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The idea of hypothesis testing

The basic aim of hypothesis testing within a parametric statistical model
fθ(y) is to establish whether the data could be reasonably be
generated from fθ0 (y), where θ0 is a specific value of the parameter.

This is simply denoted by the succinct notation

H0 : θ = θ0 ,

with H0 being termed null hypothesis.

Complementary to the choice of H0, it is required to select a
complementary alternative hypothesis H1, specifying the values of the
parameter which become reasonable when H0 does not hold.
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Example: testing the mean of a normal sample

Assume the very simple model for independent observations y1, y2, . . . , yn

given by Yi ∼ N (µ, 1). Then we may want to test

H0 : µ = 0

against

H1 : µ > 0

which amounts to testing the null hypothesis of data generated from a
standard normal distribution, against the possibility that the true mean
takes instead a positive value.

This choice of H1 makes fully sense when we can rule out negative values
of µ (one-sided alternative). If this is not the case, a better choice
would be given by H1 : µ 6= 0 (two-sided alternative).
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General formulation

In broad generality, hypothesis on a parameter θ can be cast in the form

H0 : θ ∈ Θ0

against

H1 : θ ∈ Θ1

where Θ0 and Θ1 form a bi-partition of the set containing all the possible
values for the parameter θ, that is named the parameter space Θ.

The tools for addressing problems of such level of generality will be
covered in the part of the course devoted to likelihood methods.

In what follows, instead, we will illustrate the main ideas by means of
simple, yet important, instances.
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Steps of hypothesis testing

The theory of hypothesis testing is rather articulated, so that it may help
to go through the main parts of the theory in a systematic fashion.

Some noteworthy concepts are

• Test statistic
• Null and alternative distributions
• p-value
• Significance level, rejection and acceptance regions
• Errors and power
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Test statistic

A test statistic is a statistic (namely, a function of the r.v. representing
the available sample) which is used to carry out the test.

Large values (in absolute value) of the test statistic cast doubt on H0

and on the theory underlying it.

Its choice depends on the problem under study. For the simple normal
example mentioned above, a natural choice is to take as test statistic the
(standardized) sample mean

Z = Y√
1
n

=
√
n Y
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Null and alternative distributions

The distribution of a test statistic will generally depend on the true value
of the parameter under testing.

In the example, if H0 is true (under H0), then

Z ∼ N (0, 1) ,

and this is called the null distribution of Z .

Instead, if H1 holds (under H1), it follows that

Z ∼ N (∆, 1)

where ∆ =
√
n µ > 0 increases with the value of µ.

The distributions valid under H1 are called the alternative distributions
of Z .
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R lab: visualizing the null and alternative distributions
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The p-value

The p-value measures the distance between the data and H0. Small values
of it correspond to a test statistic unlikely to arise under H0, and suggest
that H0 and the data are inconsistent.

In the example, the idea is that any value larger than the observed zobs

(the value of Z computed with the observed data) would cast even greater
doubt on H0.

The p-value is thus defined as the probability (under H0) of observing a
value of the test statistic equal or larger than the observed one

p = PrH0 (Z ≥ zobs)

Since under H0 we have Z ∼ N (0, 1), it follows that

p = 1− Φ(zobs)
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R lab: computing the p-value for a sample

In case the null distribution is not known, it would be possible to compute
the p-value by simulation whenever it is possible to generate data under
H0. In R:

set.seed(13); n <- 10; y_obs <- rnorm(n)
z_obs <- mean(y_obs) * sqrt(n)
print(z_obs)

## [1] 1.897537

M <- 100000; z_sim <- numeric(M)
for(i in 1:M) { y <- rnorm(n)

z_sim[i] <- mean(y) * sqrt(n) }
c(mean(z_sim >= z_obs), 1 - pnorm(z_obs))

## [1] 0.02877000 0.02887856
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Other alternative hypotheses: more details

For the simple example of test on µ and the same H0 : µ = 0, other two
possibilities for H1 could then be considered.

