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The linear model

• Linear models (LM) are appropriate when analyzing the relationship
between a quantitative response variable Y and a set of covariates
x1, x2, . . . , xp−1 .
It is assumed that a sample of n values of the response variable Y is
observed as well as n values of each covariate.

• The aim is to evaluate the impact of covariates on the mean µi of the
response variable Yi for the i-th unit. In a linear model this is
represented by the equation

E (Yi ) = µi = β0 + β1xi1 + . . .+ βp−1xip−1 (1)

The value yi for the i-th unit of the sample can be written as

yi = β0 + β1xi1 + . . .+ βp−1xip−1 + εi , (2)

the model above can be also written for the set of all the n units in
matrix notation y = Xβ + ε

• Xβ is the so called systematic component
• ε is the stochastic component. 4



Matrix notation

The equation for each unit in matrix notation is

 y1
...
yn

 =

 1 x11 · · · x1p−1
...

...
1 xn1 · · · xnp−1


 β0

...
βp−1

+

 ε1
...
εn

 ,

where:

7→ y is the vector of the values of the response variable (n × 1) ;
7→ X is a matrix (n × p) which contains the values of the covariates;
7→ β is the vector (p × 1) of the regression coefficients;
7→ ε is the vector (n × 1) of the stochastic components.

The model written for the i-th unit can be also written as yi = xT
i β + εi

where xT
i is the i-th row of the so-called design matrix.
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Matrix notation: main assumptions

In the linear model

• The response variable Y is a quantitative variable
• The covariates X could be either:

7→ quantitative (numeric) variables or
7→ categorical variables (factors).

• It is usually assumed that the values in the matrix X are fixed
constant (non stochastic). X is the design matrix

• The design matrix X is assumed to be of full rank. Since usually
n >> p this means that the rank of X is p (that is min(p, n)).
The columns of X are linearly independent vectors.
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Matrix notation: main assumptions

The linear model is completely specified by assumptions on the stochastic components,
the random variables εi

1. E(εi ) = 0 or equivalently E(ε) = 0

2. Var(εi ) = σ2 homoscedasticity

3. E(εi , εj ) = 0 per i 6= j uncorrelation.
The last two conditions can be more concisely expressed in matrix form as
Cov(ε) = E(εεT ) = σ2In,

where Cov(ε) denotes variance-covariance matrix of the random vector ε.
The assumption 1-3 are called the second order assumptions (since they refer only
to the first two moments of the variables).
A distributional assumption is then often added

4. ε ∼ Nn(0,Σ)
In matrix notation
E(y) = Xβ and y ∼ N(Xβ, σ2I)
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Discussion of the assumptions

• Linearity. The assumption about the linear effect of the covariates is actually not
very restrictive. Non linear relationships can be introduced by appropriate
transformations of the covariates. For instance:

• yi = β0 + β1 log(zi ) + εi introduces a logarithmic effect of zi . But
note that if one simple redefines xi = log(zi ) then we are back to a
standard linear model for the transformed variable X .

• x2
i introduces a parabolic effect.

• Homoscedasticity of the random components. This is the standard assumption.
The use of diagnostic checks can help verifying it. If possible departures from
omoschedasticity are ignored it can impair quality of estimates. Possible remedies
can be introduced

• Uncorrelated random components.
It is assumed that all random components are mutually uncorrelated. In some
context this assumption is questionable (this is the case of data that are
temporally or spatially ordered). Also this assumption can be verified with
diagnostic tools and remedies are available.
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Continuous covariates, factors, interactions

• When the covariate is a quantitative one, under the linearity
assumption, then the value of the parameter associated to it
represents simply the derivative of Y wrt to X .

• The effect of a categorical variable (a factor) measures the difference
in the expected value of the response variable for each value of the
factor wrt the reference category for the factor itself (all the other
variables being equal). There will be then as many parameters as the
number of levels of the factor minus one.

• Usually the interactions between two (or more) variables are
introduced. Interpretation of interaction is easier when it refers to two
factors or to a factor and a numeric variable.
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Another example: one factor and a quantitative variable

Weight, Y , in kilograms, for a sample of newborn babies, from smoker mothers smokers
(F ) (in the graph different symbols are used for smokers - circles - and non smokers -
triangles). For each women the pre-pregnancy weight mother weight X is observed)
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As expected the weights of newborn babies is greater on the average when the mothers
are non smokers. It seems that a systematic difference exists between the two groups
though the relationship between weight of the mother and weight of the babies does not
change.
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A model with a continuos covariate and a factor

The two variables Y=“weight of the babies” and X=“weight of the
mother”" are both continuous numeric variables while the variable F is a
factor with two levels ( F = 1 if smoker, F = 2 if non smoker). The model
is

yi = β0 + β1xi + β2I(Fi =2) + εi .

with the corresponding matrices:

 y1
...
yn

 =



1 x1 0
1 x2 0
...

