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Confidence intervals
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Wald-type intervals

Since the theory of MLE provides a general formula for standard errors,
Wald-type confidence intervals for a parameter of interest ψ are generally
available (here given for 1− α = 0.95):

ψ̂ ± 1.96SE(ψ̂)

The asymptotic normality of the MLE justifies the usage of normal
quantiles.

Actually, the availability of a general formula for SE(ψ̂) when ψ̂ is the
MLE supports the widespread usage of this kind of confidence intervals.
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Performance of Wald-type confidence intervals

The biggest issue with Wald-type confidence intervals is that their
accuracy depends on the chosen scale.

Eventually, the MLE is approximately normally distributed, but for finite
sample the chosen scale matters.

(That’s why methods which are invariant to the scale, such as percentile
bootstrap confidence intervals, are preferable).
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R lab: Wald-type CI for a variance

Let us assess the coverage probability for Wald-type intervals for σ2 of a
normal random sample.

M <- 100000; n <- 20; mat.ci <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) { y <- rnorm(n, s=sqrt(2)); s2 <- var(y) * (n-1)/n

se_s2 <- sqrt(2/n) * s2 * qnorm(0.975)
mat.ci[i,] <- s2 + se_s2 * c(-1, 1)}

mean(mat.ci[,1] < 2 & mat.ci[,2] > 2)

## [1] 0.87114

M <- 100000; n <- 100; mat.ci <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) { y <- rnorm(n, s=sqrt(2)); s2 <- var(y) * (n-1)/n

se_s2 <- sqrt(2/n) * s2 * qnorm(0.975)
mat.ci[i,] <- s2 + se_s2 * c(-1, 1)}

mean(mat.ci[,1] < 2 & mat.ci[,2] > 2)

## [1] 0.93196 6



R lab: Wald-type CI for σ2

Things get better, given these parameter values, if we choose ψ = σ and
then re-transform the intervals:

M <- 100000; n <- 20; mat.ci <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) { y <- rnorm(n, s=sqrt(2)); s2 <- var(y) * (n-1)/n

se_s <- sqrt(s2 / (n * 2)) * qnorm(0.975)
mat.ci[i,] <- (sqrt(s2) + se_s * c(-1, 1))^2}

mean(mat.ci[,1] < 2 & mat.ci[,2] > 2)

## [1] 0.89876

M <- 100000; n <- 100; mat.ci <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M) { y <- rnorm(n, s=sqrt(2)); s2 <- var(y) * (n-1)/n

se_s <- sqrt(s2 / (n * 2)) * qnorm(0.975)
mat.ci[i,] <- (sqrt(s2) + se_s * c(-1, 1))^2}

mean(mat.ci[,1] < 2 & mat.ci[,2] > 2)

## [1] 0.93866 7



Alternative methods

There are also other approaches for confidence intervals based on the
likelihood function.

They are based on likelihood-based test statistics, taking advantage of
the relation existing between tests and confidence intervals, which is a
general fact.
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Likelihood-based tests
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The likelihood ratio test

We saw that the likelihood ratio makes possible to choose between
different parameter values. Therefore, it is not strange that the likelihood
ratio can be used as test statistic, being in some sense the optimal choice,
as supported by the Neyman-Pearson lemma.

Formally, the lemma is valid for choosing between two simple hypotheses
H0 : θ = θ0 vs H1 : θ = θ1, for any pair of parameter values θ0 and θ1.

The likelihood ratio test statistic is given by

λ(y) = L(θ1)
L(θ0) = fθ1(y)

fθ0(y)

with rejection region

Rα = {y : λ(y) ≥ kα} ,

being the test’s power β(θ0) = Prθ0{λ(Y) ≥ kα} = α.
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The Neyman-Pearson lemma

The lemma says that given another test statistic λ∗(y), with rejection
region R∗α and significance level ≤ α, namely

β∗(θ0) = Prθ0(Y ∈ R∗α) ≤ α ,

then the likelihood ratio test is the most powerful of the two tests at θ1,
β(θ1) ≥ β(θ∗1).

Sketch of the proof:

• Define the indicator function φ(y) = 1 if y ∈ Rα and 0 otherwise;
similarly define φ∗(y) for the other statistic.

• We get {φ(y)− φ∗(y)} {fθ1(y)− kα fθ0(y)} ≥ 0
• Therefore

0 ≤
∫
Y
{φ(y)− φ∗(y)} {fθ1(y)− kα fθ0(y)}dy

= β(θ1)− β∗(θ1)− kα{β(θ0)− β∗(θ0)} ≤ β(θ1)− β∗(θ1)

which means Prθ1(Y ∈ Rα) ≥ Prθ1(Y ∈ R∗α). 11



Three likelihood-based tests

We first focus on a simple one-parameter model, and on the problem of
testing H0 : θ = θ0 vs H1 : θ 6= θ0.

