
http://www.cambridge.org/9780521762939


This page intentionally left blank



Data Analysis and Graphics Using R, Third Edition

Discover what you can do with R! Introducing the R system, covering standard regression
methods, then tackling more advanced topics, this book guides users through the practical,
powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical
display, and interpretation of data. The many worked examples, from real-world research,
are accompanied by commentary on what is done and why. The companion website has code
and data sets, allowing readers to reproduce all analyses, along with solutions to selected
exercises and updates. Assuming basic statistical knowledge and some experience with
data analysis (but not R), the book is ideal for research scientists, final-year undergraduate
or graduate-level students of applied statistics, and practicing statisticians. It is both for
learning and for reference.

This third edition takes into account recent changes in R, including advances in graph-
ical user interfaces (GUIs) and graphics packages. The treatments of the random forests
methodology and one-way analysis have been extended. Both text and code have been
revised throughout, and where possible simplified. New graphs and examples have been
added.

john maindonald is Visiting Fellow at the Mathematical Sciences Institute at the
Australian National University. He has collaborated extensively with scientists in a wide
range of application areas, from medicine and public health to population genetics, machine
learning, economic history, and forensic linguistics.

w. john braun is Professor in the Department of Statistical and Actuarial Sciences
at the University of Western Ontario. He has collaborated with biostatisticians, biolo-
gists, psychologists, and most recently has become involved with a network of forestry
researchers.





Data Analysis and Graphics
Using R – an Example-Based Approach

Third Edition



CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC
MATHEMATICS

Editorial Board

Z. Ghahramani (Department of Engineering, University of Cambridge)
R. Gill (Mathematical Institute, Leiden University)
F. P. Kelly (Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge)
B. D. Ripley (Department of Statistics, University of Oxford)
S. Ross (Department of Industrial and Systems Engineering,
University of Southern California)
B. W. Silverman (St Peter’s College, Oxford)
M. Stein (Department of Statistics, University of Chicago)

This series of high quality upper-division textbooks and expository monographs covers
all aspects of stochastic applicable mathematics. The topics range from pure and applied
statistics to probability theory, operations research, optimization, and mathematical pro-
gramming. The books contain clear presentations of new developments in the field and
also of the state of the art in classical methods. While emphasizing rigorous treatment of
theoretical methods, the books also contain applications and discussions of new techniques
made possible by advances in computational practice.

A complete list of books in the series can be found at
http://www.cambridge.org/uk/series/sSeries.asp?code=CSPM
Recent titles include the following:

7. Numerical Methods of Statistics, by John F. Monahan
8. A User’s Guide to Measure Theoretic Probability, by David Pollard
9. The Estimation and Tracking of Frequency, by B. G. Quinn and E. J. Hannan

10. Data Analysis and Graphics Using R, by John Maindonald and John Braun
11. Statistical Models, by A. C. Davison
12. Semiparametric Regression, by David Ruppert, M. P. Wand and R. J. Carroll
13. Exercises in Probability, by Loı̈c Chaumont and Marc Yor
14. Statistical Analysis of Stochastic Processes in Time, by J. K. Lindsey
15. Measure Theory and Filtering, by Lakhdar Aggoun and Robert Elliott
16. Essentials of Statistical Inference, by G. A. Young and R. L. Smith
17. Elements of Distribution Theory, by Thomas A. Severini
18. Statistical Mechanics of Disordered Systems, by Anton Bovier
19. The Coordinate-Free Approach to Linear Models, by Michael J. Wichura
20. Random Graph Dynamics, by Rick Durrett
21. Networks, by Peter Whittle
22. Saddlepoint Approximations with Applications, by Ronald W. Butler
23. Applied Asymptotics, by A. R. Brazzale, A. C. Davison and N. Reid
24. Random Networks for Communication, by Massimo Franceschetti and

Ronald Meester
25. Design of Comparative Experiments, by R. A. Bailey
26. Symmetry Studies, by Marlos A. G. Viana
27. Model Selection and Model Averaging, by Gerda Claeskens and Nils Lid Hjort
28. Bayesian Nonparametrics, edited by Nils Lid Hjort et al
29. From Finite Sample to Asymptotic Methods in Statistics, by Pranab K. Sen,

Julio M. Singer and Antonio C. Pedrosa de Lima
30. Brownian Motion, by Peter Mörters and Yuval Peres



Data Analysis and Graphics
Using R – an Example-Based Approach

Third Edition

John Maindonald
Mathematical Sciences Institute, Australian National University

and

W. John Braun
Department of Statistical and Actuarial Sciences, University of Western Ontario



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-76293-9

ISBN-13    978-0-511-71286-9

© Cambridge University Press 2003

Second and third editions © John Maindonald and W. John Braun 2007, 2010

2010

Information on this title: www.cambridge.org/9780521762939

This publication is in copyright. Subject to statutory exception and to the 

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy 

of urls for external or third-party internet websites referred to in this publication, 

and does not guarantee that any content on such websites is, or will remain, 

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

Hardback

http://www.cambridge.org
http://www.cambridge.org/9780521762939


For Edward, Amelia and Luke
also Shireen, Peter, Lorraine, Evan and Winifred

For Susan, Matthew and Phillip





Contents

Preface page xix

Content – how the chapters fit together xxv

1 A brief introduction to R 1
1.1 An overview of R 1

1.1.1 A short R session 1
1.1.2 The uses of R 6
1.1.3 Online help 7
1.1.4 Input of data from a file 8
1.1.5 R packages 9
1.1.6 Further steps in learning R 9

1.2 Vectors, factors, and univariate time series 10
1.2.1 Vectors 10
1.2.2 Concatenation – joining vector objects 10
1.2.3 The use of relational operators to compare vector elements 11
1.2.4 The use of square brackets to extract subsets of vectors 11
1.2.5 Patterned data 11
1.2.6 Missing values 12
1.2.7 Factors 13
1.2.8 Time series 14

1.3 Data frames and matrices 14
1.3.1 Accessing the columns of data frames – with() and

attach() 17
1.3.2 Aggregation, stacking, and unstacking 17
1.3.3∗ Data frames and matrices 18

1.4 Functions, operators, and loops 19
1.4.1 Common useful built-in functions 19
1.4.2 Generic functions, and the class of an object 21
1.4.3 User-written functions 22
1.4.4 if Statements 23
1.4.5 Selection and matching 23
1.4.6 Functions for working with missing values 24
1.4.7∗ Looping 24



x Contents

1.5 Graphics in R 25
1.5.1 The function plot( ) and allied functions 25
1.5.2 The use of color 27
1.5.3 The importance of aspect ratio 28
1.5.4 Dimensions and other settings for graphics devices 28
1.5.5 The plotting of expressions and mathematical symbols 29
1.5.6 Identification and location on the figure region 29
1.5.7 Plot methods for objects other than vectors 30
1.5.8 Lattice (trellis) graphics 30
1.5.9 Good and bad graphs 32

1.5.10 Further information on graphics 33
1.6 Additional points on the use of R 33
1.7 Recap 35
1.8 Further reading 36
1.9 Exercises 37

2 Styles of data analysis 43
2.1 Revealing views of the data 43

2.1.1 Views of a single sample 44
2.1.2 Patterns in univariate time series 47
2.1.3 Patterns in bivariate data 49
2.1.4 Patterns in grouped data – lengths of cuckoo eggs 52
2.1.5∗ Multiple variables and times 53
2.1.6 Scatterplots, broken down by multiple factors 56
2.1.7 What to look for in plots 58

2.2 Data summary 59
2.2.1 Counts 59
2.2.2 Summaries of information from data frames 63
2.2.3 Standard deviation and inter-quartile range 65
2.2.4 Correlation 67

2.3 Statistical analysis questions, aims, and strategies 69
2.3.1 How relevant and how reliable are the data? 70
2.3.2 How will results be used? 70
2.3.3 Formal and informal assessments 71
2.3.4 Statistical analysis strategies 72
2.3.5 Planning the formal analysis 72
2.3.6 Changes to the intended plan of analysis 73

2.4 Recap 73
2.5 Further reading 74
2.6 Exercises 74

3 Statistical models 77
3.1 Statistical models 77

3.1.1 Incorporation of an error or noise component 78
3.1.2 Fitting models – the model formula 80



Contents xi

3.2 Distributions: models for the random component 81
3.2.1 Discrete distributions – models for counts 82
3.2.2 Continuous distributions 84

3.3 Simulation of random numbers and random samples 86
3.3.1 Sampling from the normal and other continuous distributions 87
3.3.2 Simulation of regression data 88
3.3.3 Simulation of the sampling distribution of the mean 88
3.3.4 Sampling from finite populations 90

3.4 Model assumptions 91
3.4.1 Random sampling assumptions – independence 91
3.4.2 Checks for normality 92
3.4.3 Checking other model assumptions 95
3.4.4 Are non-parametric methods the answer? 95
3.4.5 Why models matter – adding across contingency tables 96

3.5 Recap 97
3.6 Further reading 98
3.7 Exercises 98

4 A review of inference concepts 102
4.1 Basic concepts of estimation 102

4.1.1 Population parameters and sample statistics 102
4.1.2 Sampling distributions 102
4.1.3 Assessing accuracy – the standard error 103
4.1.4 The standard error for the difference of means 103
4.1.5∗ The standard error of the median 104
4.1.6 The sampling distribution of the t-statistic 105

4.2 Confidence intervals and tests of hypotheses 106
4.2.1 A summary of one- and two-sample calculations 109
4.2.2 Confidence intervals and tests for proportions 112
4.2.3 Confidence intervals for the correlation 113
4.2.4 Confidence intervals versus hypothesis tests 113

4.3 Contingency tables 114
4.3.1 Rare and endangered plant species 116
4.3.2 Additional notes 119

4.4 One-way unstructured comparisons 119
4.4.1 Multiple comparisons 122
4.4.2 Data with a two-way structure, i.e., two factors 123
4.4.3 Presentation issues 124

4.5 Response curves 125
4.6 Data with a nested variation structure 126

4.6.1 Degrees of freedom considerations 127
4.6.2 General multi-way analysis of variance designs 127

4.7 Resampling methods for standard errors, tests, and confidence intervals 128
4.7.1 The one-sample permutation test 128
4.7.2 The two-sample permutation test 129



xii Contents

4.7.3∗ Estimating the standard error of the median: bootstrapping 130
4.7.4 Bootstrap estimates of confidence intervals 131

4.8∗ Theories of inference 132
4.8.1 Maximum likelihood estimation 133
4.8.2 Bayesian estimation 133
4.8.3 If there is strong prior information, use it! 135

4.9 Recap 135
4.10 Further reading 136
4.11 Exercises 137

5 Regression with a single predictor 142
5.1 Fitting a line to data 142

5.1.1 Summary information – lawn roller example 143
5.1.2 Residual plots 143
5.1.3 Iron slag example: is there a pattern in the residuals? 145
5.1.4 The analysis of variance table 147

5.2 Outliers, influence, and robust regression 147
5.3 Standard errors and confidence intervals 149

5.3.1 Confidence intervals and tests for the slope 150
5.3.2 SEs and confidence intervals for predicted values 150
5.3.3∗ Implications for design 151

5.4 Assessing predictive accuracy 152
5.4.1 Training/test sets and cross-validation 153
5.4.2 Cross-validation – an example 153
5.4.3∗ Bootstrapping 155

5.5 Regression versus qualitative anova comparisons – issues of power 158
5.6 Logarithmic and other transformations 160

5.6.1∗ A note on power transformations 160
5.6.2 Size and shape data – allometric growth 161

5.7 There are two regression lines! 162
5.8 The model matrix in regression 163
5.9∗ Bayesian regression estimation using the MCMCpack package 165

5.10 Recap 166
5.11 Methodological references 167
5.12 Exercises 167

6 Multiple linear regression 170
6.1 Basic ideas: a book weight example 170

6.1.1 Omission of the intercept term 172
6.1.2 Diagnostic plots 173

6.2 The interpretation of model coefficients 174
6.2.1 Times for Northern Irish hill races 174
6.2.2 Plots that show the contribution of individual terms 177
6.2.3 Mouse brain weight example 179
6.2.4 Book dimensions, density, and book weight 181



Contents xiii

6.3 Multiple regression assumptions, diagnostics, and efficacy measures 183
6.3.1 Outliers, leverage, influence, and Cook’s distance 183
6.3.2 Assessment and comparison of regression models 186
6.3.3 How accurately does the equation predict? 187

6.4 A strategy for fitting multiple regression models 189
6.4.1 Suggested steps 190
6.4.2 Diagnostic checks 191
6.4.3 An example – Scottish hill race data 191

6.5 Problems with many explanatory variables 196
6.5.1 Variable selection issues 197

6.6 Multicollinearity 199
6.6.1 The variance inflation factor 201
6.6.2 Remedies for multicollinearity 203

6.7 Errors in x 203
6.8 Multiple regression models – additional points 208

6.8.1 Confusion between explanatory and response variables 208
6.8.2 Missing explanatory variables 208
6.8.3∗ The use of transformations 210
6.8.4∗ Non-linear methods – an alternative to transformation? 210

6.9 Recap 212
6.10 Further reading 212
6.11 Exercises 214

7 Exploiting the linear model framework 217
7.1 Levels of a factor – using indicator variables 217

7.1.1 Example – sugar weight 217
7.1.2 Different choices for the model matrix when there are factors 220

7.2 Block designs and balanced incomplete block designs 222
7.2.1 Analysis of the rice data, allowing for block effects 222
7.2.2 A balanced incomplete block design 223

7.3 Fitting multiple lines 224
7.4 Polynomial regression 228

7.4.1 Issues in the choice of model 229
7.5∗ Methods for passing smooth curves through data 231

7.5.1 Scatterplot smoothing – regression splines 232
7.5.2∗ Roughness penalty methods and generalized

additive models 235
7.5.3 Distributional assumptions for automatic choice of

roughness penalty 236
7.5.4 Other smoothing methods 236

7.6 Smoothing with multiple explanatory variables 238
7.6.1 An additive model with two smooth terms 238
7.6.2∗ A smooth surface 240

7.7 Further reading 240
7.8 Exercises 240



xiv Contents

8 Generalized linear models and survival analysis 244
8.1 Generalized linear models 244

8.1.1 Transformation of the expected value on the left 244
8.1.2 Noise terms need not be normal 245
8.1.3 Log odds in contingency tables 245
8.1.4 Logistic regression with a continuous explanatory

variable 246
8.2 Logistic multiple regression 249

8.2.1 Selection of model terms, and fitting the model 252
8.2.2 Fitted values 254
8.2.3 A plot of contributions of explanatory variables 255
8.2.4 Cross-validation estimates of predictive accuracy 255

8.3 Logistic models for categorical data – an example 256
8.4 Poisson and quasi-Poisson regression 258

8.4.1 Data on aberrant crypt foci 258
8.4.2 Moth habitat example 261

8.5 Additional notes on generalized linear models 266
8.5.1∗ Residuals, and estimating the dispersion 266
8.5.2 Standard errors and z- or t-statistics for binomial models 267
8.5.3 Leverage for binomial models 268

8.6 Models with an ordered categorical or categorical response 268
8.6.1 Ordinal regression models 269
8.6.2∗ Loglinear models 272

8.7 Survival analysis 272
8.7.1 Analysis of the Aids2 data 273
8.7.2 Right-censoring prior to the termination of the study 275
8.7.3 The survival curve for male homosexuals 276
8.7.4 Hazard rates 276
8.7.5 The Cox proportional hazards model 277

8.8 Transformations for count data 279
8.9 Further reading 280

8.10 Exercises 281

9 Time series models 283
9.1 Time series – some basic ideas 283

9.1.1 Preliminary graphical explorations 283
9.1.2 The autocorrelation and partial autocorrelation function 284
9.1.3 Autoregressive models 285
9.1.4∗ Autoregressive moving average models – theory 287
9.1.5 Automatic model selection? 288
9.1.6 A time series forecast 289

9.2∗ Regression modeling with ARIMA errors 291
9.3∗ Non-linear time series 298
9.4 Further reading 300
9.5 Exercises 301



Contents xv

10 Multi-level models and repeated measures 303
10.1 A one-way random effects model 304

10.1.1 Analysis with aov() 305
10.1.2 A more formal approach 308
10.1.3 Analysis using lmer() 310

10.2 Survey data, with clustering 313
10.2.1 Alternative models 313
10.2.2 Instructive, though faulty, analyses 318
10.2.3 Predictive accuracy 319

10.3 A multi-level experimental design 319
10.3.1 The anova table 321
10.3.2 Expected values of mean squares 322
10.3.3∗ The analysis of variance sums of squares breakdown 323
10.3.4 The variance components 325
10.3.5 The mixed model analysis 326
10.3.6 Predictive accuracy 328

10.4 Within- and between-subject effects 329
10.4.1 Model selection 329
10.4.2 Estimates of model parameters 331

10.5 A generalized linear mixed model 332
10.6 Repeated measures in time 334

10.6.1 Example – random variation between profiles 336
10.6.2 Orthodontic measurements on children 340

10.7 Further notes on multi-level and other models with correlated errors 344
10.7.1 Different sources of variance – complication or focus of

interest? 344
10.7.2 Predictions from models with a complex error structure 345
10.7.3 An historical perspective on multi-level models 345
10.7.4 Meta-analysis 347
10.7.5 Functional data analysis 347
10.7.6 Error structure in explanatory variables 347

10.8 Recap 347
10.9 Further reading 348

10.10 Exercises 349

11 Tree-based classification and regression 351
11.1 The uses of tree-based methods 352

11.1.1 Problems for which tree-based regression may be used 352
11.2 Detecting email spam – an example 353

11.2.1 Choosing the number of splits 356
11.3 Terminology and methodology 356

11.3.1 Choosing the split – regression trees 357
11.3.2 Within and between sums of squares 357
11.3.3 Choosing the split – classification trees 358
11.3.4 Tree-based regression versus loess regression smoothing 359



xvi Contents

11.4 Predictive accuracy and the cost–complexity trade-off 361
11.4.1 Cross-validation 361
11.4.2 The cost–complexity parameter 362
11.4.3 Prediction error versus tree size 363

11.5 Data for female heart attack patients 363
11.5.1 The one-standard-deviation rule 365
11.5.2 Printed information on each split 366

11.6 Detecting email spam – the optimal tree 366
11.7 The randomForest package 369
11.8 Additional notes on tree-based methods 372
11.9 Further reading and extensions 373

11.10 Exercises 374

12 Multivariate data exploration and discrimination 377
12.1 Multivariate exploratory data analysis 378

12.1.1 Scatterplot matrices 378
12.1.2 Principal components analysis 379
12.1.3 Multi-dimensional scaling 383

12.2 Discriminant analysis 385
12.2.1 Example – plant architecture 386
12.2.2 Logistic discriminant analysis 387
12.2.3 Linear discriminant analysis 388
12.2.4 An example with more than two groups 390

12.3∗ High-dimensional data, classification, and plots 392
12.3.1 Classifications and associated graphs 394
12.3.2 Flawed graphs 394
12.3.3 Accuracies and scores for test data 398
12.3.4 Graphs derived from the cross-validation process 404

12.4 Further reading 406
12.5 Exercises 407

13 Regression on principal component or discriminant scores 410
13.1 Principal component scores in regression 410
13.2∗ Propensity scores in regression comparisons – labor training data 414

13.2.1 Regression comparisons 417
13.2.2 A strategy that uses propensity scores 419

13.3 Further reading 426
13.4 Exercises 426

14 The R system – additional topics 427
14.1 Graphical user interfaces to R 427

14.1.1 The R Commander’s interface – a guide to getting started 428
14.1.2 The rattle GUI 429
14.1.3 The creation of simple GUIs – the fgui package 429

14.2 Working directories, workspaces, and the search list 430



Contents xvii

14.2.1∗ The search path 430
14.2.2 Workspace management 430
14.2.3 Utility functions 431

14.3 R system configuration 432
14.3.1 The R Windows installation directory tree 432
14.3.2 The library directories 433
14.3.3 The startup mechanism 433

14.4 Data input and output 433
14.4.1 Input of data 434
14.4.2 Data output 437
14.4.3 Database connections 438

14.5 Functions and operators – some further details 438
14.5.1 Function arguments 439
14.5.2 Character string and vector functions 440
14.5.3 Anonymous functions 441
14.5.4 Functions for working with dates (and times) 441
14.5.5 Creating groups 443
14.5.6 Logical operators 443

14.6 Factors 444
14.7 Missing values 446
14.8∗ Matrices and arrays 448

14.8.1 Matrix arithmetic 450
14.8.2 Outer products 451
14.8.3 Arrays 451

14.9 Manipulations with lists, data frames, matrices, and time series 452
14.9.1 Lists – an extension of the notion of “vector” 452
14.9.2 Changing the shape of data frames (or matrices) 454
14.9.3∗ Merging data frames – merge() 455
14.9.4 Joining data frames, matrices, and vectors – cbind() 455
14.9.5 The apply family of functions 456
14.9.6 Splitting vectors and data frames into lists – split() 457
14.9.7 Multivariate time series 458

14.10 Classes and methods 458
14.10.1 Printing and summarizing model objects 459
14.10.2 Extracting information from model objects 460
14.10.3 S4 classes and methods 460

14.11 Manipulation of language constructs 461
14.11.1 Model and graphics formulae 461
14.11.2 The use of a list to pass arguments 462
14.11.3 Expressions 463
14.11.4 Environments 463
14.11.5 Function environments and lazy evaluation 464

14.12∗ Creation of R packages 465
14.13 Document preparation – Sweave() and xtable() 467
14.14 Further reading 468
14.15 Exercises 469



xviii Contents

15 Graphs in R 472
15.1 Hardcopy graphics devices 472
15.2 Plotting characters, symbols, line types, and colors 472
15.3 Formatting and plotting of text and equations 474

15.3.1 Symbolic substitution of symbols in an expression 475
15.3.2 Plotting expressions in parallel 475

15.4 Multiple graphs on a single graphics page 476
15.5 Lattice graphics and the grid package 477

15.5.1 Groups within data, and/or columns in parallel 478
15.5.2 Lattice parameter settings 480
15.5.3 Panel functions, strip functions, strip labels, and

other annotation 483
15.5.4 Interaction with lattice (and other) plots – the playwith

package 485
15.5.5 Interaction with lattice plots – focus, interact, unfocus 485
15.5.6 Overlaid plots with different scales 486

15.6 An implementation of Wilkinson’s Grammar of Graphics 487
15.7 Dynamic graphics – the rgl and rggobi packages 491
15.8 Further reading 492

Epilogue 493

References 495

Index of R symbols and functions 507

Index of terms 514

Index of authors 523

The color plates will be found between pages 328 and 329.



Preface

This book is an exposition of statistical methodology that focuses on ideas and concepts,
and makes extensive use of graphical presentation. It avoids, as much as possible, the use
of mathematical symbolism. It is particularly aimed at scientists who wish to do statistical
analyses on their own data, preferably with reference as necessary to professional statistical
advice. It is intended to complement more mathematically oriented accounts of statistical
methodology. It may be used to give students with a more specialist statistical interest
exposure to practical data analysis.

While no prior knowledge of specific statistical methods or theory is assumed, there is a
demand that readers bring with them, or quickly acquire, some modest level of statistical
sophistication. Readers should have some prior exposure to statistical methodology, some
prior experience of working with real data, and be comfortable with the typing of analysis
commands into the computer console. Some prior familiarity with regression and with
analysis of variance will be helpful.

We cover a range of topics that are important for many different areas of statistical
application. As is inevitable in a book that has this broad focus, there will be investigators
working in specific areas – perhaps epidemiology, or psychology, or sociology, or ecology –
who will regret the omission of some methodologies that they find important.

We comment extensively on analysis results, noting inferences that seem well-founded,
and noting limitations on inferences that can be drawn. We emphasize the use of graphs
for gaining insight into data – in advance of any formal analysis, for understanding the
analysis, and for presenting analysis results.

The data sets that we use as a vehicle for demonstrating statistical methodology have
been generated by researchers in many different fields, and have in many cases featured in
published papers. As far as possible, our account of statistical methodology comes from
the coalface, where the quirks of real data must be faced and addressed. Features that may
challenge the novice data analyst have been retained. The diversity of examples has benefits,
even for those whose interest is in a specific application area. Ideas and applications that
are useful in one area often find use elsewhere, even to the extent of stimulating new lines
of investigation. We hope that our book will stimulate such cross-fertilization.

To summarize: The strengths of this book include the directness of its encounter with
research data, its advice on practical data analysis issues, careful critiques of analysis
results, the use of modern data analysis tools and approaches, the use of simulation and
other computer-intensive methods – where these provide insight or give results that are
not otherwise available, attention to graphical and other presentation issues, the use of



xx Preface

examples drawn from across the range of statistical applications, and the inclusion of code
that reproduces analyses.

A substantial part of the book was derived, initially, from John Maindonald’s lecture
notes of courses for researchers, at the University of Newcastle (Australia) over 1996–
1997 and at The Australian National University over 1998–2001. Both of us have worked
extensively over the material in these chapters.

The R system

We use the R system for computations. It began in the early 1990s as a project of Ross
Ihaka and Robert Gentleman, who were both at the time working at the University of
Auckland (New Zealand). The R system implements a dialect of the influential S lan-
guage, developed at AT&T Bell Laboratories by Rick Becker, John Chambers, and Allan
Wilks, which is the basis for the commercial S-PLUS system. It follows S in its close
linkage between data analysis and graphics. Versions of R are available, at no charge,
for 32-bit versions of Microsoft Windows, for Linux and other Unix systems, and for the
Macintosh. It is available through the Comprehensive R Archive Network (CRAN). Go to
http://cran.r-project.org/, and find the nearest mirror site.

The development model used for R has proved highly effective in marshalling high levels
of computing expertise for continuing improvement, for identifying and fixing bugs, and
for responding quickly to the evolving needs and interests of the statistical community.
Oversight of “base R” is handled by the R Core Team, whose members are widely drawn
internationally. Use is made of code, bug fixes, and documentation from the wider R user
community. Especially important are the large number of packages that supplement base
R, and that anyone is free to contribute. Once installed, these attach seamlessly into the
base system.

Many of the analyses offered by R’s packages were not, 20 years ago, available in any of
the standard statistical packages. What did data analysts do before we had such packages?
Basically, they adapted more simplistic (but not necessarily simpler) analyses as best they
could. Those whose skills were unequal to the task did unsatisfactory analyses. Those
with more adequate skills carried out analyses that, even if not elegant and insightful by
current standards, were often adequate. Tools such as are available in R have reduced the
need for the adaptations that were formerly necessary. We can often do analyses that better
reflect the underlying science. There have been challenging and exciting changes from the
methodology that was typically encountered in statistics courses 15 or 20 years ago.

In the ongoing development of R, priorities have been: the provision of good data
manipulation abilities; flexible and high-quality graphics; the provision of data analysis
methods that are both insightful and adequate for the whole range of application area
demands; seamless integration of the different components of R; and the provision of
interfaces to other systems (editors, databases, the web, etc.) that R users may require. Ease
of use is important, but not at the expense of power, flexibility, and checks against answers
that are potentially misleading.

Depending on the user’s level of skill with R, there will be some tasks where another
system may seem simpler to use. Note however the availability of interfaces, notably
John Fox’s Rcmdr, that give a graphical user interface (GUI) to a limited part of R. Such

http://cran.r-project.org/


Preface xxi

interfaces will develop and improve as time progresses. They may in due course, for many
users, be the preferred means of access to R. Be aware that the demand for simple tools
will commonly place limitations on the tasks that can, without professional assistance, be
satisfactorily undertaken.

Primarily, R is designed for scientific computing and for graphics. Among the packages
that have been added are many that are not obviously statistical – for drawing and coloring
maps, for map projections, for plotting data collected by balloon-borne weather instruments,
for creating color palettes, for working with bitmap images, for solving sudoko puzzles, for
creating magic squares, for reading and handling shapefiles, for solving ordinary differential
equations, for processing various types of genomic data, and so on. Check through the list
of R packages that can be found on any of the CRAN sites, and you may be surprised at
what you find!

The citation for John Chambers’ 1998 Association for Computing Machinery Software
award stated that S has “forever altered how people analyze, visualize and manipulate
data.” The R project enlarges on the ideas and insights that generated the S language. We
are grateful to the R Core Team, and to the creators of the various R packages, for bringing
into being the R system – this marvellous tool for scientific and statistical computing, and
for graphical presentation. We give a list at the end of the reference section that cites the
authors and compilers of packages that have been used in this book.

Influences on the modern practice of statistics

The development of statistics has been motivated by the demands of scientists for a method-
ology that will extract patterns from their data. The methodology has developed in a synergy
with the relevant supporting mathematical theory and, more recently, with computing. This
has led to methodologies and supporting theory that are a radical departure from the
methodologies of the pre-computer era.

Statistics is a young discipline. Only in the 1920s and 1930s did the modern framework
of statistical theory, including ideas of hypothesis testing and estimation, begin to take
shape. Different areas of statistical application have taken these ideas up in different ways,
some of them starting their own separate streams of statistical tradition. See, for example,
the comments in Gigerenzer et al. (1989) on the manner in which differences of historical
development have influenced practice in different research areas.

Separation from the statistical mainstream, and an emphasis on “black-box” approaches,
have contributed to a widespread exaggerated emphasis on tests of hypotheses, to a neglect
of pattern, to the policy of some journal editors of publishing only those studies that show
a statistically significant effect, and to an undue focus on the individual study. Anyone
who joins the R community can expect to witness, and/or engage in, lively debate that
addresses these and related issues. Such debate can help ensure that the demands of sci-
entific rationality do in due course win out over influences from accidents of historical
development.

New computing tools

We have drawn attention to advances in statistical computing methodology. These have
made possible the development of new powerful tools for exploratory analysis of regression



xxii Preface

data, for choosing between alternative models, for diagnostic checks, for handling non-
linearity, for assessing the predictive power of models, and for graphical presentation. In
addition, we have new computing tools that make it straightforward to move data between
different systems, to keep a record of calculations, to retrace or adapt earlier calcula-
tions, and to edit output and graphics into a form that can be incorporated into published
documents.

New traditions of data analysis have developed – data mining, machine learning, and
analytics. These emphasize new types of data, new data analysis demands, new data analysis
tools, and data sets that may be of unprecedented size. Textual data and image data offer
interesting new challenges for data analysis. The traditional concerns of professional data
analysts remain as important as ever. Size of data set is not a guarantee of quality and
of relevance to issues that are under investigation. It does not guarantee that the source
population has been adequately sampled, or that the results will generalize as required to
the target population.

The best any analysis can do is to highlight the information in the data. No amount of
statistical or computing technology can be a substitute for good design of data collection,
for understanding the context in which data are to be interpreted, or for skill in the use of
statistical analysis methodology. Statistical software systems are one of several components
of effective data analysis.

The questions that statistical analysis is designed to answer can often be stated simply.
This may encourage the layperson to believe that the answers are similarly simple. Often,
they are not. Be prepared for unexpected subtleties. Effective statistical analysis requires
appropriate skills, beyond those gained from taking one or two undergraduate courses
in statistics. There is no good substitute for professional training in modern tools for
data analysis, and experience in using those tools with a wide range of data sets. No-
one should be embarrassed that they have difficulty with analyses that involve ideas that
professional statisticians may take 7 or 8 years of professional training and experience to
master.

Third edition changes and additions

The second edition added new material on survival analysis, random coefficient models,
the handling of high-dimensional data, and extended the account of regression methods.
This third edition has a more adequate account of errors in predictor variables, extends the
treatment and use of random forests, and adds a brief account of generalized linear mixed
models. The treatment of one-way analysis of variance, and a major part of the chapter on
regression, have been rewritten.

Two areas of especially rapid advance have been graphical user interfaces (GUIs), and
graphics. There are now brief introductions to two popular GUIs for R – the R Commander
(Rcmdr) and rattle. The sections on graphics have been substantially extended. There
is a brief account of the latticist and associated playwith GUIs for interfacing with R
graphics.

Code has again been extensively revised, simplifying it wherever possible. There are
changes to some graphs, and new graphs have been added.



Preface xxiii

Acknowledgments

Many different people have helped with this project. Winfried Theis (University of Dort-
mund, Germany) and Detlef Steuer (University of the Federal Armed Forces, Hamburg,
Germany) helped with technical LATEX issues, with a cvs archive for manuscript files, and
with helpful comments. Lynne Billard (University of Georgia, USA), Murray Jorgensen
(University of Waikato, NZ), and Berwin Turlach (University of Western Australia) gave
highly useful comment on the manuscript. Susan Wilson (Australian National University)
gave welcome encouragement. Duncan Murdoch (University of Western Ontario) helped
with technical advice. Cath Lawrence (Australian National University) wrote a Python
program that allowed us to extract the R code from our LATEX files; this has now at length
become an R function.

For the second edition, Brian Ripley (University of Oxford) made extensive comments
on the manuscript, leading to important corrections and improvements. We are most grate-
ful to him, and to others who have offered comments. Alan Welsh (Australian National
University) has helped work through points where it has seemed difficult to get the emphasis
right. Once again, Duncan Murdoch has given much useful technical advice. Others who
made helpful comments and/or pointed out errors include Jeff Wood (Australian National
University), Nader Tajvidi (University of Lund), Paul Murrell (University of Auckland,
on Chapter 15), Graham Williams (http://www.togaware.com, on Chapter 1), and
Yang Yang (University of Western Ontario, on Chapter 10). Comment that has contributed
to this edition has come from Ray Balise (Stanford School of Medicine), Wenqing He and
Lengyi Han (University of Western Ontario), Paul Murrell, Andrew Robinson (University of
Melbourne, on Chapter 10), Phil Kokic (Australian National University, on Chapter 9), and
Rob Hyndman (Monash University, on Chapter 9). Readers who have made relatively
extensive comments include Bob Green (Queensland Health) and Zander Smith (SwissRe).
Additionally, discussions on the R-help and R-devel email lists have been an important
source of insight and understanding. The failings that remain are, naturally, our responsi-
bility.

