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The likelihod function

Introduced by Sir Ronald Fisher, the likelihood function for a certain
statistical model fθ(y) for the data y is given by the following function of
the parameter θ

L : Θ→ R+

θ → c(y) fθ(y) ,

where c(y) > 0 is an arbitrary constant of proportionality.

We may write L(θ; y) to stress the fact that the data enter the function,
though its argument is given by θ.
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Interpreting the likelihood function

The likelihood function assigns support (credibility) to possible values of θ,
meaning that if L(θ1) > L(θ2) then θ1 is more supported by the observed
data than θ2.

So the likelihood ratio L(θ1)/L(θ2) allows for the comparison between θ1

and θ2; note that the constant c(y) cancels out.

A mathematical justification for the above interpretation is given by the
Wald inequality: if θt is the true parameter value, then

Eθt {log L(θt ;Y)} > Eθt {log L(θ;Y)} θ 6= θt .

The above fact can be proven by straightforward application of the
Jensen’s inequality.
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The log likelihood function

In the previous slide the log likelihood function has been introduced,
which is simply the logarithm of L(θ), namely

`(θ) = log L(θ) .

The log likelihood function carries the same information of the likelihood
function, but it is much more manageable. Indeed, for a random sample

L(θ) =
n∏

i=1
fθ(yi )

but

`(θ) =
n∑

i=1
log fθ(yi ) .

Notice that `(θ) is defined up to an additive constant, depending only on
the data y.
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Example 1: the Poisson model

For a random sample y1, . . . , yn, with Yi ∼ P(λ) i.i.d., we readily get

L(λ) = λ
∑n

i=1
yi exp{−n λ}∏n

i=1 yi !
,

so that

`(λ) = log(λ)
n∑

i=1
yi − n λ ,

neglecting the term which does not depend on λ.
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R lab: the Poisson log likelihood

Assume that for a sample n = 10 we observe
∑

i yi = 90.

lik_pois <- function(lam, n, sumy) log(lam) * sumy - n * lam
xx <- seq(6.5, 12, l = 30)
ll <- sapply(xx, lik_pois, sumy = 90, n = 10)
par(pty = "s")
plot(xx, ll - max(ll), type = "l", xlab = expression(lambda),

ylab = expression(l(lambda)-max(l(lambda))), cex.lab = 2)
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Example 2: the normal model

For a random sample y1, . . . , yn, with Yi ∼ N (µ, σ2) i.i.d.

L(µ, σ2) =
n∏

i=1

1√
2π σ2

exp
{
− (yi − µ)2

2σ2

}
,

and then with some simple algebra

`(µ, σ2) = −n
2 log(σ2)− 1

2σ2

n∑
i=1

(yi − µ)2 .
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Sufficient statistics

The definition of sufficient statistic, given in the probability part, can be
re-interpreted for the log likelihood function: t(y) is sufficient for θ if
L(θ) can be written as

L(θ) = h(y) gθ{t(y)} .

The minimal sufficient statistic allows for the maximal reduction of
dimensionality, in the sense that a minimal sufficient statistic is a function
of every other sufficient statistic.

For the Poisson model, the
∑

i yi (or, equivalently, the sample mean y) is
sufficient for λ, whereas for the normal model the sufficient statistic is
given by the pair (

∑
i yi ,

∑
i y2

i ) (or, equivalently, by the pair (y , s2)).

These two statistical models are an instance of an exponential family, an
important model class that includes also other important elements, such as
the binomial distribution. They play an important role in the theory of
generalized linear models.
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Maximum likelihood estimation

Given the interpretation of the (log) likelihood, the maximum of `(θ) is
the value of the parameter which is most supported by the data.

A natural step is to take it as the point estimate, the maximum
likelihood estimate (MLE) of θ

θ̂ = argmax
θ∈Θ

`(θ)

Notice that since `(θ) is also a function of y, the MLE is a statistic.
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The MLE in the two examples

For the Poisson model, simple calculus gives

λ̂ = 1
n

y∑
i=1

yi = y .