...
1 xk 1
...

...
1 xn 1



 β0
β1
β2

+

 ε1
...
εn

 .
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Intrpretation of the parameters
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For the given specification

• parameter β1 measures the (linear) effect of the weight of the mother on the
weight of the baby and represents the (common) slope of the two lines in the
graph;

• β0 measures the intercept of the smoker’s line and β2 is, for a given weight of the
mother, the vertical distance between the two lines.

12



An alternative parametrization

• Any model, particularly when factors are involved, can have
alternative parametrizations.
The model introduced above can be also written in the following form:

Yi = β1xi + β2I(Fi =1) + β3I(Fi =2) + εi , (3)

where I(Fi =j) is an indicator variable which takes on 1 if (Fi = j),
j = 1, 2, and 0 otherwise.

• The model is equivalent but interpretation of parameters changes.
In this case the matrix form is:

 Y1
...
Yn

 =


x1 1 0
x2 1 0
...

...
xn 0 1


 β1

β2
β3

+

 ε1
...
εn

 .
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Interpretation of the parameters

In this new parametrization

• parameter β1 measures the effect of the weight of the mother on the
weight of the baby

• β2 and β3 estimate the mean of the y , the weight of the babies, for a
given weight of the mother, for smokers and non smokers respectively.

• The columns of the design matrix X can be obtained from those of
the previous specification by using a linear combination. The model is
the same but interpretation of parameters changes.

• One should not add the intercept otherwise X will become rank
deficient
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A model with interaction

The independent variables enter the model additively: the effect of the
variable X is the same for each level of the factor F . In many case this is a
too simplistic model, and the effect can change for different values of the
factor.

This effect can be caught by introducing interaction between the
covariates. The following regression model includes an interaction

yi = β0 + β1xi + β2I(Fi =2) + β3I(Fi =2)xi + εi .

Interaction implies the relationship between x (weight of the mother) and
y (weight of the baby) can be different for smokers and non smokers.
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Inference in Linear models
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Least square estimation

• A sample y1, y2, . . . , yn along with the values of the vector xi for the
covariates obserevd on i-th unit is available and the aim is to estimate
the parameters of the models (β0, β1, . . . , βp−1, σ

2)
• An estimator of the parameters vector β can be obtained by using the

least square method:
1. The least square estimator (LSE) β̂ of β is the vector for which the

following quantity is minimized

LS(β) =
n∑

i=1

(yi − xT
i β)2 = (y − Xβ)T (y − Xβ) ;

LS(β) = yT y − βTXT y − yT Xβ + βTXTXβ

2. Taking the derivative ∂LS(β)
∂β

= −2XT y + 2XTXβ and then equating
it to 0, the LSE is

β̂ = (XTX)−1XT y .

To invert (XTX) we have to assume that this matrix is non singular.
This is always true if X is a full rank matrix

17



Properties of LS estimator

The LSE β̂ has the following properties:

1. E (β̂) = β and var(β̂) = σ2(XTX)−1;
2. asymptotically β̂

·∼ Np(β, σ2V−1) where V = limn→∞XT
n Xn and Xn

is the sequence of design matrices and V is positive definite; in most
of the cases then for large n, β̂

·∼ Np(β, σ2(XTX)−1). This allows us
to test significance of parameters and to build confidence intervals
easily.

3. β̂, the LSE is the best estimator in the sense that it has minimum
variance among all linear estimators (BLUE Best Linear Umbiesed
Estimator - Gauss-Markov theorem).

4. When (XTX) is not singular but its determinant is very close to 0
then estimates are very unstable. This happens if (multiple)
correlation among the column of X is very close to 1. Regularization
could be a solution.
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ML estimation

• When normality is assumed for the random components and taking
account of uncorrelation (which means also indipendence in the
normal case) then β can be obtained by using maximum likelihood
estimation.

