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Point estimation



The aim of point estimation

Given a model for the data y, with parameter θ, point estimation is
concerned with finding a reasonable parameter estimate from the data.

There are several methods for doing this, and the problem can be simply
stated as finding the parameter value most consistent with the data, a
definition that leads to the method of maximum likelihood estimation.

We will delve into the details of maximum likelihood estimation in due
time, but here we focus on some general aspects of point estimation.
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Example: sample mean and sample variance

A very simple model assumes that the data are a random sample from a
normal distribution namely they are the observations of i.i.d. r.v. from
N (µ, σ2).

Straightforward estimates of µ and σ2 are given by the sample mean

µ̂ = y = 1
n

n∑
i=1

yi

and by the sample variance

σ̂2 = s2 = 1
n − 1

n∑
i=1

(yi − y)2 .

Such estimates are actually sensible anytime we are interested in
estimating the mean and variance of an i.i.d. sample.
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Estimation properties

To figure out what could be a good estimate, we need to consider repeated
estimation under repeated replications of the data-generating process.

This makes fully sense whenever the available data are a random sample
obtained from a large population, like in industrial or social surveys, so
that it would perfectly possible to iterate the sampling and obtain further
data with the same structure of y.

However, we apply the same logic even when repetition is just the result of
an idealization, like in the case of the temperatures recorded in New Haven
of the previous lecture.

The point is: what do we expect to find if we repeat the same analysis to
many data sets generated from the same model?
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Unbiasedness

If we replicate the random data and we repeat the estimation process, the
result will be a different value of θ̂ for each replicate.

The values are observations of a random vector, the estimator of θ,
which is usually also denoted by θ̂ (the context will make clear whether we
are referring to the estimator or to the estimate for a given sample).

Since, the estimator is a r.v., it makes fully sense to compute its mean.

For an unbiased estimator

E (θ̂) = θ .

Unbiasedness is a desirable property, and we would also like the estimator
to have low variance.
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Mean Squared Error

There is a tradeoff between unbiasedness and low variance, so we usually
seek to get both (to some extent): ideally we would target a small Mean
Squared Error (MSE)

MSE(θ̂) = E{(θ̂ − θ)2} .

With some algebra, we obtain

MSE(θ̂) = {E (θ̂)− θ}2 + var(θ̂) = Squared bias + Variance .
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Example: normal random sample

For a normal random sample, it is straightforward to verify that

E (Y ) = µ , var(Y ) = σ2

n = MSE(Y ) .

For the sample variance, we use the property that

(n − 1)
σ2 S2 ∼ χ2

n−1 ,

to obtain

E (S2) = σ2 , var(S2) = 2 σ4

n − 1 = MSE(S2) .

The unbiasedness of the sample mean and variance is a general property,
holding also for non-normal samples.

8



Consistency

A (scalar) estimator is said to be (weakly) consistent if, for any ε > 0

Pr(|θ̂ − θ| > ε)→ 0 , as n→∞ .

A sufficient condition for this is that MSE(θ̂)→ 0 for large samples, which
requires that both bias and variance become negligible.

The law of large samples implies that the sample mean is a consistent
estimator for the true mean in random samples.
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R lab: consistency of the sample mean

M <- 100000; n1 <- 20; n2 <- 200; y1 <- y2 <- rep(NA, M)
for(i in 1:M) {y1[i] <- mean(rpois(n1, 1))

y2[i] <- mean(rpois(n2, 1))}
par(mfrow=c(1,2))
hist.scott(y1, xlim=c(0,2), main="", xlab=""); abline(v=1,col=2)
hist.scott(y2, xlim=c(0,2), main="", xlab=""); abline(v=1,col=2)
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Efficiency

An efficient estimator is an estimator that estimates the parameter of
interest in some optimal manner.

Among estimators with negligible bias, efficiency is associated to small
variance. Since this is the case of consistent estimators, they are usually
compared in terms of their variance.
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R lab: efficiency of the sample mean

For a normal random sample, both the sample mean and sample median
are consistent estimators of µ. The mean is more efficient.