For the normal model, we need to maximize a function of two variables,
and we get µ̂ = y

σ̂2 = 1
n
∑n

i=1(yi − y)2 .
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MLE: comments

Maximum likelihood estimation has a central role in modern statistics
(and machine learning). There are several reasons for this:

1. The MLE algorithm is automatic: given a parametric statistical
model for the data, the MLE follows from the chosen model.

2. The MLE of a function of a parameter ψ = g(θ) is defined by the
simple plug-in rule ψ̂ = g(θ̂), which is very convenient for
applications.

3. The MLE has excellent properties, which we illustrate in what
follows.
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Maximum likelihood estimation:
theory
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Likelihood quantities

The first two derivatives of `(θ) play an important role.

The vector of first derivatives is called the score function

U(θ) = U(θ; y) = ∂`(θ)
∂θ

The matrix of second derivatives, with negative sign, is called the
observed information matrix:

J(θ) = J(θ; y) = − ∂
2`(θ)

∂θ∂θ>

15



Some properties

The derivatives of the log likelihood function satisfy some important
properties, provided that some regularity conditions hold (we shall return
on them later on).

The proofs are simple, and they are reported in the CS book.

1. Zero expected score
Eθ {U(θ;Y)} = 0

2. 2nd Bartlett identity

covθ {U(θ;Y)} = Eθ {J(θ;Y)} = I(θ)

The expected value I(θ) of the observed information matrix is called the
Fisher information matrix (or just the expected information matrix).
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The Cramér-Rao lower bound

The third property is important, and we first state it for a one-parameter
model (scalar θ).

3. The Cramér-Rao lower bound: the variance of any unbiased estimator
θ̃ cannot be smaller than the reciprocal of the expected information:

varθ{θ̃(Y)} ≥ 1
I(θ) .

Actually, by differentiation of the unbiasedness condition with respect
to θ it follows that covθ{θ̃,U(θ;Y)} = 1, which readily implies the
Cramér-lower bound.

The extension to multiparameter models is given by the condition that the
matrix cov(θ̃) = I(θ)−1 is positive semi-definite.

17



Consistency of MLE

We are ready to state the first crucial property of the MLE:

Maximum likelihood estimators are usually consistent, that is if the sample
size tends to infinity θ̂ tends to θt , the true parameter value.

A justification for the result is given by the fact that in regular situations
`(θ)/n→ Eθ{`(θ)}/n as n→∞, so that eventually the maximum of `(θ)
and E{`(θ)} must coincide at θt by the Wald inequality.

The formal proof (typically) employs the law of large numbers.

Consistency can fail if the number of parameters increases with the sample
size.
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Large-sample distribution of MLE

We establish it by a Taylor expansion for the score function:

U(θ̂) .= U(θt)− (θ̂ − θt) J(θt) ,

with equality when n→∞ since θ̂ − θt → 0.

From the definition of θ̂, we get U(θ̂) = 0. Under mild assumptions

J(θt)
n → I(θt)

n ,

whereas U(θt) is a random vector with mean vector 0 and covariance
matrix I(θt).

In the large sample limit

θ̂ − θt
·∼ I(θt)−1 U(θt ; y) ,

implying that E (θ̂ − θt) = 0 and cov(θ̂ − θt) = I(θt)−1.
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Large-sample normality of MLE

In the case when the sample is formed by independent observations, it
follows that the log likelihood is the sum of independent contributions:
under mild conditions the central limit theorem applies, and in the large
sample limit

θ̂
·∼ N{θt , I(θt)−1} .

Notice that whenever this holds, it would be possible (and recommendable,
in some sense) to use J(θt) in place of I(θt).

Again, since θt is unknown, we replace it by θ̂, obtaining the following
estimated standard error for the k-th component of θ

SE(θ̂k) =
√[

J(θ̂)−1
]

kk

Note: for regular models (see next slide), the observed information is
positive definite at θ̂, so that the SE above is well defined.
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Regularity conditions

We end the summary of the theory by mentioning the regularity
conditions, which are some assumptions on the statistical model, required
for the previous results to be valid.