A strength of this book is the extent to which it has drawn on data from many different
sources. Following the references is a list of data sources (individuals and/or organizations)
that we wish to thank and acknowledge. We are grateful to those who have allowed us to
use their data. At least these data will not, as often happens once data have become the
basis for a published paper, gather dust in a long-forgotten folder! We are grateful, also, to
the many researchers who, in their discussions with us, have helped stimulate our thinking
and understanding. We apologize if there is anyone that we have inadvertently failed to
acknowledge.

Diana Gillooly of Cambridge University Press, taking over from David Tranah for the
second and third editions, has been a marvellous source of advice and encouragement.

Conventions

Text that is R code, or output from R, is printed in a verbatim text style. For example,
in Chapter 1 we will enter data into an R object that we call austpop. We will use the

http://www.togaware.com


xxiv Preface

plot() function to plot these data. The names of R packages, including our own DAAG
package, are printed in italics.

Starred exercises and sections identify more technical items that can be skipped at a first
reading.

Solutions to exercises

Solutions to selected exercises, R scripts that have all the code from the book, and other
supplementary materials are available via the link given at http://www.maths.anu.
edu.au/˜johnm/r-book

http://www.maths.anu.edu.au/protect unhbox voidb@x penalty @M  {}johnm/r-book
http://www.maths.anu.edu.au/protect unhbox voidb@x penalty @M  {}johnm/r-book


Content – how the chapters fit together

Chapter 1 is a brief introduction to R. Readers who are new to R should as a minimum
study Section 1.1, or an equivalent, before moving on to later chapters. In later study, refer
back as needed to Chapter 1, or forward to Chapter 14.

Chapters 2–4: Exploratory data analysis and review of elementary
statistical ideas

Chapters 2–4 cover, at greater depth and from a more advanced perspective, topics that
are common in introductory courses. Different readers will use these chapters differently,
depending on their statistical preparedness.

Chapter 2 (Styles of data analysis) places data analysis in the wider context of the
research study, commenting on some of the types of graphs that may help answer questions
that are commonly of interest and that will be used throughout the remainder of the text.
Subsections 2.1.7, 2.2.3 and 2.2.4 introduce terminology that will be important in later
chapters.

Chapter 3 (Statistical models) introduces the signal + noise form of regression model.
The different models for the signal component are too varied to describe in one chapter!
Coverage of models for the noise (random component) is, relative to their use in remaining
chapters, more complete.

Chapter 4 (A review of inference concepts) describes approaches to generalizing from
data. It notes the limitations of the formal hypothesis testing methodology, arguing that a
less formal approach is often adequate. It notes also that there are contexts where a Bayesian
approach is essential, in order to take account of strong prior information.

Chapters 5–13: Regression and related methodology

Chapters 5–13 are designed to give a sense of the variety and scope of methods that come,
broadly, under the heading of regression. In Chapters 5 and 6, the models are linear in
the explanatory variable(s) as well as in the parameters. A wide range of issues affect the
practical use of these models: influence, diagnostics, robust and resistant methods, AIC
and other model comparison measures, interpretation of coefficients, variable selection,
multicollinearity, and errors in x. All these issues are relevant, in one way or another,
throughout later chapters. Chapters 5 and 6 provide relatively straightforward contexts in
which to introduce them.



xxvi Content – how the chapters fit together

The models of Chapters 5–13 give varying combinations of answers to the questions:

1. What is the signal term? Is it in some sense linear? Can it be described by a simple
form of mathematical equation?

2. Is the noise term normal, or are there other possibilities?
3. Are the noise terms independent between observations?
4. Is the model specified in advance? Or will it be necessary to choose the model from a

potentially large number of possible models?

In Chapters 5–8, the models become increasingly general, but always with a model that is
linear in the coefficients as a starting point. In Chapters 5–7, the noise terms are normal and
independent between observations. The generalized linear models of Chapter 8 allow non-
normal noise terms. These are still assumed independent.1 Chapter 9 (Time series models)
and Chapter 10 (Multilevel models and repeated measures) introduce models that allow, in
their different ways, for dependence between observations. In Chapter 9 the correlation is
with observations at earlier points in time, while in Chapter 10 the correlation might for
example be between different students in the same class, as opposed to different students
in different classes. In both types of model, the noise term is constructed from normal
components – there are normality assumptions.

Chapters 6–10 allowed limited opportunity for the choice of model and/or explanatory
variables. Chapter 11 (Tree-based classification and regression) introduces models that are
suited to a statistical learning approach, where the model is chosen from a large portfolio
of possibilities. Moreover, these models do not have any simple form of equation. Note the
usual implicit assumption of independence between observations – this imposes limitations
that, depending on the context, may or may not be important for practical use.

Chapter 12 (Multivariate data exploration and discrimination) begins with methods that
may be useful for multivariate data exploration – principal components, the use of distance
measures, and multi-dimensional scaling. It describes dimension reduction approaches that
allow low-dimensional views of the data. Subsection 12.2 moves to discriminant methods –
i.e., to regression methods in which the outcome is categorical. Subsection 12.3 identifies
issues that arise when the number of variables is large relative to the number of observations.
Such data is increasingly common in many different application areas.

It is sometimes possible to replace a large number of explanatory variables by one,
or a small number, of scoring variables that capture the relevant information in the data.
Chapter 13 investigates two different ways to create scores that may be used as explanatory
variables in regression. In the first example, the principal component scores are used. The
second uses propensity scores to summarize information on a number of covariates that are
thought to explain group differences that are, for the purposes of the investigation, nuisance
variables.

1 Note, however, the extension to allow models with a variance that, relative to the binomial or Poisson, is inflated.



1

A brief introduction to R

This first chapter introduces readers to the basics of R. It provides the minimum of
information that is needed for running the calculations that are described in later chap-
ters. The first section may cover most of what is immediately necessary. The rest of the
chapter may be used as a reference. Chapter 14 extends this material considerably.

Most of the R commands will run without change in S-PLUS.

1.1 An overview of R

1.1.1 A short R session

R must be installed!

An up-to-date version of R may be downloaded from a Comprehensive R Archive Network
(CRAN) mirror site. There are links at http://cran.r-project.org/. Installation
instructions are provided at the web site for installing R in Windows, Unix, Linux, and
version 10 of the Macintosh operating system.

For most Windows users, R can be installed by clicking on the icon that appears on
the desktop once the Windows setup program has been downloaded from CRAN. An
installation program will then guide the user through the process. By default, an R icon
will be placed on the user’s desktop. The R system can be started by double-clicking
on that icon.

Various contributed packages extend the capabilities of R. A number of these are a part
of the standard R distribution, but a number are not. Many data sets that are mentioned in
this book have been collected into our DAAG package that is available from CRAN sites.
This and other such packages can be readily installed, from an R session, via a live internet
connection. Details are given below, immediately prior to Subsection 1.1.2.

Using the console (or command line) window

The command line prompt (>) is an invitation to type commands or expressions. Once the
command or expression is complete, and the Enter key is pressed, R evaluates and prints
the result in the console window. This allows the use of R as a calculator. For example, type
2+2 and press the Enter key. Here is what appears on the screen:

> 2+2

[1] 4

>

http://cran.r-project.org/


2 A brief introduction to R

The first element is labeled [1] even when, as here, there is just one element! The final >
prompt indicates that R is ready for another command.

In a sense this chapter, and much of the rest of the book, is a discussion of what
is possible by typing in statements at the command line. Practice in the evaluation of
arithmetic expressions will help develop the needed conceptual and keyboard skills. For
example:

> 2*3*4*5 # * denotes ’multiply’

[1] 120

> sqrt(10) # the square root of 10

[1] 3.162278

> pi # R knows about pi

[1] 3.141593

> 2*pi*6378 # Circumference of earth at equator (km)

# (radius at equator is 6378 km)

[1] 40074.16

Anything that follows a # on the command line is taken as comment and ignored by R.
A continuation prompt, by default +, appears following a carriage return when the

command is not yet complete. For example, an interruption of the calculation of 3*4ˆ2
by a carriage return could appear as

> 3*4ˆ

+ 2

[1] 48

In this book we will omit both the command prompt (>) and the continuation prompt
whenever command line statements are given separately from output.

Multiple commands may appear on one line, with a semicolon (;) as the separator. For
example,

> 3*4ˆ2; (3*4)ˆ2

[1] 48

[1] 144

Entry of data at the command line

Figure 1.1 gives, for each of the years 1800, 1850, . . . , 2000, estimated worldwide totals
of carbon emissions that resulted from fossil fuel use. To enter the columns of data from
the table, and plot Carbon against Year as in Figure 1.1, proceed thus:

Year <- c(1800, 1850, 1900, 1950, 2000)

Carbon <- c(8, 54, 534, 1630, 6611)

## Now plot Carbon as a function of Year

plot(Carbon ˜ Year, pch=16)

Note the following:

� The <- is a left angle bracket (<) followed by a minus sign (-). It means “the values on
the right are assigned to the name on the left”.



1.1 An overview of R 3

● ●
●

●

●

1800 1850 1900 1950 2000

0
20

00
40

00
60

00

Year

C
ar

bo
n

year carbon

1 1800 8
2 1850 54
3 1900 534
4 1950 1630
5 2000 6611

Figure 1.1 Estimated worldwide annual totals of carbon emissions from fossil fuel use, in millions
of tonnes. Data are due to Marland et al. (2003).

� The objects Year and Carbon are vectors which were each formed by joining
(concatenating) separate numbers together. Thus c(8, 54, 534, 1630, 6611)
joined the numbers 8, 54, 534, 1630, 6611 together to form the vector Carbon. See
Subsection 1.2.2 for further details.

� The constructCarbon ˜ Year is a graphics formula. Theplot() function interprets
this formula to mean “Plot Carbon as a function of Year” or “Plot Carbon on the
y-axis against Year on the x-axis”.

� The setting pch=16 (where pch is “plot character”) gives a solid black dot.
� Case is significant for names of R objects or commands. Thus, Carbon is different

from carbon.

This basic plot could be improved by adding more informative axis labels, changing sizes
of the text and/or the plotting symbol, adding a title, and so on. See Section 1.5.

Once created, the objects Year and Carbon are stored in the workspace, as part of the
user’s working collection of R objects. The workspace lasts only until the end of a session.
In order that the session can be resumed later, a copy or “image” must be kept. Upon typing
q() to quit the session, you will be asked if you wish to save the workspace.

Collection of vectors into a data frame

The two vectors Year and Carbon created earlier are matched, element for element. It is
convenient to group them together into an object that has the name data frame, thus:

> fossilfuel <- data.frame(year=Year, carbon=Carbon)

> fossilfuel # Display the contents of the data frame.

year carbon

1 1800 8

2 1850 54

3 1900 534

4 1950 1630

5 2000 6611



4 A brief introduction to R

The vector objects Year and Carbon become, respectively, the columns year and
carbon in the data frame. The vector objects Year and Carbon are then redundant, and
can be removed.

rm(Year, Carbon) # The rm() function removes unwanted objects

Figure 1.1 can now be reproduced, with a slight change in the x- and y-labels, using

plot(carbon ˜ year, data=fossilfuel, pch=16)

The data=fossilfuel argument instructs plot() to start its search for each of
carbon and year by looking among the columns of fossilfuel.

There are several ways to identify columns by name. Here, note that the second column
can be referred to as fossilfuel[, 2], or as fossilfuel[, "carbon"], or as
fossilfuel$carbon.

Data frames are the preferred way to organize data sets that are of modest size. For
now, think of data frames as a rectangular row by column layout, where the rows are
observations and the columns are variables. Section 1.3 has further discussion of data
frames. Subsection 1.1.4 will demonstrate input of data from a file, into a data frame.

The R Commander Graphical User Interface (GUI) to R

Our discussion will usually assume use of the command line. Excellent GUI interfaces,
such as the R Commander, are also available.

Data input is very convenient with the R Commander. When importing data, a window
pops up offering a choice of common data formats. Data can be input from a text file, the
clipboard, URL, an Excel spreadsheet, or one of several statistical package formats (SPSS,
Stata, Minitab, SAS, . . .). Refer to Section 14.1 for more details.

The working directory and the contents of the workspace

Each R session has a working directory. Within a session, the workspace is the default place
where R looks for files that are read from disk, or written to disk. In between sessions, it
is usual for the working directory to keep a workspace copy or “image” from which the
session can be restarted.

For a session that is started from a Windows icon, the initial working directory is the
Start in directory that appears by right clicking on the icon and then on Properties. Users
of the MacOS X GUI can change the default startup directory from within an R session
by clicking on the R menu item, then on Preferences, then making the necessary change
in the panel Initial working directory. On Unix or Linux sessions that are started from the
command line, the working directory is the directory in which R was started. In the event
of uncertainty, type getwd() to display the name of the working directory:

getwd()

Objects that the user creates or copies from elsewhere go into the user workspace. To list
the workspace contents, type:

ls()



1.1 An overview of R 5

The only object left over from the computations above should be fossilfuel. There
may additionally be objects that are left over from previous sessions (if any) in the same
directory, and that were loaded when the session started.

Quitting R

Use the q() function to quit (exit) from R:

q()

There will be a message asking whether to save the workspace image. Clicking Yes has
the effect that, before quitting, all the objects that remain in the workspace are saved in
a file that has the name .RData. Because it is a copy or “image” of the workspace, this
file is known as an image file. (Note that while delaying the saving of important objects
until the end of the session is acceptable when working in a learning mode, it is not in
general a good strategy when using R in production mode. Section 1.6 has advice on saving
and backing up through the course of a session. See also the more extended comments in
Subsection 14.2.2.)

Depending on the implementation, alternatives to typing q()may be to click on the File
menu and then on Exit, or to click on the × in the top right-hand corner of the R window.
(Under Linux, depending on the window manager that is used, clicking on × may exit from
the program, but without asking whether to save the workshop image. Check the behavior
on your installation.)

Note: The round brackets, when using q() to quit the session, are necessary because q
is a function. Typing q on its own, without the brackets, displays the text of the function
on the screen. Try it!

Installation of packages

Assuming access to a live internet connection, packages can be installed pretty much
automatically. Thus, for installation of the DAAG package under Windows, start R and
click on the Packages menu. From that menu, choose Install packages. If a mirror site has
not been set earlier, this gives a pop-up menu from which a site must be chosen. Once this
choice is made, a new pop-up window appears with the entire list of available R packages.
Click on DAAG to select it for installation. Control-click to select additional packages.
Click on OK to start downloading and installation.

For installation from the command line, enter, for example

install.packages("DAAG")

install.packages(c("magic", "schoolmath"), dependencies=TRUE)

A further possibility, convenient if packages are to be installed onto a number of local
systems, is to download the files used for the installation onto a local directory or onto a
CD or DVD, and install from there.



6 A brief introduction to R

1.1.2 The uses of R

R has extensive capabilities for statistical analysis, that will be used throughout this book.
These are embedded in an interactive computing environment that is suited to many
different uses, some of which we now demonstrate.

R offers an extensive collection of functions and abilities

Most calculations that users may wish to perform, beyond simple command line compu-
tations, involve explicit use of functions. There are of course functions for calculating the
sum (sum()), mean (mean()), range (range()), and length of a vector (length()),
for sorting values into order (sort()), and so on. For example, the following calculates
the range of the values in the vector carbon:

> range(fossilfuel$carbon)

[1] 8 6611

Here are examples that manipulate character strings:

> ## 4 cities

> fourcities <- c("Toronto", "Canberra", "New York", "London")

> ## display in alphabetical order

> sort(fourcities)

[1] "Canberra" "London" "New York" "Toronto"

> ## Find the number of characters in "Toronto"

> nchar("Toronto")

[1] 7

>

> ## Find the number of characters in all four city names at once

> nchar(fourcities)

[1] 7 8 8 6

R will give numerical or graphical data summaries

The data framecars (datasets package) has columns (variables)speed anddist. Typing
summary(cars) gives summary information on its columns:

> summary(cars)

speed dist

Min. : 4.0 Min. : 2.00

1st Qu.:12.0 1st Qu.: 26.00

Median :15.0 Median : 36.00

Mean :15.4 Mean : 42.98

3rd Qu.:19.0 3rd Qu.: 56.00

Max. :25.0 Max. :120.00

Thus, the range of speeds (first column) is from 4 mph to 25 mph, while the range of
distances (second column) is from 2 feet to 120 feet.



1.1 An overview of R 7

Graphical summaries, including histograms and boxplots, are discussed and demon-
strated in Section 2.1. Try, for example:

hist(cars$speed)

R is an interactive programming language

The following calculates the Fahrenheit temperatures that correspond to Celsius tempera-
tures 0, 10, . . . , 40:

> celsius <- (0:4)*10

> fahrenheit <- 9/5*celsius+32

> conversion <- data.frame(Celsius=celsius, Fahrenheit=fahrenheit)

> print(conversion)

Celsius Fahrenheit

1 0 32

2 10 50

3 20 68

4 30 86

5 40 104

1.1.3 Online help

Familiarity with R’s help facilities will quickly pay dividends. R’s help files are compre-
hensive, and are frequently upgraded. Type help(help) or ?help to get information
on the help features of the system that is in use. To get help on, e.g., plot(), type:

?plot # Equivalent to help(plot)

The functions apropos() and help.search() search for functions that perform a
desired task. Examples are:

apropos("sort") # Try, also, apropos ("sor")

# List all functions where "sort" is part of the name

help.search("sort") # Note that the argument is ’sort’

# List functions with ’sort’ in the help page title or as an alias

Users are encouraged to experiment with R functions, perhaps starting by using the
function example() to run the examples on the relevant help page. Be warned however
that, even for basic functions, some examples may illustrate relatively advanced uses.

Thus, to run the examples from the help page for the function image(), type:

example(image)

par(ask=FALSE) # turn off the prompts

Press the return key to see each new plot. The par(ask=FALSE) on the second line of
code stops the prompts that will otherwise continue to appear, prior to the plotting of any
subsequent graph.

In learning to use a new function, it may be helpful to create a simple artificial data set,
or to extract a small subset from a larger data set, and use this for experimentation. For



8 A brief introduction to R

extensive experimentation, consider moving to a new working directory and working with
copies of any user data sets and functions.

The help pages, while not an encyclopedia on statistical methodology, have very extensive
useful information. They include: insightful and helpful examples, references to related
functions, and references to papers and books that give the relevant theory. Some abilities
will bring pleasant surprises. It can help enormously, before launching into the use of an R
function, to check the relevant help page!

Wide-ranging information access and searches

The functionhelp.start() opens a browser interface to help information, manuals, and
helpful links. It may take practice, and time, to learn to navigate the wealth of information
that is on offer.

The function RSiteSearch() initiates (assuming a live internet connection) a search
of R manuals and help pages, and of the R-help mailing list archives, for key words
or phrases. The argument restrict allows some limited targeting of the search. See
help(RSiteSearch) for details.

Help in finding the right package

The CRAN Task Views can be a good place to start when looking for abilities of a par-
ticular type. The 23 Task Views that are available at the time of writing include, for
example: Bayesian inference, Cluster analysis, Finance, Graphics, and Time series. Go to
http://cran.r-project.org/web/views/

1.1.4 Input of data from a file

Code that will take data from the file fuel.txt that is in the working directory, entering
them into the data frame fossilfuel in the workspace is:

fossilfuel <- read.table("fuel.txt", header=TRUE)

Note the use of header=TRUE to ensure that R uses the first line to get header information
for the columns, usually in the form of column names.

Type fossilfuel at the command line prompt, and the data will be displayed almost
as they appear in Figure 1.1 (the only difference is the introduction of row labels in the R
output).

The function read.table() has the default argument sep="", implying that the
fields of the input file are separated by spaces and/or tabs. Other settings are sometimes
required. In particular:

fossilfuel <- read.table("fuel.csv", header=TRUE, sep=",")

reads data from a file fuel.csvwhere fields are separated by commas. For other options,
consult the help page for read.table(). See also Subsection 14.4.1.

http://cran.r-project.org/web/views/


1.1 An overview of R 9

On Microsoft Windows systems, it is immaterial whether this file is called fuel.txt
or Fuel.txt. Unix file systems may, depending on the specific file system in use, treat
letters that have a different case as different.

1.1.5 R packages

This chapter and Chapter 2 will make frequent use of data from the MASS package (Venables
and Ripley, 2002) and from our own DAAG package. Various further packages will be used
in later chapters.

The packages base, stats, datasets, and several other packages, are automatically attached
at the beginning of a session. Other installed packages must be explicitly attached prior to
use. Use sessionInfo() to see which packages are currently attached. To attach any
further installed package, use the library() function. For example,

> library(DAAG)

Loading required package: MASS

. . . .

> sessionInfo()

R version 2.9.0 (2009-04-17)

i386-apple-darwin8.11.1

. . . .

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] DAAG_0.98 MASS_7.2-46

Data sets that accompany R packages

Type data() to get a list of data sets (mostly data frames) in all packages that are in the
current search path. For information on the data sets in the datasets package, type

data(package="datasets") # Specify ’package’, not ’library’.

Replace "datasets" by the name of any other installed package, as required (type
library() to get the names of the installed packages). In most packages, these data
sets automatically become available once the package is attached. They will be brought
into the workspace when and if required. (A few packages do not implement the lazy
data mechanism. Explicit use of a command of the form data(airquality) is then
necessary, bringing the data object into the user’s workspace.)

1.1.6 Further steps in learning R

Readers who have followed the discussion thus far and worked through the examples may at
this point have learned enough to start on Chapter 2, referring as necessary to later sections
of this chapter, to R’s help pages, and to Chapter 14. The remaining sections of this chapter
cover the following topics:



10 A brief introduction to R

� Numeric, character, logical, and complex vectors (Section 1.2).
� Factors (Subsection 1.2.7).
� Data frames and matrices (Section 1.3).
� Functions for calculating data summaries (Section 1.4).
� Graphics and lattice graphics (Sections 1.5 and 15.5).

1.2 Vectors, factors, and univariate time series

Vectors, factors, and univariate time series are all univariate objects that can be included
as columns in a data frame. The vector modes that will be noted here (there are others) are
“numeric”, “logical”, and “character".

1.2.1 Vectors

Examples of vectors are

> c(2, 3, 5, 2, 7, 1)

[1] 2 3 5 2 7 1

> c(T, F, F, F, T, T, F)

[1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE

> c("Canberra", "Sydney", "Canberra", "Sydney")

[1] "Canberra" "Sydney" "Canberra" "Sydney"

The first of these is numeric, the second is logical, and the third is a character. The global
variables F (=FALSE) and T (=TRUE) can be a convenient shorthand when logical
values are entered.

1.2.2 Concatenation – joining vector objects

The function c(), used in Subsection 1.1.1 to join numbers together to form a vector, is
more widely useful. It may be used to concatenate any combination of vectors and vector
elements. In the following, we form numeric vectors x and y, that we then concatenate to
form a vector z:

> x <- c(2, 3, 5, 2, 7, 1) # x then holds values 2, 3, 5, 2, 7, 1

> x

[1] 2 3 5 2 7 1

> y <- c(10, 15, 12)

> y

[1] 10 15 12

> z <- c(x, y)

> z

[1] 2 3 5 2 7 1 10 15 12



1.2 Vectors, factors, and univariate time series 11

1.2.3 The use of relational operators to compare vector elements

Relational operators are <, <=, >, >=, ==, and !=. For example, consider the carbon and
year columns of the data frame fossilfuel. For example:

> x <- c(3, 11, 8, 15, 12)

> x > 8

[1] FALSE TRUE FALSE TRUE TRUE

> x != 8

[1] TRUE TRUE FALSE TRUE TRUE

For further information on relational operators consult help(Comparison),
help(Logic), and help(Syntax).

1.2.4 The use of square brackets to extract subsets of vectors

Note three common ways to extract elements of vectors. In each case, the identifying
information (in the simplest case, a vector of subscript indices) is enclosed in square
brackets.

1. Specify the indices of the elements that are to be extracted, e.g.,
> x <- c(3, 11, 8, 15, 12)

> x[c(2,4)] # Elements in positions 2

[1] 11 15 # and 4 only

2. Use negative subscripts to omit the elements in nominated subscript positions (take
care not to mix positive and negative subscripts):
> x[-c(2,3)] # Remove the elements in positions 2 and 3

[1] 3 15 12

3. Specify a vector of logical values. This extracts elements for which the logical value is
TRUE. The following extracts values of x that are greater than 10:
> x > 10

[1] FALSE TRUE FALSE TRUE TRUE

> x[x > 10]

[1] 11 15 12

Elements of vectors can be given names. Elements can then be extracted by name:

> heights <- c(Andreas=178, John=185, Jeff=183)

> heights[c("John","Jeff")]

John Jeff

185 183

1.2.5 Patterned data

Use, for example, 5:15 to generate all integers in a range, here between 5 and 15 inclusive:

> 5:15

[1] 5 6 7 8 9 10 11 12 13 14 15

Conversely, 15:5 will generate the sequence in the reverse order.



12 A brief introduction to R

The function seq() allows a wider range of possibilities. For example:

> seq(from=5, to=22, by=3) # The first value is 5. The final

# value is <= 22

[1] 5 8 11 14 17 20

## The above can be abbreviated to seq(5, 22, 3)

To repeat the sequence (2, 3, 5) four times over, enter

> rep(c(2,3,5), 4)

[1] 2 3 5 2 3 5 2 3 5 2 3 5

Patterned character vectors are also possible:

> c(rep("female", 3), rep("male", 2))

[1] "female" "female" "female" "male" "male"

1.2.6 Missing values

The missing value symbol is NA. As an example, consider the column branch of the data
set rainforest:

> library(DAAG)

> nbranch <- subset(rainforest, species=="Acacia mabellae")$branch

> nbranch # Number of small branches (2cm or less)

[1] NA 35 41 50 NA NA NA NA NA 4 30 13 10 17 46 92

Any arithmetic expression that involves an NA generates NA as its result. Functions such
as mean() allow the argument na.rm=TRUE, so that NAs are omitted before proceeding
with the calculation. For example:

> mean(nbranch)

[1] NA

> mean(nbranch, na.rm=TRUE)

[1] 33.8

Other functions that behave similarly are sum(), median(), range(), and sd.
Arithmetic and logical expressions in which NAs appear return NA, thus:

> NA == 35

[1] NA

The unknown value might just possibly equal 35. This is a matter of strict logic, not
probability. Thus, the result is NA.

To replace all NAs by -999 (in most circumstances a bad idea) use the function
is.na(), thus:

> ## Replace all NAs by -999

> nbranch[is.na(nbranch)] <- -999

> nbranch

[1] -999 35 41 50 -999 -999 -999 -999 -999 4 30 13

[13] 10 17 46 92

> ## There is now no protection against use of the -999 values as



1.2 Vectors, factors, and univariate time series 13

> ## if they were legitimate numeric values

> mean(nbranch)

[1] -353.5 # Illegitimate calculation

Using a code such as -999 for missing values requires continual watchfulness to ensure
that it is never treated as a legitimate numeric value.

Missing values are discussed further in Subsection 1.4.6 and Section 14.7. For vectors of
mode numeric, other legal values that may require special attention are NaN (not a number;
e.g., 0/0), Inf (e.g., 1/0), and -Inf.

1.2.7 Factors

A factor is stored internally as a numeric vector with values 1, 2, 3, . . . , k. The value k is
the number of levels. The levels are character strings.

Consider a survey that has data on 691 females and 692 males. If the first 691 are females
and the next 692 males, we can create a vector of strings that holds the values, then turning
this vector into a factor, thus:

> ## Create character vector

> gender <- c(rep("female",691), rep("male",692))

> levels(gender) # For a character vector, this returns NULL

NULL

> ## From character vector, create factor

> gender <- factor(gender)

> levels(gender)

[1] "female" "male"

Internally, the factor gender is stored as 691 1s, followed by 692 2s. It has stored with it
a table that holds the information

1 female
2 male

In most contexts that seem to demand a character string, the 1 is translated into female
and the 2 into male. The values female and male are the levels of the factor. By default,
the levels are in sorted order for the data type from which the factor was formed, so that
female precedes male. Hence:

> levels(gender)

[1] "female" "male"

Note that if gender had been an ordinary character vector, the outcome of the above
levels command would have been NULL.

The order of the factor levels is used, in graphs and tables, to determine the order in
which the levels will appear. To cause male to come before female, use

gender <- factor(gender, levels=c("male", "female"))

This syntax is available both when the factor is first created, and later to change the order
in an existing factor. Take care that the level names are correctly spelled. For example,



14 A brief introduction to R

specifying "Male" in place of "male" in the levels argument will cause all values
that were "male" to be coded as missing.

Note finally the function ordered(), which generates factors whose values can be
compared using the relational operators <, <=, >, >=, ==, and !=. Ordered factors are
appropriate for use with ordered categorical data. See Section 14.6 for further details.

1.2.8 Time series

The following are the numbers of workers (in 1000s) in the Canadian prairies for each
month from January 1995 through December 1996:1

numjobs <- c(982,981,984,982,981,983,983,983,983,979,973,979,

974,981,985,987,986,980,983,983,988,994,990,999)

The function ts() converts numeric vectors into time series objects. Frequently used
arguments of ts() are start, frequency, and end. The following turns numjobs
into a time series, which can then be plotted:

numjobs <- ts(numjobs, start=1995, frequency = 12)

plot(numjobs)

Use the function window() to extract a subset of the time series. For example, the
following extracts the last quarter of 1995 and the first few months of 1996:

first15 <- window(numjobs, start=1995.75, end=1996.25)

Multivariate time series can also be handled. See Subsections 2.1.5 and 14.9.7.

1.3 Data frames and matrices

Data frames are fundamental to the use of the R modeling and graphics functions. A data
frame is a more general object than a matrix, in the sense that different columns may have
different modes. All elements of any column must, however, have the same mode, i.e., all
numeric, or all factor, or all character, or all logical.

Included in the DAAG package is Cars93.summary, created from the Cars93 data
set in the MASS package. Its contents are:

> Cars93.summary

Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 C

Large 6 6 11 L

Midsize 4 6 22 M

Small 4 5 21 Sm

Sporty 2 4 14 Sp

Van 7 8 9 V

1 ## Alternatively, obtain from data frame jobs (DAAG)
library(DAAG)
numjobs <- jobs$Prairies



1.3 Data frames and matrices 15

The first three columns are numeric, and the fourth is a factor. Use the function class()
to check this, e.g., enter class(Cars93.summary$abbrev). (The classification of
objects into classes is discussed in Subsection 1.4.2.)

On most systems, use of edit() allows access to a spreadsheet-like display of a data
frame or of a vector, where entries can be edited or new data added. For example,

Cars93.summary <- edit(Cars93.summary)

To close the spreadsheet, click on the File menu and then on Close. On Linux systems,
click on Quit to exit.

Displaying the first few, or last few, rows of a data frame

When used with a data frame (other possible arguments include vectors and functions), the
head() function displays the first lines of a data frame, while tail() displays the last
lines. For example,

> head(Cars93.summary, n=3) # Display the first 3 rows

(the default is 6)

Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 C

Large 6 6 11 L

Midsize 4 6 22 M

> # . . .

Note also the functionsstr() andsummary(), both of which can be used to get summary
information on data frames, different in the two cases.

Column and row names

The function rownames() extracts the names of rows, while colnames() extracts
column names, thus:

rownames(Cars93.summary) # Extract row names

colnames(Cars93.summary) # Extract column names

For use with data frames row.names() is an alternative to rownames(), while
names() is an alternative to colnames().

The functions names() (or colnames()) and rownames() can also be used to
assign new names. For example:

names(Cars93.summary)[3] <- "numCars"

names(Cars93.summary) <- c("minPass","maxPass","numCars","code")

Subsets of data frames

Data frames are indexed by row and column number. Thus to extract the element in
the 4th row and 2nd column, specify Cars93.summary[4, 2]. Here are additional
examples:



16 A brief introduction to R

Cars93.summary[1:3, 2:3] # Rows 1-3 and columns 2-3

Cars93.summary[, 2:3] # Columns 2-3 (all rows)

Cars93.summary[, c("No.of.cars", "abbrev")] # Cols 2-3, by name

Cars93.summary[, -c(2,3)] # omit columns 2 and 3

The subset() function offers an alternative way to extract rows and columns. For
example, the following extracts the first two rows:

subset(Cars93.summary,

subset=c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE))

Use the argument select to specify a subset of columns. See help(subset) for
details.

Use of the subscript notation to extract a column, as in Cars93.summary[, 1],
returns a vector. By contrast, extraction of the raw Cars93.summary[1, ] returns
a data frame, necessary because this allows different elements (columns) to retain their
existing classes. Note also

� Use of unlist(Cars93.summary[1, ]) returns a vector, but with the side-effect
that the factor value in the final column is coerced to numeric. Such side-effects are
usually undesirable, with a result that may be meaningless.

� Avoid Cars93.summary[4], at least until the subtleties of its use are understood.
See Subsection 14.9.1. If used where Cars93.summary[, 4] was intended, the
calculation may fail or give an erroneous result.

