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Introduction to linear models



Linear regression model

Linear regression model is one of the basic tools for statistical analysis.

Since pioneering works of Sir Francis Galton in the late XIX century, the
main aim of regression models is to study the systematic influence of

• one or more concomitant factors (explanatory variables, regressors,
covariates) on

• a response variable (dependent variable).

The main goal of regression modelling is understanding whether and how
the response variable (the phenomenon of interest) is related to the
concomitant quantities.

The basic regression model has been expanded in many directions in order
to apply it in extremely complex situations and to large and complex data
sets, but the basic aim remained the same.
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Aims of regression modelling

• prediction/forecast: regression modelling is a tool to provide a
prediction of the phenomenon of interest, given the knowledge of the
concomitant factors (e.g. for time reasons, costs, or because the
concomitant factors are easier to measure)

• interpretation: which factors affect more the phenomenon of interest
and how? Which is the direction of the relationship between the
phenomenon of interest and a specific concomitant factor?

The main ingredients
• Response variable is the quantity of main interest (it can be

quantitive or qualitative), let’s denote it by Y ;

• Explanatory variables (also called, predictors or covariates) are the
concomitant factors, let’s denote them by X1, . . .Xp−1;
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A first formalization

A rough way to formalize the problem is by specifying a functional
relationship:

Y = g(X1, . . . ,Xp−1)

as an approximation of a possible “true”, yet unknown, relationship.

• g(·) is not known but in some case we can conjecture its shape by
consideration on the nature and the characteristics of the
phenomenon of interest

• or we can choose a very simple structure such as

Y = β0 +
p−1∑
j=1

βjXj = β0 + β1X1 + β2X2 + · · ·+ Xp−1βp−1

• usually involved variables are measured on a sample of n subjects
(xi1, . . . , xip−1; yi ), i = 1, . . . , n. We want to use these data to
explore possible relationship between Y and the covariates. 5



Simple linear model: a basic example

Heating consumption in a house depends on temperature?
• We are interested in predicting the heating consumption in a house at

some time
• We observe the weekly consumption of gas (Y , in thousands cube

feet) over n weeks (y1, . . . , yi , . . . , yn)
• A first rough prediction of the gas consumption is: y =

∑n
i=1

yi

n
• It is sensible to think that the external temperature affects the

heating consumption (we expect that the gas consumption decreases
as the average external temperature increases).

• In addition to y1, . . . , yn, we observe the average external temperature
(xi , in Celsius degrees) registered for the same weeks of observation of
yi . Thus, our sample of data is:

(x1, y1), (x2, y2), . . . , (xi , yi ), . . . , (xn, yn)
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Simple linear model: a basic example

Heating house’s consumption for varying temperature
Heating consumption in a house for varying temperature across 56 weeks
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The simple linear regression model: Model specification

• Can we better describe the conjectured relationship in order to make a more
accurate prediction than y?

gas consumption in week i = g(temperature in the same week)

yi = g(xi )

• Whatever g we assume, it will simply be an approximation and we should also
take into account that the dependent variable is affected by a random error εi

gas consumption in week i = g(temperature in the same week;

non observed and less relevant factors)

yi = g(xi ; εi )

• In fact, we may say that, conditional to a given value of xi , the expectation of yi
is:

µi = g(xi )

i.e. µi is the population mean of yi , conditional to the value of xi .
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The simple linear regression model: Model specification

• Data suggest that the expected heating consumption can be modeled
as a linear function of the external temperature

• A simple model: the straight line

yi = β0 + β1xi + εi , i = 1, . . . , n

or equivalently:
µi = β0 + β1xi

• The model assumes a constant growth rate of gas consumption for
decreasing values of temperature: the effect on µ of a constant
increase of x is the same whatever is x .
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The simple linear regression model: Model assumptions

• The model is correctly specified:

yi = g(xi ; εi ) = β0 + β1xi + εi

= systematic component + stochastic component

• systematic component: predictors are under the control of the researchers (non
stochastic)

• stochastic component:
• the error terms have zero mean

7→ it does not include further sisthematic terms
7→ µi = β0 + β1xi

• the error terms have constant variance and are uncorrelated
• (useful, albeit to some extent not necessary, the error terms are

normally distributed)
εi ∼ i.i.d. N (0, σ2)

With the nomality assumption

Yi ∼ N (β1 + β2xi , σ
2)

Yi and Yi uncorrelated ∀i 6= j.
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How to choose the best line? The least squares criterion

• Choose the line which minimizes the sum of squared residuals
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Computed value for the sum of squared residuals:

## [1] 39.99487
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How to choose the best line? The least squares criterion

• Choose the line which minimizes the sum of squared residuals:

min
β0,β1

n∑
i=1

(yi − (β0 + β1xi ))2

• The minimization problem has the following solution:
β̂1 = cov(x ,y)

var(x) (slope)
β̂0 = y − β̂1x (intercept)
It is important to remind that if we assume also that the random
component of the model is normally distributed, then maximum
likelihood estimation leads to the same solution (least squares is also
the maximum likelihood solution).