The following three tests are available:

• The likelihood ratio test (LRT)

W (θ0) = 2 {`(θ̂)− `(θ0)}

• The Wald test

We(θ0) = (θ̂ − θ0)2 J(θ̂) = (θ̂ − θ0)2

SE(θ̂)2

• The score test
Wu(θ0) = U(θ0)2

I(θ0)

In all the three cases, we reject H0 for large values of the statistic, so that
the p-value is (for instance) p = Prθ0(W ≥ wobs).
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Visually

Figure 1: From Muggeo and Lovison (2014, The American Statistician)
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Three likelihood-based tests: comments

• Whenever available, the exact distribution of these tests can be
employed.

• Which one is preferable? The likelihood ratio test is clearly an obvious
choice, but for large samples the three statistics are equivalent: this
fact can be proved by a Taylor expansion of U(θ̂) around θ0.

• From the asymptotic distribution of the MLE, it readily follows that
the null distribution of We is approximately

We(θ0) ·∼ χ2
1

and since the two other tests are equivalent in large samples, the
same result holds also for them.

• For one-sided alternatives such as H1 : θ > θ0, the signed
squared-root versions of the test should be used, namely (for the LRT)

R(θ0) = sgn(θ̂ − θ0)
√

W (θ0)

and, under H0, R(θ0) ·∼ N (0, 1).
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Confidence intervals based on W

The confidence interval based on W is particularly appealing: using the
relation between confidence intervals and tests, it can be written as

{θ : W (θ) ≤ χ2
1;1−α} =

{
θ : `(θ) ≥ `(θ̂)−

χ2
1;1−α

2

}
so that the interval (which could actually be a union of intervals for
multi-modal log likelihoods) includes all the parameter values with large
log likelihood, i.e. the set of values most supported by the data.

The result does not depend on the parameterization (the chosen scale),
differently from the Wald test.
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R lab: visualizing the confidence interval based on the LRT

Back to the Poisson example (with n = 10 and
∑

i yi = 90):
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Parameter of interest and nuisance parameters

The three tests introduced readily generalize to hypotheses on the entire
p-dimensional parameter θ. For instance, the LRT would become

W (θ0) = 2 {`(θ̂)− `(θ0)}

with asymptotic null distribution given by χ2
p.

At any rate, the typical (and most interesting) situation is where we wish
to test an hypothesis on a q-dimensional subset of θ, with q < p.

Following the CS book, we write θ> = (ψ>,γ>), with the null and
alternative hypotheses given by H0 : ψ = ψ0 vs H1 : ψ 6= ψ0.

Here ψ is denoted as the parameter of interest and γ is the nuisance
parameter.
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The profile likelihood

Likelihood theory handles nuisance parameters by introducing the profile
likelihood.

Denoted by γ̂ψ the MLE of γ for fixed value of ψ, namely

γ̂ψ = argmax
γ∈Γ

`(ψ,γ)

then we define the profile likelihood for ψ as

LP(ψ) = L(ψ, γ̂ψ) .

Note that the maximum of LP(ψ) is given by the MLE of ψ.

18



Inference based on the profile likelihood

A crucial point is the large-sample properties of the profile likelihood are
those of a bona-fide likelihood function for the parameter of interest
only.

In particular, the profile likelihood LRT

WP(ψ) = 2 {`P(ψ̂)− `P(ψ0)}

the asymptotic null distribution is given by χ2
q.

Note, however, that if the dimension of γ is large, the large-sample results
may be poor. In such cases, the parametric bootstrap is a more accurate
route to obtain the p-value.
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The t-test as a likelihood-based method

Many noteworthy tests can be derived from the LRT based on the profile
likelihood.

A very important instance is the t-test on µ for a normal random sample,
Yi ∼ N (µ, σ2). With some simple algebra

`P(µ̂)− `P(µ0) = n
2 log(σ̂2)− n

2 log(σ̂2
µ0

) ,

and since σ̂2
µ = σ̂2 + (µ̂− µ)2, it follows

rP(µ0) = sgn(µ̂− µ0)

√
n log

{
1 + (µ̂− µ0)2

σ̂2

}
.

Further simple algebra shows that RP(µ0) is a monotonic increasing
function of the T test statistic T (µ0) = (y − µ0)/

√
s2/n, so that, for

instance, PrH0{R(µ0) ≥ robs} = PrH0{T (µ0) ≥ tobs}.
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Other notable instances

Several other tests can be derived as special cases of the LRT, such as the
F test for one-way anova models, or exact tests employed in linear
regression models.

Other famous tests are instead special cases of the score test. The most
notable instance is the chi-squared test of independence for two-way
contingency tables, and related tests. The underlying statistical model is
the multinomial distribution for the observed frequencies.
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The generalised likelihood ratio statistic

In broad generality, for testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 the LRT is
most natural resolution

W (H0) = 2 {`(θ̂)− `(θ̂H0)} .

In broad generality, parametric bootstrap is the most convenient approach
to approximate the null distribution and compute the p-value.

An approximate (large-sample) null distribution exists when H0 can be
expressed as

H0 : R(θ) = 0

where R is a vector-valued function of θ that imposes r restrictions on the
parameter vector. In such case, under the null

W (H0) ·∼ χ2
r .
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Model selection

23



Choosing the best model

Several statistical tests are applied for choosing between two alternative
specifications of a statistical model. For this sort of problem, more suitable
techniques are available, which can also be extended to settings where the
two models are not nested (i.e. one model is a special instance of the
other).