Data frames are a specialized type of list

A list is an arbitrary collection of R objects. Here is a simple example, containing two
character vectors of differing lengths and a numeric vector:

> ## Cities with more than 2.5 million inhabitants

> USACanada <- list(USACities=c("NY", "LA", "Chicago"),

+ CanadaCities=c("Toronto", "Montreal"),

+ millionsPop=c(USA=305.9, Canada=31.6))

>

> USACanada

$USACities

[1] "NY" "LA" "Chicago"

$CanadaCities

[1] "Toronto" "Montreal"

$millionsPop

USA Canada

305.9 31.6

Many of R’s modeling functions return their output as a list. Lists can be joined using
the function c(); in this and in several other respects they are “vectors”. Important
aspects of the syntax for working with data frames apply also to lists. Obviously, however,



1.3 Data frames and matrices 17

notions of “row” and “column” have no relevance to lists. See Subsection 14.9.1 for further
commentary.

1.3.1 Accessing the columns of data frames – with() and attach()

In repeated computations with the same data frame, it is tiresome to keep repeating the
name of the data frame. The function with() is often helpful in this connection. Thus, an
alternative to c(mean(cfseal$weight), median(cfseal$weight)) is:

> ## cfseal (DAAG) has data on Cape Fur seals

> with(cfseal, c(mean(weight), median(weight)))

[1] 54.8 46.2

Curly brackets (braces) can be used to extend the scope of with() over several lines of
code:

> with(pair65, # stretch of rubber bands, from DAAG

+ {lenchange <- heated-ambient

+ c(mean(lenchange), median(lenchange))

+ })

[1] 6.33 6.00

An alternative is attach(). Once a data frame has been attached, its columns can be
referred to by name, without further need to give the name of the data frame. For example:

> year

Error: Object "year" not found

> attach(fossilfuel) # Attach data frame fossilfuel

> year

[1] 1800 1850 1900 1950 2000

> detach(fossilfuel) # Detach data frame

Be sure to detach data frames that are no longer in use. If more than one data frame is
attached that has the column year, there is obvious scope for confusion.

What happens if there is an object year in the workspace? References to year will
then take the object that is in the workspace, ignoring the column year in the attached
data frame. By contrast, use of with() ensures that the column, if present, is from the
specified data frame.

The attaching of a data frame extends the search list, which is the list of “databases”
where R looks for objects. See Section 14.2 for more details on this and other uses of
attach().

1.3.2 Aggregation, stacking, and unstacking

The aggregate() function yields a data frame that has the mean or value of another
specified function for each combination of factor levels. As an example, consider the
chickwts data frame which contains observations on the weights of 71 six-week-old
chicks who have been fed one of six kinds of feed. The columns of chickwts are named
weight and feed. To find the average weights for the different feed groups, type



18 A brief introduction to R

> chickwtAvs <- with(chickwts,

+ aggregate(weight, by=list(feed), mean))

> names(chickwtAvs) <- c("Feed Group", "Mean Weight")

> chickwtAvs

Feed Group Mean Weight

1 casein 323.5833

2 horsebean 160.2000

3 linseed 218.7500

. . . .

See Subsection 14.9.5 for more information on the aggregate() function.
For stacking columns of a data frame, i.e., placing successive columns one under the

other, the function stack() is available. The following use of stack(), with data from
the data frame jobs, will be required for the use of these data in Subsection 2.1.5.

> library(DAAG)

> head(jobs,3)

BC Alberta Prairies Ontario Quebec Atlantic Date

1 1752 1366 982 5239 3196 947 95.00000

2 1737 1369 981 5233 3205 946 95.08333

3 1765 1380 984 5212 3191 954 95.16667

> # . . .

> Jobs <- stack(jobs, select = 1:6)

> # stack() concatenates selected data frame columns into a

> # single column named "values", & adds a factor named "ind"

> # that has the names of the concatenated columns as levels.

> head(Jobs,3)

values ind

1 1752 BC

2 1737 BC

3 1765 BC

> # . . .

For a further example, see Exercise 19.
The unstack() function reverses the stacking operation. For example, unstack

(Jobs) (or more generally, unstack(Jobs, values ˜ ind)) recovers the original
data frame.

1.3.3∗ Data frames and matrices

The numeric values in the data frame fossilfuel might alternatively be stored in a
matrix with the same dimensions, i.e., 5 rows × 2 columns. The following enters these
same data as a matrix:

fossilfuelmat <- matrix(c(1800, 1850, 1900, 1950, 2000,

8, 54, 534, 1630, 6611), nrow=5)

colnames(fossilfuel) <- c("year", "carbon")



1.4 Functions, operators, and loops 19

Another possibility is the use of the function cbind() to combine two or more vectors
of the same length and type together into a matrix, thus:

fossilfuelmat <- cbind(year=c(1800, 1850, 1900, 1950, 2000),

carbon=c(8, 54, 534, 1630, 6611))

More generally, any data frame where all columns hold data that is all of the same type,
i.e., all numeric or all character or all logical, can alternatively be stored as a matrix. Storage
of numeric data in matrix rather than data frame format can speed up some mathematical
and other manipulations when the number of elements is large, e.g., of the order of several
hundreds of thousands. For further details, see Section 14.8.

Note that:

� Matrix elements are stored in column order in one long vector, i.e., columns are stacked
one above the other, with the first column first. Section 14.8 describes how to change
between a matrix with m rows and n columns, and a vector of length mn.

� The extraction of submatrices has the same syntax as for data frames. Thus, fossil-
fuelmat[2:3,] extracts rows 2 and 3 of the matrix fossilfuelmat. (Be careful
not to omit the comma, causing the matrix to be treated as one long vector.)

� The names() function returns NULL when the argument is a matrix. Note however
rownames() and colnames(), which can be used either with data frames or
matrices.

� The function nrow() (e.g. nrow(fossilfuel) or nrow(fossilfuelmat))
returns the number of rows, while ncol() returns the number of columns.

1.4 Functions, operators, and loops

Functions are integral to the use of the R language. User-written functions are used in
exactly the same way as built-in functions. Examples will appear from time to time through
the book. An incidental advantage of putting code into functions is that the workspace is
not then cluttered with objects that are local to the function.

1.4.1 Common useful built-in functions

all() # returns TRUE if all values are TRUE

any() # returns TRUE if any values are TRUE

args() # information on the arguments to a function

cat() # prints multiple objects, one after the other

cumprod() # cumulative product

cumsum() # cumulative sum

diff() # form vector of first differences

# N. B. diff(x) has one less element than x

history() # displays previous commands used

is.factor() # returns TRUE if the argument is a factor

is.na() # returns TRUE if the argument is an NA

# NB also is.logical(), is.matrix(), etc.

length() # number of elements in a vector or of a list

ls() # list names of objects in the workspace



20 A brief introduction to R

mean() # mean of the elements of a vector

median() # median of the elements of a vector

order() # x[order(x)] sorts x (by default, NAs are last)

print() # prints a single R object

range() # minimum and maximum value elements of vector

sort() # sort elements into order, by default omitting NAs

rev() # reverse the order of vector elements

str() # information on an R object

unique() # form the vector of distinct values

which() # locates ’TRUE’ indices of logical vectors

which.max() # locates (first) maximum of a numeric vector

which.min() # locates (first) minimum of a numeric vector

with() # do computation using columns of specified data frame

Be sure to check, where this is relevant, the handling of missing values. In case of doubt,
consult the relevant help page. Refer back to Subsection 1.2.6.

The print() function

This is perhaps R’s most pervasive function. It is invoked whenever an object, or the result
of a computation, has its value returned to the command line. For example:

> x <- 2 # Assign to x the value 2; nothing is printed

> x # Equivalent to print(x)

[1] 2

> x*5 # Equivalent to print(x*5)

[1] 10

It can be convenient to make an assignment and print the value. For this, enclose the
assignment in parentheses, i.e., in round brackets:

> (x <- 2) # Equivalent to: x <- 2; print(x)

[1] 2

Calculations in parallel across all elements of a vector

Subsection 1.1.2 gave an example in which arithmetic was carried out in parallel across all
elements of a vector. Many of R’s functions likewise operate in parallel on all elements of
arrays, matrices, and data frames.

Data summary functions – table() and sapply()

Data summary functions that create tables of counts are:

table() # Form a table of counts

xtabs() # Form a table of totals

For example, the tinting data frame in DAAG contains columns specifying the sex
(sex, levels are f and m) and age group (agegp, levels are younger and older) of



1.4 Functions, operators, and loops 21

participants in a study. The table() function can be used to count up the numbers of
observations in each sex–age group combination:

> library(DAAG) # tinting is from DAAG

> table(Sex=tinting$sex, AgeGroup=tinting$agegp)

AgeGroup

Sex younger older

f 63 28

m 28 63

By default, table() ignores NAs. For further details of table(), and for an example
of the use of xtabs(), see Subsection 2.2.1.

The function sapply() applies a function to each column of a data frame, or to each
element of a list. The following demonstrates its use to give the range, for all columns of
the data frame jobs (DAAG):

> sapply(jobs[, -7], range)

BC Alberta Prairies Ontario Quebec Atlantic

[1,] 1737 1366 973 5212 3167 941

[2,] 1840 1436 999 5360 3257 968

Utility functions

Type ls() (or objects()) to see the names of all objects in the workspace. One can
restrict the names to those with a defined pattern, e.g., starting with the letter p:2

ls(pattern="p") # List object names that include the letter "p"

ls(pattern="ˆp") # List object names that start with "p"

Type help(ls), help(grep), and help(glob2rx) for more details.
Various packages will add hidden files, whose first character is a full stop, to the

workspace. To see these files, type ls(all=TRUE). To clear the workspace completely,
type rm(list=ls(all=TRUE)).

By default, the function dir() lists the contents of the working directory. See
Subsection 14.2.3 for further details on this and other utility functions.

1.4.2 Generic functions, and the class of an object

The printing of a data frame requires steps that are different from those for the printing of
a vector of numbers. Yet, in R, the same print() function handles both tasks. In order
to make this possible, all objects in R have a class, which can be used to decide how the
printing should be handled.

The print() function does not itself attend to the printing. Instead, if print()
is called with a factor argument, print.factor() is used. For a data frame
print.data.frame() is used, and so on. Section 14.10 gives further details.

2 More generally, the pattern-matching conventions are the same as for grep(), which is modeled on the Unix grep
command.



22 A brief introduction to R

For objects (such as numeric vectors) that do not otherwise have a print method,
print.default() handles the printing.

For simple objects such as numbers and text strings, the class is determined informally.
More complex objects such as data frames carry a tag (an attribute) that specifies the class.
In either case, the function class() can be used to determine the class. See Section 14.10
for further details.

1.4.3 User-written functions

Here is a function that returns the mean and standard deviation of a vector of numbers:

mean.and.sd <- function(x){

av <- mean(x)

sdev <- sd(x)

c(mean=av, SD=sdev)

}

Having constructed the function, we can apply it to a numeric vector, as in the following:

> distance <- c(148,182,173,166,109,141,166)

> mean.and.sd(distance)

mean SD

155.00 24.68

The variables av and sdev are local to the function. They cannot be accessed outside of
the internal function environment.

Many functions have default arguments which make it possible to run them without
specifying any data. We can modify the above function to have the default argument
x = rnorm(10). This generates a vector of 10 random numbers to which the function
is then applied.

mean.and.sd <- function(x = rnorm(10)){

av <- mean(x)

sdev <- sd(x)

c(mean=av, SD=sdev)

}

Here is the result of one execution of the modified function:

> mean.and.sd()

mean SD

0.6576272 0.8595572

The structure of functions

The function mean.and.sd() has the following structure:



1.4 Functions, operators, and loops 23

function name︷ ︸︸ ︷
mean.and.sd <- function(

argument(s)︷ ︸︸ ︷
x=rnorm(10))

{
function

body
av <- mean(x)
sdev <- sd(x)

return
value c(av = av, sd = sdev)

}

If the function body consists of just one statement that gives the return value, the curly
braces ({ }) are unnecessary. The return value, which must be a single object, is given by the
final statement of the function body. In the example above, the return value was the vector
consisting of the two named elements mean and sdev. For returning several objects that
are of different types, join them into a list.3

1.4.4 if Statements

Subsection 1.2.4 introduced the use of relational operators to create particular subsets of a
given vector.

The R system also has the flow control capabilities of traditional programming languages,
including if statements. The if function tests the truth of a given statement; if the
statement is true, the succeeding expression is evaluated. An else can be added to provide
an alternative expression to be evaluated in the case where the given statement is false.
For example, the following checks whether the mean for the carbon emissions exceeds the
median:

Carbon <- fossilfuel$carbon

> if (mean(Carbon) > median(Carbon)) print("Mean > Median") else

+ print("Median <= Mean")

[1] "Mean > Median"

Here is another example:

> dist <- c(148, 182, 173, 166, 109, 141, 166)

> dist.sort <- if (dist[1] < 150)

+ sort(dist, decreasing=TRUE) else sort(dist)

> dist.sort

[1] 182 173 166 166 148 141 109

1.4.5 Selection and matching

A highly useful operator is %in%, used for testing set membership. For example:

> x <- rep(1:5, rep(3,5))

[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

> x[x %in% c(2,4)]

[1] 2 2 2 4 4 4

3 ## Thus, to return the mean, SD and name of the input vector
## replace c(mean=av, SD=sdev) by
list(mean=av, SD=sdev, dataset = deparse(substitute(x)))



24 A brief introduction to R

We have picked out those elements of x that are either 2 or 4. To find which elements of
x are 2s, which 4s, and which are neither, use match(). Thus:

> match(x, c(2,4), nomatch=0)

[1] 0 0 0 1 1 1 0 0 0 2 2 2 0 0 0

The nomatch argument specifies the symbol to be used for elements that do not match.
Specifying nomatch=0 is often preferable to the default, which is NA.

1.4.6 Functions for working with missing values

Recall the use of the function is.na(), discussed in Subsection 1.2.6, to identify NAs.
Testing for equality with NAs does not give useful information.

Identification of rows that include missing values

Many of the modeling functions will fail unless action is taken to handle missing
values. Two functions that are useful for identifying or handling missing values are
complete.cases() and na.omit(). Applying the complete.cases() function
to a data frame returns a logical vector whose length is the number of rows and whose TRUE
values correspond to rows which do not contain any missing values. Thus, the following
identifies rows that hold one or more missing values:

> ## Which rows have missing values: data frame science (DAAG)

> science[!complete.cases(science), ]

State PrivPub school class sex like Class

671 ACT public 19 1 <NA> 5 19.1

672 ACT public 19 1 <NA> 5 19.1

The function na.omit() omits any rows that contain missing values. For example,

> dim(science)

[1] 1385 7

> Science <- na.omit(science)

> dim(Science)

[1] 1383 7

It should be noted that there may be better alternatives to omitting missing values. There
is an extensive discussion in Harrell (2001, pp. 43–51). Often, the preferred approach is
to estimate the values that are missing as part of any statistical analysis. It is important to
consider why values are missing – is the probability of finding a missing value independent
of the values of variables that appear in the analysis?

1.4.7∗ Looping

A simple example of a for loop is4

4 Other looping constructs are
repeat <expression> # Place break somewhere inside
while (x > 0) <expression> # Or (x < 0), or etc.
Here <expression> is an R statement, or a sequence of statements that are enclosed within braces.



1.5 Graphics in R 25

> for (i in 1:3) print(i)

[1] 1

[1] 2

[1] 3

Here is a way to estimate the increase in population for each of the Australian states
and territories between 1917 and 1997, relative to 1917, using the data frame austpop.
Columns are 1: census year (by decade from 1917 through 1997); 2–9: the state and territory
populations that are of interest here; and 10: the national population.

> ## Relative population increase in Australian states: 1917-1997

> ## Data frame austpop (DAAG)

> relGrowth <- numeric(8) # numeric(8) creates a numeric vector

> # with 8 elements, all set equal to 0

> for (j in seq(from=2, to=9)) {

+ relGrowth[j-1] <- (austpop[9, j]-austpop[1, j])/

+ austpop[1, j]}

> names(relGrowth) <- names(austpop[c(-1,-10)])

> # We have used names() to name the elements of relGrowth

> relGrowth # Output is with options(digits=3)

NSW Vic Qld SA WA Tas NT ACT

2.30 2.27 3.98 2.36 4.88 1.46 36.40 102.33

Often, there is a better alternative to the use of a loop. See Subsection 14.5.3.

1.5 Graphics in R

Later chapters will make extensive use both of base graphics (using plot(), etc.) and of
the more stylized graphs provided by lattice graphics. This section is a brief introduction
to plot() and allied functions that are included in R’s base graphics. Subsection 1.5.8
is a brief introduction to the more stylized graphical functions in the lattice package. Note
also the carefully structured abilities of the ggplot2 package, described in Section 15.2.

Base graphics are provided by the graphics package that is automatically attached
at startup. It includes the function plot() for creating scatterplots, and the functions
points(), lines(), text(), mtext(), and axis() that add to existing plots.

There is a wide range of other functions. To see some of the possibilities, enter

demo(graphics)

Press the Enter key to move to each new graph.

1.5.1 The function plot( ) and allied functions

The data frame primates gives Bodywt and Brainwt, for five primate species. A basic
plot of Brainwt against Bodywt can be obtained thus:

plot(Brainwt ˜ Bodywt, data=primates) # plot(y ˜ x) syntax

or

with(primates, plot(Bodywt, Brainwt)) # plot(x, y) syntax



26 A brief introduction to R

500 100 150 200 250 300

0
50

0
10

00
15

00

Body weight (kg)

B
ra

in
 w

ei
gh

t (
g)

Potar monkey

Gorilla

Human

Rhesus monkey

Chimp

Bodywt Brainwt

Potar monkey 10.0 115
Gorilla 207.0 406
Human 62.0 1320
Rhesus monkey 6.8 179
Chimp 52.2 440

Figure 1.2 Brain weight (g) versus body weight (kg). Data are from the primates data frame.

There are many possible refinements. A number of the most important are illustrated in
Plate 1, which supplements the discussion that follows.

Adding points, lines, text, and axis annotation

Figure 1.2 puts labels on the points.

## Place labels on points

plot(Brainwt ˜ Bodywt, xlim=c(0, 300), data=primates)

# Specify xlim so that there is room for the labels

with(primates,

text(Brainwt ˜ Bodywt, labels=row.names(primates), pos=4))

# pos=4 places text to the right of the points. Other

# possibilities are: 1: below; 2: to the left; 3: above

Figure 1.2 has two further refinements. The y-axis limits were extended slightly. Small
vertical offsets were incorporated that raised the label Rhesus monkey and lowered the
label Potar monkey, avoiding overlap.5

Use points() to add points to a plot. Use lines() to add lines. Actually these
are aliases, differing only in the default for the parameter type; points() has
type = "p", while lines() has type = "l".

The function mtext(text, side, line, ...) adds text in the margin of the
current plot. The sides are numbered 1 (x-axis), 2 (y-axis), 3 (top), and 4 (right vertical
axis). By default, adj=0.5, which centers the text at the axis midpoint. Specify adj=0
to position the left extreme of the text at the left margin, and adj=1 to position its right
extreme at the right margin.

The axis() function gives fine control over axis ticks and labels. To use for the x-axis,
plot the initial graph with xaxt="n". Then call axis() with the argument side=1,
and with other arguments as required. See help(axis) for details.

5 ## Plot Brainwt vs Bodywt, primates data frame
plot(Brainwt ˜ Bodywt, xlim=c(0, 300), ylim=c(0,1500), data=primates)
yoff <- c(-.125,0,0,.125,0)*par()$cxy[2]
with(primates, text(x=Bodywt, y=Brainwt+yoff, labels=row.names(primates), pos=4))



1.5 Graphics in R 27

Fine control – parameter settings

Here are some of the parameters that commonly require attention:

� Plotting symbols: pch (choice of symbol); cex (“character expansion"); col (color).
Thus par(cex=1.2) increases the plot symbol size 20% above the default.

� Lines: lty (line type); lwd (line width); col (color).
� Axis limits: xlim; ylim. (Assuming xaxs="r", x-axis limits are by default extended

by 4% relative to the data limits. Specify xaxs="i" to make the default an exact fit to
the data limits. For the y-axis, replace xaxs by yaxs.)

� Axis annotation and labels: cex.axis (character expansion for axis annotation, inde-
pendently of cex); cex.labels (size of the axis labels); mgp (margin line for the
axis title, axis labels, and axis line; default is mgp=c(3, 1, 0)).

� Graph margins: mar (inner margins, clockwise from the bottom; the out-of-the-box
default is mar=c(5.1, 4.1, 4.1, 2.1), in lines out from the axis); oma (outer
margins, relevant when there are multiple graphs on the one graphics page).

� Plot shape: pty="s" gives a square plot (must be set using par()).
� Multiple graphs on the one graphics page: Specify par(mfrow=c(m,n)) to get

an m rows by n columns layout of graphs on a page. The 1 by 4 layout of plots in
Figure 2.1 of Chapter 2 was obtained using par(mfrow=c(1,4)).

Type help(par) to get a (very extensive) complete list. Figure 15.1 and Plate 1 demon-
strate some of the possibilities.

In most (not all) instances, the change can be made either in a call to a plotting function
(e.g., plot(), points()), or using par(). If made in a call to a plotting function,
the change applies only to that call. If made using par(), changes remain in place until
changed again, or until a new device is opened.

It can be helpful to store the existing settings, so that they can be restored later. For this,
specify, for example:

oldpar <- par(cex=1.25)

# Use par(oldpar) to restore previous settings

1.5.2 The use of color

The default palette, which can be changed, has eight colors including “white”. These are
a small selection from the built-in colors. The function colors() returns the 657 names
of the built-in colors, some of them aliases for the same color.

In the following, points are in the colors of the current palette. These are recycled as
necessary.

theta <- (1:50)*0.92

plot(theta, sin(theta), col=1:50, pch=16, cex=4)

points(theta, cos(theta), col=51:100, pch=15, cex=4)

palette() # Names of the colors in the current palette

The following repeats the plot, but now using the function colors() to supply two sets
of 50 (mostly) different colors:



28 A brief introduction to R

plot(theta, sin(theta), col=colors()[1:50], pch=16, cex=4)

points(theta, cos(theta), col=colors()[51:100], pch=15, cex=4)

Where data from a two-way layout are presented on the one panel, different symbols can
be used for the different levels of one of the classifying factors, with different colors used
for the different levels of the other classifying factor. Care may be required in the choice
of colors, so that the colors show with clarity the distinctions that are required, and do not
clash. Section 15.2 has further discussion of color palettes.

1.5.3 The importance of aspect ratio

Attention to aspect ratio is often crucial for creating graphs that reveal important features
of the data. The following simple graphs highlight this point:

## Plot sin(theta) vs theta, at regularly spaced values of theta

## sin() expects angles to be in radians

# multiply angles in degrees by pi/180 to get radians

plot((0:20)*pi/10, sin((0:20)*pi/10))

plot((1:50)*0.92, sin((1:50)*0.92))

Readers might show the second of the graphs that now follows to their friends, asking them
to identify the pattern!

By holding with the left mouse button on the lower border until a double-sided arrow
appears and dragging upwards, the vertical dimension of the graph sheet can be shortened.
If sufficiently shortened, the pattern becomes obvious. The eye has difficulty in detecting
slope patterns where the slope is close to the horizontal or to the vertical.

Then try this:

par(mfrow=c(3,1)) # Gives a 3 by 1 layout of plots

plot((1:50)*0.92, sin((1:50)*0.92))

par(mfrow=c(1,1))

See Section 2.1 for further examples.

1.5.4 Dimensions and other settings for graphics devices

The shape of the graph sheet can be set when a new graphics page is started. On Microsoft
Windows systems, the function windows() (or win.graph()) starts a new graphics
page on the screen display. On Unix X11 systems, specify x11(). Under Macintosh OS X,
use quartz(). Available arguments include height (in inches), width (in inches), and
pointsize (there are 72.27 to an inch). The choice of pointsize, with a default that
varies between devices, affects character heights.6 See help(Devices) for a full list of
the devices, including hardcopy devices, that are available on the particular system that is
in use.

6 Note that once a graph has been pasted (from the clipboard) or imported into Microsoft Word or Open Office or another
similar word processor, it can be enlarged or shrunk by pointing at one corner, holding down the left mouse button, and
pulling.



1.5 Graphics in R 29

1.5.5 The plotting of expressions and mathematical symbols

In commands such as text() and mtext(), character strings can be replaced by expres-
sions. For this purpose an expression is more general than an algebraic or mathematical
expression. Thus, the following code gives a grayed out circle, overlaid as in Plate 1B with
the formula for the area of a circle:

symbols(x=1.5, y=0, circles=1.2, xlim=c(0,3), ylim=c(-1.5,1.5),

bg="gray", inches=FALSE)

# inches=FALSE ensures that radius is in x-axis units

text(1.5, 0.5, expression("Area" == pi*phantom("’")*italic(r)ˆ2))

# Use ’==’ to insert ’=’.

# Text or symbols that appear either side of ’*’ are juxtaposed.

# Notice the use of phantom("’") to insert a small space.

By default, symbols(), like plot(), starts a new graphics frame. Various alternatives
to circles are available; see help(symbols) for details.7

Type help(plotmath) to get details of available forms of expression. Run
demo(plotmath) to see some of the possibilities for plotting mathematical symbols.
There are further brief details in Section 15.3. Figures 5.3, 10.7, and 15.2 will demonstrate
the use of expressions in annotation and/or labeling.

1.5.6 Identification and location on the figure region

Following the drawing of the initial graph, the two functions that may be used are:

� identify() labels points;
� locator() prints the co-ordinates of points.

In either case, the user positions the cursor at the location for which co-ordinates are
required, and clicks the left mouse button. Depending on the platform, the identification or
labeling of points may be terminated by pointing outside of the graphics area and clicking,
or by clicking with a button other than the first. If continued, the process will terminate after
some default number n of points, which the user can set. (For identify() the default
setting is the number of data points, while for locator() the default is 500.)

As an example, identify two of the plotted points on the primates scatterplot:

plot(Brainwt ˜ Bodywt, data=primates)

with(primates,

identify(Brainwt ˜ Bodywt, labels=row.names(primates), n=2))

# Now click near 2 plotted points

7 ## To add the double-headed arrow and associated label, specify:
arrows(1.5, 0, 2.7, 0, length=.1, code=3) # code=3: arrows at both ends
# length is the length of the arrow head (in inches!)

text(2.1, -strheight("R"), expression(italic(r) == 1.2))



30 A brief introduction to R

1.5.7 Plot methods for objects other than vectors

We have seen how to plot a numeric vector y against a numeric vector x. The plot function
is a generic function that also has special methods for “plotting” various different classes
of object. For example, plot() accepts a data frame as argument. Try

## Use plot() with data frame trees (datasets)

plot(trees) # Gives a 3 x 3 layout of pairwise

# scatterplots among the three variables

This has the same effect as the function call pairs(trees).
The scatterplot matrix will be used extensively in Chapter 6 for scrutiny of regression

data. See, for example, Subsection 6.2.3. It will be an important tool, also, in the account
of multivariate methods in Chapter 12.

1.5.8 Lattice (trellis) graphics

Many of the analyses in later chapters compare different groups within the data. Visual
assessments that complement the analysis are indispensable. The lattice package has abili-
ties that are suited to such use. The layout on the page, the choice of plotting symbols and
colors, and the distinctions within panels, can be used to represent important aspects of
data structure. The syntax and graphics conventions are highly consistent across all lattice
functions. Lattice’s relatively automated provision of highly structured graphical layouts
has a cost – changes to the basic layout and structure may be complicated.

Lattice graphics versus base graphics – xyplot() versus plot()

A Brainwt versus Bodywt scatterplot for the primates data, such as was given earlier,
might alternatively have been obtained using the function xyplot() from the lattice
package. The following, when typed on the command line, give a plot on the graphics
device:

## Plot Brainwt vs Bodywt, data frame primates (DAAG)

plot(Brainwt ˜ Bodywt, data=primates) # base graphics

# ’base’ graphics use the abilities of the graphics package

library(lattice)

xyplot(Brainwt ˜ Bodywt, data=primates) # lattice

The mechanism that yields the plot is different in the two cases:

� plot() gives a graph as a side-effect of the command.
� xyplot() generates a graphics object. As this is output to the command line, the object

is “printed”, i.e., a graph appears.

The following illustrates the difference between the two functions:

invisible(plot(Brainwt ˜ Bodywt, data=primates)) # Graph appears

invisible(xyplot(Brainwt ˜ Bodywt, data=primates)) # No graph



1.5 Graphics in R 31

wt

ht

160

170

180

190

50 60 70 80 90

Row

50 60 70 80 90

Swim

f
m

Figure 1.3 Height (ht) versus weight (wt), for two categories of athlete. The different plotting
symbols distinguish males from females. The data relate to Telford and Cunningham (1991).

The wrapper function invisible() suppresses command line printing, so that
invisible(xyplot(...)) does not yield a graph.

Inside a function, xyplot(...) prints a graph only if it is the return value from the
function, i.e., usually, is on the final line. In a file that is sourced (use source()), no
graph will appear. Inside a function (except as mentioned), or in a file that is sourced, there
must be an explicit print(), i.e.,

print(xyplot(ACT ˜ year, data=austpop))

Panels of scatterplots – the use of xyplot()

Graphics functions in the lattice package are designed to allow row by column layouts
of panels. Different panels are for different subsets of the data. Additionally, points
can be distinguished, within panels, according to some further grouping within the data.
Chapter 2 will make extensive use of lattice functions.

Figure 1.3 demonstrates the use of xyplot() with the ais data set (DAAG) that has
data on elite Australian athletes who trained at the Australian Institute of Sport. The plot
is restricted to rowers and swimmers. The two panels distinguish the two sports, while
different plotting symbols (on a color device, different colors will be used) distinguish
females from males. Here is suitable code:

trellis.device(color=FALSE)

xyplot(ht ˜ wt | sport, groups=sex, pch=c(4,1), aspect=1, data=ais,

auto.key=list(columns=2), subset=sport%in%c("Row","Swim"))

dev.off() # Close device

trellis.device() # Start new device, by default with color=TRUE

In the graphics formula ht ˜ wt | sport, the vertical bar indicates that what fol-
lows, in this case sport, is a conditioning variable or factor. The graphical information
is broken down according to the factor levels or distinct values. The parameter aspect
controls the ratio of dimensions in the y and x directions.

The setting auto.key=list(columns=2) generates a simple key, with the two
key items side by side in two columns rather than one under another in a single column as
happens with the default setting columns=1.



32 A brief introduction to R

Plotting columns in parallel

Variables and/or factors can be plotted in parallel, on the same (outer=FALSE) or different
(outer=TRUE) panel(s). Separate the names with “+”. The following gives a simplified
version of Figure 2.10 in Subsection 2.1.5:

xyplot(Prairies+Atlantic ˜ Date, outer=TRUE, data=jobs)

The data frame jobs has changes in number of jobs in different regions of Canada over
the period January 1995 to December 1996. Subsection 15.5.1 has further discussion on
the plotting of columns in parallel.

Selected lattice functions

dotplot(factor ˜ numeric,..) # 1-dim. Display

stripplot(factor ˜ numeric,..) # 1-dim. Display

barchart(character ˜ numeric,..)

histogram( ˜ numeric,..)

densityplot( ˜ numeric,..) # Density plot

bwplot(factor ˜ numeric,..) # Box and whisker plot

qqmath(factor ˜ numeric,..) # normal probability plots

splom( ˜ dataframe,..) # Scatterplot matrix

parallel( ˜ dataframe,..) # Parallel coordinate plots

cloud(numeric ˜ numeric * numeric, ...) # 3D surface

wireframe(numeric ˜ numeric * numeric, ...) # 3D scatterplot

In each instance, users can add conditioning variables.
Further points to note about the lattice package are:

� Because the lattice package implements the trellis style of graphics, several of the
functions that control stylistic features (color, plot characters, line type, etc.) have trellis
(where lattice might have seemed more natural) as part of their name.

� Lattice graphics functions cannot be mixed (or not easily) with the graphics func-
tions discussed earlier in Section 1.5. It is not possible to use points(), lines(),
text(), etc., to add features to a plot that has been created using a lattice graphics func-
tion. Instead, it is necessary to use functions that are special to lattice – lpoints(),
llines(), ltext(), larrows(), and lsegments().

Subsection 15.5.5 describes a mechanism for interacting with lattice plots.

1.5.9 Good and bad graphs

There is a difference!
Draw graphs so that they are unlikely to mislead. Ensure that they focus the eye on

features that are important, and avoid distracting features. Lines that are intended to attract
attention can be thickened.

In scatterplots, the intention is typically to draw attention to the points. If there are not
too many of them, the use of heavy black dots or other filled symbols will focus attention



1.6 Additional points on the use of R 33

on the points, rather than on a fitted line or curve or on the axes. If they are numerous and
there is substantial overlap, it then makes better sense to use open symbols. Where there is
extensive overlap, ink will fill that region more densely. If there is so much overlap that the
use of black symbols would merge most points into a dense black mass, use of a shade of
gray may be helpful.8

Where the horizontal scale is continuous, patterns of change that are important to identify
should bank at an angle of roughly 45◦ above or below the horizontal. Depending on the
context, angles in the approximate range 20◦ to 70◦ may be satisfactory, and the aspect
ratio should be chosen accordingly. (This was the point of the sine curve example in
Subsection 1.5.3.) See Cleveland (1994) for further commentary.

Colors, or gray scales, can often be used to distinguish groupings in the data. Bear in
mind that the eye has difficulty in focusing simultaneously on widely separated colors that
are close together on the same graph.

1.5.10 Further information on graphics

Several further graphics functions will be introduced in Section 2.1. Note especially
hist() and boxplot(). See also Murrell (2005), Sarkar (2002, 2007).

Note the more detailed information in Chapter 15. Section 15.5 has an extended discus-
sion of the abilities of the lattice package. There is brief reference to the relatively specialist
abilities of the grid package, or which lattice is built. Section 15.6 discusses the ggplot2
package.