In either case, the same test statistic Z would still be used, but the
computation of the p-value would change, due to the different direction of
deviation from H0.

For H1 : µ < 0, small values of Z would flag deviation from H0 (that is,
negative values with large absolute value), so that

p = PrH0 (Z ≤ zobs) = Φ(zobs) .

Instead, for H1 : µ 6= 0, both directions ought to be considered, and

p = PrH0 (|Z | ≥ |zobs |) = 2PrH0 (Z ≥ |zobs |) = 2 {1− Φ(|zobs |)} .
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Significance level

We commonly say that a the result of a test is significant at the 5% level
whenever the p-value is smaller or equal to 0.05. Other levels of some
practical interest are 1% or 0.1%.

As stated in the CS book, an often-followed convention is

Range Evidence against the null hypothesis

0.05 < p ≤ 0.1 marginal evidence
0.01 < p ≤ 0.05 evidence
0.001 < p ≤ 0.01 strong evidence
p ≤ 0.001 very strong evidence

A test with fixed significance level arises when the significance level is fixed
in advance, and then it is just reported whether the p-value is smaller than
the fixed level. If this happens, it may be reported that H0 is rejected,
otherwise we may say that H0 is not rejected (or accepted).
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Rejection and acceptance regions

If we define the sample space as the set of the values that our available
sample may take, the rejection region of a test with fixed significance
level is the subset of the sample space corresponding to the samples that
would lead to a rejection of H0.

The remaining part of the sample space forms instead the acceptance
region.

Both these two regions are determined by means of a test statistic.
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Rejection and acceptance regions for the example

In the simple normal example previously introduced, for H1 : µ > 0, it is
simple to verify that a rejection region of level α is simply

Rα = {y : Z ≥ z1−α} ,

where z1−α is the standard normal (1− α)-quantile, i.e. 1.645 for
α = 0.05.

The acceptance region is just given by

Aα = {y : Z < z1−α} .

(Note: the computation of the p-value, and of Rα and Aα would be
exactly the same if the null hypothesis were of the form H0 : µ ≤ 0,
maintaining the same alternative hypothesis.)

16



Errors for a fixed-significance level test

When we adopt a test with fixed significance level, we move from using
the p-value as a measure of evidence against H0 to using a test to decide
which of H0 and H1 is more supported by the data.

Two wrong decisions are possible. We commit a Type I error by rejecting
H0 when it is true, or a Type II error by accepting H0 when it is false.

In the example, PrH0 (Y ∈ Rα) = α, and in fact the fixed significance
level equals the probability of making a Type I error.
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Power of a test

For a test with fixed significance level, the power is the probability of
(correctly) detecting that H0 is false

PrH1 (Y ∈ Rα) .

The power of a test can be used for comparing alternative tests for the
same problem, with tests with higher power being preferable.

The power is often used for designing studies, in particular for choosing
the sample size in medical or industrial studies. Indeed, for fixed
significance level, the power increases with the sample size.
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Power of two tests for the example

For the simple example (with H1 : µ > 0), an alternative (but silly) test
statistic may be given by taking the same Z as above computed by using
only half of the sample (for n even).

Fixing a significance level of 5%, the two tests have exactly the same
probability of a Type I error, so for comparing them we must use their
power.

The power is a function of the µ assumed under H1, and for a certain
µ ≥ 0 we obtain (since z0.95 = 1.645)

Prµ(Z ≥ 1.645) = 1− Φ(1.645−
√
n µ)
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R lab: power of two alternative tests

mu <- seq(0, 2 , l = 1000); n <- 10; n1 <- 5
plot(mu, 1 - pnorm(1.645 - sqrt(n) * mu), type = "l",

ylab="Power", xlab = expression(mu))
lines(mu, 1 - pnorm(1.645 - sqrt(n1) * mu), col = 2)
abline(h=0.05, lty = 2); points(0, 0.05, pch = 16)
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Comments on the p-value

The usage of p-values is not free of controversies, and in ending the review
of the general theory on testing some comments are in order.