In the gas consumption example the two estimated coefficients are:

## [1] 5.4861933 -0.2902082
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True and estimated relationship

Yi ≈ N(β1 + β2xi,σ
2)

y = β1 + β2x

y = β̂1 + β̂2x

0 xk xi

0

yk

yi

ŷk = β̂1 + β̂2xk

E(Yk)=β1 + β2xk

ek

εk
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Inference

Statistical tests allow us to draw general considerations about the model,
valid not only for the sample at hand

• Is the model useful somehow?

7→ Test the usefulness of the whole model

• Does the explanatory variable X really affect the response variable?

7→ Test the significance of a single predictor

7→ (in the simple linear regression model the two above are equivalent)
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Estimating σ2

The estimate σ̂2 is 1
n
∑n

1 e2i where ei = (yi − ŷi ) are the residuals,

σ̂2 = 1
n

n∑
i

(yi − ȳ)2 − β̂21
1
n

n∑
i

(xi − x̄)2

σ̂2 =
n∑
i

y2
i /n − ȳ2 − β̂21

( n∑
i

x2
i /n − x̄2

)
An unbiased estimate is

s2 = n
n − 2 σ̂

2
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Testing usefulness of the overall model: A first useful index

• y varies in the population; its variability may be measured by:
n∑

i=1
(yi − y)2 Total Sum of Squares (SS)

• The whole variability of y may be decomposed as follows:

• variability of y explained by the model:
n∑

i=1

(ŷi − y)2 Regression SS

• residual variability (due to the chance):
n∑

i=1

(yi − ŷi )2 Residual SS

• It can be shown that, in the linear model:
n∑

i=1
(yi − y)2

Total SS

=
n∑

i=1
(yi − ŷi )2

Residual SS

+
n∑

i=1
(ŷi − y)2

Regression SS
16



Testing usefulness of the overall model: A first useful index

• If the model is good:

7→ Residual SS is small compared to Total SS

7→ Regression SS is the main portion of Total SS

• Coefficient of Determination:

R2 = RegressionSS
TotalSS = 1− ResidualSS

TotalSS

7→ 0 ≤ R2 ≤ 1

7→ The lower R2 the worse the fitted model

In the heating consumption example: Total SS, Regression SS and R2 are
respectively

## [1] 75.0142857 35.0194175 0.4668366

The model can explain about the 47% of the variability of y .
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Testing usefulness of the overall model: The F test

• The quantities above may be used to build a formal statistical test:

H0 : µi = β0 vs H1 : µi = β0 + β1xi

• The F statistic is the ratio of

7→ the explained variability (as reflected by R2) and

7→ the unexplained variability (as reflected by 1− R2)

suitably adjusted according to the number of observations (n) and the
number of estimated parameters (p = 2):

F = R2

(1− R2)
p

(n − (p + 1))

• The larger the F statistic, the more useful the model.

• Under the assumption of gaussianity of the error term, the probability
distribution of F is known and it allows us to define critical values
and p-values.
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Testing single predictors

• It is of interest to test whether the explanatory variable X really
affects the response variable

• A formal statistical test may be built to check:

H0 : β1 = 0 vs H1 : β1 6= 0

• The t statistic is the ratio:

t =

∣∣∣∣∣ β̂1

standard error(β̂1)

∣∣∣∣∣
• The larger the t statistic, the more evidence against H0

• Under the assumption of gaussianity of the error term, the probability
distribution of t is known and it allows us to define critical values and
p-values.

• Note that for simple regression the t test is equivalent to the F test
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Inference: The Heating consumption example

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6324 -0.7119 -0.2047 0.8187 1.5327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4862 0.2357 23.275 < 2e-16 ***
## x -0.2902 0.0422 -6.876 6.55e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8606 on 54 degrees of freedom
## Multiple R-squared: 0.4668, Adjusted R-squared: 0.457
## F-statistic: 47.28 on 1 and 54 DF, p-value: 6.545e-09
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Prediction

Confidence interval for the mean Y0 (red):

Ŷ0 ± tn−2,1−α/2
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s2
(
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Model checking

• The least squares line is the line which best fits the data at hand
but... best is not (necessarily) good.