1.6 Additional points on the use of R

∗Workspace management strategies

The default choice of working directory, which may be an R installation directory, is not a
good choice for long-term use, and should be changed. Subsection 1.1.1 explained how to
set the startup choice of working directory.

The working directory can be changed and a new workspace loaded in the course of a
session, either using the menu system, if available, or using command line instructions. See
Subsection 14.2.2.

In a session where there are extensive calculations, cautious users will from time to
time save the current workspace, perhaps first using rm() to remove objects that are no
longer required. The command save.image() will save everything in the workspace,
by default into the file .RData in the working directory. This can alternatively be done by
clicking on the relevant menu item, where such a menu is available. (The file that is saved
holds an image of the workspace at that point.)

It is good practice to use a separate working directory for each different project. The
ability to keep multiple image files in the one directory adds further flexibility. Use the
extension .RData for such files.9

8 ## Example of plotting with different shades of gray
plot(1:4, 1:4, pch=16, col=c("gray20","gray40","gray60","gray80"), cex=3)

9 In older versions of R for Windows, .rda was an alternative extension.



34 A brief introduction to R

Forward slashes and backslashes

Note that R syntax follows the Unix conventions and uses forward slashes, where Windows
expects backslashes. Thus to read in the file fuel.txt from the directory c:\data,
type

fossilfuel <- read.table("c:/data/fuel.txt")
# Alternative: Replace each "/" by "\\", ie, 2 backslashes

Setting the number of decimal places in output

Often, calculations will, by default, give more decimal places of output than are useful. In
the output that we give, we often reduce the number of decimal places below what R gives
by default. The options() function can be used to make a global change to the number
of significant digits that are printed. For example:

> sqrt(10)

[1] 3.162278

> options(digits=2) # Change until further notice,

# or until end of session.

> sqrt(10)

[1] 3.2

Note that options(digits=2) expresses a wish, which R will not always obey!
Rounding will sometimes introduce small inconsistencies. For example, in the calcula-

tions of Section 4.4: √
372

12
= 5.57

√
2 ×

√
372

12
= 7.88.

Note however that
√

2 × 5.57 = 7.87.

Other option settings

Type help(options) to get further details. We will meet another important option
setting in Chapter 5. (Most of the output that we present uses the setting options(show.
signif.stars=FALSE), where the default is TRUE. This affects output in Chapter 5
and later chapters.)

Cosmetic issues

In our R code, we write, e.g., a <- b rather than a<-b, and y ∼ x rather than y∼x.
This is intended to help readability, perhaps a small step on the way to literate programming.
Such presentation details can make a large difference when others use the code.

Where output is obtained with the simple use of print() or summary(), we have in
general included this as the first statement in the output.



1.7 Recap 35

∗Common sources of difficulty

� It is important to tune the parameter settings of read.table() to the input data set.
See help(read.table) and Subsection 14.4.1 for further details.

� Character vectors that are included as columns in data frames become, by default,
factors. There are implications for the use of read.table(). See Subsection 14.4.1
and Section 14.6.

� In most contexts, factors are treated as vectors of character strings, with values given by
the factor levels. Use unclass() to extract the integer values if these, rather than the
levels are required. See Section 14.6.

� Keep in mind Section 14.7’s comments on the handling of missing values.
� The syntax fossilfuel[, 2] extracts the second column from the data frame
fossilfuel, yielding a numeric vector. Observe however that fossilfuel[2, ]
yields a data frame, rather than the numeric vector that the user may require. Specify
unlist(fossilfuel[2, ]) to obtain the vector of numeric values in the second
row of the data frame. See Subsection 14.9.1.

� The function sapply() is commonly used to carry out a computation across all
elements of a data frame. If used with a matrix, the computation will be carried out on
all matrix elements. See Subsection 14.9.5.

� Once a data frame has been attached, take care with assignments to either the name of
the data frame, or the name of a column. Assignment to the name of the data frame will
create a new local copy, while assigment to a column name will create a new object in
the workspace with that name. Later references to those names will then access the new
local copies.

� Data objects that individually or in combination occupy a large part of the available com-
puter memory can slow down all memory-intensive computations. See Subsection 14.2.2
for comment on associated workspace management issues. See also the opening com-
ments in Section 14.8. Note that most of the data objects that are used for our examples
are small and thus will not, except where memory is very small, make much individual
contribution to demands on memory.

Variable names in data sets

We will refer to a number of different data sets, many of them data frames in our DAAG
package. When we first introduce the data set, we will give both a general description of
the columns of values that we will use, and the names used in the data frame. In later
discussion, we will use the name that appears in the data frame whenever the reference is
to the particular values that appear in the column.

1.7 Recap

� One use of R is as a calculator, to evaluate arithmetic expressions. Calculations can be
carried out in parallel, across all elements of a vector at once.

� Use q() to quit from R, usually taking care to save the workspace.



36 A brief introduction to R

� Help functions include help() (help page of a known function), help.search()
(search for a specified word in the help page header), apropos() (search for function
names that include a specified character string), and help.start (start a browser
interface to help information).

� The function c() (concatenate) joins vector elements into vectors. It may be used for
logical and character vectors, as well as for numeric vectors.

� For simple forms of scatterplot use plot(), or the lattice function xyplot().
� Important R data structures are vectors, factors, lists, and data frames. Vectors may

be of mode numeric, or logical, or character. Factors have mode “numeric” and class
“factor”.

� Data frames use a list structure to group columns, which must all have the same length,
together into a single R object. The different columns may be any mix of logical,
numeric, character, or factor.

� Contrast data frames with matrices. All matrix elements have the same mode. A matrix
is stored as one long vector that is formatted to appear in a row by column layout.

� Use is.na() to identify elements that are NAs.
� The R system has extensive abilities for inputting data from rectangular files (see
help(read.table)), from spreadsheets, and from a variety of statistical package
formats. The R Commander GUI offers an easy means to access these abilities.

� Use attach() or with() (temporary attachment) to give access to the columns of a
data frame, without the need to name the data frame whenever a column is accessed.

� The search path determines the order of search for objects that are accessed from the
command line, or that are not found in the enclosing environment of a function that
accesses them.

� Factors, used for categorical data, are fundamental to the use of many of the R modeling
functions. Ordered factors are appropriate for use with ordered categorical data.

� Option settings, which users can change at their discretion, control such matters as the
number of significant digits that will be displayed in output.

� Commonly used generic functions include print(), plot(), and summary(). For
such functions, the result depends on the class of object that is given as argument.

� To make an assignment and print the value that is assigned, enclose the assigment
statement in round brackets. For example:
(x <- 2) # Equivalent to: x <- 2; print(x)

1.8 Further reading

Note that the exercises have various hints that extend the discussion in the body of the
chapter.

A version of An Introduction to R (R Development Core Team, 2009a), current at the
time of release, is included with the R distributions. It is available from the CRAN sites as
an independent document. (For a list of sites, go to http://cran.r-project.org.)
Books that include an introduction to R include Dalgaard (2008), Fox (2002).

At a more advanced level note Venables and Ripley (2002), which covers both S-PLUS
and R. This will be an important reference throughout this book.

http://cran.r-project.org


1.9 Exercises 37

See also documents, including Maindonald (2008), that are listed under Contributed
Documentation on the CRAN sites. For careful detailed accounts of the R language, see
Chambers (2007), Gentleman (2008).

Books and papers that set out principles of good graphics include Cleveland (1993,
1994), Tufte (1997), Wainer (1997), and Wilkinson and Task Force on Statistical Inference
(1999). See also the imaginative uses of R’s graphical abilities that are demonstrated in
Murrell (2005). Maindonald (1992) comments very briefly on graphical design.

References for further reading

Chambers, J. M. 2007. Software for Data Analysis: Programming with R.
Cleveland, W. S. 1993. Visualizing Data.
Cleveland, W. S. 1994. The Elements of Graphing Data, revised edn.
Dalgaard, P. 2008. Introductory Statistics with R.
Fox, J. 2002. An R and S-PLUS Companion to Applied Regression.
Gentleman, R. 2008. R Programming for Bioinformatics.
Maindonald, J. H. 1992. Statistical design, analysis and presentation issues. New Zealand

Journal of Agricultural Research 35: 121–41.
Maindonald, J. H. 2008. Using R for Data Analysis and Graphics. Available as a pdf file

at http://www.maths.anu.edu.au/˜johnm/r/usingR.pdf
Murrell, P. 2005. R Graphics.
http://www.stat.auckland.ac.nz/˜paul/RGraphics/rgraphics.html

R Development Core Team. 2009a. An Introduction to R.
Tufte, E. R. 1997. Visual Explanations.
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.
Wainer, H. 1997. Visual Revelations.
Wilkinson, L. and Task Force on Statistical Inference. 1999. Statistical methods in

psychology journals: guidelines and explanation. American Psychologist 54: 594–604.

See the references at the end of the book for fuller bibliographic details.

1.9 Exercises

1. The following table gives the size of the floor area (ha) and the price ($A000), for 15 houses
sold in the Canberra (Australia) suburb of Aranda in 1999.

area sale.price

1 694 192.0

2 905 215.0

3 802 215.0

4 1366 274.0

5 716 112.7

6 963 185.0

7 821 212.0

8 714 220.0

9 1018 276.0

10 887 260.0

http://www.maths.anu.edu.au/~johnm/r/usingR.pdf
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html


38 A brief introduction to R

11 790 221.5

12 696 255.0

13 771 260.0

14 1006 293.0

15 1191 375.0

Type these data into a data frame with column names area and sale.price.

(a) Plot sale.price versus area.
(b) Use the hist() command to plot a histogram of the sale prices.
(c) Repeat (a) and (b) after taking logarithms of sale prices.
(d) The two histograms emphasize different parts of the range of sale prices. Describe the

differences.

2. Theorings data frame gives data on the damage that had occurred in US space shuttle launches
prior to the disastrous Challenger launch of 28 January 1986. The observations in rows 1, 2, 4,
11, 13, and 18 were included in the pre-launch charts used in deciding whether to proceed with
the launch, while remaining rows were omitted.

Create a new data frame by extracting these rows from orings, and plot total incidents
against temperature for this new data frame. Obtain a similar plot for the full data set.

3. For the data frame possum (DAAG package)

(a) Use the function str() to get information on each of the columns.
(b) Using the function complete.cases(), determine the rows in which one or more

values is missing. Print those rows. In which columns do the missing values appear?

4. For the data frame ais (DAAG package)

(a) Use the function str() to get information on each of the columns. Determine whether
any of the columns hold missing values.

(b) Make a table that shows the numbers of males and females for each different sport. In
which sports is there a large imbalance (e.g., by a factor of more than 2:1) in the numbers
of the two sexes?

5. Create a table that gives, for each species represented in the data frame rainforest, the
number of values of branch that are NAs, and the total number of cases.
[Hint: Use either !is.na() or complete.cases() to identify NAs.]

6. Create a data frame called Manitoba.lakes that contains the lake’s elevation (in meters
above sea level) and area (in square kilometers) as listed below. Assign the names of the lakes
using the row.names() function.

elevation area

Winnipeg 217 24387

Winnipegosis 254 5374

Manitoba 248 4624

SouthernIndian 254 2247

Cedar 253 1353

Island 227 1223

Gods 178 1151

Cross 207 755

Playgreen 217 657



1.9 Exercises 39

(a) Use the following code to plot log2(area) versus elevation, adding labeling infor-
mation (there is an extreme value of area that makes a logarithmic scale pretty much
essential):
attach(Manitoba.lakes)

plot(log2(area) ˜ elevation, pch=16, xlim=c(170,280))

# NB: Doubling the area increases log2(area) by 1.0

text(log2(area) ˜ elevation,

labels=row.names(Manitoba.lakes), pos=4)

text(log2(area) ˜ elevation, labels=area, pos=2)

title("Manitoba’s Largest Lakes")

detach(Manitoba.lakes)

Devise captions that explain the labeling on the points and on the y-axis. It will be necessary
to explain how distances on the scale relate to changes in area.

(b) Repeat the plot and associated labeling, now plotting area versus elevation, but
specifying log="y" in order to obtain a logarithmic y-scale. [Note: The log="y"

setting carries across to the subsequent text() commands. See Subsection 2.1.5 for an
example.]

7. Look up the help page for the R function dotchart(). Use this function to display the areas
of the Manitoba lakes (a) on a linear scale, and (b) on a logarithmic scale. Add, in each case,
suitable labeling information.

8. Using the sum() function, obtain a lower bound for the area of Manitoba covered by water.

9. The second argument of the rep() function can be modified to give different patterns. For
example, to get four 2s, then three 3s, then two 5s, enter
rep(c(2,3,5), c(4,3,2))

(a) What is the output from the following command?
rep(c(2,3,5), 4:2)

(b) Obtain a vector of four 4s, four 3s, and four 2s.
(c) The argumentlength.out can be used to create a vector whose length islength.out.

Use this argument to create a vector of length 50 that repeats, as many times as necessary,
the sequence: 3 1 1 5 7

(d) The argument each can be used to form a vector in which each element in the first
argument is replaced by the specified number of repeats of itself. Use this to create a vector
in which each of 3 1 1 5 7 is replaced by four repeats of itself. Show, also, how this
can be done without use of the argument each.

10. The ˆ symbol denotes exponentiation. Consider the following:
1000*((1+0.075)ˆ5 - 1) # Interest on $1000, compounded

# annually at 7.5% p.a. for five years

(a) Evaluate the above expression.
(b) Modify the expression to determine the amount of interest paid if the rate is 3.5% p.a.
(c) Explain the result obtained when the exponent 5 is changed to seq(1, 10).

11. Run the following code:
gender <- factor(c(rep("female", 91), rep("male", 92)))

table(gender)

gender <- factor(gender, levels=c("male", "female"))

table(gender)



40 A brief introduction to R

gender <- factor(gender, levels=c("Male", "female"))

# Note the mistake: "Male" should be "male"

table(gender)

table(gender, exclude=NULL)

rm(gender) # Remove gender

Explain the output from the successive uses of table().

12. Write a function that calculates the proportion of values in a vector x that exceed some value
cutoff.

(a) Use the sequence of numbers 1, 2, . . . , 100 to check that this function gives the result that
is expected.

(b) Obtain the vector ex01.36 from the Devore6 (or Devore7) package. These data give
the times required for individuals to escape from an oil platform during a drill. Use
dotplot() to show the distribution of times. Calculate the proportion of escape times
that exceed 7 minutes.

13. The following plots four different transformations of theAnimals data from the MASS package.
What different aspects of the data do these different graphs emphasize? Consider the effect on
low values of the variables, as contrasted with the effect on high values.
par(mfrow=c(2,2)) # 2 by 2 layout on the page

library(MASS) # Animals is in the MASS package

plot(brain ˜ body, data=Animals)

plot(sqrt(brain) ˜ sqrt(body), data=Animals)

plot(I(brainˆ0.1) ˜ I(bodyˆ0.1), data=Animals)

# I() forces its argument to be treated "as is"

plot(log(brain) ˜ log(body), data=Animals)

par(mfrow=c(1,1)) # Restore to 1 figure per page

14. Use the functionabbreviate() to obtain six-character abbreviations for the row names in the
data frame cottonworkers (DAAG package). Plot survey1886 against census1886,
and plot avwage*survey1886 against avwage*census1886, in each case using the
six-letter abbreviations to label the points. How should each of these graphs be interpreted?
[Hint: Be sure to specifyI(avwage*survey1886) andI(avwage*census1886)when
plotting the second of these graphs.]

15. The data frame socsupport (DAAG) has data from a survey on social and other kinds of
support, for a group of university students. It includes Beck Depression Inventory (BDI) scores.
The following are two alternative plots of BDI against age:
plot(BDI ˜ age, data=socsupport)

plot(BDI ˜ unclass(age), data=socsupport)

For examination of cases where the score seems very high, which plot is more useful? Explain.
Why is it necessary to be cautious in making anything of the plots for students in the three oldest
age categories (25-30, 31-40, 40+)?

16. Functions that can be useful for labeling points on graphs are abbreviate() (create abbre-
viated names), and paste() (create composite labels). A composite label might, for the data
from socsupport, give information about gender, country, and row number. Try the
following:
gender1 <- with(socsupport, abbreviate(gender, 1))

table(gender1) # Examine the result



1.9 Exercises 41

country3 <- with(socsupport, abbreviate(country, 3))

table(country3) # Examine the result
Now use the following to create a label that can be used with text() or with identify():
num <- with(socsupport, seq(along=gender)) # Generate row numbers

lab <- paste(gender1, country3, num, sep=":")
Useidentify() to place labels on all the points that the boxplots have identified as “outliers”.

17. Given a vector x, the following demonstrates alternative ways to create a vector of numbers
from 1 through n, where n is the length of the vector:
x <- c(8, 54, 534, 1630, 6611)

seq(1, length(x))

seq(along=x)
Now set x <- NULL and repeat each of the calculations seq(1, length(x)) and
seq(along=x). Which version of the calculation should be used in order to return a vector
of length 0 in the event that the supplied argument is NULL.

18. The Rabbit data frame in the MASS library contains blood pressure change measurements
on five rabbits (labeled as R1, R2, . . . ,R5) under various control and treatment conditions.
Read the help file for more information. Use the unstack() function (three times) to convert
Rabbit to the following form:

Treatment Dose R1 R2 R3 R4 R5

1 Control 6.25 0.50 1.00 0.75 1.25 1.5

2 Control 12.50 4.50 1.25 3.00 1.50 1.5

. . . .

6 Control 200.00 32.00 29.00 24.00 33.00 18.0

7 MDL 6.25 1.25 1.40 0.75 2.60 2.4

8 MDL 12.50 0.75 1.70 2.30 1.20 2.5

. . . .

12 MDL 200.00 37.00 28.00 25.00 22.00 19.0

19. The data frame vlt (DAAG) consists of observations taken on a video lottery terminal during
a two-day period. Eight different objects can appear in each of three windows. Here, they are
coded from 0 through 7. Different combinations of the objects give prizes (although with small
probability). The first four rows are:
> head(vlt, 4) # first few rows of vlt

window1 window2 window3 prize night

1 2 0 0 0 1

2 0 5 1 0 1

3 0 0 0 0 1

4 2 0 0 0 1

> # . . .

Use stack() to convert the first three columns of this data set to a case-by-variable format,
then creating a tabular summary of the results, broken down by window.
vltcv <- stack(vlt[, 1:3])

head(vltcv) # first few rows of vltcv

table(vltcv$values, vltcv$ind)

# More cryptically, table(vltcv) gives the same result.

Does any window stand out as different?

20.∗ The help page for iris (type help(iris)) gives code that converts the data in
iris3 (datasets package) to case-by-variable format, with column names “Sepal.Length”,



42 A brief introduction to R

“Sepal.Width”, “Petal.Length”, “Petal.Width”, and “Species”. Look up the help pages for the
functions that are used, and make sure that you understand them. Then add annotation to this
code that explains each step in the computation.

21.∗ The following uses the for() looping function to plot graphs that compare the relative popu-
lation growth (here, by the use of a logarithmic scale) for the Australian states and territories.
oldpar <- par(mfrow=c(2,4))

for (i in 2:9){

plot(austpop[, 1], log(austpop[, i]), xlab="Year",

ylab=names(austpop)[i], pch=16, ylim=c(0,10))}

par(oldpar)

Find a way to do this without looping. [Hint: Use the function sapply(), with
austpop[,2:9] as the first argument.]



2

Styles of data analysis

What is the best way to begin investigation of a new set of data? What forms of data
exploration will draw attention to obvious errors or quirks in the data, or to obvious clues
that the data contain? What checks are desirable before proceeding with an intended formal
analysis, or to help decide what formal analysis may be appropriate? What can be learned
from investigations that other researchers have done with similar data?

Competent statisticians have always used graphs to check their data. Numerical sum-
maries, such as an average, can be very useful, but important features of the data may be
missed without a glance at an appropriate graph. Careful consideration may be needed to
choose a graph that will be effective for the purpose in hand.

We will see in Chapter 3 that an integral part of statistical analysis is the development of
a model that accurately describes the data, clarifies what the data say, and makes prediction
possible. Without model assumptions, there cannot be a meaningful formal analysis! As
assumptions are strengthened, the chances of getting clear results improve. The price for
stronger assumptions is that, if wrong, the results may be wrong. Graphical techniques have
been developed for checking, to the extent possible, many of the assumptions that must be
made in practice.

Preliminary scrutiny of the data can readily degenerate into data snooping, so that the
analysis is unduly attuned to statistical artefacts of the particular data that are to be analyzed.
Under torture, the data readily yield false confessions. To avoid this, strict limits must be
placed on the extent to which the data are allowed to influence the choice of model for the
formal analysis.

Even if data have not been collected in a way that makes them suitable for formal
statistical analysis, exploratory techniques can often glean clues from them. However, it is
unwise, as too often happens, to rely on this possibility!

2.1 Revealing views of the data

The use of graphs to display and help understand data has a long tradition. John W. Tukey
formalized and extended this tradition, giving it the name Exploratory Data Analysis
(EDA). Tukey has had a huge influence on data analysis practices; see Hoaglin (2003).
A key concern is that data should, as far as possible, have the opportunity to speak for
themselves, prior to or as part of a formal analysis.

A use of graphics that is broadly in an EDA tradition continues to develop and evolve.
Statistical theory has an important role in suggesting forms of display that may be helpful



44 Styles of data analysis

and interpretable. Advances in computing have been important, facilitating the development
and use of many of the graphical tools now available. The best modern statistical software
makes a strong connection between data analysis and graphics, combining the computer’s
ability to crunch numbers and present graphs with the ability of a trained human eye to
detect pattern.

Graphical exploration after the style of EDA has at least four roles:

� It may suggest ideas and understandings that had not previously been contemplated.
This use of EDA fits well with the view of science as inductive reasoning.

� It may challenge the theoretical understanding that guided the initial collection of the
data. It then acquires a more revolutionary role. It becomes the catalyst, in the language
of Thomas Kuhn, for a paradigm shift.

� It allows the data to criticize an intended analysis and facilitates checks on assumptions.
Subsequent formal analysis can then proceed with greater confidence.

� It may reveal additional information, not directly related to the research question. It may,
for example, suggest fruitful new lines of research.

The next several subsections will describe the histogram and density plot, the stem-and-
leaf display, the boxplot, the scatterplot, the lowess smoother, and the trellis-style graphics
that are available in the lattice package. The lattice functions greatly extend the available
styles and layouts.

2.1.1 Views of a single sample

Histograms and density plots

The histogram is a basic (and over-used) EDA tool for displaying the frequency distribution
of a set of data. The area of each rectangle of a histogram is proportional to the number of
observations whose values lie within the width of the rectangle. A mound-shaped histogram
may make it plausible that the data follow a normal distribution (the “bell curve”). In small
samples, however, the shape can be highly irregular. In addition, the appearance can depend
on the choice of breakpoints, which is a further reason for caution in interpreting the shape.
It is often helpful to try more than one set of breakpoints.

The data set possum (DAAG package) has nine morphometric measurements on each
of 104 mountain brushtail possums, trapped at seven sites from southern Victoria to central
Queensland (data relate to Lindenmayer et al., 1995). Attention will be limited to the
measurements for 43 females, placing them in a subset data frame that will be called
fossum. The following code creates this subset data frame:

library(DAAG) # Ensure that the DAAG package is attached

## Form the subset of possum that holds data on females only

fossum <- subset(possum, sex=="f")

Panels A and B of Figure 2.1 exhibit histogram plots of the frequency distribution of the
total lengths of the female possums.1

1 ## To get a 1 by 4 layout, precede with
par(mfrow = c(1,4))



2.1 Revealing views of the data 45

Total length (cm)

F
re

qu
en

cy

70 80 90 100

0
5

10
15

20
A

Breaks at 72.5, 77.5, ...

Total length (cm)

70 80 90 100

B
Breaks at 75, 80, ...

Total length (cm)

D
en

si
ty

70 80 90 100

0
00

0
04

0
08

C
Breaks as in A

Total length (cm)

70 80 90 100

D
Breaks as in B

Figure 2.1 The histograms in panels A and B show the same data, but with a different choice of
breakpoints. In panels C and D, density plots are overlaid on the histograms from panels A and B,
respectively.

attach(fossum)

hist(totlngth, breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),

xlab="Total length (cm)", main ="A: Breaks at 72.5, 77.5, ...")

hist(totlngth, breaks = 75 + (0:5) * 5, ylim = c(0, 22),

xlab="Total length (cm)", main="B: Breaks at 75, 80, ...")

The only difference in the construction of the two plots is the choice of breakpoints, but
one plot suggests that the distribution is asymmetric (skewed to the left), while the other
suggests symmetry.

A histogram is a crude form of a density estimate. A better alternative is, often, a smooth
density estimate, as in Figures 2.1C and D. Whereas the width of histogram bars must
be chosen somewhat subjectively, density estimates require the choice of a bandwidth
parameter that controls the amount of smoothing. In both cases, the software has default
choices that can work reasonably well.

dens <- density(totlngth)

xlim <- range(dens$x); ylim <- range(dens$y)

hist(totlngth, breaks = 72.5 + (0:5) * 5, probability = T,

xlim = xlim, ylim = ylim, xlab="Total length (cm)", main=" ")

lines(dens)

hist(totlngth, breaks = 75 + (0:5) * 5, probability = T,

xlim = xlim, ylim = ylim, xlab="Total length (cm)", main= " ")

lines(dens)

par(mfrow=c(1,1)); detach(fossum)

The height of the density curve at any point is an estimate of the proportion of sample
values per unit interval, locally at that point. Observe that in Figures 2.1A and C, the cell
of the histogram between the breakpoints (87.5, 92.5] has a frequency of 22. As the total
frequency is 43, and the width of the cell is 5, this corresponds to a density of 22

43×5 = 0.102,
which is just a little smaller than the height of the density curve at its highest point or mode.

Much of the methodology in this book makes assumptions that hold exactly only if
the data follow a normal distribution (the “bell curve”), discussed in the next chapter.
Density curves are preferable to histograms for drawing attention to particular forms of



46 Styles of data analysis

  The decimal point is 1 digit(s) to the right of the |

  15 | 6
  16 | 
  16 | 5
  17 | 4
  17 | 5678899
  18 | 00000011223
  18 | 55666668899
  19 | 123
  19 | 58

Lower quartile is 179 (10th largest)

Upper quartile is 186 (28th largest)

Median is 182 (19th largest)

Figure 2.2 Stem-and-leaf display showing the heights of the 37 rowers in the ais data set. Anno-
tation has been added that identifies the lower quartile, the median, and the upper quartile.

non-normality, such as that associated with strong skewness in the distribution, but are
still not an adequate tool. A more effective way of checking for normality – the normal
probability plot – is described in Subsection 3.4.2. Density curves are useful for estimating
the population mode, i.e., the value that occurs most frequently.

Where data values have sharp lower and/or upper cutoff limits, use the arguments from
and to to specify those limits. For example, a failure time distribution may have a mode
close to zero, with a sharp cutoff at zero.

The stem-and-leaf display

The stem-and-leaf display is a fine-grained alternative to a histogram, for use in displaying
a single column of numbers. Figure 2.2 shows a stem-and-leaf plot of the heights of the 37
rowers in the ais data set. Code is:

with(ais, stem(ht[sport=="Row"]))

The data have been rounded to the nearest centimeter. The numbers that are displayed are,
in order of magnitude, 156, 165, 174, . . . . The display has broken these down as 150 + 6,
160 + 5, 170 + 4, . . . . The column of numbers on the left of the vertical bars (15, 16, . . . )
comprises the stem; these are the tens of centimeters parts of the numbers. The leaf part
for that number (6, 5, 4, . . . ) is what remains after removing the stem; these are printed, in
order, to the right of the relevant vertical bar.

As there are 37 data values, the median or middle value is the 19th. Starting from the
156 leaf in the first line of the stem-and-leaf diagram and working down, 18 values precede
the 19th largest, and 18 values follow. Thus the median (or 50th percentile) is 182. The
first and third quartiles (the 25th and 75th percentiles) can be recovered in a similar way,
with the exact value depending on the details of the formula used for their calculation. For
present purposes the first quartile can be taken as the 10th largest value (= 179), while the
third quartile is the 28th largest value (= 186), or the 10th value when starting at the largest
and counting down. (The number 10 is the average of the ranks 1 and 19, while 28 is the
average of 19 and 39.)2

2 ## Use quantile() to obtain the quartiles of ht: data frame ais (DAAG package)
quantile(ais$ht[ais$sport=="Row"], prob=c(.25,.5,.75))
# For the 50th percentile (the 2nd quartile), an alternative is median()



2.1 Revealing views of the data 47

75 80 85 90 95

La
rg

es
t v

al
ue

 
(t

he
re

 a
re

 n
o 

ou
tli

er
s)

up
pe

r 
qu

ar
til

e

m
ed

ia
n

lo
w

er
 q

ua
rt

ile

S
m

al
le

st
 v

al
ue

 
(o

ut
lie

rs
 e

xc
ep

te
d)

O
ut

lie
r

85.25 90.5

Total length (cm)

Inter–quartile range
=  90.5 – 85.25 
=  5.25

Compare
 0.75 x Inter–quartile range 
     = 3.9 
with standard deviation
     = 4.2

Figure 2.3 Boxplot, with annotation that explains boxplot features.

Boxplots

Like the histogram, the boxplot is a coarse summary. It allows a trained eye to comprehend
at a glance specific important features of the data. Figure 2.3 shows a boxplot of total lengths
of females in the possum data set, with annotation added that explains the interpretation
of boxplot features. Code that gives the boxplot, without the annotation, is:

## Base graphics boxplot function

with(fossum, boxplot(totlngth, horiz=TRUE))

## Alternative: lattice graphics bwplot function

bwplot(˜totlngth, data=fossum)

Notice that one point lies outside the “whiskers” to the left, and is thus flagged as a
possible outlier. An outlier is a point that, in some sense, lies away from the main body of
the data. In identifying points that are flagged as possible outliers, the normal distribution
(to be discussed in Subsection 3.2.2) is taken as the standard. Using the default criterion one
point in 100 will on average, for data from a normal distribution, be flagged as a possible
outlier. Thus, in a boxplot display of 1000 values that are drawn at random from a normal
distribution, around 10 will be plotted out beyond the boxplot whiskers and thus flagged as
possible outliers. Subsection 2.1.7 has further comment on outliers.

The discussion of the normal and other distributions in Chapter 3 should help clarify
these ideas.

2.1.2 Patterns in univariate time series

In Figure 2.4, “measles” includes both what is nowadays called measles and the closely
related rubella or German measles.3 Panel A uses a logarithmic vertical scale. Panel B uses
an unlogged scale and takes advantage of the fact that deaths from measles are of the order,
in any year, of one thousandth of the population. Thus, deaths in thousands and population
in millions can be shown on the same scale.

3 For details of the data, and commentary, see Guy (1882), Stocks (1942), Senn (2003). (Guy’s interest was in the comparison
with smallpox mortality.) The population estimates (londonpop) are from Mitchell (1988).



48 Styles of data analysis

 D
ea

th
s;

 P
op

ul
at

io
n 

(lo
g 

sc
al

e)

1650 1700 1750 1800 1850 1900 1950

1

10

100

1000

1e+06
5e+06

● ● ● ● ● ● ● ● ● ● ● ● ● ●

A (1629−1939)
D

ea
th

s;
 P

op
ul

at
io

n 
in

 1
00

0s

1840 1850 1860 1870 1880

●

●

●

●

●

1000

2000

3000

4000

B (1841−1881)

Figure 2.4 The two panels provide different insights into data on mortality from measles, in London
over 1629–1939. Panel A shows the numbers of deaths from measles in London for the period from
1629 through 1939 (black curve) and the London population (in thousands, black dots). A log scale
has been used (see Subsection 2.1.3 for details). The lower panel B shows the subset of the measles
data for the period 1840 through 1882 on the linear scale (black curve), together with the London
population (in thousands, black dots).

Simplified code is:

## Panel A

plot(log10(measles), xlab="", ylim=log10 (c(1,5000*1000)),

ylab=" Deaths; Population (log scale)", yaxt="n")

ytiks <- c(1, 10, 100, 1000, 1000000, 5000000)

## London population in thousands

londonpop <-

ts(c(1088,1258,1504,1778,2073,2491,2921,3336,3881,4266,

4563,4541,4498,4408), start=1801, end=1931, deltat=10)

points(log10(londonpop*1000), pch=16, cex=.5)

axis(2, at=log10(ytiks), labels=paste(ytiks), las=2)

## Panel B

plot(window(measles, start=1840, end=1882), ylim=c (0, 4600),

yaxt="n")

axis(2, at=(0:4)* 1000, labels=paste(0:4), las=2)

The function plot() recognizes that measles is a time series object, and calls the
plot method plot.ts() that is used for time series. For details, see help(plot.ts).
Notice the use, for panel B, of the function window() that extracts a subseries.



2.1 Revealing views of the data 49

2 3 4 5 6 7

2
3 

   
 4

   
 5

   
 6

   
  7

one
fo

ur

Figure 2.5 Each of 17 panelists compared two milk samples for sweetness. One sample had one
unit of additive, while the other had four units of additive.

Panel A shows broad trends over time, but is of no use for identifying changes on the
time scale of a year or two. In panel B, the lines that show such changes are, mostly, at an
angle that is in the approximate range of 20◦ to 70◦ from the horizontal.

A sawtooth pattern, by which years in which there are many deaths are commonly
followed by years in which there are fewer deaths, is thus clearly evident. (To obtain
this level of detail for the whole period from 1629 until 1939, multiple panels would be
necessary.)