• Choose the value β which maximizes

L(β, σ2) = 1
(2πσ2)n/2 exp(− 1

2σ2 (y − Xβ)T (y − Xβ))

It is easy to show (by evaluating the log-likelihood and by deriving
with respect to β) that the likelihood is maximized if the following
quantity is minimized (y − Xβ)T (y − Xβ).

• Under normality assumption, MLE and LSE are equivalent
• But to the properties already listed for the LSE now it can be added

the one regarding the (exact) distribution of β̂ ∼ N(β, σ2(XTX)−1)
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Estimation of σ2

• To estimate σ2 the following estimator is usually considered

S2 = SSE
n − p where

SSE =
n∑

i=1
(yi − ŷi )2 =

n∑
i=1

e2i

= (y − ŷ)T (y − ŷ)
= (y − Xβ̂)T (y − Xβ̂)

is the Sum of Squares of residuals ei .
• Note also that, when normality holds

β̂ ∼ Np(β, σ2(XTX)−1) and (n − p)S2

σ2
∼ χ2n−p ,

and the two estimator β̂ and S2 are independent.
• Note that for small samples if σ2 is unknown and S2 is used, tests and confidence

intervals for a single βj are based on student t distribution with n − p df. 20



Model validation and model
selection
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Testing a general linear hypotesis

The tests of more common interest are:

• test of significance for a single element of β

H0 : βj = 0 against H1 : βj 6= 0
• test on a subvector β1 = (β1, . . . , βr )

H0 : β1 = 0 against H1 : β1 6= 0
• test of equality of two coefficients H0 : βj − βr = 0 against

H1 : βj − βr 6= 0

All these hypoteses are special cases of the general linear hypotesis
H0 : Cβ = d against H1 : Cβ 6= d
C is a r × p matrix with rank= r ≤ p and d is a r × 1 vector.
If data are fit to the model under the restriction Cβ = d the residuals of this model are
H0ei and one can compute SSEH0=

∑n
i H0e2i and calculate the statistic

n − p
r

SSEH0 − SSE
SSE

that, when H0 is true, under normality assumption is a Fr,n−p random variable.
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Test significance of a single coefficient

When testing significance for a single element of β

H0 : βj = 0 against H1 : βj 6= 0

applying general linear hypotesis (where C is a row vector of zeros with
one only in position j and d = 0), it can be shown that

β̂j
2

V̂ar(β̂j)
∼ F1,n−p

This is the square of a student t with n − p df and equivalently the
following test statistic is usually considered

tj = β̂j

V̂ar(β̂j)
1/2

This result can be also used to obtain for βj the following confidence
interval at level 1− α:

β̂j ± tn−p,1−α/2(Var(β̂j))1/2
23



Decomposition of Sum of Squares

• The following holds:

SST = SSR + SSE , (4)

the Total Sum of Squares (total deviance) is the sum of the
Regression Sum of Squares (deviance explained by the model) and the
Residual Sum of squares (deviance of the residuals). Analyzing the
components of (4) is of great relevance, the ratio between SSR and
SST is clearly related to the quality of the model.

• Let F1 be the minimal model (the one which contains only the
intercept, p = 1).
Let Fp be the current model with p parameters and let
Fpo be a reduced model with 1 < po < p nested in Fp.
Then the variance explained by the current model Fp can be
partitioned as it is shown in the table that follows (Table 1), called
Analysis of variance table.
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The analysis of variance

Table 1: Analysis of Variance (Anova)

Source of variability df SS testing models improvement
total n SST

constant 1 nȲ 2

total n − 1 SSTcor

improvement with po − 1 SSRpo
SSRpo /(po−1)
SSEpo /(n−po )

Fpo with respect to F1 ∼ Fpo−1,n−po

improvement with p − po SSRp − SSRpo
(SSRp−SSRpo )/(p−po )

SSEp /(n−p)
Fp with respect to Fpo ∼ Fp−po ,n−p

residuals Fp n − p SSEp

• The fall in the fit from Fpo to Fp can be evaluated using the statistic

F = (SSEpo − SSEp)/(p − po)
SSEp/(n − p) ∼ Fp−po ,n−p.
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Coefficient of determination R2

The coefficient of determination R2 is defined as the proportion of total
variance explained by the regression model.
It can be used as a goodness–of–fit measure for the models

R2 =
∑n

i=1(ŷi − y)2∑n
i=1(yi − y)2

= 1−
∑n

i=1(yi − ŷi )2∑n
i=1(yi − y)2

= 1− SSE
SST

and 0 ≤ R2 ≤ 1.
This decomposition is possible if the model includes the intercept.
For nested models R2 always increases adding covariates.