• How to establish if the estimated model is a good one?

7→ Residuals are an estimate of the error components εi

ei = ε̂i = yi − (β̂0 + β̂1xi )

= yi − µ̂i i = 1, . . . n

7→ Residual analysis allows to check if the model assumptions are met
and if the model is good
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Model checking - Residual plots

• How should be the residuals in a good model?
• 7→ both positive and negative (around zero)
• 7→ small
• 7→ have constant variability
• 7→ scattered at random (if the model is well specified the amount of

variability of y not explained by x must be due to the chance only ⇒
the residuals do not show any regularity)

• Residual plots:
• 7→ ε̂i vs µ̂i

• 7→ ε̂i vs each xi

• 7→ Normal QQ-plot of ε̂i

• Other plots based on residuals
• 7→ Leverages
• 7→ Cook distances
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Model checking - Residual plots

●

●

●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

2.5 3.0 3.5 4.0 4.5 5.0 5.5

−
1.

5
−

0.
5

0.
5

1.
5

µ̂

ε̂

24



Model checking

• Although not too bad, the residual plot suggest some problems

• The variability of the residuals is not constant

• There seem to be two clusters of residuals

7→ Positive residuals increase for increasing µ̂

7→ Negative residuals decrease for increasing µ̂

• It seems that for two groups of observations the estimated relationship
between heating consumption and external temperature is different
from the estimated one (as the residuals are still some function of the
temperature via µ̂).

• Have we forgotten anything relevant?
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Multiple linear model



The (multiple) linear regression model: Introduction

• In fact, we get to know that during the observation time, there has
been an insulation intervention on the house so that in the last 30
weeks the house was insulated.

• Data at hand thus become:

(x1, z1, y1), (x2, z2, y2), . . . , (xi , zi , yi ), . . . , (xn, zn, yn)

with zi = "before insulation" for i = 1, . . . , 26
and zi = "after insulation" for i = 27, . . . , 56

• It is sensible to expect that the isolation intervention has an impact
on the mean heating consumption and that after the intervention the
heating consumption is lower than before it.
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The (multiple) linear regression model: Introduction
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Model specification

• In the light of the availability of the additional variable z the model
can be specified as follows:
gas consumption in a week = g(temperature in the same week,

before/after intervention)
non observed and less relevant factors)

yi = g(xi , zi ; εi )

• The natural extension of the straight line model is the following
(multiple) linear model

yi = β0 + β1xi + β2zi + εi (1)

or equivalently:
µi = β0 + β1xi + β2zi

28



Qualitative predictors

• The additional variable has a qualitative nature as it takes values
"before intervention" and "after intervention" ⇒ the specified model
does not make sense in the current form as zi is not a number

• The standard way to overcome the problem is to introduce an auxiliary
variable, an indicator variable (econometricians call it dummy):

di =
{

0 if zi = "before intervention"
1 if zi = "after intervention"

• The (1) then becomes:

yi = β0 + β1xi + β2di + εi

= β0 + β1xi + εi before the intervention
= (β0 + β2) + β1xi + εi after the intervention

• In other words the introduction of the indicator variable d gives rise
to two parallel straight lines, one for each value of zi

29



Qualitative predictors (factors)

Model estimation via least squares easily extends to the multiple linear
model:

min
β0,β1,β2

n∑
i=1

(yi − (β0 + β1xi + β2di ))2

The three coefficients are respectively:

## [1] 6.551329 -0.336697 -1.565205
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Qualitative predictors (factors)
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Interpreting the model

• β̂0: expected response value when all the predictors are set at zero (if
it does make sense and 0 is in the range of observed predictors)

7→ If the external temperature is 0 degree, and before the isolation
intervention (di = 0), the expected consumption of gas is about 6.6
thousand cube feet

• β̂j (j > 1): expected change of y when the j−th predictor increases
by 1 unit and all the other predictors are kept constant:

7→ If the external temperature increases by 1 degree, the expected
consumption of gas decreases by about 0.34 thousand cube feet,
independently of the isolation intervention

7→ If the house gets isolated (di passes from 0 to 1), the expected
consumption of gas decreases by about 1.57 thousand cube feet
independently of the external temperature
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Interpreting the model

• The estimated line can be used to get a prediction of y for any value
of the predictors (in the range of observed values)

ŷ = µ̂ = β̂0 + β̂1x + β̂2d

7→ What is the expected gas consumption when the external temperature
is 5?