The CS book lists the following ones:

1. The pdf of y defined by different values of θ are distinct, namely the
model is identifiable.

2. The true parameter value θt is interior to Θ.
3. Within some neighbourhood of θt , the first three derivatives of `(θ)

exist and are bounded, while the expected information satisfies the
2nd Bartlett identity, is positive definite and finite.

These are mild conditions, which are generally valid in most cases.
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Winding up

The previous results have illustrated that

1. The MLE is a consistent estimator.
2. The MLE is asymptotic efficient, since its asymptotic variance

attains the Cramér-Rao lower bound.
3. The large sample distribution (aka the approximate distribution) of

the MLE is multivariate normal, with standard error that can be
estimated by the observed information evaluated at the parameter
estimate.
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Example 1: Poisson model

Here λ̂ = y , and consistency follows from the law of large numbers, in
agreement with likelihood theory.

Furthermore, the CLT states that for large n

λ̂
·∼ N (λ, λ/n) .

This result can be obtained also from likelihood theory. Indeed, we get

J(λ) =
∑

i yi

λ2

so that I(λ) = n/λ and I(λ)−1 = λ/n.
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Example 2: normal example

Here we get

J(µ, σ2) =

 n
σ2

n
σ4 (ȳ − µ)

n
σ4 (ȳ − µ) − n

2σ4 + 1
σ6
∑n

i=1(yi − µ)2


and therefore

I(µ, σ2) =

 n
σ2 0

0 n
2σ4


The implication is that µ̂ and σ̂2 are (asymptotically) uncorrelated, and
the two estimated standard errors are

SE(µ̂) = σ̂√
n
, SE(σ̂2) =

√
2 σ̂2
√
n

.
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Some numerical aspects
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Numerical optimisation

The algorithmic nature of the MLE estimation method translates the
statistical model into an optimisation problem: once a (sensible) statistical
model has been specified for the data, we obtain parameter estimates with
excellent properties by maximizing the log likelihood.

In some simple settings, like in the examples above, it is possible to find
the analytical expression for the MLE, but in general we must resort to
numerical optimisation of the log likelihood.

There are indeed several methods available for the task. Some knowledge
of the most important issues related to it turns out particularly useful even
for the application of off-the-shelf routines in R (or other environments).

26



Newton’s method

Newton’s method for optimisation is commonly used for minimization, in
this case of the objective function f (θ) = −`(θ).

The theory is well described in the CS book, here we mention the most
important aspects. The idea is to locally approximate f (θ) as a quadratic
function, which is repeatedly minimised.

The resulting method consists in an iterative algorithm, which is started
with k = 0 and a guesstimate θ[0], and iterates the following steps:

1. Evaluate `(θ[k]), U(θ[k]) and J(θ[k]).
2. If U(θ[k]) .= 0 and J(θ[k]) is positive definite then stop.
3. If H = J(θ[k]) is not positive definite, perturb it so that it is.
4. Solve H δ = U(θ[k]) for the search direction δ.
5. If `(θ[k] + δ) is not > `(θ[k]), repeatedly halve δ until it is (this is the

step-length control).
6. Set θ[k+1] = θ[k] + δ, increment k by one and return to step 1.
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Fisher scoring and Quasi-Newton.

Whenever available, it is always a good idea to replace the observed
information with the expected information I(θ[k]) in the Newton’s method.

The resulting algorithm has a long successful tradition in statistics, it is
called Fisher scoring and, indeed, it has better convergence properties.

Another variant avoids the computation of either J(θ[k]) or I(θ[k]), by
building an approximation to the second derivative of `(θ) as the
optimization proceeds. This is the approach of the Quasi-Newton
methods, such as the widely used BFGS algorithm.

Quasi-Newton methods are implemented in several R functions and
packages; see the CRAN Task View for Optimisation
(https://cran.r-project.org/web/views/Optimization.html).
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An example: logistic regression

We follow the MASS book for a simple example on a dose-response model.

Namely, we assume that yi is the number of dead budworms (out of 20)
for a dose of insecticide x∗i . In particular, the statistical model is

Yi ∼ Bi (20, πi ) i = 1, . . . , 12, independent

with
πi (α, β) = eα+β xi

1 + eα+β xi

with xi = log(x∗i ).