1. The p-value is NOT the probability that H0 is true, since the
latter is not even an event.

2. It is a continuous measure that is usually dichotomized (lower or
greater than a fixed treshold) by human subjectivity.

3. The results of statistical tests, and p-values in particular, should never
be taken without considering context-specific knowledge. Even a
small p-value may not be particularly meaningful if the alternative
hypothesis is logically implausible.

4. Hypothesis testing is useful in certain contexts, but it has some
important limitations. For (very) large sample sizes, even tiny
deviations from the null hypothesis will lead to small p-values. For
large sample sizes, there are alternative approaches which are more
fruitful, and techniques based on model selection are often
preferable to statistical tests.

21



Some commonly used tests
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One-sample t test

Given a normal random sample y1, . . . , yn, with Yi ∼ N (µ, σ2), a classical
testing problem on µ is of the form (for two-sided alternative, say){

H0 : µ = µ0

H1 : µ 6= µ0

The test statistic is given by

T = Y − µ0√
S2

n

∼ tn−1 , when H0 is true

with the p-value given by

p = PrH0 (|T | ≥ |tobs |)

which can be computed as p = 2PrH0 (T ≥ |tobs |) = 2 {1− Ftn−1 (|tobs |)},
since the t distribution is symmetric around 0.
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Example

The DAAG book introduces the simple dataset pair65, about an
experiment on the effect of heat on the stretchiness of elastic bands: a
small sample of differences between two different conditions for 9 bands.

heated ambient difference

244 225 19
255 247 8
253 249 4
254 253 1
251 245 6
269 259 10
248 242 6
252 255 -3
292 286 6
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Example (cont’d)

Focusing on the 9 differences on the amount of stretch, we test{
H0 : µ = 0
H1 : µ 6= 0

by means of the t.test function, resulting in significance at 5% level

##
## One Sample t-test
##
## data: difference
## t = 3.1131, df = 8, p-value = 0.01438
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 1.641939 11.024728
## sample estimates:
## mean of x
## 6.333333 25



Approximate tests

For large random samples, the Central Limit Theorem ensures that

Y ·∼ N
(
µ,
σ2

n

)
, being µ = E (Yi) and σ2 = var(Yi ).

A test statistic for H0 : µ = µ0 is therefore

Z = Y − µ0√
S2

n

·∼ N (0, 1) , when H0 is true

The estimator of the variance S2 can be replaced by a more suitable one.
For example, for binary data, Yi ∼ Bi (1, π), commonly used test statistics

are Z = π̂ − π0√
π̂ (1− π̂)

n

or Z = π̂ − π0√
π0 (1− π0)

n

, the latter being preferable.

Tests based on the CLT are instances of approximate tests, for which
the property concerning the Type I error level holds only approximately.
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Two sample t-test

Given two independent normal samples, represented by
Xi ∼ N (µX , σ

2
X ) , i = 1, . . . , nX and Yi ∼ N (µY , σ

2
Y ) , i = 1, . . . , nY , the

test statistic for testing the equality between the two means is

T = X − Y
SE(X − Y )

with SE(X − Y ) estimated by

√
S2

X
nX

+ S2
Y

nY
.

A different formula is instead adopted is if it is possible to assume that
σ2

X = σ2
Y .

The distribution of T when H0 is true is given by a suitable t distribution.

Like for the one-sample case, there are general formulas for large samples,
employing the normal distribution.
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Paired t-test

Paired observations arise whenever each unit of a random sample of size n
is observed twice, under different conditions, so that we end up again with
two set of variables Xi ∼ N (µX , σ

2
X ) , i = 1, . . . , n and

Yi ∼ N (µY , σ
2
Y ) , i = 1, . . . , n.