• if the house is not insulated:

µ̂ = 6.551− 0.3367 · 5 = 4.8675 thousand cube feet

• if the house is insulated:

µ̂ = 6.551− 1.565− 0.3367 · 5 = 3.3025 thousand cube feet
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Inference

Statistical tests allow us to draw general considerations about the model,
valid not only for the sample at hand

• Is the model useful somehow?

7→ Compute the adjusted R2: a suitable adjustment of R2 which
penalises additional explanatory variables (descriptive)

7→ Test the usefulness of the whole model: the F test
H0 : µi = β0 ⇔ β1 = β2 = 0 vs
H1 : at least one between β1 and β2 is not 0

• Does the j−th explanatory variable really affect the response variable?

7→ Test the significance of a single predictor: the t test

H0 : βj = 0 vs H1 : βj 6= 0
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Inference: The Heating consumption example

##
## Call:
## lm(formula = y ~ x + z)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.74236 -0.22291 0.04338 0.24377 0.74314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.55133 0.11809 55.48 <2e-16 ***
## x -0.33670 0.01776 -18.95 <2e-16 ***
## zafter -1.56520 0.09705 -16.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3574 on 53 degrees of freedom
## Multiple R-squared: 0.9097, Adjusted R-squared: 0.9063
## F-statistic: 267.1 on 2 and 53 DF, p-value: < 2.2e-16
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Model checking

• The least squares linear model is the estimated linear model which
best fits the data at hand but... best is not (necessarily) good.

• How to establish if the estimated model is a good one?

7→ Residuals are built as in the simple linear model and have the same
interpretation (estimate of the error components εi)

ε̂i = yi − (β̂0 + β̂1xi + β̂2di )

= yi − µ̂i i = 1, . . . n

7→ Residual analysis allows to check if the model assumptions are met
and if the model is good
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Model checking - Residual plots
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Model checking

• The “two clusters” problem is not present anymore

• The non-constant variability of the residuals is reduced

• The residual plot still suggests some problems: the residuals are still
some function of the predictors (via µ̂)

7→ Positive residuals for small and large µ̂

7→ Negative residuals for intermediate values of µ̂

• Have we forgotten anything relevant?
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The interaction term

• Going back to the scatterplot of the data...

7→ the line corresponding to the observations before insulation tends to
underestimate the gas consumption for small lower temperatures and
overestimate it for higher temperatures

7→ the line corresponding to the observations after insulation tends to
overestimate the gas consumption for small lower temperatures and
underestimate it for higher temperatures

• Data show that not only the intercepts but also slopes might be
different before and after the insulation intervention

7→ interaction term: different relationship between Y and X for different
values of d
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The interaction term: Formalization

• The linear model with interaction of the predictors may be formalized
as follows:

yi = β0 + β1xi + β2di + β3(xi · di ) + εi

= β0 + β1xi + εi before the intervention, when di = 0
= (β0 + β2) + (β1 + β3)xi + εi after the intervention, when di = 1

• The model is estimated by the least squares criterion, as before
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The estimated interaction model
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The estimated interaction model

##
## Call:
## lm(formula = y ~ x * z)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.97802 -0.18011 0.03757 0.20930 0.63803
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.85383 0.13596 50.409 < 2e-16 ***
## x -0.39324 0.02249 -17.487 < 2e-16 ***
## zafter -2.12998 0.18009 -11.827 2.32e-16 ***
## x:zafter 0.11530 0.03211 3.591 0.000731 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.323 on 52 degrees of freedom
## Multiple R-squared: 0.9277, Adjusted R-squared: 0.9235
## F-statistic: 222.3 on 3 and 52 DF, p-value: < 2.2e-16
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Model checking - Residual plots
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Generalization to multiple regression model

Given a response variable Y and p − 1 predictors X1, . . . ,Xp−1, observed on a
sample of n subjects, the multiple linear model is specified as follows:

yi = β0 + β1xi1 + β2xi2 + . . .+ β1xip−1 + εi

• The model is correctly specified:

yi = g(xi1, . . . , xip−1; εi ) = β0 + β1xi + . . .+ βpxip−1 + εi

= systematic component + stochastic component

• systematic component:
7→ predictors are under the control of the researchers (non stochastic)
7→ predictors are not collinear (i.e. not highly correlated)

• stochastic component:
• the error terms have zero mean

7→ do not include further sisthematic terms
7→ this implies that E(Yi ) = µi = β0 + β1xi + . . .+ βpxip−1

• the error terms have constant variance
• the error terms are independent
• (optional: the error terms are normally distributed) 44
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