The Akaike’s Information Criterion (AIC) is perhaps the most
commonly used method for choosing the best model.

A useful starting point is the Kullback-Leibler divergence between the
true model ft and the model under consideration

K (fθ̂, ft) =
∫
Y
{log ft(y)− log fθ̂(y)} ft(y) dy

Selecting models to minimize (an estimate of) the expected value of K is
equivalent to selecting the model that has the lowest value of

AIC = −2 `(θ̂) + 2 p

with p = dim(θ). 24



Derivation of the AIC

If we denote by θK the parameter value minimizing K (fθ, ft), then it is
possible to show (see the CS book)

Eft{K (fθ̂, ft)} ' K (fθK , ft) + p/2 .

The next step is the approximation

K (fθK , ft) ' E{−`(θ̂)}+ p/2 +
∫
Y

log{ft(y)} ft(y) dy ,

so that
̂K (fθ̂, ft) = −`(θ̂) + p +

∫
Y

log{ft(y)} ft(y) dy .

The AIC is just twice the last expression, neglecting the last term which
depends only on the true model.
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Model selection based on AIC: comments

• The point is that we cannot select the model based on the log
likelihood only, since it always selects the more complex model. AIC
overcomes this problem by a penalty for adding parameters.

• The AIC is not consistent: as n→∞, the probability of selecting
the correct model does not tend to 1. Indeed, at least for nested
models, twice the drop in the maximized log likelihood between an
overly complex model and the true model follows (approximately) a
χ2

r distribution. Since neither χ2
r nor p/2 depends on n, the

probability of selecting the overly complex model by AIC is nonzero
and independent of n (for n large).

• The practical implications of the previous point are less serious than it
may seem: if all the models under consideration are wrong, then we
will tend to select increasingly complex specifications as the sample
size increases and the predictive disadvantages of complexity diminish.
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R lab: annual mean temperatures in New Haven

We return on the example employed to introduce Statistical Models, and
compute the AIC for the four proposed models.

y <- (nhtemp - 32) / 1.8; x <- 1912:1971-1
AIC.vals <- rep(NA, 4)
mle1 <- fitdistr(y, "normal")
AIC.vals[1] <- -2 * mle1$loglik + 2 * 2
mle2 <- fitdistr(y, "t", df = 5)
AIC.vals[2] <- -2 * mle2$loglik + 2 * 2
mle3 <- lm(y ~ x)
AIC.vals[3] <- AIC(mle3)
mle4 <- arima(y, xreg=x, order=c(1, 0, 0))
AIC.vals[4] <- AIC(mle4)
AIC.vals

## [1] 130.9961 130.3981 114.9645 116.2789
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AIC as an alternative to Cross Validation

As stated in the CS book, an alternative approach starts from observing
that the KL divergence only depends on the model via
−
∫
Y log fθ̂(y) ft(y) dy, where the expectation is taken over data not used

to estimate θ̂.

An obvious direct estimator of this is the cross-validation score

CV = −
∑

i
log f

θ̂
[−i](yi)

where θ̂
[−i]

is the MLE based on the data with yi omitted. We might
multiply it by 2 to obtain something on the same scale of the AIC.

This estimates directly the predictive accuracy of the model, and it is a
central quantity of statistical learning methods. Variants exist where more
than one data point at a time are omitting from fitting, with 5− 10
groups (folds) being a common choice. Clearly, the AIC is a much faster
alternative.
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R lab: CV scores for the example

n <- length(y); mat.CV1 <- matrix(0, nrow=n, ncol=4)
for(i in 1:n){

mle1 <- fitdistr(y[-i], "normal")
mat.CV1[i,1] <- -log(dnorm(y[i], mle1$est[1], mle1$est[2]))
mle2 <- fitdistr(y[-i], "t", df = 5)
mat.CV1[i,2] <- -log(dt((y[i] - mle2$est[1]) / mle2$est[2],

df = 5)) + log(mle2$est[2])
mle3 <- lm(y[-i] ~ x[-i])
mui <- mle3$coef[1] + mle3$coef[2] * x[i]
si <- summary(mle3)$sigma
mat.CV1[i,3] <- -log(dnorm(y[i], mui, si))
mle4 <- arima(y[-i], xreg = x[-i], order = c(1, 0, 0))
mui <- mle4$coef[2] + mle4$coef[3] * x[i]
si <- sqrt(mle4$sigma2 / (1 - mle4$coef[1]^2))
mat.CV1[i,4] <- -log(dnorm(y[i], mui, si))

}
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R lab: CV scores for the example

my_line <- function(x,y){points(x,y); abline(a=0, b=1, col=2)}
pairs(mat.CV1, panel = my_line)

var 1
1

3

1 2 3 4 5

1
4

1 2 3 4

var 2

var 3

1 2 3 4 5

1 2 3 4 5

1
4

1
4

var 4

colSums(mat.CV1) * 2

## [1] 131.9519 130.5076 115.9256 116.1472
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