The following, with y-axis labeling in logarithms of numbers and omitting the population
estimates, demonstrates the combining of the two graphs on the one page:

## Panel A:

par(fig=c(0, 1, .38, 1)) # 38% to 100% of page, in y-direction

plot(log10(measles), ylab="log10(Deaths)",

ylim=log10(c(1,5000*1000)))

mtext(side=3, line=0.5, "A (1629-1939)", adj=0)

## Panel B: window from 1840 to 1882; more complete code

par(fig=c(0, 1, 0, .4), new=TRUE) # 0% to 38% of height of figure region

plot(window(measles, start=1840, end=1882), ylab="Deaths")

mtext(side=3, line=0.5, "B (1841-1881)", adj=0)

par(fig=c(0, 1, 0, 1)) # Restore default figure region

2.1.3 Patterns in bivariate data

The scatterplot is a simple but important tool for the examination of pairwise relationships.
We will illustrate with specific examples.

Figure 2.5 shows data from a tasting session where each of 17 panelists assessed the
sweetness of each of two milk samples, one with four units of additive, and the other with
one unit of additive. The line y = x has been added. The function rug() adds a “rug”,
i.e., short bars at right angles to one or other axis that show the distribution values along
that axis of the plot. The code is:

## Plot four vs one: data frame milk (DAAG)

xyrange <- range(milk)

plot(four ˜ one, data = milk, xlim = xyrange, ylim = xyrange,

pch = 16, pty="s") # pty="s": square plotting region



50 Styles of data analysis

10 30 50
Apparent juice content (%)

R
es

is
ta

nc
e 

(k
O

hm
)

A

2
4

6
8

10

10 30 50
Apparent juice content (%)

B

2
4

6
8

10

Figure 2.6 Electrical resistance versus apparent juice content. Panel B repeats panel A, but with a
smooth curve fitted to the data.

rug(milk$one) # x-axis rug (default is side=1)

rug(milk$four, side = 2) # y-axis rug

abline(0, 1)

There is a positive correlation between assessments for the two samples; if one was
rated as sweet, by and large so was the other. The line y = x assists in comparing the
two samples. Most panelists (13 out of 17) rated the sample with four units of additive as
sweeter than the sample with one unit of additive.

The fitting of a smooth trend curve

Figure 2.6 shows data from a study that measured both electrical resistance and apparent
juice content for a number of slabs of kiwifruit. The curve in panel B, obtained using
the lowess method that is discussed further in Subsection 7.5.4, estimates the relationship
between electrical resistance and apparent juice content. The code is:

## Plot ohms vs juice: data frame fruitohms (DAAG)

plot(ohms ˜ juice, xlab="Apparent juice content (%)",

ylab="Resistance (ohms)", data=fruitohms)

## Add a smooth curve, as in Panel B

with(fruitohms, lines(lowess(juice, ohms), lwd=2))

# With lwd=2, the curve is twice the default thickness

The fitted smooth curve shows a form of response that is clearly inconsistent with a
straight line. It suggests an approximate linear relationship for juice content up to somewhat
over 35%. Once the juice content reaches around 45%, the curve becomes a horizontal line,
and there is no evident further change in resistance. There is no obvious simple form of
equation that might be used to describe the curve.

A curve fitted using lowess() or another such smoothing function can provide a useful
benchmark against which to compare the curve given by a theoretical or other mathematical
form of equation that the data are thought to follow.



2.1 Revealing views of the data 51

0 200 600

0
20

00
40

00

Body weight (kg x 100)

B
ra

in
 w

ei
gh

t (
g)

●

●
●●● ●

●

●

●
●

●

●

●●●●●●
●
●

● ●●
●

A

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

Body weight (kg x 100)

B
ra

in
 w

ei
gh

t (
g)

B

0.001 0.1 1 10 1000

−3 −1 0 1 2 3

−
1

0
1

2
3

4

0.
1

1
10

10
00

log10(Body weight)

lo
g1

0(
B

ra
in

 w
ei

gh
t)

Figure 2.7 Brain weight versus body weight, for 27 animals that vary greatly in size. Panel A uses
untransformed scales, while panel B uses logarithmic scales, on both axes.

What is the appropriate scale?

Figures 2.7A and B plot brain weight (g) against body weight (kg), for a number of different
animals:

## The following omits the labeling information

oldpar <- par(mfrow = c(1,2), pty="s")

## Plot brain vs body: data frame Animals (MASS package)

library(MASS)

plot(brain ˜ body, data=Animals) # Panel A

plot(log(brain) ˜ log(body), data=Animals) # Panel B

par(oldpar)

Figure 2.7A is almost useless. The axes should be transformed so that the data are spread
out more evenly. Here, we can do this by choosing a logarithmic scale. Multiplication by
the same factor (e.g., for the tick marks in Figure 2.7B, by a factor of 10) always gives the
same distance along the scale. If we marked points 1, 5, 25, 125, . . . along the vertical axis,
they would also lie an equal distance apart.

A logarithmic scale is appropriate for quantities that change multiplicatively. For exam-
ple, if cells in a growing organism divide and produce new cells at a constant rate, then the
total number of cells changes in a multiplicative manner, resulting in so-called exponential
growth. Growth in the bodily measurements of organisms may similarly be multiplicative,
with large organisms increasing in some time interval by the same approximate fraction
as smaller organisms. Random changes in the relative growth rate will produce adult
organisms whose size (e.g., height) is, on the logarithmic scale, approximately normally
distributed. The reason is that growth rate on a natural logarithmic scale (loge) equals the
relative growth rate. Derivation of this result is a straightforward use of the differential
calculus.

The logarithmic transformation is so commonly needed that it has seemed necessary to
introduce it at this point. Biologists, economists, and others should become comfortable
with its use. There is a brief discussion of other transformations in Chapter 5.



52 Styles of data analysis

Length of egg (mm)

hedge sparrow

meadow pipit

pied wagtail

robin

tree pipit

wren

20 21 22 23 24 25

A

Length of egg (mm)

20 21 22 23 24 25

B

Figure 2.8 Strip plot (panel A) and boxplot (panel B) displays of cuckoo egg lengths. Data, from
Latter (1902), are reproduced in summarized form in Tippett (1931).

2.1.4 Patterns in grouped data – lengths of cuckoo eggs

Cuckoos lay eggs in the nests of other birds. The eggs are then unwittingly adopted
and hatched by the host birds. In Figure 2.8 the egg lengths are grouped by the species
of the host bird, using both a strip plot display (panel A) and boxplot summaries
(panel B).

Strip plots and boxplots allow convenient side-by-side comparisons of different groups,
here the different host species. The main part of the code used for these plots is:

## Compare stripplot() with bwplot(), both from lattice package

stripplot(species ˜ length, xlab="Length of egg (mm)", data=cuckoos)

bwplot(species ˜ length, xlab="Length of egg (mm)", data=cuckoos,

scales=list(y=list(alternating=0)))

# alternating=0; omit y-axis labels

Eggs planted in wrens’ nests appear smaller than eggs planted in other birds’ nests. Apart
from several outlying egg lengths in the meadow pipit nests, the length variability within
each host species’ nest is fairly uniform.

Fuller details of the code are in the footnote.4

Comparing densities between groups – lattice style density plots

Lattice-style density plots can be useful for getting an indication of how distributions may
differ across different groups of data. Figure 2.9 compares the ear conch measurements

4 ## For tidier labels replace ".", in several of the species names, by a space
specnam <- with(cuckoos, sub(pattern=".", replacement=" ", levels(species), fixed=TRUE))
# fixed=TRUE: do not interpret "." as a ‘regular expression’,

## Panel A: Strip plot: data frame cuckoos (DAAG)
plt1 <- stripplot(species ˜ length, factor.levels=specnam, data=cuckoos)
print(update(plt1, xlab="Length of egg (mm)"),

position=c(0,0,0.55,1)) # xmin, ymin, xmax, ymax
# Use print() to display lattice graphics objects

## Panel B: Box plot
plt2 <- bwplot(species ˜ length, factor.levels=specnam, data=cuckoos)
print(update(plt2, xlab="Length of egg (mm)", scales=list(y=list(alternating=0))),

newpage=FALSE, position=c(0.55,0,1,1))



2.1 Revealing views of the data 53

earconch

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

0.25

40 45 50 55

f

40 45 50 55

m

Vic
other

Figure 2.9 Density plot that compares the ear conch measurements for each of the two “populations”
of possums, for males and females separately.

of male and female possums, for each of two “populations” (Vic and other) of
possums:

## Density plot for earconch: data frame possum (DAAG package)

library(lattice)

densityplot(˜earconch | sex, groups=Pop, data=possum,

auto.key=list(space="right"))

2.1.5∗ Multiple variables and times

Overlaying plots of several time series (sequences of measurements taken at regular inter-
vals) might seem appropriate for making direct comparisons. However, this approach will
only work if the scales are similar for the different series.

The data framejobs (DAAG) gives the number of workers (in thousands) in the Canadian
labor force, broken down by region (BC, Alberta, Prairies, Ontario, Quebec, Atlantic), for
the 24-month period from January 1995 to December 1996. Over this time, Canada was
emerging from a deep economic recession. Columns 1–6 have the respective numbers for
six different regions. The ranges of values in the columns are:

> ## Apply function range to columns of data frame jobs (DAAG)

> sapply(jobs, range)

BC Alberta Prairies Ontario Quebec Atlantic Date

[1,] 1737 1366 973 5212 3167 941 95.00000

[2,] 1840 1436 999 5360 3257 968 96.91667

In order to see where the economy was taking off most rapidly, it is tempting to plot all
of the series on the same graph. In order that similar changes on the scale will correspond
to similar proportional changes, a logarithmic scale is used in Figure 2.10A:

## Simplified plot; all series in a single panel; use log scale

(simplejobsA.xyplot <-

xyplot(Ontario+Quebec+BC+Alberta+Prairies+Atlantic ˜ Date,

outer=FALSE, data=jobs, type="b",

ylab="Number of workers", scales=list(y=list(log="e")),

auto.key=list(space="right", lines=TRUE)))



54 Styles of data analysis

A

B

N
um

be
r 

of
 w

or
ke

rs

1097
(7)

1808
(7.5)

2981
(8)

4915
(8.5)

Jan95 Jul95 Jan96 Jul96 Jan97

Ontario
Quebec
BC
Alberta
Prairies
Atlantic

N
um

be
r 

of
 jo

bs

5115
(8.54)

5219
(8.56)

5324
(8.58)

5432
(8.6)

Jan95 Jul95 Jan96 Jul96 Jan97

Ontario

3165
(8.06)

3229
(8.08)

3294
(8.1)

Quebec

1737
(7.46)

1772
(7.48)

1808
(7.5)

1845
(7.52)

Jan95 Jul95 Jan96 Jul96 Jan97

BC

1366
(7.22)

1394
(7.24)

1422
(7.26)

Alberta

Jan95 Jul95 Jan96 Jul96 Jan97

973
(6.88)

992
(6.9)

1012
(6.92)

Prairies

934
(6.84)

953
(6.86)

973
(6.88)

Atlantic

Figure 2.10 Data are numbers in the labor force (thousands) for various regions of Canada, at
quarterly intervals over 1995–1996. Panel A uses the same logarithmic scale for all regions. Panel B
shows the same data as in panel A, but now with separate (“sliced”) logarithmic scales on which the
same percentage increase, e.g., by 1%, corresponds to the same distance on the scale, for all plots.
Distances between ticks are 0.02 on the loge scale, i.e., a change of almost exactly 2%.

The trellis object has been saved so that it can be updated, as demonstrated in the footnote,
to give the graph shown in Figure 2.10A.5

The use of column names that are joined with "+" has the result that the columns are
plotted in parallel. The regions have been taken in order of the number of jobs in December
1996 (or, in fact, at any other time). This ensures that the order of the labels in the key
matches the positioning of the points for the different regions. Code in the footnote shows
how the labeling on the x- and y-axes was obtained.

5 ## Panel A: Update trellis object to improve x- and y-axis tick labels
datelabpos <- seq(from=95, by=0.5, length=5)
datelabs <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length=5), "%b%y")
## Now create $y$-labels that have numbers, with log values underneath
ylabpos <- exp(pretty(log(unlist(jobs[,-7])), 5))
ylabels <- paste(round(ylabpos),"\n(", log(ylabpos), ")", sep="")
update(simplejobsA.xyplot, xlab="",

scales=list(x=list(at=datelabpos, labels=datelabs),
y=list(at=ylabpos, labels=ylabels)))



2.1 Revealing views of the data 55

1366 1436 1752 1840

1250 1500 1800

210.416 210.488 210.775 210.845

e7.220 e7.270 e7.469 e7.518

103.135 103.157 103.244 103.265

log=2

log="e"

log=10

Figure 2.11 Labeling of the values for Alberta (1366, 1436) and Ontario (1752, 1840), with alter-
native logarithmic scale choices of labeling.

Because the labor forces in the various regions do not have similar sizes, it is impossible
to discern any differences among the regions from this plot. Plotting on the logarithmic
scale did not remedy this problem.6

Figure 2.10B shows a much preferable alternative. The six different panels use different
slices of the same logarithmic scale. Here is simplified code for Figure 2.9B. The regions
are again taken in the order of numbers of jobs in December 1996.7

## Simplified code for Figure 2.9B

xyplot(Ontario+Quebec+BC+Alberta+Prairies+Atlantic ˜ Date,

data=jobs, type="b", layout=c(3,2), ylab="Number of jobs",

scales=list(y=list(relation="sliced", log=TRUE)),

outer=TRUE)

Use of outer=TRUE ensures that the separate columns (regions) are plotted on sep-
arate panels. Equal distances on the scale now correspond to equal relative changes.
It is now clear that Alberta and BC experienced the most rapid job growth during
the period, and that there was little or no job growth in Quebec and the Atlantic
region.

Even better, particularly if ready comprehension is important, would be to standardize
by dividing, e.g., by the respective number of persons aged 15 years and over at that time.
Exercise 11 at the end of the chapter explores this approach.

∗Small proportional changes, on a scale of natural logarithms

Tick marks have been placed a distance 0.02 apart on a scale of natural logarithms or
loge. On a scale of natural logarithms a change of 0.02 is, to a close approximation, a 2%
change.

∗Tick positions and labeling, on a logarithmic scale

The following are the changes in numbers employed, in each of Alberta and Ontario, from
January 1995 to December 1996. The changes are shown in actual numbers, and on scales
of log2, loge, and log10. Figure 2.11 shows this graphically.

6 Figure 2.10A might alternatively be plotted as a time series. For details, see Subsection 14.9.7.
7 Subsection 15.5.2 has code that gives the labeling shown in Figure 2.10B.



56 Styles of data analysis

Increase

Rel. change log2 loge log10

Alberta (1366 to 1466; increase = 70) 1.051 0.072 0.050 0.022
Ontario (1752 to 1840; increase = 88) 1.050 0.070 0.049 0.021

From the beginning of 1995 to the end of 1996, Alberta increased by 70 from 1366 to
1436, which is a factor of 1436/1366 � 1.051. Ontario increased by 96 from 5239 to 5335,
which is a factor of 1.050. The proper comparison is not between the absolute increases of
70 and 96, but between relative increases by factors of 1.05 and 1.018.

For lattice functions, the arguments log=2 or log="e" or log=10 are available.
These use the relevant logarithmic axis labeling, as in Figure 2.11, for axis labels. In base
graphics, with the argument log="x", the default is to label in the original units.

An alternative, both for traditional and lattice graphics, is to enter the logged values,
using whatever basis is preferred (2 or "e" or 10), into the graphics formula. Unless other
tick labels are provided, the tick marks will then be labeled with the logged values for the
relevant basis.

2.1.6 Scatterplots, broken down by multiple factors

Data, in the data frame tinting (DAAG), are from an experiment that examined the
effects of the tinting of car windows on visual performance (data relate to Burns et al.,
1999). The main focus was on visual recognition tasks, where side window vision is
important. Columns are:

� Variablescsoa (critical stimulus onset asynchrony, i.e., the time in milliseconds required
to recognize an alphanumeric target), it (inspection time, i.e., the time required for a
simple discrimination task), and age (age to the nearest year).

� The ordered factor tint (levels no, lo, hi).
� Factors target (locon, i.e., low contrast; hicon, i.e., high contrast), sex

(f = female, m = male), and agegp (younger = a younger participant, in the 20s;
older = an older participant, in the 70s).

Each of 28 individuals was tested at each level of tint, for each of the two levels
of target. In all there are four factors (tint, target, sex, and agegp) that might
influence the values of csoa and it, and the relationship between them. Two of these
(tint and target) take different values for the same individual, while the other two
(sex and agegp) vary between individuals.

A first step might be to plot csoa against it for each combination of sex and agegp.
Use of the argument groups=target results in the use of different symbols (in a black
and white plot) or different colors, depending on whether the target is low contrast or high
contrast. Also, we can ask for a key. The code is

(target.xyplot <-

xyplot(csoa ˜ it | sex*agegp, data=tinting, groups=target,

auto.key=list(columns=2)))



2.1 Revealing views of the data 57

A B

it

cs
oa

40

60

80

100

120

50 100 150 200

f
younger

m
younger

40

60

80

100

120

f
older

50 100 150 200

m
older

locon hicon

it

50 100 150 200

f
younger

40

60

80

100

120

m
younger

f
older

50 100 150 200

40

60

80

100

120

m
older

no lo hi

Figure 2.12 Panel A plots csoa against it, for each combination of sex and agegp. Different
colors (gray and black) and symbols show different levels of target. Panel B shows the same
points, but different colors (printed in grayscale) now show different levels of tint. Notice, also,
the addition of smooth curves.

There are further possibilities for refinement. Figure 2.12A has used parameter settings that
specify the choice of colors (here gray or black), plotting symbols, and the placement of
the key.8

Observe that the longest times are for the high level of tinting. The relationship between
csoa and it seems much the same for both levels of contrast. A number of older males
have long response times with the low-contrast target. The analysis that will be presented
later, in Chapter 10, indicates that within-subject effects – the effect of tint andtarget –
stand up with greater clarity against the statistical noise than do effects of sex and
agegp. The reason is that tint and target are effects that can be assessed within
subjects, whereas the effects of sex and agegp involve a comparison across different
subjects.

Because there are six points for each subject, Figure 2.12A gives a visual impres-
sion that exaggerates the evidence for effects that are associated with sex and
agegp.

Fitting a trend curve, as in Figure 2.12B, makes the relationship clearer. The code for
including the smooth curve, without the other refinements of Figure 2.12B, is:

8 ## Settings used for Figure 2.12B (suitable for grayscale on a printed page)
update(target.xyplot,

par.settings=simpleTheme(col=c("black","gray20"), pch=c(1, 16)))
# In the above, par.settings changed settings for this use of xyplot()
## Note the use of simpleTheme() for changing settings; see help(simpleTheme)
## Use trellis.par.set() to change settings while the current device is in use



58 Styles of data analysis

(tint.xyplot <-

xyplot(csoa ˜ it|sex*agegp, groups=tint, data=tinting,

type=c("p","smooth"), span=1.25, auto.key=list(columns=3)))

# "p": points; "smooth": a smooth curve

# With span=1.25, the smooth curve is close to a straight line

The footnote adds the details needed to give Figure 2.12B.9

2.1.7 What to look for in plots

This is not a complete account of what plots may reveal! Its purpose is to draw attention to
some of the more obvious possibilities.

Outliers

Outliers are points that appear to be isolated from the main body of the data. Such points
(whether errors or genuine values) are liable to distort any model that we fit. What appears
as an outlier depends, inevitably, on the view that is presented. On a fairly simple level, the
view is affected by whether or not, and how, the data are transformed.

Boxplots, and the normal probability plot that will be discussed in Subsection 3.4.2, are
useful for highlighting outliers in one dimension. Scatterplots may highlight outliers in two
dimensions. Some outliers will be apparent only in three or more dimensions. The presence
of outliers can indicate departure from model assumptions.

Asymmetry of the distribution

Most asymmetric distributions can be characterized as either positively skewed or negatively
skewed. Positive skewness is the commonest form of asymmetry. There is a long tail to the
right, values near the minimum are bunched up together, and the largest values are widely
dispersed. Provided that all values are greater than zero, a logarithmic transformation
typically makes such a distribution more symmetric. A distribution that is skew cannot be
normal. Severe skewness is typically a more serious problem for the validity of results than
other types of non-normality.

If values of a variable that takes positive values range by a factor of more than 10:1
then, depending on the application area context, positive skewness is to be expected. A
logarithmic transformation should be considered.

Changes in variability

Boxplots and histograms readily convey an impression of the extent of variability or
scatter in the data. Side-by-side boxplots such as in Figure 2.8B, or strip charts such as

9 ## Panel B, with refinements
themeB <- simpleTheme(col=c("skyblue1", "skyblue4")[c(2,1,2)], lwd=c(1,1,2),

pch=c(1,16,16)) # open, filled, filled
update(tint.xyplot, par.settings=themeB, legend=NULL,

auto.key=list(columns=3, points=TRUE, lines=TRUE))
# Set legend=NULL to allow new use of auto.key



2.2 Data summary 59

in Figure 2.8A, allow rough comparisons of the variability across different samples or
treatment groups. They provide a visual check on the assumption, common in many uses
of statistical models, that variability is constant across treatment groups.

Note, however, that it is easy to over-interpret such plots. Statistical theory offers useful
and necessary warnings about the potential for such over-interpretation. (The variability
in a sample, typically measured by the variance, is itself highly variable under repeated
sampling. Measures of variability will be discussed in Subsection 2.2.3.)

When variability increases as data values increase, the logarithmic transformation will
often help. If the variability is constant on a logarithmic scale, then the relative variation
on the original scale is constant.

Clustering

Clusters in scatterplots may suggest structure in the data that may or may not have been
expected. When we proceed to a formal analysis, this structure must be taken into account.
Do the clusters correspond to different values of some relevant variable? Outliers are a
special form of clustering.

Non-linearity

We should not fit a linear model to data where relationships are demonstrably non-linear.
Often it is possible to transform variables so that terms enter into the model in a manner
that is closer to linear. If not, the possibilities are wide-ranging, and we will canvass only a
small number of them. See especially Chapter 7.

If there is a theory that suggests the form of model, then this is a good starting point.
Available theory may, however, incorporate various approximations, and the data may tell
a story that does not altogether match the available theory. The data, unless they are flawed,
have the final say!

2.2 Data summary

Data summaries may: (1) be of interest in themselves; (2) give insight into aspects of data
structure that may affect further analysis; (3) be used as data for further analysis. In case
(3), it is necessary to ensure that important information, relevant to the analysis, is not lost.
If no information is lost, the gain in simplicity of analysis can make the use of summary
data highly worthwhile.

It is important, when data are summarized, not to introduce distortions that are artefacts
of the way that the data have been summarized – examples will be given. The question of
whether information in the data may have been lost or obscured has especial importance
for the summarizing of counts across the margins of multi-way tables, and for the use of
the correlation coefficient.

2.2.1 Counts

Data in the data frame nswpsid1 (DAAG package) are derived from a study (Lalonde,
1986) that compared two groups of individuals with a history of unemployment problems –
one an “untreated” control group and the other a “treatment” group whose members were
exposed to a labor training program. Are the two groups genuinely comparable? This can



60 Styles of data analysis

be checked by comparing them with respect to various measures other than their exposure
(or not) to the labor training program.

Thus, what are the relative numbers in each of the two groups who had completed high
school (nodeg = 0), as opposed to those who had not (nodeg = 1)?

> ## Table of counts example: data frame nswpsid1 (DAAG)

> tab <- with(nswpsid1, table(trt, nodeg, useNA="ifany"))

> dimnames(tab) <- list(trt=c("none", "training"),

+ educ = c("completed", "dropout"))

> tab

educ

trt completed dropout

none 1730 760

training 80 217

Notice the use of the argument useNA="ifany" in the call to table(). This ensures
that any NAs in either of the margins of the table will be tabulated.

The training group has a much higher proportion of dropouts. Similar comparisons are
required for other factors and variables, examining joint as well as individual comparisons.
These data will be investigated further in Section 13.2.

If x1, x2, . . . , xn are all columns (factors or vectors) of the same length and each
is supplied as an argument to table(), the result is an n-way table. For example,
table(x1, x2, x3) gives a three-way table. The first argument defines rows, though
it is printed horizontally if there is just one column. The second argument defines columns.
The table slices (rows by columns) that correspond to different values of the third argument
appear in succession down the page, and so on.

Addition over one or more margins of a table

Figure 2.13 illustrates the possible hazards of adding a multi-way table over one of its mar-
gins. Data are from a study (Charig, 1986) that compared outcomes for two different types
of surgery for kidney stones; A: open, which used open surgery, and B: ultrasound,
which used a small incision, with the stone destroyed by ultrasound.

Without additional information, the results are impossible to interpret. Different surgeons
will have preferred different surgery types, and the prior condition of patients will have
affected the choice of surgery type. The consequences of unsuccessful surgery may have
been less serious for ultrasound than for open surgery.

Code that gives the mosaic plot is:

stones <- array(c(81,6,234,36,192,71,55,25), dim=c(2,2,2),

dimnames=list(Success=c("yes","no"),

Method=c("open","ultrasound"),

Size=c("<2cm", ">=2cm")))

# NB: The margins are 1:Success, 2:Method, 3:Size

library(vcd)

mosaic(stones, sort=3:1) # c.f. mosaicplot() in base graphics

# Re-ordering the margins gives a more interpretable plot.



2.2 Data summary 61

Method

S
iz

e

S
uc

es
s

>
=

2c
m

no
ye

s

<
2c

m

open ultrasound

no
ye

s

Success
yes no %Yes

Method Size
open <2cm 81 6 93.1

>=2cm 192 71 73.0
ultrasound <2cm 234 36 86.7

>=2cm 55 25 68.8

Add over Size
open 273 77 78.0
ultrasound 289 61 82.6

Figure 2.13 Mosaic plot for the kidney stone surgery data that is shown to the right of the figure.
Outcomes are for two different types of surgery for kidney stones. The overall (apparent) success
rates (78% for open surgery as opposed to 83% for ultrasound) favor ultrasound. The success rate for
each size of stone separately favors, in each case, open surgery.

Code that tabulates the data, giving a layout similar to that on the right of the
plot, is:

## Function to calculate percentage success rates

roundpc <- function(x)round(100*x[1]/sum(x), 1)

## Add "%Yes" to margin 1 (Success) of the table

stonesplus <- addmargins(stones, margin=1, FUN=c("%Yes"=roundpc))

## Print table, use layout similar to that shown alongside plot

ftable(stonesplus, col.vars=1)

## Get sum for each margin 1,2 combination; i.e., sum over margin 3

stones12 <- margin.table(stones, margin=c(1,2))

stones12plus <- addmargins(stones12, margin=1, FUN=c("%Yes"=roundpc))

ftable(stones12plus, col.vars=1) # Table based on sums over Size

An alternative to mosaic() in the vcd package is mosaicplot() in base graphics.
The function mosaic() is more flexible and extensible. A footnote demonstrates how the
size of the text in the margins can be modified.10

Tabulation that accounts for frequencies or weights – the xtabs() function

The function xtabs() will be illustrated with a further example that, again, demonstrates
the hazards of summarizing tabular or other data across factors that affect the frequencies
of the margins that are retained.

Each year the National Highway Traffic Safety Administration in the USA uses a random
sampling method, with sampling fractions that differ according to class of accident, to
collect data from all police-reported crashes in which there is a harmful event (people or

10 ## Add arguments that control size of textual components
mosaic(aperm(stones, 3:1), main=NULL, gp_varnames=gpar(fontsize=8),

labeling_args=list(gp_labels=gpar(fontsize=7),
legend_args=list(fontsize=7)))



62 Styles of data analysis

property), and from which at least one vehicle is towed. The data in nassCDS (DAAG) are
restricted to front-seat occupants (DAAG).11

Factors whose effect warrant investigation include, as a minimum: A: airbag (was
an airbag fitted?), S: seatbelt (was a seatbelt used?), and dvcat (F: a force of impact
measure). The letters A, S, and F will be used as abbreviations when tables are generated.

The column weight (national inflation factor) holds the inverses of the sampling
fraction estimates. The weight is designed to be the amount by which the contribution
for the relevant row should be multiplied when tables of numbers of deaths and numbers
of accidents are created. The following uses xtabs() to estimate numbers of front-seat
passengers alive and dead, classified by airbag use:

> library(DAAG)

> ## NB: The parentheses generate an implicit print(abtab)

> (Atab <- xtabs(weight ˜ airbag + dead, data=nassCDS))

dead

airbag alive dead

none 5445245.90 39676.02

airbag 6622690.98 25919.11

The function addmargins() that was introduced above can be used to add the proportion
of deaths in the right margin:

> roundpc2 <- function(x)round(100*x[2]/sum(x), 2)

> addmargins(Atab, margin=2, FUN=c("%Dead"=roundpc2))

dead

airbag alive dead %Dead

none 5445245.90 39676.02 0.72

airbag 6622690.98 25919.11 0.39

The above might suggest that the deployment of an airbag substantially reduces the risk
of mortality. Consider, however:

> SAtab <- xtabs(weight ˜ seatbelt + airbag + dead, data=nassCDS)

> ftable(addmargins(SAtab, margin=3, FUN=c("%Dead"=roundpc2)),

+ col.vars=3)

dead alive dead %Dead

seatbelt airbag

none none 1342021.90 24066.65 1.76

airbag 871875.39 13759.94 1.55

belted none 4103224.00 15609.36 0.38

airbag 5750815.59 12159.17 0.21

In the earlier table (Atab), the results without airbags were mildly skewed (4.12:1.37)
to those for belted. Results with airbags were strongly skewed (57.6:8.86) to those for
none, that is, no seatbelt.

11 They hold a subset of the columns from a corrected version of the data analyzed in Meyer and Finney (2005). See also
Farmer (2005) and Meyer (2006). More complete data are available from one of the web pages noted on the help page for
nassCDS.



2.2 Data summary 63

The reader may wish to try an analysis that accounts, additionally, for estimated force of
impact (dvcat):

FSAtab <- xtabs(weight ˜ dvcat + seatbelt + airbag + dead,

data=nassCDS)

ftable(addmargins(FSAtab, margin=4, FUN=c("%Dead"=roundpc2)),

col.vars=4)

The small differences that are now apparent, mostly unfavorable to airbags, are below any
reasonable threshold of statistical detectability.

Farmer (2005) argues that these data, tabulated as above, have too many uncertainties
and potential sources of bias to give reliable results. He presents a different analysis,
based on the use of front-seat passenger mortality as a standard against which to compare
driver mortality. Farmer’s analysis was limited to cars without passenger airbags. In the
absence of any effect from airbags, the ratio of driver mortality to passenger mortality
should be the same, irrespective of whether or not there was a driver airbag. Farmer found
a ratio of driver fatalities to passenger fatalities that was 11% lower in the cars with driver
airbags.

In addition to the functions discussed, note the function CrossTable() from the
gmodels package, which offers a choice of SPSS-like and SAS-like output formats.

2.2.2 Summaries of information from data frames

For obtaining summaries at combinations of different factor levels, the aggregate()
function is often a good recourse. Note also the abilities of aaply() and allied functions
in Hadley Wickham’s plyr package.

Summary as a prelude to analysis – aggregate()

The data frame kiwishade (from DAAG) has yield measurements from 48 vines. Plots,
made up of four vines each, were the experimental units. The analysis can be simplified by
first taking means over plots that had four vines each.

The 12 plots were divided into three blocks of four plots each. One block of four
was north-facing, a second block west-facing, and a third block east-facing. (Because the
trial was conducted in the Southern hemisphere, there is no south-facing block.) Shading
treatments were applied to whole plots, i.e., to groups of four vines, with each treatment
occurring once per block. The shading treatments were applied either from August to
December, December to February, February to May, or not at all. For more details of the
experiment, look ahead to Figure 10.4.

For comparing treatments, there is no loss of information from basing analysis on the
plot means. The four individual vine results that are averaged to give the plot mean are
multiple measurements on the same experimental unit, here a plot.

Figure 2.14 plots both the aggregated means and the individual vine results. As treatments
were applied to whole plots, the graph that shows the individual vine results exaggerates
the extent of information that is available, in each block, for comparing treatments. For



64 Styles of data analysis

yield

none

Aug2Dec

Dec2Feb

Feb2May

85 90 95 100 105 110

east

85 90 95 100 105 110

north

85 90 95 100 105 110

west

Individual vine yields Plot means (4 vines)

Figure 2.14 The four panels are the four different plots. The solid gray points are plot means. The
open gray circles are yields for individual vines in the plot.

gaining a correct impression of the strength of the evidence, it is best to focus the eye on
the means, shown as +. The code for Figure 2.14 is given as a footnote.12

The first few rows of the data frame are:

yield block shade plot

1 101.11 north none north.none

2 108.02 north none north.none

3 106.67 north none north.none

4 100.30 north none north.none

5 92.64 west none west.none

The aggregate() function splits the data frame according to the specified combina-
tions of factor levels, and then applies a specified function to each of the resulting subgroups.
Here, it forms a data frame that has the mean for each combination of block and shading
treatment. The code, with the first line of output following, is:

> ## mean yield by block by shade: data frame kiwishade (DAAG)

> kiwimeans <- with(kiwishade,

+ aggregate(yield, by=list(block, shade), mean))

> names(kiwimeans) <- c("block","shade","meanyield")

> head(kiwimeans, 4)

block shade meanyield

1 east none 99.0250

> # . . .

