypothesis testing and design will
be provided. The important idea of the bootstrap will be also illustrated.

Afterwards, the most important frequentist class of methods, given by
likelihood-based methods, will be covered. This is rather comprehensive
methodology, that provides also some tools for model selection.

Model checking will be illustrated with reference to some specific class of
statistical models, such as linear and generalized linear regression
models, whose theory will be covered in the course as well. We will skim
over some important extensions, such as nonparametric regression and
mixed models.

Some (limited) space will be devoted also to the main ideas of the
Bayesian approach.
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A first look at model diagnostics

Model diagnostics, a basic tool for model checking, it also has a role for
simple models, like those of our illustrative example.

A basic tool is given by quantile-quantile plots, already briefly
introduced, which can be used to verify whether the data y are consistent
with an assumed model.

This is straightforward for i.i.d. models, like Model 1 and 2, where the fact
that the assumed distribution for y; depends on p and o is rather
inconsequential.
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A first look at model diagnostics (cont’d.)

For more complex settings, such as Model 3 and 4, the general idea is as

follows.

Assume that according to the fitted model the expected value and
covariance matrix of y are My and Za.

Then the standardized residuals are
& —ilE
e=2 " (y—1g),

/2

where Zgl is any matrix square root of Zél, such as its Choleski factor.

If the model is correct, € should appear approximately independent, with
zero mean and unit variance, and roughly normal if the model assumes
normality.
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Example: model checking for Model 1

par(pty="s"
library(car)
aqPlot(y, dist="norm", envelope=FALSE, grid=FALSE, id=FALSE)

norm quantiles
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Example: model checking for Model 2

par (Pty=" s n )
qqPlot(y, dist="t", df=5, envelope=FALSE, grid=FALSE, id=FALSE)

t quantiles
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Example: model checking for Model 3

par(ptyzusu)
x <- 1912:1971-1911
qqPlot (resid (Im(y~x)), envelope=FALSE, grid=FALSE, id=FALSE)

resid(Im(y ~ x))

-2 -1 0 1 2

norm quantiles

28



Example: model checking for Model 4

par (Pty=" s n )
qqPlot(res, dist="norm", envelope=FALSE, grid=FALSE, id=FALSE)

res

-2 -1 0 1 2

norm quantiles
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Example: winding up

The example shows that no model gives a perfect fit for this data set, a
fact that we ought to accept in broad generality.

Model 3 and Model 4 both provide an acceptable fit, with the latter
slightly better in reproducing some of the autocorrelation observed in data.

More sophisticated models may give better results, but simpler models
conform to the Occam’s Razor principle, that for statistical modelling
argues in favor of simple models for simple problems, moving to more
complex models when simple models are inappropriate.
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