However, now the pair (Xi ,Yi ) refers to the same unit, so that the two
samples X1, . . . ,Xn and Y1, . . . ,Yn are no longer independent.

The pair65 data set is exactly of this nature. Like in that example, the
resolution is to focus on the random sample of the n differences
Di = Xi − Yi , for which E (Di ) = µX − µY : for testing the equality of the
two means µX and µY we just apply the theory for the one-sample t-test,
with µ0 = 0.

For the pair65 data set, the p-value of about 0.014 suggests that heat
may indeed have an effect on stretchiness.
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Example

Even though the pair65 data is very small, the fact that the two groups
of observations are not independent is readily suggested by a scatterplot
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By (blindly) applying the test for independent data we would get a p-value
of about 0.40, hinting at a quite different conclusion.
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Relation between tests and
confidence intervals
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Main result

As displayed for the pair65 data testing, the t.test R function returns
also the confidence interval for the parameter under testing, in that case
the true mean of the differences in stretchiness.

This is not by chance, since there is a close connection between hypothesis
testing on the value of a certain parameter and confidence intervals for
that parameter.

For the case of a mean, for example, the basic idea is that
If the confidence interval for µ does not contain zero, this is
equivalent to rejection of the hypothesis that the true mean is
zero.

Important: the connection is between two-sided confidence intervals and
two-sided alternative hypotheses. For one-sided alternative hypotheses, the
connection is with one-sided confidence intervals.
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More precisely

The general result is as follows, and states a perfect equivalence between
the two methods:

1. Given a method to find a confidence interval of level (1− α)% for a
certain scalar parameter θ, we can establish whether the p-value for
testing H0 : θ = θ0 against H1 : θ 6= θ0 is smaller than the significance
level α by checking if θ0 is included in the interval

2. Given a method to find a p-value for testing H0 : θ = θ0 against
H1 : θ 6= θ0, we can obtain a confidence interval of level 1− α by
selecting all the θ0 values that will lead to a p-value larger than α
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Example: pair65 data

The 95% and 99% confidence intervals for the mean of the differences are,
respectively

95% 1.6419 11.0247
99% -0.4930 13.1596
98.56217% 0.0000 12.6667

The 95% confidence interval does not contain zero, while the wider 99%
does, implying that the hypothesis µ = 0 is rejected for α = 0.05, but not
for α = 0.01.

Note that for a confidence interval of level 1− p = 0.9856217, we obtain a
lower limit exactly equal to 0: the p-value, in fact, corresponds to a
significance level which is borderline between rejection and non-rejection of
H0.
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Nonparametric tests
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Main idea behind nonparametric tests

Nonparametric tests specify only partially a statistical model for the data,
so that they may provide more robust inferences than parametric tests
with contaminated data, outliers or, more generally, in settings where
model specification is hard.

This is sometimes useful, especially when only certain aspects of the data
are of interest, or for checking the results obtained with a full model
specification.

The details of such tests, and more generally the theory supporting their
validity, would require a substantial amount of space. Here we just
mention such solutions in passing, as a tool in the statistician’s reservoir
that at times may be a useful complement to parametric tests.
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Wilcoxon rank sum and signed rank tests

The main idea of nonparametric tests is illustrated by the Wilcoxon rank
sum test, which can be used to replace the t test when normality is
doubtful, due to outliers or excessive rounding, for example.

The test uses the ranks, which are the index of each observation in the
sample sorted in ascending order. For instance, for the pair65 set of
differences

difference rank

19 9
8 7
4 3
1 2
6 5
10 8
6 5
-3 1
6 5 36



Wilcoxon rank sum and signed rank tests

In the example, the R function wilcox.test returns a p-value of 0.017,
which is very similar to what returned by the parametric test, thus
reinforcing the conclusion.

There are also two-sample extensions, for both independent data or paired
data (though the latter can be performed by considering the differences, as
done here). The two-sample version (for independent samples) is known as
signed rank test or Mann-Whitney test.
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