12 ## Individual vine means, by block and treatment
library(lattice)
## Panel function calls panel.dotplot(), then panel.average()
dotplot(shade ˜ yield | block, data=kiwishade, aspect=1,

panel=function(x,y,...){panel.dotplot(x, y, pch=1, col="gray40")
panel.average(x, y, type="p", col="black",

pch=3, cex=1.25)},
key=list(space="top", columns=2, col=c("gray40", "black"),
text=list(c("Individual vine yields", "Plot means (4 vines)")),
points=list(pch=c(1,3), cex=c(1,1.25))), layout=c(3,1))

# Note that parameter settings were given both in the calls to the
# panel functions and in the list supplied to key.



2.2 Data summary 65

Use of the aggregated data for analysis commits us to working with plot means. What
information is lost? If there were occasional highly aberrant values, use of medians might
be preferable. The data should have a say in determining the form of summary.

The benefits of data summary – dengue status example

Hales et al. (2002) examined the implications of climate change projections for the world-
wide distribution of dengue, a mosquito-borne disease that is a risk in hot and humid regions.
Dengue status, i.e., information on whether dengue had been reported during 1965–1973, is
available for 2000 administrative regions. Climate information is available on a much finer
scale, on a grid of about 80 000 pixels at 0.5◦ latitude and longitude resolution. Should the
analysis work with a data set that consists of 2000 administrative regions, or with the much
larger data set that has one row for each of the 80 000 pixels? The following are reasons
that might have argued for working with the summarized data:

� Dengue status is a summary figure that is given by administrative region. An analysis
that uses the separate data for the 80 000 pixels will, in effect, predict dengue status for
climate variable values that are in some sense averages for the administrative region.
Explicit averaging, prior to the analysis, gives the user control over the form of averaging
that will be used. If, for example, values for some pixels are extreme relative to other
pixels in the administrative region, medians may be more appropriate than means. In
some regions, the range of climatic variation may be extreme. The mean will give the
same weight to sparsely populated cold mountainous locations as to highly populated
hot and humid locations on nearby plains.

� Correlation between observations that are close together geographically, though still
substantial, will be less of an issue for the data set in which each row is an administrative
region. Points that repeat essentially identical information are a problem both for the
interpretation of plots and, often, for the analysis. Regions that are geographically close
will often have similar climates and the same dengue status.

� Analysis is more straightforward with data sets that are of modest size. It is easier to
do standard forms of data checking. The points that appear on plots are more nearly
independent. Standard forms of scatterplot less readily degenerate into a dense mass of
black ink.

There are many possible ways to calculate a central value, of which the mean and the
median are the most common. (In fact, however, the paper used the disaggregated data.)

2.2.3 Standard deviation and inter-quartile range

An important measure of variation in a population is the population standard deviation
(often written σ ), which is almost always unknown. The variance σ 2, which is the square
of the standard deviation, is widely used in formal inference.

The sample standard deviation, used to estimate the population standard deviation when
a random sample has been taken, is

s =
√∑

(x − x̄)2

n − 1
.



66 Styles of data analysis

Table 2.1 Standard deviations for cuckoo egg data.

Hedge sparrow Meadow pipit Pied wagtail Robin Tree pipit Wren

1.049 0.920 1.072 0.682 0.880 0.754

In words, take the difference of each data value from the mean, square, add the squared
differences together, divide by n − 1, and take the square root. In R, use the function
sd() to calculate the standard deviation, or var() to calculate the variance. The standard
deviation is in the same units as the original measurements. For s to be an accurate estimate
of σ , the sample must be large.

Cuckoo eggs example

Consider again the data on cuckoo eggs that we discussed in Subsection 2.1.4. The group
standard deviations are listed in Table 2.1.13

The variability in egg length is smallest when the robin is the host.

Degrees of freedom

The denominator n − 1 is the number of degrees of freedom remaining after estimating
the mean. With one data point, the sum of squares about the mean is zero, the degrees of
freedom are zero, and no estimate of the variance is possible. The degrees of freedom are
the number of data values, additional to the first data value.

In later chapters, standard deviation calculations will be based on the variation that
remains after fitting a model (most simply, a line) to the data. Degrees of freedom are
reduced by 1 for each model parameter that is estimated.

Other measures of variability

The standard deviation is similar in concept to the inter-quartile range H , which we saw in
Subsection 2.1.1 is the difference between the first and third quartiles. (The region between
the lower and upper quartiles takes in 50% of the data.)

For data that are approximately normally distributed, note the approximate relationship

s ≈ 0.75H.

If data are approximately normally distributed, one standard deviation either side of the
mean takes in roughly 68% of the data.

Note also the median absolute deviation, calculated using the function mad(). This cal-
culates the median of the absolute deviations from the median. By default this is multiplied
by 1.4286, to ensure that in a large sample of normally distributed values the value returned
should approximately equal the standard deviation.

13 ## SD of length, by species: data frame cuckoos (DAAG)
sapply(split(cuckoos$length, cuckoos$species), sd)
# Subsection 14.9.6 has information on split()



2.2 Data summary 67

The pooled standard deviation

Consider two independent samples of sizes n1 and n2, respectively, randomly selected
from populations that have the same amount of variation but for which the means may
differ. Thus, two means must be estimated. The number of degrees of freedom remaining
for estimating the (common) standard deviation is n1 + n2 − 2. We compute the so-called
pooled standard deviation by summing squares of differences of each data value from their
respective sample mean, dividing by the degrees of freedom n1 + n2 − 2, and taking the
square root:

sp =
√∑

(x − x̄)2 + ∑
(y − ȳ)2

n1 + n2 − 2
.

Use of this pooled estimate of the standard deviation is appropriate if variation in the two
populations is plausibly similar. The pooled standard deviation is estimated with more
degrees of freedom, and therefore, more accurately, than either of the separate standard
deviations.

Elastic bands example

Consider data from an experiment in which 21 elastic bands were randomly divided into
two groups, one of 10 and one of 11. Bands in the first group were immediately tested for
the amount that they stretched under a weight of 1.35 kg. The other group were dunked in
hot water at 65◦C for four minutes, then left at air temperature for ten minutes, and then
tested for the amount that they stretched under the same 1.35 kg weight as before. The
results were:

Ambient: 254 252 239 240 250 256 267 249 259 269 (Mean = 253.5)
Heated: 233 252 237 246 255 244 248 242 217 257 254 (Mean = 244.1)
The pooled standard deviation estimate is s = 10.91, with 19 (= 10 + 11 − 2) degrees

of freedom. Since the separate standard deviations (s1 = 9.92; s2 = 11.73) are similar, the
pooled standard deviation estimate is an acceptable summary of the variation in the data.

2.2.4 Correlation

The usual Pearson or product–moment correlation is a summary measure of linear rela-
tionship. Calculation of a correlation should always be accompanied by a check that the
relevant scatterplot shows a linear relationship. Often the addition of a smooth trend line
helps the assessment. Check also that the marginal distributions of the two variables are
roughly normal, or at least not highly skew. If the relationship is monotonic, but is not linear
and/or has asymmetric marginal distributions, it may be appropriate to use a Spearman rank
correlation. Examples of the needed code are:

> ## Correlation between body and brain: data frame Animals (MASS)

> ## Product--moment correlation

> with(Animals, cor(body, brain))

[1] -0.005341

> ## Product--moment correlation, after log transformation

> with(log(Animals), cor(body, brain))



68 Styles of data analysis

0 894 0 878 0 458 0 005

Figure 2.15 Different relationships between y and x. In the second panel, the Pearson correlation
is 0.878, while the Spearman rank correlation is 0.928.

[1] 0.7795

>> ## Spearman rank correlation

> with(Animals, cor(body, brain, method="spearman"))

[1] 0.7163

The function cor.test() returns a confidence interval, and tests for no association.
Figure 2.15 gives four graphs to consider. For which does it make sense to calculate

1. A Pearson correlation coefficient?
2. A Spearman rank correlation?

The figure that appears in the upper left in each panel is the Pearson correlation. For the
second panel, the Pearson correlation is 0.878, while the Spearman correlation, which better
captures the strength of the relationship, is 0.928. Here a linear fit clearly is inadequate. The
magnitude of the correlation r , or of the squared correlation r2, does not of itself indicate
whether the fit is adequate.

Note also the Kendall correlation, obtained by specifying method="kendall" when
cor.test() is called. This is often used in contexts where the same individuals are
assessed by different judges. It estimates the probability that the two judges will assign the
same ranking to an individual.

Here are ways in which the use of correlation may mislead:
� The usual interpretation of the magnitude of the coefficient assumes that sample pairs

(x, y) have been taken at random from a bivariate normal distribution. Observations must
be independent, and the separate marginal distributions of x and y must be approximately
normal. If, for example, the marginal distributions are highly asymmetric, the correlation
is likely to be smaller, with increased statistical variability.

� There may be a subgroup structure in the data. If, for example, values of x and/or y are
quite different for males and females, then the correlation may only reflect a difference
between the sexes. Or, if random samples are taken from each of a number of villages and
the data are pooled, then it will be unclear whether any correlation reflects a correlation
between village averages or a correlation between individuals within villages, or a bit of
each. The interpretation is confused because the two correlations may not be the same,
and may even go in different directions. See Cox and Wermuth (1996).

� Any correlation between a constituent and a total amount is likely to be, in part at
least, a mathematical artifact. Thus, consider a study of an anti-hypertensive drug that
hopes to determine whether the change y − x is larger for those with higher initial blood



2.3 Statistical analysis questions, aims, and strategies 69

pressure. If x and y have similar variances then, unfortunately, y − x will have a negative
correlation with x, whatever the influence of the initial blood pressure.

Note that while a correlation coefficient may sometimes be a useful single number
summary of the relationship between x and y, regression methods offer a much richer
framework for the examination of such relationships.

2.3 Statistical analysis questions, aims, and strategies

Logically, this section might have appeared at the beginning of the chapter, prior to any
discussion of analysis methods and approaches. It is here because the reader should by now
have a level of familiarity with several data sets that will be used as a basis for discussion.

Different questions, asked of the same data, will demand different analyses. Questions
of interest may, given the available data, be unanswerable. Data on house prices in London
may not have much relevance, if the interest is in house prices in New York or Paris!
Questions should be structured with issues of this type in mind.

Questions should be structured with a view to the intended use of results. Is the aim
scientific understanding, perhaps as in the example discussed below to determine whether
cuckoos do really match the eggs that they lay in the nests of other birds to the size and
color of the host eggs? Or is the aim prediction, perhaps to predict, based on recent prices
in the area and on house size, the price that purchasers may be willing to pay?

Effective use of the information in the data

Figure 2.6 was designed to elicit the relationship between electrical resistance and apparent
juice content, in kiwifruit. With the data we have, it would be bad practice to do a formal
statistical test to compare, for example, juice content of less than 30% with juice content
of more than 50%. Such an analysis would miss the relatively rich relationship that exists
between the apparent juice content and resistance.

The data are more informative than would be obtained by doing repeated trials, some
with a juice content of 30% and some with a juice content of 50%. Even worse would be a
study comparing resistance at 40% juice content with resistance at 50% juice content. Such
a study would have very little chance of finding anything of consequence.

Observational versus experimental data

Data from experiments appear throughout this book – examples are the data on the tinting
of car windows that was used for Figure 2.12 in Subsection 2.1.6, and the kiwifruit shading
data that were discussed in Subsection 2.2.2. Data from an experiment can, if well designed
with a view to answering the questions of interest, give highly reliable results. With data
from carefully designed experiments, perhaps the most serious danger is that the data will
be generalized beyond the limits imposed by the experimental conditions.

Observational data are another matter. Section 13.2 will discuss a comparison between
results from an experimental study on the effects of a work training program (those enrolled
in the study were randomly assigned to training and non-training groups), and results from
various sets of matched observational data that have been used in the attempt to answer the



70 Styles of data analysis

Table 2.2 Mean lengths of cuckoo eggs, compared with mean lengths of eggs laid by the
host bird species. More extensive data that bear on the comparison between cuckoo eggs
and host eggs are in the data frame cuckoohosts (DAAG).

Meadow Hedge Tree Yellow
Host species pipit sparrow Robin Wagtails pipit Wren hammer

Length (cuckoo) 22.3 (45) 23.1 (14) 22.5 (16) 22.6 (26) 23.1 (15) 21.1 (15) 22.6 (9)
Length (host) 19.7 (74) 20.0 (26) 20.2 (57) 19.9 (16) 20 (27) 17.7 (–) 21.6 (32)

(Numbers in parentheses are numbers of eggs.)

same question. In this instance results from the use of observational data can be compared
with those from an experiment in which individuals were randomly assigned either to an
experimental or to a control group.

2.3.1 How relevant and how reliable are the data?

Latter (1902) collected the cuckoo egg data presented in Figure 2.8 in order to investigate
claims, made in Newton (1893–1896, p. 123), that the eggs that cuckoos lay in the nests
of other birds tend to match the eggs of the host bird in size, shape, and color. Figure 2.8
strongly indicated differences, depending on the host bird, in length. A further step is to
look for a relationship between the mean size of the cuckoo eggs for each specific host, and
the mean size of the host bird’s own eggs, using data such as in Table 2.2.

There are various difficulties with the data in Table 2.2. The cuckoo eggs and the host
eggs are from different nests, collected in the course of different investigations. Data on
the host eggs are from various sources. For the wren, the value is an indicative length from
Gordon (1894). There is thus a risk of biases, different for the different sources of data, that
limit the inferences that can be drawn.

There is a striking difference between wrens and other species. Not only are their own
eggs easily the smallest among the species considered; the eggs of the wren host are easily
the smallest, among any of the hosts. Whatever biases may exist in the data, it is unlikely
that they would be so large as to affect these major differences. Biases might well affect
comparisons between eggs in the nests of species other than wrens.

2.3.2 How will results be used?

Studies may be designed to help scientific understanding. Consider again the data in
Table 2.2. The interest of Latter’s paper is primarily in establishing whether there is a
relationship, and rather less in determining the nature of the relationship. Egg size and
shape is one of several pieces of evidence that Latter considers. Uniquely among the birds
listed, the architecture of wren nests makes it impossible for the birds to see the eggs. In
wren nests, the color of the cuckoo’s egg does not match the color of the wren’s eggs; for
the other species the color does mostly match. Latter concludes that Newton is right, that
the eggs that cuckoos lay tend to match the eggs of the host bird in size and shape in ways
that will make it difficult for hosts to distinguish their eggs from the cuckoo eggs.



2.3 Statistical analysis questions, aims, and strategies 71

This is very different from the demands of the real-estate agent who may hope, on
the basis of last year’s prices in a city location, and floor area, to predict the prices that
purchasers will be willing to pay. Will a relationship that seems to work in one suburb
apply also in another suburb, or in a neighboring city? Accurate prediction is crucial, with a
perhaps reduced importance given to understanding the detailed reasons for any relationship
that may be apparent. It is important, also, to know the intended use of the data and hence
what sort of accuracy is important. Is it accuracy for purposes of making a prediction on
one of the suburb(s) used in obtaining the data? Or is it accuracy for making predictions in
new suburb(s)? In the latter case, data from multiple suburbs will be needed, and it must
be possible to treat the sampled suburbs as a random sample from the suburbs for which
predictions are required.

2.3.3 Formal and informal assessments

Statistical data analysis is, often, crucial to the answering of scientific questions. It does
not however stand alone, but must be interpreted against a background of subject area
knowledge and judgment. Qualitative judgments are inevitable at various points in studies
that generate data sets such as are analyzed in this book. Such judgments affect the use
of assumed subject area knowledge, the measurements that are taken, the design of data
collection, the choice of analysis, and the interpretation of analysis results. These judgments,
while they should be as informed as possible, cannot be avoided.

Two examples will now be given:

� In trials that evaluate therapies for conditions that commonly lead to early death, what
is the relevant measure? Is it survival time from diagnosis? Or is it more appropriate to
use a measure that takes account of quality of life over that time, which differs hugely
between different therapies? Two such measures are “Disability Adjusted Life Years”
(DALYs) and “Quality Adjusted Life Years” (QALYs).

� The dataset nswpsid1 (see Subsection 2.2.1 and Section 13.2) allows comparison of
two groups of individuals, both with a history of employment and related difficulties. A
focus of interest was income in 1978, subsequent to the study. Because the distribution
of income is highly skew, comparisons that are based directly on income will be biased
towards the experience of those few individuals whose incomes were very large. This
effect can be ameliorated by working with the logarithm of income. Or it might be more
appropriate to compare the median salaries of the two groups, after adjusting for the
effects of other variables.

In neither case is the interpretation of analysis results as simple as might initially appear.
There is an inevitable risk that assumed insights and judgments will carry large elements
of prejudice or personal bias. A well-designed study will allow some opportunity for study
results to challenge the assumed insights and understandings that have motivated the study.

Questionnaires and surveys

Thescience andsocsupport data frames (DAAG) are both from surveys. In both cases,
an important question is whether the questions measured what they claimed to measure.



72 Styles of data analysis

In the science data set, a focus of interest is the variable like, which measured the
students’ liking for science. What did students understand by “science”? Was science, for
them, a way to gain and test knowledge of the world? Or was it a body of knowledge? Or,
more likely, was it a name for their experience of science laboratory classes (smells, bangs,
and sparks perhaps) and field trips?

In the socsupport data set, an important variable is Beck Depression Index or
BDI. The Beck Depression Index is a standard psychological measure of depression
(see, e.g., Streiner and Norman, 2003), derived from a carefully designed and tested
questionnaire.

In either case it is impossible to escape the question: “What was measured?” This question
is itself amenable to experimental investigation. For the data frame science, answers to
other questions included in the survey shed some light. The Beck Depression Index is the
result of an extensive process of development and testing that has seemed to validate its
results, at least for populations on which it has been tested. Such background evidence
helps in assessing what is measured. Finally, however, there must be a qualitative judgment
that brings together subject area knowledge, background information and evidence, and the
results of the immediate statistical analysis.

2.3.4 Statistical analysis strategies

We have emphasized the importance of careful initial scrutiny of the data. Techniques of
a broadly EDA type have, in addition, a role in scrutinizing results from formal analysis,
in checking for possible model inadequacies, and perhaps in suggesting remedies. In later
chapters, we will discuss the use of diagnostic statistics and graphs in examination both
of the model used and of output from the analysis. These are an “after the event” form
of EDA. In the course of an analysis, the data analyst may move backwards and forwards
between exploratory analysis and more formal analyses.

2.3.5 Planning the formal analysis

Planning the formal analysis is one aspect of planning a research study. Such advance
planning should allow for the possibility of limited changes following preliminary
investigation.

An ideal is to have available data, and perhaps also analysis results, from a suitably
related earlier study. Use of such information to plan the analysis in advance reduces the
chance of biasing the new results in a direction that is closest to the analyst’s preference!
Even so, graphical checks of the data should precede formal analysis. There may be obvious
mistakes. The data may have surprises for the analyst.

If available at the beginning of the study, the information from the analysis of earlier data
may, additionally, be invaluable in the design of data collection for the new study. When
prior data are not available, a pilot study involving a small number of experimental runs
can sometimes provide this kind of information.

Where it is not altogether clear what to expect, careful preliminary examination is even
more necessary. In particular, the analyst should look for



2.4 Recap 73

� outliers,
� clusters in the data,
� unexpected patterns within groups,
� between-group differences in the scatter of the data,
� whether there are unanticipated time trends associated, e.g., with order of data collection.

In all studies, it is necessary to check for obvious data errors or inconsistencies. In addition,
there should be checks that the data support the intended form of analysis.

2.3.6 Changes to the intended plan of analysis

What departures from the original plan are acceptable, and what are not? If the exploratory
analysis makes it clear that the data should be transformed in order to approximate normality
more closely, then use the transformation. It is sometimes useful to do both analyses (with
the untransformed as well as with the transformed data) and compare them.

On the other hand, if there are potentially a large number of comparisons that could be
made, the comparisons that will be considered should be specified in advance. Prior data,
perhaps from a pilot study, can assist in this choice. Any investigation of other comparisons
may be undertaken as an exploratory investigation, a preliminary to the next study.

Data-based selection of one or two comparisons from a much larger number is not
appropriate, since huge biases may be introduced. Alternatively, there must be allowance
for such selection in the assessment of model accuracy. The issues here are non-trivial, and
we defer further discussion until later.

2.4 Recap

Exploratory data analysis aims to allow the data to speak for themselves, often prior to or as
part of a formal analysis. It gives multiple views of the data that may provide useful insights.
Histograms, density plots, stem-and-leaf displays, and boxplots are useful for examining
the distributions of individual variables. Scatterplots are useful for looking at relationships
two at a time. If there are several variables, the scatterplot matrix provides a compact visual
summary of all two-way relationships.

Before analysis, look especially for

� outliers,
� skewness (e.g., a long tail) in the distribution of data values,
� clustering,
� non-linear bivariate relationships,
� indications of heterogeneous variability (i.e., differences in variability across samples),
� whether transformations seem necessary.

After analysis, check residuals for all these same features. Where relationships involve
several variables, adequate checks will be possible only after analysis.

Failure of the independence assumption is hard to detect, unless the likely form of
dependence is known and the sample is large. Be aware of any structure in the data that
may be associated with lack of independence.



74 Styles of data analysis

Do not allow the initial scrutiny of data to influence the analysis in ways that may lead
to over-interpretation.

2.5 Further reading

The books and papers on graphical presentation that were noted in Chapter 1 are equally
relevant to this chapter. The books Cleveland (1993, 1994) are especially pertinent to
the present chapter. Chatfield (2002) has a helpful and interesting discussion, drawing on
consulting experience, of approaches to practical data analysis.

On statistical presentation issues, and deficiencies in the published literature, see
Andersen (1990), Chanter (1981), Gardner et al. (1983), Maindonald (1992), Maindonald
and Cox (1984), Wilkinson and Task Force on Statistical Inference (1999). The Wilkinson
et al. paper has helpful comments on the planning of data analysis, the role of exploratory
data analysis, and so on. Nelder (1999) is forthright and controversial.

Two helpful web pages are

http://www.math.yorku.ca/SCS/friendly.html#graph and http://
www.rdg.ac.uk/ssc/publications/publications.html#under

References for further reading

Andersen, B. 1990. Methodological Errors in Medical Research: an Incomplete Catalogue.
Chanter, D. O. 1981. The use and misuse of regression methods in crop modelling. In:

Mathematics and Plant Physiology, eds. D. A. Rose and D. A. Charles-Edwards.
Chatfield, C. 2002. Confessions of a statistician. The Statistician 51: 1–20.
Cleveland, W. S. 1993. Visualizing Data.
Cleveland, W. S. 1994. The Elements of Graphing Data, revised edn.
Gardner, M. J., Altman, D. G., Jones, D. R. and Machin, D. 1983. Is the statistical assessment

of papers submitted to the British Medical Journal effective? British Medical Journal
286: 1485–8.

Maindonald, J. H. 1992. Statistical design, analysis and presentation issues. New Zealand
Journal of Agricultural Research 35: 121–41.

Maindonald, J. H. and Cox, N. R. 1984. Use of statistical evidence in some recent issues of
DSIR agricultural journals. New Zealand Journal of Agricultural Research 27: 597–610.

Nelder, J. A. 1999. From statistics to statistical science. Journal of the Royal Statistical
Society, Series D 48: 257–67.

Wilkinson, L. and Task Force on Statistical Inference. 1999. Statistical methods in psy-
chology journals: guidelines and explanation. American Psychologist 54: 594–604.

2.6 Exercises

1. Use the lattice function bwplot() to display, for each combination of site and sex in the
data frame possum (DAAG package), the distribution of ages. Show the different sites on the
same panel, with different panels for different sexes.

2. Do a stem-and-leaf display for the lengths of the female possums. On the display, identify the
position of the median, either at one of the leaves or between two leaves. Explain the reasoning
used to find the median, and use the function median() to check the result.

http://www.math.yorku.ca/SCS/friendly.html#graph
http://
www.rdg.ac.uk/ssc/publications/publications.html#under


2.6 Exercises 75

3. Plot a histogram of the earconch measurements for the possum data. The distribution
should appear bimodal (two peaks). This is a simple indication of clustering, possibly due to sex
differences. Obtain side-by-side boxplots of the male and female earconch measurements.
How do these measurement distributions differ? Can you predict what the corresponding his-
tograms would look like? Plot them to check your answer.

4. For the data frame ais (DAAG package), draw graphs that show how the values of the hema-
tological measures (red cell count, hemoglobin concentration, hematocrit, white cell count, and
plasma ferritin concentration) vary with the sport and sex of the athlete.

5. Using the data frame cuckoohosts, plot clength against cbreadth, and hlength

against hbreadth, all on the same graph and using a different color to distinguish the first set
of points (for the cuckoo eggs) from the second set (for the host eggs). Join the two points that
relate to the same host species with a line. What does a line that is long, relative to other lines,
imply? Here is code that you may wish to use:
attach(cuckoohosts)

plot(c(clength, hlength), c(cbreadth, hbreadth),

col=rep(1:2,c(12,12)))

for(i in 1:12)lines(c(clength[i], hlength[i]),

c(cbreadth[i], hbreadth[i]))

text(hlength, hbreadth, abbreviate(rownames(cuckoohosts),8))

detach(cuckoohosts)

6. Enter and run the following code. Annotate it, describing each function and each function
argument:
deathrate <- c(40.7, 36,27,30.5,27.6,83.5)

hosp <- c("Cliniques of Vienna (1834-63)\n(> 2000 cases pa)",

"Enfans Trouves at Petersburg\n(1845-59, 1000-2000 cases pa)",

"Pesth (500-1000 cases pa)",

"Edinburgh (200-500 cases pa)",

"Frankfort (100-200 cases pa)", "Lund (< 100 cases pa)")

hosp <- factor(hosp, levels=hosp[order(deathrate)])

dotplot(hosp˜deathrate, xlim=c(0,95), xlab="Death rate per 1000 ",

type=c("h","p"))

## Source: \cite{Nightingale}. Data are ascribed to Dr Le Fort

7. The dataset ex10.22, on tomato yields, is available from the package Devore6 (or in wide
format from Devore7). Type
library(Devore6) # ex10.22 is from Devore6

tomatoes <- ex10.22

This data frame gives tomato yields at four levels of salinity, as measured by electrical conduc-
tivity (EC, in nmho/cm).

(a) Obtain a scatterplot of yield against EC.
(b) Obtain side-by-side boxplots of yield for each level of EC.
(c) The third column of the data frame is a factor representing the four different levels of

EC. Comment upon whether the yield data are more effectively analyzed using EC as a
quantitative or qualitative factor.

8. Examine the help for the function mean(), and use it to learn about the trimmed mean. For
the total lengths of female possums, calculate the mean, the median, and the 10% trimmed



76 Styles of data analysis

mean. How does the 10% trimmed mean differ from the mean for these data? Under what
circumstances will the trimmed mean differ substantially from the mean?

9. Assuming that the variability in egg length for the cuckoo eggs data is the same for all host birds,
obtain an estimate of the pooled standard deviation as a way of summarizing this variability.
[Hint: Remember to divide the appropriate sums of squares by the number of degrees of freedom
remaining after estimating the six different means.]

10. Calculate the following three correlations:
with(Animals, cor(brain,body))

with(Animals, cor(log(brain),log(body)))

with(Animals, cor(log(brain),log(body), method="spearman"))

Comment on the different results. Which is the most appropriate measure of the relationship?

11. Figure 2.10 showed changes in labor force numbers, in six regions of Canada, in successive
quarters of 1995–1996. The population (in thousands) aged 15 years and over in each of these
regions was, according to the 1996 census: BC: 3955; Alberta: 2055; Prairies: 1604;
Ontario: 8249; Quebec: 5673; Atlantic: 1846. Plot a version of Figure 2.10 in which
the labor force numbers are standardized by division by the number in the relevant population.
Compare a plot that shows all regions in the same panel, with a plot that gives each region its own
panel and its own slice of a common scale, commenting on the advantages and disadvantages
of each. Is there now any reason to use a logarithmic scale?

12. The following code conveys information that has points of connection with the information in
Figure 2.14:
bwplot(shade ˜ yield|block, data=kiwishade, layout=c(3,1))

Compare and contrast the information given by these two plots.

13. The galaxies data in the MASS library gives speeds on 82 galaxies (see the help file and
the references listed there for more information). Obtain a density plot for these data. Is the
distribution strongly skewed? Is there evidence of clustering?

14. The cpus data frame in the MASS library contains information on eight aspects for each of 209
different types of computers. Read the help page for more information.

(a) Construct a scatterplot matrix for these data. Should any of the variables be transformed
before further analysis is conducted?

(b) How well does estimated performance (estperf) predict performance (perf)? Study
this question by constructing a scatterplot of these two variables, after taking logarithms.
Do the plotted points scatter about a straight line or is there an indication of non-linearity?
Is variability in performance the same at each level of performance?



3

Statistical models

Many regularities of nature are taken for granted in daily living – the rising and setting of
the sun, the effects of fire in burning anyone unfortunate enough to get too near, and so
on. Experience of the world, rather than logical deductive argument, has identified these
regularities. Scientific investigation, especially in the physical sciences, has greatly extended
and systematized awareness of regularities. Mathematical descriptions, i.e., models, have
been crucial for describing and quantifying these regularities.

As when any model is pressed into service, it is important to understand which features
generalize and which do not. An engineer’s scale model of a building may be helpful for
checking the routing of the plumbing but may give little indication of the acoustics of
seminar rooms that are included in the building. In medical research, mouse responses
to disease and to therapeutic agents are widely used as models for human responses.
Experimental responses in the mouse may indicate likely responses in humans.

In fundamental research in the physical sciences, deterministic models are often adequate.
Statistical variability may be so small that it can, for practical purposes, be ignored. In
applications of the physical sciences, variability may more commonly be a serious issue.
In studying how buildings respond to a demolition charge, there will be variation from one
occasion to another, even for identical buildings and identically placed charges. There will
be variation in which parts of the building break first, in what parts remain intact, and in
the trajectories of fragments. In the natural sciences, such variability is everywhere.

Statistical models rely on probabilistic forms of description that have wide application
over all areas of science. They often consist of a deterministic component, with a random
component added that is designed to account for residual variation.

3.1 Statistical models

As we saw in Chapter 2, consideration of a model stays somewhat in the background in
initial exploratory data analysis. The choice of model is crucial in formal analysis. The
choice may be influenced by previous experience with comparable data, by subject area
knowledge, and by cautious use of what may emerge from exploratory analysis.

Models should, wherever possible, be scientifically meaningful, but not at the cost of
doing violence to the data. The scientific context includes the analyses, if any, that other
researchers have undertaken with related or similar data. It can be important to note and use
such analyses critically. While they may give useful leads, there can be serious inadequacies



78 Statistical models

6420 108

0
5

10
20

30

Weight of roller (t)

D
ep

re
ss

io
n 

(m
m

)
weight
(t)

depression
(mm)

depression
weight

1 1.9 2 1.1
2 3.1 1 0.3
3 3.3 5 1.5
4 4.8 5 1.0
5 5.3 20 3.8
6 6.1 20 3.3
7 6.4 23 3.6
8 7.6 10 1.3
9 9.8 30 3.1

10 12.4 25 2.0

Figure 3.1 Depression in lawn versus roller weight. Both lines were drawn by eye, with the dashed
line constrained to go through the origin.

in published analyses. For further detail and discussion, see relevant articles and books in
the list of references at the end of Chapter 2.

3.1.1 Incorporation of an error or noise component

Statistical models combine deterministic and random components. The random component
is often called noise or error and the deterministic component is sometimes thought of as
the signal. It may be helpful to think of the statistical error as the “rough”, and of the model
prediction as the “smooth”.

The error component models variation that cannot be accounted for by given information.
The simplest models assume that the elements of the error component are uncorrelated,
i.e., the size and sign (negative or positive) of one element give no information on the likely
size and sign of any other element.

Both noise and error are technical terms. Use of the word error does not imply that there
have been mistakes in the collection of the data, though mistakes can of course contribute
to making the variability unnecessarily large.

Figure 3.1 shows data from an experiment where different weights of roller were rolled
over different parts of a lawn, and the depression noted (data are from Stewart et al., 1988).1

The data seem broadly consistent with the assumption of a signal by which depression is
proportional to roller weight, as implied by the solid line in Figure 3.1. Variation about this
signal is reflected in variation in the values for depression /weight. More generally,
it might be assumed that the signal is a line that does not necessarily assume strict propor-
tionality between depression and weight. The dashed line in Figure 3.1 is an example. It
allows for a systematic error in the measurement of depression.

1 ## Plot depression vs weight: data frame roller (DAAG)
plot(depression ˜ weight, data = roller, xlim=c(0,1.04*max(weight)),

ylim=c(0,1.04*max(depression)),
xaxs="i", yaxs="i", # "i"=inner: Fit axes exactly to the limits
xlab = "Weight of roller (t)", ylab = "Depression(mm)", pch = 16)

abline(0, 2.25) # A slope of 2.25 looks about right



3.1 Statistical models 79

The model has the form:

observed value = model prediction + statistical error

i.e., y = µ + ε

where µ = βx (no intercept), or µ = α + βx (with intercept). The model prediction (µ) is
the signal component, while ε is the error component.

Substituting µ = α + β × weight in the equation:

depression = α + β × weight + noise.

Here α and β are constants which must be estimated. (For strict proportionality between
depression and weight, α will of course be zero.)

Use of subscripts allows identification of the individual points. Given observations (x1,
y1), (x2, y2), . . . , (xn, yn), we may write

yi = α + βxi + εi .

Predicting with models

The focus of interest – generally prediction and/or interpretation of model parameters –
may be different for different uses of model results. For the lawn roller data of Figure 3.1,
one focus of interest is the rate of increase of depression with increasing roller weight, i.e.,
the slope of the line. Another focus is model prediction, i.e., the fitted values. Models should
as far as possible yield inferences that, for their intended use, are acceptably accurate.