When comparing nested models the corrected coefficient of determination
R̄2 is instead used

R̄2 = 1− n − 1
n − p (1− R2)

It penalizes inclusion of new variables that are non significant.
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Residuals

• The mean of y can be predicted once the model is estimated by
µ̂i = ŷ = Xβ̂ and consequently ŷ = X(XTX)−1XT y = Hy

• H = X(XTX)−1XT is a square matrix of size n and it is called the
hat matrix or the projection matrix. It has the following properties:
1. it is symmetric and idempotent
2. rank(H)=trace(H)=p
3. hii have values that range from 1/n and 1 and their sum is equal to p
4. the matrix I − H is also symmetrical and idempotent with rank equal

to (n − p)

• The residuals of the model are then e = (I − H)y
• Under normality assumption e ∼ Nn(0, σ2(I − H))
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Analysis of the residuals

• The quality of the model and the validity of the assumptions can be judged by
using some diagnostic tools that mainly rely upon analysis of residuals as defined
above.

• In the linear models the residuals can be standardized (to take into account the
fact that they have unequal variance)

ri =
Yi − µ̂i√
S2(1− hii )

, (5)

where hii is the i-th element on the diagonal of H = X(XTX)−1XT . These values
are called leverages. They reveal if a point has values that are far from the
majority of data in the space of the xs. Suspect values have leverage > 2p/n

• To identify which values are outliers with respect the majority of the data points
the studentized residual are introduced

e∗
i =

ei

S(i)
√
1− hii

,

where S2
(i) is the variance of the residuals when the i-th observation is excluded.

For a model correctly specified e∗
i follows a t with n − p − 1 df.
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Analysis of the residuals

• Cook distances are defined as

Di =
1
p

r2i
hii

1− hii
=

1
pS2

n∑
j=1

(ŷj − ŷj(i))2

• ŷj(i) are the predicted values for the i-th observation in a model estimated without
it. It reveals (when Di > 1) observations that, when excluded from the analysis,
will cause substantial modifications in the estimates of the parameters.

• Classical graphical tools based on (standardized) residuals are:

• plot of residuals against the predicted values (to reveal possible
heteroscedaticity)

• plot of residuals against the explanatory variables (to reveal non
linearities)

• plot of residuals against variables not in the model (added variable
plot)

• Q-Q norm of residuals (to assess normality)
• plot of leverages hii and of Cook distances (to reveal outliers)

• Formal test of normality, such as Shapiro-Wilks test or Jarque-Bera test (the
latter based on estimated values of third and fourth standardized moments)
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Dealing with non constant variance and residual correlation

• Residual analysis can reveal that some assumptions could be
questionable

• Critical assumptions are those on uncorrelation and heteroscedasticity
of residuals

• The assumptions Cov(ε) = σ2I should be replaced by a more general
Cov(ε) = σ2W−1 where W is assumed to be simply a positive
definite matrix

• In this case LSE is still an unbiased estimator but the estimate of its
variance covariance matrix is biased.

• If we ignore this, the main consequences are that tests or confidence
intervals based on assumption of uncorrelation and homoscedasticity
lead to wrong conclusions (tests tends to say a parameter is
significant too often and confidence intervals appear shorter)
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Heteroscedasticity

• We will consider here only the case of heteroscedasticity. In this case
Cov(ε) = σ2W −1 with W −1 = diag(1/w1, 1/w2, . . . , 1/wn)

• If each εi is multiplied by √wi one obtains the transformed values ε∗i = √wi εi
which have constant variance

• var(ε∗i ) = var(√wi εi ) = σ2 and then the random components are homoscedastic.
• The model does not change if we transform also the response variable and the

covariates (including the intercept) accordingly.
• We then obtain

y∗i = √wiyi and

x∗ij = √wixij

for each of the p covariates (including the intercept) and then the model

y∗
i = β0x∗

i0 + β1x∗
i1 + β2x∗

i2 + · · ·+ βp−1x∗
i,p−1 + ε∗i

is homoscedastic and the same assumptions of a standard LM hold. These
transformations, in matrix notation, are equivalent to pre-multiply all components of the
model y = Xβ + ε by the matrix W 1/2
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Weigthed Least Squares (WLS)