M <- 100000; n <- 100; mat.y <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) {y <- rnorm(n, 5)

mat.y[i,] <- c(mean(y), median(y))}
plot(density(mat.y[,1]), type="l", main="")
lines(density(mat.y[,2]), col=2)
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Standard Error

An important quantity defined for a (scalar) estimator is given by its
standard error, defined as

SE(θ̂) =
√

var(θ̂) .

Once a sample is observed, and a numerical estimate of θ obtained, then
the estimated standard error is obtained by replacing θ by θ̂.

An example is the standard error of the mean SE(Y ) = σ/
√
n, which is

estimated by s/
√
n.

In applications, the estimated standard error is routinely reported along
with the estimate, since it quantifies the estimation precision.
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The delta method

Suppose that we are interested in a parameter which is a function of a
scalar parameter θ, namely

ψ = g(θ) , for a continuous and differentiable function g .

If θ̂ is a consistent estimator of θ, then the continuous mapping
theorem ensures that g(θ̂) is consistent for ψ.

Its standard error is provided by the delta method, stating that

SE(ψ̂) .= SE(θ̂) |g ′(θ)| ,

with the approximation becoming more accurate for larger samples.

The result can be extended to settings with multiple parameters.
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Robust estimation

A robust estimator has good performances across a wide range of
statistical models for the data.

The sample median is a robust estimation of location, not affected by
possible outlying data, quite the opposite of the sample mean.

Robust estimation trades some efficiency with resistance to outliers, and
they are often a sensible choice for semi-automatic data analyses.
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R lab: robustness of the sample median

M <- 100000; n <- 100; mat.y <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) { x <- rbinom(n, size = 1, prob = 0.9)

y <- x * rnorm(n, 5) + (1 - x) * rnorm(x, 35)
mat.y[i,] <- c(mean(y), median(y))}

plot(density(mat.y[,2]), type="l", main="", xlim=c(4, 13),
col = 2)

lines(density(mat.y[,1]), col=1)
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Interval estimation



The aim of interval estimation

Confidence intervals provide more satisfactory estimation results than
point estimates alone, giving an entire set of values to estimate the model
parameter.

They are built by considering a single parameter at a time.

Extensions to multidimensional confidence regions exist, but they are
seldom used in practice.
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Pivots

Confidence intervals make suitable usage of pivots, which are functions
of the data and the parameter whose distribution is known.

A notable example is the following one for a random sample from a
N (µ, σ2) distribution, when the parameter of interest is the mean µ, and
σ2 is not known (so that θ = (µ, σ2)):

T (µ) = Y − µ√
S2

n

∼ tn−1 , ∀µ ∈ R , σ2 > 0
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Obtaining a confidence interval

In the normal random sample example, from the previous pivot property it
follows that (for 0 < α < 1)

Pr
(
tn−1;α/2 ≤ T (µ) ≤ tn−1;1−α/2

)
= 1− α ,

where tn−1;α is the α quantile of a tn−1 distribution; due to symmetry of
the latter, tn−1;α/2 = −tn−1;1−α/2.

With some simple algebra, the previous property is equivalent to

Pr
(
Y − tn−1;1−α/2

√
S2

n ≤ µ ≤ Y + tn−1;1−α/2

√
S2

n

)
= 1− α .
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Definition of confidence interval

Hence the random interval with endpoints

Y − tn−1;1−α/2

√
S2

n , Y + tn−1;1−α/2

√
S2

n
contains µ with probability (1− α).

This interval is called a (1− α)× 100% confidence interval.

Common choices are (1− α) = 0.95 or (1− α) = 0.99.
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Interpretation

Given a particular set of data y1, . . . , yn we calculate the confidence
interval by replacing Y and S2 with their observed values y and s2

y − tn−1;1−α/2

√
s2

n , y + tn−1;1−α/2

√
s2

n

This interval either does or does not contain the true value of µ.