Model structure should reflect data structure. The model treats the pattern of change of
depression with roller weight as a deterministic or fixed effect. The measured values of
depression incorporate, in addition, a random effect that reflects variation from one part
of the lawn to another, differences in the handling of the roller, and measurement error.

Data from multiple lawns are essential, for anything more than informal judgment on
how results may generalize to other lawns. Such data would allow use of a model that
accounts for between-lawn variation, as well as for the within-lawn variation on which our
data give information. Chapter 10 will discuss models that might be tried, if data from
multiple lawns were available.

Which model is best?

Figure 3.2 shows two possible models for the lawn roller data, together with information
that may be helpful in assessing the adequacy of the model. In Figure 3.2A, a line (with
intercept) has been fitted, while Figure 3.2B has used lowess() to fit a smooth curve
through the data. Sometimes, the fitting of a curve such as in Figure 3.2B helps indicate
whether a line really is appropriate. Note that there is just one point that seems to be causing
the line, and the fitted curve, to bend down. In any case, there is no statistical justification
for fitting a curve rather than a line, as can be verified with a formal analysis; see Exercise 2
in Chapter 7. There is “over-fitting” in Figure 3.2B.



80 Statistical models

642 108 12

0
5

10
15

20
25

30

Roller weight (t)

D
ep

re
ss

io
n 

in
 la

w
n 

(m
m

)

A
Data values
Fitted values
(smooth)

+ve residual
−ve residual

642 108 12

0
5

10
15

20
25

30

Roller weight (t)

D
ep

re
ss

io
n 

in
 la

w
n 

(m
m

)

B
Data values
Fitted values
(smooth)

+ve residual
−ve residual

Figure 3.2 In panel A a line has been fitted, while panel B has a smooth curve. Residuals (the
“rough”) appear as vertical lines. Positive residuals are black lines, while negative residuals are
dashed. Figures 3.2A and B were created using our function g3.2(), which is available from the
web page for the book. Interested readers can check the code.

3.1.2 Fitting models – the model formula

Formulae have already been used extensively to describe graphs that will be plotted using
plot() or another such function. Modeling functions likewise use formulae to describe
the role of variables and factors in models. Thus, the following model statement, with model
formula depression ˜ weight, fits a line to the data of Figure 3.1:

## Fit line - by default, this fits intercept & slope.

## requires data frame roller (DAAG)

roller.lm <- lm(depression ˜ weight, data=roller)

## Compare with the code used to plot the data

plot(depression ˜ weight, data=roller)

## Add the fitted line to the plot

abline(roller.lm)

The name roller.lm, used for the output object, was chosen for mnemonic reasons – the
object was the result of lm calculations on the roller data set. In the formula, weight
is the predictor or explanatory variable, while depression is the response.2

Fitted values, residuals, and coefficients

Residuals, which are the differences between observed values of depression, and pre-
dicted values of depression at the respective values of weight, are important for assessing
the accuracy of the model fit. A large error component generates large residuals, and works
against accurate prediction. Figure 3.2A exhibits the residuals for the lawn roller data after
fitting a straight line, while Figure 3.2B exhibits the residuals after fitting a smooth curve.
Positive residuals are represented by solid lines, while negative residuals are represented
by dashed lines.

2 ## For a model that omits the intercept term, specify
lm(depression ˜ -1 + weight, data=roller)



3.2 Distributions: models for the random component 81

Most of the information that is commonly required from model objects can be obtained by
the use of an extractor function. For example, fitted values and residuals can be calculated
with functions fitted() and resid():

> round(fitted(roller.lm), 1)

1 2 3 4 5 6 7 8 9 10

3.0 6.2 6.7 10.7 12.0 14.2 15.0 18.2 24.0 31.0

> round(resid(roller.lm), 1)

1 2 3 4 5 6 7 8 9 10

-1.0 -5.2 -1.7 -5.7 8.0 5.8 8.0 -8.2 6.0 -6.0

The coef() function gives the model coefficients:

> coef(roller.lm)

(Intercept) weight

-2.087148 2.666746

Model objects

The model object, above saved as roller.lm, is a list. Although not always recom-
mended, we can access information in this list directly. For example, we can extract
element names as follows:

> names(roller.lm) # Get names of list elements

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

We can then extract information directly from a list element, such as the model coefficients:

> roller.lm$coef

(Intercept) weight

-2.087148 2.666746

For further discussion, see Subsection 14.10.2.

Summary information about model objects

To get a summary that includes coefficients, standard errors of coefficients, t-statistics, and
p-values, type

summary(roller.lm)

3.2 Distributions: models for the random component

In this section, we briefly review the concepts of random variables and their distributions.
Our discussion will focus on the more commonly used models for count data and continuous
measurement data.



82 Statistical models

3.2.1 Discrete distributions – models for counts

Counts of events or numbers of objects are examples of discrete random variables. The
possible values with their associated probabilities are referred to as a distribution. We
consider three important examples: Bernoulli, binomial, and Poisson distributions.

Bernoulli distribution

Successive tosses of a fair coin come up tails with probability 0.5, and heads with probability
0.5, independently between tosses. If we let X take the value 1 for a head and 0 for a tail,
then X is said to have a Bernoulli distribution with parameter π = 0.5.

More generally, we might consider an experiment or test with an uncertain outcome, but
where the possibilities are “success” (or “1”) and “failure” (or “0”). Success may occur
with probability π , where 0 ≤ π ≤ 1.

Binomial distribution

The sum of a number of independent Bernoulli random variables is called a binomial
random variable. The number of successes in n independent tests (where success at each
trial occurs with probability π ) has a binomial distribution with parameters n and π .

The total number of heads in two tosses of a fair coin is a binomial random variable
with n = 2 and π = 0.5. We can use the function dbinom() to determine probabilities
of having 0, 1 or 2 heads in two coin tosses:3

## To get labeled output exactly as below, see the footnote

## dbinom(0:2, size=2, prob=0.5) # Simple version

0 1 2

0.25 0.50 0.25

On average, 25% of all pairs of coin tosses will result in no heads, 50% will have one head,
and 25% will have two heads.

The number of heads in four coin tosses can be modeled as binomial with n = 4 and
π = 0.5:

## dbinom(0:4, size=4, prob=0.5)

0 1 2 3 4

0.0625 0.2500 0.3750 0.2500 0.0625

To calculate the probability of no more than two heads, add up the probabilities of 0,
1, and 2 (0.0625 + 0.2500 + 0.3750 = 0.6875). The function pbinom() can be used to
determine such cumulative probabilities, thus:

pbinom(q=2, size=4, prob=0.5)

3 ## To get the labeling (0, 1, 2) as in the text, specify:
probs <- dbinom(0:2, size=2, prob=0.5)
names(probs) <- 0:2
probs



3.2 Distributions: models for the random component 83

For another example, suppose a sample of 50 manufactured items is taken from an
assembly line that produces 20% defective items, on average. To find the probability of
observing no more than four defectives in a sample, use:

> pbinom(q=4, size=50, prob=0.2)

[1] 0.0185

The probability of observing fewer than five defectives in the sample is 0.0185.
The function qbinom() goes in the other direction, from cumulative probabilities to

numbers of events; it is used to compute quantiles, a generalization of the more familiar
term percentiles. To calculate a 70th percentile of the distribution of the number of heads
in four coin tosses, type:

> qbinom(p = 0.70, size = 4, prob = 0.5)

[1] 3

Means and standard deviations

In four fair coin tosses, we expect to see two heads on average. In a sample of 50 manu-
factured items from a population where 20% are defective, we expect to see 10 defectives
on average. In general, we can compute the expected value or mean of a binomial random
variable using the formula nπ .

The standard deviation is one way of summarizing the spread of a probability distribution;
it relates directly to the degree of uncertainty associated with predicting the value of
a random variable. High values reflect more uncertainty than low values. The formula√

nπ (1 − π ) gives the standard deviation for a binomial random variable. The standard
deviation of the number of heads in four coin tosses is 1, and for the number of defectives
in our sample of 50 items, it is 2.83. In an absolute sense, we will be able to predict the
number of heads more precisely than the number of defectives.

The variance is defined as the square of the standard deviation: for the binomial, it is
nπ (1 − π ).

Poisson distribution

The Poisson distribution is often used to model the number of events that occur in a certain
time interval or for the numbers of defects that are observed in items such as manufactured
products.

The distribution depends on a parameter λ (the Greek letter “lambda”), which happens
to coincide with the mean or expected value.

As an example, consider a population of raisin buns for which there are an average of
three raisins per bun, i.e., λ = 3. Because of the mixing process, the number of raisins in
a particular bun is uncertain; the possible numbers of raisins are 0, 1, 2, . . . . Under the
Poisson model, we have the following probabilities for 0, 1, 2, 3, or 4 raisins in a bun:

## Probabilities of 0, 1, 2, 3, 4 raisins

## mean number of raisins per bun = 3

## dpois(x = 0:4, lambda = 3)

0 1 2 3 4

0.0498 0.1494 0.2240 0.2240 0.1680



84 Statistical models

−3 −2 −1 0 1 2 3

0.
1

0.
2

0.
3

Distance, in SDs, from the mean
no

rm
al

 d
en

si
ty

pnorm(1)
 = 0.841

Figure 3.3 A plot of the normal density. The horizontal axis is labeled in standard deviations (SDs)
distance from the mean. The area of the shaded region is the probability that a normal random variable
has a value less than one standard deviation above the mean.

The cumulative probabilities are:

## ppois(q = 0:4, lambda = 3)

0 1 2 3 4

0.0498 0.1991 0.4232 0.6472 0.8153

Thus, for example, the probability of finding two or fewer raisins in a bun is 0.4232.
The variance of a Poisson random variable is equal to its mean, i.e., λ. Thus, the variance

of the number of raisins in a bun is 3, and the standard deviation is the square root of λ:
1.73.

3.2.2 Continuous distributions

Models for measurement data are examples of continuous distribution. Calculations with
continuous distributions are a little different from calculations with discrete distributions.
While we can still speak of probabilities of measurements lying in specified intervals, it is
no longer useful to consider the probability of a measurement taking on a particular value.
A more useful concept is probability density. A continuous random variable is summarized
by its density function or curve. The area under any density curve between x = a and x = b

gives the probability that the random variable lies between those limits.

Normal distribution

The normal distribution, which has the bell-shaped density curve pictured in Figure 3.3,
is often used as a model for continuous measurement data (sometimes a transformation of
the data is required in order for the normal model to be useful). The height of the curve is
a function of the distance from the mean. The area under the density curve is 1.

The density curve plotted in Figure 3.3 corresponds to a normal distribution with a
mean of 0 and standard deviation 1. A normal distribution having mean 0 and standard
deviation 1 is referred to as the standard normal distribution. Multiplying a fixed value σ

by a population of such normal variates changes the standard deviation to σ . By adding a
fixed value µ, we can change the mean to µ, leaving the standard deviation unchanged.



3.2 Distributions: models for the random component 85

Here is code that plots the normal density function:4

## Plot the normal density, in the range -3 to 3

z <- pretty(c(-3,3), 30) # Find ˜30 equally spaced points

ht <- dnorm(z) # By default: mean=0, standard deviation=1

plot(z, ht, type="l",xlab="Normal deviate",ylab="Density",yaxs="i")

# yaxs="i" locates the axes at the limits of the data

The function pnorm() calculates the cumulative probability, i.e., the area under the
curve up to the specified ordinate or x-value. For example, there is a probability of 0.841
that a normal deviate is less than 1:

> pnorm(1.0) # by default, mean=0 and SD=1

[1] 0.841

This corresponds to the area of the shaded region in Figure 3.3.5 The function qnorm()
can be used to compute the normal quantiles. For example, the 90th percentile is 1.28:

> qnorm(.9) # 90th percentile; mean=0 and SD=1

[1] 1.28

The footnote has additional examples.6

Other continuous distributions

There are many other statistical models for continuous observations. The simplest model
is the uniform distribution, for which an observation is equally likely to take any value in a
given interval; the probability density of values is constant on a fixed interval.

Another model is the exponential distribution that gives high probability density to
positive values lying near 0; the density decays exponentially as the values increase. The
exponential distribution is commonly used to model times between arrivals of customers
to a queue. The exponential distribution is a special case of the chi-squared distribution.
The latter distribution arises, for example, when dealing with contingency tables. Details
on computing probabilities for these distributions can be found in the exercises.

4 The following gives a closer approximation to Figure 3.3:
## Plot the normal density, in the range -3.25 to 3.25
z <- pretty(c(-3.25,3.25), 30) # Find ˜30 equally spaced points
ht <- dnorm(z) # By default: mean=0, standard deviation=1
plot(z, ht, type="l", xlab="Normal deviate", ylab="Ordinate", yaxs="i")
polygon(c(z[z <= 1.0], 1.0), c(dnorm(z[z <= 1.0]), 0), col="grey")
# Around 84.1% of the total area is to the left of the vertical line.

5 ## Additional examples:
pnorm(0) # .5 (exactly half the area is to the left of the mean)
pnorm(-1.96) # .025
pnorm(1.96) # .975
pnorm(1.96, mean=2) # .484 (a normal distribution with mean 2 and SD 1)
pnorm(1.96, sd=2) # .836 (sd = standard deviation)

6 ## Additional examples:
qnorm(0.841) # 1.0
qnorm(0.5) # 0
qnorm(0.975) # 1.96
qnorm(c(.1,.2,.3)) # -1.282 -0.842 -0.524 (10th, 20th and 30th percentiles)
qnorm(.1, mean=100, sd=10) # 87.2 (10th percentile, mean=100, SD=10)



86 Statistical models

Different ways to describe distributions

In Subsection 2.1.1 it was noted that, with the default boxplot settings, 1% of values that
are drawn at random from a normal distribution will on average be flagged as possible
outliers. If the distribution is not symmetric, more than 1% of points may lie outside the
whiskers, mostly at the lower end if the distribution is skewed (i.e., with a long tail) to the
left, and mostly at the upper end if the distribution is skewed to the right. If the distribution
is symmetric, but “heavy-tailed", then a higher proportion of values are out beyond the
boxplot whiskers on both sides.

3.3 Simulation of random numbers and random samples

In a simulation, repeated random samples are taken from a specified distribution. Statistics,
perhaps estimates that are derived from one or other model, can then be calculated for
each successive sample. Information is thus obtained on variation under repeated sampling.
This allows a check on results predicted by statistical theory. Or it may provide guidance
when theoretical results are not available or are of uncertain relevance. This section will
begin with simulation of discrete and continuous random variables and will close with a
discussion of random sampling from finite populations.

Ordinarily, it is undesirable to use the same random number seed in two or more suc-
cessive calls to a function that uses the random number generator. However, users will
sometimes, for purposes of checking a calculation, wish to repeat calculations with the
same sequence of random numbers as was generated in an earlier call. The following
uses set.seed() to make the call below to rbinom(10, size=1, p=.5) thus
reproducible:

set.seed(23286) # Use to reproduce the sample below

rbinom(10, size=1, p=.5)

The seed for the random number generator is stored in the workspace in a hidden
variable (.Random.seed) that changes whenever there has been a call to the random
number generator. This ensures that any new simulation will be independent of earlier
simulations.

When the workspace is saved, .Random.seed is stored as part of the workspace. This
ensures that, when the workspace is loaded again, the seed will be restored to its value
when the workspace was last saved. Any new simulations will then be independent of those
prior to the save. In order to take advantage of this feature, be sure to save the workspace
at the end of each session.

Sampling from discrete distributions

Values can be simulated from any of many different distributions. We will offer examples
of simulated binomial, Poisson, and normal samples.

As a first example, simulate a random sequence of 10 binary digits (0s or 1s) from a
population with a specified proportion of 1s, here 50% (i.e., a Bernoulli distribution):



3.3 Simulation of random numbers and random samples 87

7 8 9 10 12

xxx xxx x xxx xx x
x

x
x
xxx

xxxx x

x
xxxxx

x x
x x

x
x

x

xx

x

x

x

x x
x
x x
x

x
x xxx x xxx xxx x

xx xx
x

x

x

x xx xx xxx xx
x xxxxxx

x

x x x

x
xxx x

x

x

xx

x xx xxx xx xxxx
x

x xx xx
x

x

xx
x

x

x

x

xxx
x xx x

x
xx

xx

x

x x xxx xx
x x

x x

x
xxx x xx xx
x

x xxxx x x xxx x xx xx
xxx

xx

x xx xxx x

xx

x xx

xx x

x

x

x

xx
x xx xxxxx x

xx xx
xx xx

x

x

x
xx
xx

x x xxx xx
x

x
xxxx x

x

x
x

x x

xx
xx

x

x

x

x

Figure 3.4 Each panel shows a simulated distribution of 50 values from a normal distribution with
mean = 10 and sd = 1. The underlying theoretical normal curve is overlaid on the leftmost panel.

> rbinom(10, size=1, p=.5) # 10 Bernoulli trials, prob=0.5

1 0 0 0 1 1 1 0 1 0

The random sample is different on each occasion, depending on the seed.
To generate the numbers of daughters in a simulated sample of 25 four-child families,

assuming that males and females are equally likely, use the rbinom() function thus:

# For the sequence that follows, precede with set.seed(9388)

> rbinom(25, size=4, prob=0.5)

[1] 3 1 2 4 1 2 0 3 2 1 2 3 2 4 2 1 1 1 2 2 3 2 0 2 2

Now simulate the number of raisins in 20 raisin buns, where the expected number of
raisins per bun is 3:

> set.seed(9388)

> rpois(20, 3)

[1] 3 3 4 1 2 2 3 1 1 4 3 0 1 1 3 1 0 4 5 2

3.3.1 Sampling from the normal and other continuous distributions

The function rnorm() generates random deviates from the normal distribution. To gen-
erate 10 random values from a standard normal distribution, we type:

> options(digits=2) # Suggest number of digits to display

> rnorm(10) # 10 random values from the normal distribution

# For our sequence, precede with set.seed(3663)

[1] -0.599 -1.876 1.441 -1.025 0.612 -1.669 0.138 -0.099 1.010 0.013

Figure 3.4 demonstrates the use of simulation to indicate the extent of sample-to-sample
variation in histogram summaries of the data, when five independent random samples of
50 values are taken from a normal distribution. Figure 3.4 shows histograms from five such
samples.7 Histograms do not discriminate well between sample values that are consistent

7 ## The following gives a rough equivalent of the figure:
set.seed (21) # Use to reproduce the data in the figure
par(mfrow=c(2,3))
x <- pretty(c(6.5,13.5), 40)
for(i in 1:5){

y <- rnorm(50, mean=10, sd=1)
hist(y, prob=TRUE, xlim=c(6.5,13.5), ylim=c(0,0.5), main="")
lines(x, dnorm(x,10,1))
}

par(mfrow=c(1,1))



88 Statistical models

with a normal distribution, and sample values that are not. A better tool for assessing
normality, the normal probability plot, will be described in Subsection 3.4.2.

Calculations for other distributions, for example runif() to generate uniform random
numbers or rexp() to generate exponential random numbers, follow the same pattern.

runif(n = 20, min=0, max=1) # 20 numbers, uniform distn on (0, 1)

rexp(n=10, rate=3) # 10 numbers, exponential, mean 1/3.

## Exercises at the end of this chapter explore further possibilities.

3.3.2 Simulation of regression data

The following code shows how to simulate a sample of n observations from the model:

y = b0 + b1x + ε

where ε is normally distributed with standard deviation σ . We take n = 8, the intercept to
be 2, the slope to be 3, and σ to be 2.5 in our simulation, and we use a fixed equally spaced
design for the predictor values:

> options(digits=3)

> n <- 8; x <- seq(1,n); sigma <- 2.5; b0 <- 2; b1 <- 3

> error <- rnorm(n, sd=sigma)

> y <- b0 + b1*x + error

>

> t(data.frame(x,y))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

x 1.00 2.00 3.00 4.0 5.0 6 7.0 8.0

y 6.85 8.96 9.49 12.2 19.1 20 26.2 28.5

It is often useful to repeatedly simulate data from a fitted model, then re-fitting to each new
set of simulated data. This provides a check on variation under such repeated simulation.
The function simulate() can be used for this purpose.

Thus to do 10 simulations based on the model that was fitted to the roller data, do:

roller.lm <- lm(depression ˜ weight, data=roller)

roller.sim <- simulate(roller.lm, nsim=20) # 20 simulations

The object roller.sim is a data frame with 20 columns, i.e., one column for each of the
20 simulations. Each column has values of depression, simulated from the fitted model at
each level of weight. To visualize this output, enter

with(roller, matplot(weight, roller.sim, pch=1, ylim=range

(depression)) points(roller, pch=16)

3.3.3 Simulation of the sampling distribution of the mean

The sampling distribution of the mean is the distribution of the means of repeated random
samples of size n. The standard deviation of this sampling distribution has the name
standard error of the mean (SEM). If the population mean is µ and the standard deviation



3.3 Simulation of random numbers and random samples 89

D
en

si
ty

0

1

2

3

4

1.0 1.5 2.0 2.5 3.0 3.5

 = Sample size 3

1.0 1.5 2.0 2.5 3.0 3.5

 = Sample size 9

1.0 1.5 2.0 2.5 3.0 3.5

 = Sample size 30

Figure 3.5 The density curves are from simulations of the sampling distribution of the mean, for a
distribution that is mildly skew. Each density curve is from 1000 simulations, which is large enough
to give an accurate visual indication of the distribution.

is σ , then

SEM = s√
n
.

The Central Limit Theorem will be important in the discussion of inference in Chapter 4.
This theorem implies that, for large enough n, this sampling distribution will closely approx-
imate the normal.8 The sample size n needed so that the normal is a good approximation
will depend on the distribution of the population from which samples are taken.

Figure 3.5 shows the simulated sampling distribution of the mean, for samples from a
distribution that is mildly skew. Even for a sample size of 3, much of the skewness has
gone. Code that generates samples from the sampling distribution of means of the required
sample sizes is:

## Function to generate n sample values; skew population

sampvals <- function(n)exp(rnorm(n, mean = 0.5, sd = 0.3))

## Means across rows of a dimension nsamp x sampsize matrix of

## sample values gives nsamp means of samples of size sampsize.

samplingDist <- function(sampsize=3, nsamp=1000, FUN=mean)

apply(matrix(sampvals(sampsize*nsamp), ncol=sampsize), 1, FUN)

size <- c(3,10,30)

## Simulate means of samples of 3, 9 and 30; place in dataframe

df <- data.frame(y3=samplingDist(sampsize=size[1]),

y9=samplingDist(sampsize=size[2]),

y30=samplingDist(sampsize=size[3]))

The following then gives a slightly simplified version of Figure 3.5:

## Simulate source population (sampsize=1)

y <- samplingDist(sampsize=1)

densityplot(˜y3+y9+y30, data = df, outer=TRUE, layout = c(3,1),

plot.points = FALSE, panel = function(x, ...) {

8 More precisely, the distribution of the sample mean approximates the normal distribution with arbitrary accuracy, for a
sample that is large enough, provided the measurements are independent, and their standard deviation is finite. There are
similar results for a number of other sample statistics.



90 Statistical models

panel.densityplot(x, ..., col = "black")

panel.densityplot(y, col = "gray40", lty = 2, ...)

})

Code that will reproduce the strip panel labels is in the footnote.9 The plots can alterna-
tively be obtained using the function sampdist() (DAAG), with default arguments. The
skewness of the population can be increased by increasing sd in the call to sampvals().

3.3.4 Sampling from finite populations

We can use the sample() function to generate a simple random sample from a given set
of numbers. Suppose, for example, that names on an electoral roll are numbered from 1 to
9384. We can obtain a random sample of 15 individuals as follows:

> ## For the sequence below, precede with set.seed(3676)

> sample(1:9384, 15, replace=FALSE)

[1] 9178 2408 8724 173 106 4664 3787 6381 5098 3228 8321

165 7332 9036 540

This gives the numerical labels for the 15 individuals that we should include in our sample.
The task is then to find them! The option replace=FALSE gives a without-replacement
sample, i.e., it ensures that no one is included more than once.

To randomly assign 10 plants (labeled from 1 to 10, inclusive) to one of two equal-sized
groups, control and treatment, the following code could be used:

> ## For the sequence below, precede with set.seed(366)

> split(sample(seq(1:10)), rep(c("Control","Treatment"), 5))

> # sample(1:10) gives a random re-arrangement (permutation)

> # of 1, 2, ..., 10

$Control

[1] 6 8 3 7 9

$Treatment

[1] 5 4 2 1 10

We then assign plants 6, 8, 3, 7, and 9 to the control group. By choosing the plants in such
a manner, we avoid biases that could arise, for example, due to choosing healthier-looking
plants for the treatment group.

With-replacement samples

We can randomly sample from the set {1, 2, . . . , 10}, allowing for repeated observations,
by using:

> sample(1:10, replace=TRUE)

[1] 7 5 2 1 2 3 1 5 7 6

9 ## Use strip.custom to customize the strip labeling
doStrip <- strip.custom(strip.names = TRUE, factor.levels = as.expression(size),

var.name = "Sample size", sep = expression(" = "))
## Then include the argument ’strip=doStrip’ in the call to densityplot



3.4 Model assumptions 91

Cluster sampling

Cluster sampling is one of many different probability-based variants on simple random
sampling. See Barnett (2002). In surveys of human populations cluster-based sampling,
e.g., samples of households or of localities, with multiple individuals from each chosen
household or locality, is likely to introduce a cluster-based form of dependence. The analysis
must then take account of this clustering. Standard inferential methods require adaptation
to take account of the fact that it is the clusters that are independent, not the individuals
within the clusters. Donner and Klar (2000) describe methods that are designed for use in
health research.

Simulation in teaching and research

The R package animation (Xie and Cheng, 2008) has a number of simulations that are
intended for use in teaching or self-instruction. In statistical theory and practice, simulation
is widely used to determine the statistical properties of models and/or of model statistics in
cases where it has not been possible to derive analytical results.

3.4 Model assumptions

Common model assumptions are normality, independence of the elements of the error
term, and homogeneity of variance (i.e., the standard deviations of all measurements are
the same).

If certain assumptions fail to hold, a statistical method may be invalid. Other assumptions
may not be as important; we say that the method used is robust against those assumptions.
Much of the art of applied statistics comes from knowing which assumptions are important
and need careful checking. There are few hard and fast rules.

3.4.1 Random sampling assumptions – independence

Typically, the data analyst has a sample of values that will be used as a window into a wider
population. Ideally, data should be gathered in such a way that the independence assumption
is guaranteed. This is why randomization is so important in designed experiments, and why
random sampling is so important in designed sample surveys.

Elementary analysis methods can be modified or extended in various ways to handle
modifications of the simple independent random sampling scheme. For example, we can
modify the methodology to handle analyses of data from a random sample of clusters of
individuals.

In practice, analysts may make the random sampling assumption when the selection
mechanism does not guarantee randomness. Inferences from data that are chosen haphaz-
ardly are inevitably less secure than when we have random samples. Random selection
avoids the conscious or unconscious biases that result when survey or other samplers make
their own selection, or take whatever items seem suitable.

Where there has not been explicit use of a random sampling mechanism, it is necessary to
consider carefully how this may have affected the data. Is some form of dependence structure
likely? Temporal and spatial dependence arise because values that are close together in time



92 Statistical models

or space are relatively more similar. Is there clustering that arises because all individuals
within chosen streets, or within chosen families, have been included. Two individuals in
the same family or in the same street may be more similar than two individuals chosen at
random from the same city suburb.

Often samples are chosen haphazardly, e.g., an experimenter may pick a few plants from
several different parts of a plot. Or a survey interviewer may, in a poor-quality survey,
seek responses from individuals who can be found in a shopping center. Self-selected
samples can be particularly unsatisfactory, e.g., those readers of a monthly magazine who
are sufficiently motivated to respond to a questionnaire that is included with the magazine.

Failure of the independence assumption is a common reason for wrong statistical infer-
ences. Detecting failure of the independence assumption is often difficult. Tests for inde-
pendence are at best an occasionally useful guide. They are of little use unless we have
some idea how the assumption may have failed, and the sample is large! It is in general
better to try to identify the nature of any possible dependence, and use a form of analysis
that allows for it.

Models that do not obviously reflect mechanisms that generated the data can sometimes
be useful for prediction. They can also, if their deficiencies are not understood or if they are
used inappropriately, be misleading. Careful checking that the model is serving its intended
purpose, and caution, are necessary.

3.4.2 Checks for normality

Many data analysis methods rest on the assumption that the data are normally distributed.
Real data are unlikely to be exactly normally distributed.

Broadly, gross departures from normality are a cause for concern. Small departures are
of no consequence. Check especially for data that are skew. Check also for data that take
a small number of discrete values, perhaps as a result of excessive rounding. Whether a
specific form of departure will matter depends on the use made of the data.

For modest-sized samples, only gross departures will be detectable. For small samples
(e.g., less than about 10), it is typically necessary to rely on sources of evidence that are
external to the data, e.g., previous experience with similar data.

Graphical tools for checking for normality

As noted in Subsection 2.1.1, histograms are not an effective means for assessing whether
the distribution is plausibly normal. Refer back to the five histograms shown in Figure 3.4,
from five independent random samples of 50 values from a normal distribution. None of
these histograms showed a close resemblance to a theoretical normal distribution.

The normal probability plot

A better tool for assessing normality is the normal probability (or quantile–quantile) plot.
The data values are sorted, then plotted against the ordered values that might be expected
if the data really were from a normal distribution. If the data are from a normal distribution,
the plot should approximate a straight line. Figure 3.6 shows normal probability plots for



3.4 Model assumptions 93

7

8

9

10

11

12

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

Figure 3.6 Normal probability plots for the same random normal data as in Figure 3.4.

the same five sets of 50 normally distributed values as were displayed in Figure 3.4. The
code is:

## Use qreference() (DAAG)

## With seed=21, the random numbers are as in the previous figure

qreference(m=50, seed=21, nrep=5, nrows=1) # 50 values per panel

An alternative is to use the lattice function qqmath().10 To obtain a single plot of this
type, the function qqnorm(), which relies on functions from base graphics, may be used.
Specify, e.g., qqnorm(rnorm(50)).

Displays such as Figure 3.6 help the data analyst to calibrate the eye, to get a feel for
the nature and extent of departures from linearity that are to be expected in random normal
samples of the specified size, here 50. It is useful to repeat the process several times. Such
plots give a standard against which to compare the normal probability plot for the sample.

Note that, by plotting against the ordered values that might be expected from the relevant
distribution, the methodology allows a comparison with any distribution that is of interest.

The sample plot, set alongside plots for random normal data

Consider data from an experiment that tested the effect of heat on the stretchiness of elastic
bands. Eighteen bands were first tested for amount of stretch under a load that stretched the
bands by a small amount (the actual load was 425 g, thought small enough not to interfere
with the elastic qualities of the bands). This information was used to arrange bands into
nine pairs, such that the two members of a pair had similar initial stretch. One member
of each pair, chosen at random, was placed in hot water (60–65 ◦C) for four minutes. The
other member of the pair remained at ambient temperature. All bands were then measured
for amount of stretch under a load of 1.35 kg weight. Table 3.1 shows the results.

In the next chapter, the heated–ambient differences will be the basis for various statistical
calculations. Is the distribution consistent with the assumption of normality? The normal
probability plot for these data is in the lower left panel of Figure 3.7. The other seven plots
are for samples (all of size 9) of simulated random normal values. They give a standard
against which to compare the plot for the experimental data. There is no obvious feature that
distinguishes the plot in the lower left panel from the seven reference plots. The code is:

10 ## Set seed to get the same data as earlier
library(lattice)
qqmath(˜rnorm(50*5)|rep(1:5,rep(50,5)), layout=c(5,1), aspect=1)



94 Statistical models

Table 3.1 Eighteen elastic bands were divided into nine pairs, with
bands of similar stretchiness placed in the same pair. One member of
each pair was placed in hot water (60–65 ◦C) for four minutes, while
the other was left at ambient temperature. After a wait of about
10 minutes, the amounts of stretch, under a 1.35 kg weight, were
recorded.

Pair #

1 2 3 4 5 6 7 8 9

Heated (mm) 244 255 253 254 251 269 248 252 292
Ambient 225 247 249 253 245 259 242 255 286
Difference 19 8 4 1 6 10 6 −3 6

−5
0
5

10
15
20

0 5 10 15

●

●

●
● ● ●

●
●

●

heated − ambient

●
●

● ●

●
● ●

● ●

reference 1

0 5 10 15

●

●

●
● ●

●

●

●

●

reference 2

●

●
●

●
● ●

●

●
●

reference 3

● ●

● ●
● ●

●

●

●

reference 4

0 5 10 15

●

●

● ● ●
●

●

●
●

reference 5

●

● ●

●

● ● ●

●

●

reference 6

0 5 10 15

−5
0
5
10
15
20

●
●

●

●
● ●

● ●

●

reference 7

Figure 3.7 The lower left panel is the normal probability plot for heated–ambient differences.
Remaining panels show plots for samples of nine numbers from a normal distribution.

## Compare normal probability plot for normal-ambient difference

## with simulated normal values: data frame pair65 (DAAG)

qreference(pair65$heated - pair65$ambient, nrep=8)

The function qreference() is from the DAAG package.

How close to normal is the sampling distribution of the mean?

Often, the interest is in the normality of the sampling distribution of a mean or other
statistic. Figure 3.8 simulates repeated sampling from the same mildly skew distribution
as in Figure 3.5. Instead of density curves, the normal probability plots are shown. The
normal probability plot for a sample from the population is the gray dashed line. This
plot can be obtained by replacing densityplot() by qqmath() in the code for
Figure 3.5. Alternatively, use the function sampdist() (DAAG), with the argument
plot.type="qq".