• If then

y∗ = W 1/2y , X∗ = W 1/2X and ε∗ = W 1/2ε

we get a new model for transformed data where homoscedasticy holds and
parameters can again be estimated by LSE obtaining

β̂ = (X∗TX∗)−1X∗T y∗

= (XTW 1/2W 1/2X)−1XTW 1/2W 1/2y
= (XTWX)−1XTW y

• This estimator is the Weighted Least Square Estimator (WLS)
• Note that weights are inversely proportional to variances of ε (which are originally

heteroscedastic)
• Units with a more erratic random component are given smaller weights
• Application of this strategy requires that the weights are known
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Model choice and variable selection

In many applications a large number of candidate predictors are available.
A naive approach often used is the following one:

Estimate the most complex model that includes all the covariates (and possibly all the
interactions). Then, remove all not significant variables from the model. (Backward
selection)

This strategy is not advisable for many reasons. Let us list some of them:

• the resulting model can overfit the data and then its predictive performance for
new data can decrease

• the larger the number of covariates the higher the risk of multi-collinearity
(correlated regressors)

• There are many models with equivalent performances but different substantial
interpretation. You are not sure that the variable which remains in your model
after such backward selection strategy should be really considered the most
relevant.

Other naive (yet often used) strategies for variable selection are:

• All subset selection (chose the best among
∑p

j=1

(p
j

)
possible models)

• Forward selection
• Stepwise selection (a combination of forward and backward selection) 33



Model choice criteria

Since one of the principles to consider when building a model is the
Occam’s razor, criteria to select a model that has good performances and
at the same time is less complex should be introduced.
When considering alternative LMs we have already seen some criteria

• R2 and corrected R2

• F test (for nested models)
• Mallows’s Cp

Cp =

∑n
i (yi − ŷiM)2

σ̂2
− n + M

where M is the number of covariates in the model and ŷiM are the predicted
values with those M covariates. The “best” model is the one with lowest Cp .

• Akaike Information Criteria (AIC)
AIC = −2l(β̂M , σ̂

2) + 2(M + 1)
Better fit corresponds to smaller smaller AIC values.
For a linear model with gaussian components and p βj parameters
AIC = nlog(σ̂2) + 2(p + 1).
Note that σ̂2 is SSE divided by n.

• Bayesian Information Criteria (BIC)
BIC = −2l(β̂M , σ̂

2) + log(n)(M + 1) 34



Avoiding collinearity

A diagnosis of collinearity is obtained by computing the variance inflation
factor (VIF) associated to the j-th predictor

VIFj = 1
1− R2

j

where R2
j is the coefficient of determination when xj is regressed on all the

remaining covariates. VIFJ > 10 is usually taken as a symptom that the
variable can cause collinearity.

Typical solutions are:

• omission of covariates
• using principal components extracted from regressors (or other

combination of the regressors)
• Ridge regression: it is an alternative to LSE where

β̂ = (XTX + λI)−1XT y

and λ is a chosen tuning parameter
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Regularization Techniques

It has been assumed so far that X has full rank, and this gives a unique solution to
equations

(XTX)β = XT y

We have already discussed that XTX could be close to singularity. Regularization
consists in changing the objective function by penalyzing it:

β̂PLS = arg min
β

[(y − Xβ)T (y − Xβ) + λpen(β)]

where pen(β) is a term that measures the complexity of the model and λ ≥ 0 is a
smoothing parameter that reflects the weight given to the penalty. Penalty is such that
it is large when many βs are large.

Ridge regression is an example of penalized least squares. It corresponds to introducing
the following penalty

pen(β) =
p∑

j=1

β2j = βT β.

With large λ the penalty term dominates and all (or almost all) coefficients are shrunk
to 0. λ is usually chosen by k-fold cross validation.
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LASSO (Least Absolute Shrinkage and Selection Operator)

Also LASSO corresponds to a penalized least square criterion and

β̂LASSO = arg min
β

[(y − Xβ)T (y − Xβ) + λ

p∑
j=1
|βj |]

• The penalization chosen with LASSO tend to shrink some of the
values of the coefficients to 0. Small coefficients are more strongly
shrunk to 0 compared with Ridge regression.

• Balance between fit of the data and regularization
• Note that no closed explicit solution of the minimization problem

exists. Numerical optimization must be used (quadratic programming,
LARS–Least Angle Regression).
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