This is a simple instance of a logistic regression model.
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R lab: budworm data

There are two observations at each dose (M/F budworms), but here for
the sake of simplicity we ignore the different sex.

ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
plot(ldose, numdead / 20, pch=16)
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Logistic regression: likelihood quantities

With some simple algebra we get:

`(α, β) =
∑

i

{
yi (α + β xi )− 20 log(1 + eα+β xi )

}

U(α, β) =
( ∑

i{yi − 20πi (α, β)}∑
i{yi − 20πi (α, β)} xi

)

I(α, β) =
( ∑

i 20πi (α, β) {1− πi (α, β)}
∑

i 20πi (α, β) {1− πi (α, β)} xi∑
i 20πi (α, β) {1− πi (α, β)} xi

∑
i 20πi (α, β) {1− πi (α, β)} x2

i

)

Notice that for this model J(α, β) = I(α, β).
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R lab: likelihood and score functions

loglik <- function(theta, data){
eta <- theta[1] + theta[2] * data$x
out <- sum(data$y * eta - 20 * log(1+exp(eta)))
return(out)
}

score <- function(theta, data){
prob <- plogis(theta[1] + theta[2] * data$x)
out <- c(sum(data$y - prob * 20),

sum((data$y - prob * 20) * data$x))
return(out)

}
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R lab: information function

info <- function(theta, data){
prob <- plogis(theta[1] + theta[2] * data$x)
info11 <- sum(20 * prob * (1-prob))
info12 <- sum(20 * prob * (1-prob) * data$x)
info22 <- sum(20 * prob * (1-prob) * data$x^2)
out <- matrix(c(info11, info12, info12, info22), 2, 2)
return(out)
}
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R lab: starting point

Let’s start from α = β = 0: we obtain

theta0 <- c(0, 0); budw <- data.frame(y = numdead, x = ldose)

loglik(theta0, budw)

## [1] -166.3553

score(theta0, budw)

## [1] -9 105

info(theta0, budw)

## [,1] [,2]
## [1,] 60 150
## [2,] 150 550
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R lab: first step

H <- info(theta0, budw)
u0 <- score(theta0, budw)
delta <- solve(H, u0)
theta1 <- theta0 + delta

theta1

## [1] -1.9714286 0.7285714

loglik(theta1, budw)

## [1] -114.7219

which is clearly an improvement.
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R lab: first 10 steps

## k = 1 theta= -1.971429 0.7285714 loglik= -114.7219
## k = 2 theta= -2.621436 0.9572079 loglik= -111.8192
## k = 3 theta= -2.760585 1.004947 loglik= -111.734
## k = 4 theta= -2.766079 1.006804 loglik= -111.7339
## k = 5 theta= -2.766087 1.006807 loglik= -111.7339
## k = 6 theta= -2.766087 1.006807 loglik= -111.7339
## k = 7 theta= -2.766087 1.006807 loglik= -111.7339
## k = 8 theta= -2.766087 1.006807 loglik= -111.7339
## k = 9 theta= -2.766087 1.006807 loglik= -111.7339
## k = 10 theta= -2.766087 1.006807 loglik= -111.7339

The algorithm converges quickly, and actually after 10 iterations

cat(score(theta10, budw), det(info(theta10, budw)),
sqrt(diag(solve(info(theta10, budw)))))

## 1.776357e-15 5.329071e-15 2361.462 0.3701342 0.1235889 36



R lab: glm analysis

budworm.lg0 <- glm(cbind(y, 20-y) ~ x, binomial, budw)
summary(budworm.lg0, cor = FALSE)

##
## Call:
## glm(formula = cbind(y, 20 - y) ~ x, family = binomial, data = budw)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7989 -0.8267 -0.1871 0.8950 1.9850
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.7661 0.3701 -7.473 7.82e-14 ***
## x 1.0068 0.1236 8.147 3.74e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 124.876 on 11 degrees of freedom
## Residual deviance: 16.984 on 10 degrees of freedom
## AIC: 51.094
##
## Number of Fisher Scoring iterations: 4
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