The probability interpretation previously introduced refers to an
hypothetical sequence of sets of data generated from the statistical model.
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R lab: confidence interval

M <- 100000; n <- 10; mat.ci <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) { y <- rnorm(n, 5)

se_t <- sqrt(var(y) / n) * qt(0.975, n-1)
mat.ci[i,] <- mean(y) + se_t * c(-1, 1)}

mean(mat.ci[,1] < 5 & mat.ci[,2] > 5)

## [1] 0.94954

22



R lab: visualizing confidence intervals

We can visualize the first 20 simulated confidence intervals, expecting that
(on average) 19 out of 20 will include the true µ

plot(rep(5, 20), 1:20, pch = 16, ylab="Sample",
xlab=expression(mu))

for(i in 1:20) segments(mat.ci[i,1],i,mat.ci[i,2],i)
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One-sided confidence intervals

If we lift the equi-tailed condition, we can define infinitely many intervals
such that

Pr
(
Y − tn−1;1−α1

√
S2

n ≤ µ ≤ Y + tn−1;1−α2

√
S2

n

)
= 1− α ,

where α1 + α2 = α.

Other than the standard choice α1 = α2 = α/2, other notable choices are
α1 = 0 (which makes the lower limit equal to −∞) or α2 = 0 (which
makes the upper limit equal to ∞).

They are called one-sided confidence intervals, and are sometimes
employed in applications.
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Approximate confidence intervals & coverage probability

Exact pivots are scarce, but approximate ones are easy to find.

A common one is the Wald pivot for a generic parameter of interest ψ,
based on a consistent estimator which is approximately normally
distributed for large samples

Z (ψ) = ψ̂ − ψ
SE(ψ̂)

·∼ N (0, 1) , ∀ψ ∈ Ψ

The corresponding confidence interval is

ψ̂ − z1−α/2 SE(ψ̂) , ψ̂ + z1−α/2 SE(ψ̂)

The Central Limit Theorem provides such a solution for random samples,
when ψ corresponds to the mean of each variable.
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R lab: approximate confidence intervals

M <- 100000; n <- 10; mat.ci <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) { y <- rnorm(n, 5)

se_z <- sqrt(var(y) / n) * qnorm(0.975)
mat.ci[i,] <- mean(y) + se_z * c(-1, 1)}

mean(mat.ci[,1] < 5 & mat.ci[,2] > 5)

## [1] 0.91933

M <- 100000; n <- 100; mat.ci <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) { y <- rnorm(n, 5)

se_z <- sqrt(var(y) / n) * qnorm(0.975)
mat.ci[i,] <- mean(y) + se_z * c(-1, 1)}

mean(mat.ci[,1] < 5 & mat.ci[,2] > 5)

## [1] 0.94705
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Confidence interval for a proportion

The method for approximate intervals can be readily used for confidence
intervals on a proportion π, the success probability of a random sample of
n binary variables,

Yi ∼ B(1, π) , i = 1, . . . , n .

Here the pivot is

Z (π) = Y − π√
Y (1− Y )

n

·∼ N (0, 1) , ∀π ∈ (0, 1) ,

since π̂ = Y and SE(π̂) =
√
π (1− π)

n , which is estimated by plugging-in
π̂ in place of π.
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R lab: confidence interval for a proportion

M <- 100000; n <- 50; mat.ci <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) { y <- rbinom(n, size = 1, prob = 0.25)

p.hat <- mean(y)
se_z <- sqrt(p.hat * (1 - p.hat) / n)
se_qz <- se_z * qnorm(0.975)
mat.ci[i,] <- mean(y) + se_qz * c(-1, 1)}

mean(mat.ci[,1] < 0.25 & mat.ci[,2] > 0.25)

## [1] 0.93999

28



Confidence interval for a difference of means

An important application concerns the computation of the confidence
interval for the difference between two means δ = µX − µY .

For two independent (and large) random samples, the approximate normal
pivot is

Z (δ) = δ̂ − δ
SE(δ̂)

,

with δ̂ = X − Y and SE(δ̂) =
√

SE(X )2 + SE(Y )2.

Again, for normal samples exact solutions exist, both for the case of equal
variances and unequal variances.
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