3.4 Model assumptions 95

1.0

1.5

2.0

2.5

3.0

−2 −1 0 1 2

 = Sample size 3

−2 −1 0 1 2

 = Sample size 9

−2 −1 0 1 2

 = Sample size 30

Figure 3.8 The normal probability plots are from simulations of the sampling distribution of the
mean, for the same mildly skew distribution as in Figure 3.5. The plot for the population is shown
in gray. The panels show the plots for samples of respective sizes 3, 9, and 30. Each is from 1000
simulations.

Notice that the plot for the sampling distribution is increasingly linear, with a reduced
slope, as one goes from n = 3 to n = 9 to n = 30. The reduced slope reflects the reduced
SEM, which goes from σ√

3
to σ√

9
to σ√

30
.

Formal statistical testing for normality?

Both formal statistical tests for normality and less formal graphical checks are of limited
usefulness. With small or modest-sized samples, only gross departures are likely to be
detected. Large samples will show departures from normality that may be too small to have
any practical consequence for standard forms of statistical analysis. For a statistic such as
a mean or a regression slope, the effects of averaging may give a close approximation to
normality, even when the underlying population is clearly not normally distributed. (This
is a consequence of the “Central Limit Theorem” that was discussed in Subsection 3.3.3.)

Depending then on the specific context, normality may not be an important issue for
analyses where samples are large. Tests for normality will detect non-normality in contexts
where there is the least reason to be concerned about it.

3.4.3 Checking other model assumptions

In Chapter 2, we discussed a number of exploratory techniques that can aid in checking
whether the standard deviation is the same for all observations in a data set. Following
analysis, a plot of residuals against fitted values may give useful indications. For example,
residuals may tend to fan out as fitted values increase, giving a “funnel” effect, a fairly
sure sign that the standard deviation is increasing. Alternatively, or additionally, there may
be evidence of outliers – one or more unusually large residuals. The major concern may
however be to identify points, whether or not outliers, that have such high influence that
they distort model estimates.

3.4.4 Are non-parametric methods the answer?

Non-parametric methods have been developed to handle situations where normality or other
model assumptions are in question, and where it might be difficult to pose an alternative



96 Statistical models

model. These methods are only sometimes useful, and they still depend on assumptions,
and we still need assurance that these assumptions are realistic. If used in a way that ignores
structure in the data that we should be modeling, we risk missing insights that parametric
methods may provide. Building too little structure into a model can be just as bad as building
in too much structure.

There is a trade-off between the strength of model assumptions and the ability to find
effects. Newer methodologies such as lowess smoothing are welcome and useful additions
to the statistical toolbox. However, if we assume a linear relationship, we may be able to
find it, where we will find nothing if we look for a general form of smooth curve or a
completely arbitrary relationship. This is why simple non-parametric approaches are often
unsatisfactory – they assume too little. Often they assume much less than we know to be
true. Johnson (1995) has useful comments on the role of non-parametric tests. In part, the
objection is to a view of non-parametric modeling that is too limited.

3.4.5 Why models matter – adding across contingency tables

The multi-way table UCBAdmissions (datasets package) has admission frequencies, by
sex, for the six largest departments at the University of California at Berkeley in 1973
(Bickel et al., 1975). Do the data provide evidence, across the University as a whole, of
sex-based discrimination? Note the margins of the table:

> str(UCBAdmissions)

table [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...

- attr(*, "dimnames")=List of 3

..$ Admit : chr [1:2] "Admitted" "Rejected"

..$ Gender: chr [1:2] "Male" "Female"

..$ Dept : chr [1:6] "A" "B" "C" "D" ...

First, calculate overall admission rates (percentages) for females and males.

> ## Tabulate by Admit and Gender

> byGender <- margin.table(UCBAdmissions, margin=1:2)

> round(100*prop.table(byGender, margin=2)["Admitted", ], 1)

Male Female

44.5 30.4

Admission rates will now be calculated for individual departments:

> ## Admission rates, by department

> round(100*prop.table(UCBAdmissions,

+ margin=2:3)["Admitted", , ], 1)

Dept

Gender A B C D E F

Male 62.1 63 36.9 33.1 27.7 5.9

Female 82.4 68 34.1 34.9 23.9 7.0

As a fraction of those who applied, females were strongly favored in department A, and
males somewhat favored in departments C and E.



3.5 Recap 97

Look now, for each department, at the numbers of males applying as a proportion of the
total number of male applicants, and similarly for females:

> ## Calculate totals, by department, of males & females applying

> (applicants <- margin.table(UCBAdmissions, margin=2:3))

Dept

Gender A B C D E F

Male 825 560 325 417 191 373

Female 108 25 593 375 393 341

> ## Calculate proportions of male & female applicants

> round(100*prop.table(applicants, margin=1), 1)

Dept

Gender A B C D E F

Male 30.7 20.8 12.1 15.5 7.1 13.9

Female 5.9 1.4 32.3 20.4 21.4 18.6

Relatively few females (5.9%) applied to department A, while a high proportion (32.3% and
21.4% respectively) applied to departments C and E where admission rates were relatively
low. The very high number of males applying to departments A and B has biased the male
rates towards the relatively high admission rates in those departments, while the relatively
high number of females applying to departments C, D and F biased the overall female rates
towards the low admission rates in those departments. The overall bias arose because males
favored departments where there were a relatively larger number of places.

What model is in mind? Is the aim to compare the chances of admission for a randomly
chosen female with the chances of admission for a randomly chosen male? The relevant
figure is then the overall admission rate of 30.4% for females, as against 44.5% for males.
Or, is the interest in the chances of a particular student who has decided on a department? A
female had a much better chance than a male in department A, while a male had a slightly
better chance in departments C and E.

Here, information was available on the classifying factor on which it was necessary to
condition. This will not always be the case. In any such tabulation, it is always possible that
there is some further variable that, when conditioned on, can reverse or otherwise affect an
observed association.

The results that give the overall proportions are, for these data and depending on the
intended use, an unsatisfactory and potentially misleading summary. The phenomenon that
they illustrate, known as Simpson’s paradox or as the Yule–Simpson effect, is discussed in
Aldrich (1995), Simpson (1951).

In any overall analysis, the effect of the classifying (or conditioning) factor sex must
be explicitly incorporated in the model. There are various ways to do this. Section 8.3
demonstrates one suitable approach. See also Exercise 11 in Chapter 4, and the references
given there.

3.5 Recap

Statistical models have both deterministic and random error components, or signal com-
ponents and noise components. In simpler cases, which include most of the cases we



98 Statistical models

consider,

observation = signal + noise.

After fitting a model, we have

observation = fitted value + residual

which we can think of as

observation = smooth component + rough component.

The hope is that the fitted value will recapture most of the signal, and that the residual will
contain mostly noise. Unfortunately, as the relative contribution of the noise increases,

� it becomes harder to distinguish between signal and noise,
� it becomes harder to decide between competing models.

Model assumptions, such as normality, independence, and constancy of the variance, should
be checked, to the extent that this is possible.

3.6 Further reading

Finding the right statistical model is an important part of statistical problem-solving.
Chatfield (2002, 2003b) has helpful comments. Clarke (1968) has a useful discussion
of the use of models in archaeology. See also the very different points of view of Breiman
and Cox (as discussant) in Breiman (2001). Our stance is much closer to Cox than to
Breiman. See also our brief comments on Bayesian modeling in Section 4.10.

Johnson (1995) comments critically on the limitations of widely used non-parametric
methods. See Hall (2001) for an overview of non-parametrics from a modern perspective.

References for further reading

Breiman, L. 2001. Statistical modeling: the two cultures. Statistical Science 16: 199–
215.

Chatfield, C. 2002. Confessions of a statistician. The Statistician 51: 1–20.
Chatfield, C. 2003b. Problem Solving. A Statistician’s Guide, 2nd edn.
Clarke, D. 1968. Analytical Archaeology.
Hall, P. 2001. Biometrika centenary: non-parametrics. Biometrika 88: 143–65.
Johnson, D. H. 1995. Statistical sirens: the allure of non-parametrics. Ecology 76: 1998–

2000.

3.7 Exercises

1. The distance that a body, starting at rest, falls under gravity in t seconds is commonly given as
d = 1

2 gt2, where g � 9.8 msec−2. The equation can be modified to take account of the effects of
air resistance, which will vary with barometric pressure and other atmospheric conditions. Will
a time–distance relationship that is obtained for a human dummy that falls from a height of some
thousands of meters be useful in predicting the time–distance relationship for another dummy,



3.7 Exercises 99

or for a human, falling at another time from a similar height? Or is the situation comparable to
that for the lawn roller data in Subsection 3.1.1, where the relationship is likely to be different
for different lawns? [Humans have very occasionally survived falls from such heights. See
http://www.greenharbor.com/fffolder/ffresearch.html]

2. Hooke’s law of elasticity is an approximation which states that the amount by which a spring or
other elastic body deforms is proportional to the applied force. Data are obtained for one spring.
Can those data be used to make predictions for another spring that has been manufactured in
the same way? How can the accuracy of such predictions be tested?

3. An experimenter intends to arrange experimental plots in four blocks. In each block there are
seven plots, one for each of seven treatments. Use the function sample() to find four random
permutations of the numbers 1 to 7 that will be used, one set in each block, to make the
assignments of treatments to plots.

4. Use y <- rnorm(100) to generate a random sample of size 100 from a normal distribution.

(a) Calculate the mean and standard deviation of y.
(b) Use a loop to repeat the above calculation 25 times. Store the 25 means in a vector named

av. Calculate the standard deviation of the values in av.
(c) Create a function that performs the calculations described in (b). Run the function several

times, showing each of the distributions of 25 means in a density plot.

5. To simulate samples from normal populations having different means and standard deviations,
the mean and sd arguments can be used in rnorm(). Simulate a random sample of size 20
from a normal population having a mean of 100 and a standard deviation of 10.

6. Use mfrow to set up the layout for a 3 by 4 array of plots. In the top 4 panels, show normal
probability plots for 4 separate “random” samples of size 10, all from a normal distribution. In
the middle 4 panels, display plots for samples of size 100. In the bottom 4 panels, display plots
for samples of size 1000. Comment on how the appearance of the plots changes as the sample
size changes.

7. The functionrunif()generates a sample from a uniform distribution, by default on the interval
0 to 1. Try x <- runif(10), and print out the resulting numbers. Then repeat Exercise 5
above, but taking samples from a uniform distribution rather than from a normal distribution.
What shape do the plots follow?

8. The function pexp(x, rate=r) can be used to compute the probability that an exponential
variable is less than x. Suppose the time between accidents at an intersection can be modeled
by an exponential distribution with a rate of 0.05 per day. Find the probability that the next
accident will occur during the next three weeks.

9. Use the function rexp() to simulate 100 exponential random numbers with rate 0.2. Obtain a
density plot for the observations. Find the sample mean of the observations. Compare with the
population mean (the mean for an exponential population is 1/rate).

10.∗ This exercise investigates simulation from other distributions. The statement x <-

rchisq(10, 1) generates 10 random values from a chi-squared distribution with one
degree of freedom. The statement x <- rt(10, 1) generates 10 random values from a
t-distribution with one degree of freedom. Make normal probability plots for samples of various
sizes from each of these distributions. How large a sample is necessary, in each instance, to
obtain a consistent shape?

http://www.greenharbor.com/fffolder/ffresearch.html


100 Statistical models

11. The following data represent the total number of aberrant crypt foci (abnormal growths in
the colon) observed in seven rats that had been administered a single dose of the carcinogen
azoxymethane and sacrificed after six weeks (thanks to Ranjana Bird, Faculty of Human Ecology,
University of Manitoba for the use of these data):
87 53 72 90 78 85 83

Enter these data and compute their sample mean and variance. Is the Poisson model appropriate
for these data? To investigate how the sample variance and sample mean differ under the Poisson
assumption, repeat the following simulation experiment several times:
x <- rpois(7, 78.3)

mean(x); var(x)

12.∗ A Markov chain is a data sequence which has a special kind of dependence. For example, a fair
coin is tossed repetitively by a player who begins with $2. If “heads” appear, the player receives
one dollar; otherwise, she pays one dollar. The game stops when the player has either $0 or $5.
The amount of money that the player has before any coin flip can be recorded – this is a Markov
chain. A possible sequence of plays is as follows:

Player’s fortune: 2 1 2 3 4 3 2 3 2 3 2 1 0
Coin Toss result: T H H H T T H T H T T T

Note that all we need to know in order to determine the player’s fortune at any time is the
fortune at the previous time as well as the coin flip result at the current time. The probability
of an increase in the fortune is 0.5 and the probability of a decrease in the fortune is 0.5. The
transition probabilities can be summarized in a transition matrix:

P =



1 0 0 0 0 0
0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0.5
0 0 0 0 0 1



The (i, j ) entry of this matrix is the probability of making a change from the value i to the
value j . Here, the possible values of i and j are 0, 1, 2, . . . , 5. According to the matrix, there
is a probability of 0 of making a transition from $2 to $4 in one play, since the (2, 4) element
is 0; the probability of moving from $2 to $1 in one transition is 0.5, since the (2, 1) element
is 0.5.

The following function can be used to simulate N values of a Markov chain sequence, with
transition matrix P :
Markov <- function (N=100, initial.value=1, P)

{

X <- numeric(N)

X[1] <- initial.value + 1 # States 0:5; subscripts 1:6

n <- nrow(P)

for (i in 2:N){

X[i] <- sample(1:n, size=1, prob=P[X[i-1], ])}

X - 1

}

Simulate 15 values of the coin flip game, starting with an initial value of $2. Repeat the simulation
several times.



3.7 Exercises 101

13. A Markov chain for the weather in a particular season of the year has the transition matrix, from
one day to the next:

Pb =


Sun Cloud Rain

Sun 0.6 0.2 0.2
Cloud 0.2 0.4 0.4
Rain 0.4 0.3 0.3


It can be shown, using linear algebra, that in the long run this Markov chain will visit the states
according to the stationary distribution:

Sun Cloud Rain
0.641 0.208 0.151

A result called the ergodic theorem allows us to estimate this distribution by simulating the
Markov chain for a long enough time.

(a) Simulate 1000 values, and calculate the proportion of times the chain visits each of
the states. Compare the proportions given by the simulation with the above theoretical
proportions.

(b) Here is code that calculates rolling averages of the proportions over a number of simulations
and plots the result. It uses the function rollmean() from the zoo package.
plotmarkov <-

function(n=10000, start=0, window=100, transition=Pb, npanels=5){

xc2 <- Markov(n, start, transition)

mav0 <- rollmean(as.integer(xc2==0), window)

mav1 <- rollmean(as.integer(xc2==0), window)

npanel <- cut(1:length(mav0), breaks=seq(from=1, to=length(mav0),

length=npanels+1), include.lowest=TRUE)

df <- data.frame(av0=mav0, av1=mav1, x=1:length(mav0),

gp=npanel)

print(xyplot(av0+av1 ˜ x | gp, data=df, layout=c(1,npanels),

type="l", par.strip.text=list(cex=0.65),

scales=list(x=list(relation="free"))))

}

Try varying the number of simulations and the width of the window. How wide a window
is needed to get a good sense of the stationary distribution? This series settles down rather
quickly to its stationary distribution (it “burns in” quite quickly). A reasonable width of
window is, however, needed to give an accurate indication of the stationary distribution.



4

A review of inference concepts

A random sample is a set of values drawn independently from a larger population. A
(uniform) random sample has the characteristic that all members of the population have
an equal chance of being drawn. In the previous chapter, we discussed the implications
of drawing repeated random samples from a normally distributed population, where the
probability that a value lies in a given interval is governed by the normal density. This
chapter will expand upon that discussion by using the idea of a sampling distribution, with
its associated standard error, to assess estimation accuracy. Confidence intervals and tests
of hypotheses offer a formal basis for inference, based on the sampling distribution. We
will comment on weaknesses in the hypothesis testing framework.

4.1 Basic concepts of estimation

This section will introduce material that is fundamental to inference.

4.1.1 Population parameters and sample statistics

Parameters, such as the mean (µ) or standard deviation (σ ), numerically summarize various
aspects of a population. Such parameters are usually unknown and are estimated using
statistics calculated using a random sample taken from the population. The sample mean
is an example of a statistic, and it is used to estimate the population mean.

Other commonly used statistics are the proportion, standard deviation, variance, median,
the quartiles, the slope of a regression line, and the correlation coefficient. Each may be
used as an estimate of the corresponding population parameter.

4.1.2 Sampling distributions

Subsection 3.3.3 introduced the sampling distribution of the mean: the distribution of
sample means, under repeated random sampling. The standard deviation of this sampling
distribution is called the standard error of the mean (SEM). The SEM is a measure of the
accuracy of the sample mean, as an estimate of the population mean.

The challenge is to use the one sample that is available, together with the assumption of
independent and identically distributed sample values, to infer the sampling distribution of
the mean. Two approaches will be described. The first, used in the main part of this chapter,
relies on statistical theory – the Central Limit Theorem. The second, relying on repeated



4.1 Basic concepts of estimation 103

resampling from the one available sample, will be the subject of Subsections 4.7.3 and
4.7.4.

Reliance on the Central Limit Theorem

As a consequence of the Central Limit Theorem, the sampling distribution of the mean can,
for a population with mean µ and standard deviation σ , often be well approximated by a
normal distribution with mean µ and standard deviation σ/

√
n. An estimate of the SEM is

thus

SEM = s√
n

where s is an estimator of the population standard deviation σ . Refer back to Figure 3.5
(Subsection 3.3.3).

This deceivingly simple formula, relating the SEM to the standard deviation, hides quite
complex mathematical ideas. Note that if the data are not independent, then the formula
does not apply.

Other statistics, such as the sample proportion, have their own sampling distributions.
Often, these sampling distributions are also reasonably well approximated by a normal
distribution.

4.1.3 Assessing accuracy – the standard error

A small SEM suggests that the sample mean is close to the population mean, while a large
SEM allows for the possibility that the sample and population means may differ widely.

The data frame pair65, shown earlier in Table 3.1, has information on nine sets of
paired comparisons, leading to nine differences in the amount of stretch under a 1.35 kg
weight. These were:

Difference 19 8 4 1 6 10 6 −3 6

The mean is 6.33, the SD is s = 6.10, and SEM = 6.10/
√

9 = 2.03.1 We may report:
“The mean change is 6.33 [SEM 2.03], based on n = 9 values”, or “The mean change is
6.10/2.03 (= 3.11) times the standard error”.

4.1.4 The standard error for the difference of means

Where there are two independent samples of size n1 and n2, the comparison is usually in
the form of a difference:

x̄1 − x̄2

where x̄1 and x̄2 denote the respective sample means. If the corresponding standard errors
are denoted by SEM1 and SEM2, then the standard error of the difference (SED) is

SED =
√

SEM2
1 + SEM2

2.

1 ## Calculate heated-ambient; take heated & ambient from columns of pair65
test <- with(pair65, heated-ambient)
c(mean = mean(test), SD = sd(test), SEM = sd(test)/sqrt(length(test)))



104 A review of inference concepts

If all SEMs are the same, then for all comparisons,

SED =
√

2 × SEM.

It is sometimes reasonable to assume equality of the standard deviations in the populations
from which the samples are drawn. Then

SEM1 = s√
n1

, SEM2 = s√
n2

and the formula can be written as

SED = s

√
1

n1
+ 1

n2

where s is the pooled standard deviation estimate described in Subsection 2.2.3.
As an example, consider the unpaired elastic band experiment data of Subsection 2.2.3.

The pooled standard deviation estimate is 10.91. Hence, the SED is 10.91 ×
√

1
10 + 1

11 =
4.77.2

4.1.5∗ The standard error of the median

For data from a normal distribution, there is a similarly simple formula for the standard
error of the median. It is

SEmedian =
√

π

2

s√
n

≈ 1.25
s√
n
.

The standard error of the median is thus about 25% greater than the standard error of the
mean. For data from a normal distribution, the population mean can be estimated more
precisely than can the population median.

Consider again the cuckoos data. The median and standard error for the median of the
egg lengths in the wrens’ nests are 21.0 and 0.244, respectively.3

A different formula for the standard error of the median, one that depends on the
distribution, must be used when the data cannot reasonably be approximated by a normal
model.

2 ## Heated vs ambient; unpaired elastic band data
heated <- c(254, 252, 239, 240, 250, 256, 267, 249, 259, 269)
ambient <- c(233, 252, 237, 246, 255, 244, 248, 242, 217, 257, 254)
v1 <- var(heated) # 10 numbers; 10-1 = 9 d.f.
v2 <- var(ambient) # 11 numbers; 11-1 = 10 d.f.
v <- (9*v1 + 10*v2)/(9+10) # Pooled estimate of variance
# Estimate SED; variances may not be equal
c(sem1 = sqrt(v1/10), sem2 = sqrt(v2/11), sed = sqrt(v1/10 + v2/11))
# Estimate SED; use pooled estimate
c(sd = sqrt(v), sed = sqrt(v1/10 + v2/11))

3 ## median and SD for length, by species: data frame cuckoos (DAAG)
wren <- split(cuckoos$length, cuckoos$species)$wren
median(wren)
n <- length(wren)
sqrt(pi/2)*sd(wren)/sqrt(n) # this SE computation assumes normality



4.1 Basic concepts of estimation 105

0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

A

No. of SEMs from mean

P
ro

ba
bi

lit
y 

de
ns

ity
Normal
t (8 d.f.)

0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

B

No. of SEMs from mean

P
ro

ba
bi

lit
y 

de
ns

ity

Normal
t (3 d.f.)

Figure 4.1 Panel A overlays the density for a normal distribution with the density for a t-distribution
with 8 d.f. Panel B overlays the density for a t-distribution with 3 d.f.

4.1.6 The sampling distribution of the t-statistic

The formula

t = x̄ − µ

SEM

counts the number of standard error units between the true value µ and the sample estimate
x̄. It can be thought of as a standardized distance between the true mean and the sample
mean.

The variability in t has two sources: the sampling variability of x̄ and the sampling
variability of SEM. The replacing of σ by s introduces an uncertainty that is larger as the
degrees of freedom n − 1 in s are smaller. Hence the use of a t-distribution with n − 1
degrees of freedom (d.f.), where if σ was known precisely a normal distribution would be
used. The t-statistic becomes more and more like a standard normal random variable as the
sample size increases.

Figure 4.1B shows the density curve for a normal distribution overlaid with those for
t-distributions with 8 and 3 d.f. respectively. The main difference, in each case, is in
the tails, and much larger for the t-distribution with the smaller d.f., 3 as opposed to 8.
In the terminology of Subsection 3.2.2, the t-distribution is heavy-tailed – heavier for
smaller than for larger degrees of freedom.

For the data in the data frame pair65, the relevant inference is suitably based on the
mean d̄ of the differences that were observed when the bands were heated. In order to
standardize this mean difference, it needs to be divided by its standard error SE[d̄], i.e., the
relevant statistic is

t = d̄

SE[d̄]
= d̄

s/
√

9
= 6.33

2.47
= 3.11.

The mean is 3.11 times the magnitude of the standard error.



106 A review of inference concepts

0.
0

0.
1

0.
2

0.
3

N
or

m
al

 p
ro

ba
bi

lit
y 

de
ns

ity

−2 0

0.025 + 0.95
= 0.975

qnorm(0.975)
= 1.96

0.025 0.025

A

0.
0

0.
1

0.
2

0.
3

t p
ro

ba
bi

lit
y 

de
ns

ity
 (

8 
d.

f.)

−2 0

0.025 + 0.95
= 0.975

qt(0.975, 8)
= 2.31

0.025 0.025

B

Figure 4.2 Calculation of the endpoints of the symmetrically placed region that encloses 95% of
the probability: (A) for a normal distribution, and (B) for a t-distribution with 8 d.f. In each panel,
the upper 2.5% of the area under the curve is shaded in gray.

4.2 Confidence intervals and tests of hypotheses

Calculations with the t-distribution

Calculations for the t-distribution follow the same pattern as those shown for the normal
distribution in Subsection 3.2.2, but now with a distribution whose standard deviation is
the SEM, which has to be estimated. There are two sorts of calculation that may be useful,
both of which can be related to Figure 4.2:

� Given the distance from the mean, calculate the area under the curve. Thus, calculate
the area under the density curve within some specified number of standard errors either
side of the mean. For this, use functions that have p as their initial letter, here pnorm()
and pt:
> # Plus or minus 1.96SE normal distribution limits, e.g.

> pnorm(1.96) - pnorm(-1.96)

[1] 0.95

> # Plus or minus 2.31SE t distribution (8 df) limits, e.g.

> pt(2.31, 8) - pt(-2.31,8) # 2.31 SEs either side

[1] 0.95
� Given an area under the curve, calculate the limit or limits. Thus, what distance from

the mean gives an area under the curve, up to and including that point, that takes some
specified value? For this, use functions that have q as their initial letter, here qnorm()
and qt():
> qnorm(0.975) # normal distribution

[1] 1.96

> qt(0.975, 8) # t-distribution with 8 d.f.

[1] 2.31

Confidence intervals of 95% or 99%

The second of these statements makes it possible to say that in sampling from the sampling
distribution of t8 = d̄−µ

s/
√

9
, 95% of the values of t8 will lie between −2.31 and 2.31, i.e., that



4.2 Confidence intervals and tests of hypotheses 107

Table 4.1 Comparison of normal distribution endpoints (multipliers for
the SEM) with the corresponding t-distribution endpoints on 8 d.f.

Number of SEMs
Probability enclosed Cumulative
between limits probability Normal distribution t-Distribution (8 d.f.)

68.3% 84.1% 1.0 1.07
95% 97.5% 1.96 2.31
99% 99.5% 2.58 3.36
99.9% 99.95% 3.29 5.04

d̄ − µ will lie between −2.31s and 2.31s. In other words, in 95% of such samples d̄ will
lie within a distance 2.31s of µ. Furthermore (see Table 4.1, or enter qt(0.995, 8)),
in 99% of such samples d̄ will lie within a distance 3.36s of µ. This leads immediately to
the following “confidence” (or coverage) interval for µ:

95% CI: (6.33 − 2.03 × 2.31, 6.33 + 2.03 × 2.31) = (1.64, 11.02)
99% CI: (6.33 − 2.03 × 3.36, 6.33 + 2.03 × 3.36) = (−0.49, 13.15)

Code that may be used (here, for a 95% confidence interval) is:4

## 95% CI for mean of heated-ambient: data frame pair65 (DAAG)

with(pair65, t.test(heated, ambient, paired=TRUE,

conf.level=0.95)$conf.int)

The confidence interval has been constructed so that most often, when the sample is taken
in the way that the one available sample has been taken, it will include the population
mean. The two common choices for the long-run proportion of similar samples for which
the corresponding intervals should contain the population mean are 95% and 99%.

Tests of hypotheses

If the confidence interval for the population mean does not contain zero, this is equivalent to
rejection of the hypothesis that the population mean is zero. Starting from a 95% confidence
interval, the “significance level” for the test is p = 1 − 0.95 = 0.05.

In the example just considered, the 95% confidence interval does not contain zero,
while the (wider) 99% confidence interval does contain zero. Thus the hypothesis that the
population mean is zero is rejected for p = 0.05, but not for p = 0.01. The value of p that
is on the borderline between rejection and non-rejection is termed the p-value.

This value can be obtained by doubling the probability that the t-statistic is less than

−mean/SEM = −6.33/2.03

## Probability that t-statistic (8 d.f.) is less than -6.33/2.03

> 1-pt(6.33/2.03, 8) # Equals pt(-6.33/2.03, 8)

[1] 0.00713

4 ## Detailed calculations; 95% CI for mean of heated-ambient
pair65.diff <- with(pair65, heated-ambient)
pair65.n <- length(pair65.diff)
pair65.se <- sd(pair65.diff)/sqrt(pair65.n)
mean(pair65.diff) + qt(c(.025,.975),8)*pair65.se



108 A review of inference concepts

Doubling 0.00713 to determine the sum of the probabilities in the two tails yields p = 0.014.
The result may be summarized in the statement: “Based on the sample mean of 6.33, the
population mean is greater than zero (p = 0.014)”.

Formal hypothesis testing requires the statement of null and alternative hypotheses.
Taking the population mean to be µ, the null hypothesis is

H0 : µ = 0

while the alternative hypothesis is µ 	= 0.
The formal methodology of hypothesis testing may seem contorted. A small p-value

makes the null hypothesis appear implausible. It is not a probability statement about the
null hypothesis itself, or for that matter about its alternative. All it offers is an assessment
of implications that flow from accepting the null hypothesis. A straw man is set up, the
statement that µ = 0. The typical goal is to knock down this straw man. By its very nature,
hypothesis testing lends itself to various abuses.

What is a small p-value?

At what point is a p-value small enough to be convincing? The conventional p = 0.05
(= 5%) cutoff is too large, if results from the experiment are to be made the basis for a
recommendation for changes to farming practice or to medical treatment. It may be too
small when the interest is in deciding which effects merit further experimental or other
investigation. There must be a careful balancing of the likely costs and benefits of any such
recommendation, having regard to the statistical evidence. In any particular case, consider
carefully:

� Is there other relevant evidence, additional to that summarized in a p-value or confidence
interval?

� What is the most helpful way to present results: a p-value, or a confidence interval, or
something else again?

t-Distribution versus the normal distribution

Table 4.1 compares the normal distribution multipliers with those for a t-distribution with
8 d.f., for several different choices of area under the curve. Changing from a normal
distribution to a t-distribution with 8 d.f. led to a small change, from 1.0 to 1.07, for
enclosing the central 68.3% of the area. There is a substantial difference, giving an increase
from 1.96 to 2.31, for enclosing 95% of the area.

How good is the normal theory approximation?

For random samples from a distribution that is close to symmetric, the approximation
is often adequate, even for samples as small as 3 or 4. In practice, we may know little
about the population from which we are sampling. Even if the main part of the population
distribution is symmetric, occasional aberrant values are to be expected. Such aberrant



4.2 Confidence intervals and tests of hypotheses 109

Table 4.2 Formulae for confidence intervals and tests of hypothesis based on the
t-distribution.

Confidence interval Test statistic d.f.

One-sample t d̄ ± tcritSE[d̄] t = d̄
SE[d̄]

n − 1

e.g. 6.33 ± 2.306 × 6.10√
9

t = 6.33
6.10/

√
9

8

Two-sample t x̄2 − x̄1 ± tcritSE[x̄2 − x̄1] t = x̄2 − x̄1
SE[x̄2 − x̄1] n1 + n2 − 2

e.g. 253.5 − 244.1 ± 2.09 × 10.91
√

1
10 + 1

11 t = 253.5 − 244.1

10.91 ×
√

1
10 + 1

11

19
= 253.5 − 244.12.09 × 4.77 = (−0.6, 19.4)

Here, tcrit is the 97.5th percentile of a t-statistic with 8 d.f. (one-sample example) or 19 d.f. (two-
sample example). (The 97.5th percentile is the same as the two-sided 5% critical value.)

values do, perhaps fortunately, work in a conservative direction – they make it more
difficult to detect genuine differences. The take-home message is that, especially in small
samples, the probabilities and quantiles can be quite imprecise. They are rough guides,
intended to assist researchers in making a judgment.

4.2.1 A summary of one- and two-sample calculations

Confidence intervals for a mean difference, or for a difference of means, have the form

difference ± t-critical value × standard error of difference.

The t-statistic has the form

t = difference

standard error of difference
.

Given t , the p-value for a (two-sided) test is defined as

P (T > t) + P (T < −t)

where T has a t-distribution with the appropriate number of degrees of freedom. A small
p-value corresponds to a large value of |t |, regarded as evidence that the true difference is
non-zero and leading to the rejection of the null hypothesis.

Table 4.2 lists confidence intervals and tests in the one- and two-sample cases.5 The
single-sample example is for the paired elastic band data that we discussed at the beginning
of this section. The example that we use for the two-sample calculations was discussed in
Subsection 2.2.3.

5 ## t-test and confidence interval calculations
heated <- c(254, 252, 239, 240, 250, 256, 267, 249, 259, 269)
ambient <- c(233, 252, 237, 246, 255, 244, 248, 242, 217, 257, 254)
t.test(heated, ambient, var.equal=TRUE)



110 A review of inference concepts

●

●
● ●

●

●

●
●

●

230 250 270 290

23
0

25
0

27
0

29
0

Amount of stretch (ambient)

A
m

ou
nt

 o
f s

tr
et

ch
 (

he
at

ed
)

SED = 2.03

SE = 5.43

S
E

 =
 4

.8
7

r = 0.9276

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

10 15 20 25

10
15

20
25

Height of self-fertilized plant

H
ei

gh
t o

f c
ro

ss
-f

er
til

iz
ed

 p
la

nt

SED = 1.21

SE = 0.64

S
E

 =
 0

.9
6

r = −0.1002

Figure 4.3 Second versus first member, for each pair. The first panel is for the ambient/heated
elastic band data from Subsection 4.1.6, while the second is for Darwin’s plants.

When is pairing helpful?

Figure 4.3 shows, for two different sets of paired data, a plot of the second member of
the pair against the first.6 The first panel is for the paired elastic band data of Subsection
4.1.6, while the second panel (for the data set mignonette) is from the biologist Charles
Darwin’s experiments that compared the heights of crossed plants with the heights of self-
fertilized plants (data, for the wild mignonette Reseda lutea, are from p. 118 of Darwin,
1877). Plants were paired within the pots in which they were grown, with one plant on one
side and one on the other.

For the paired elastic band data there is a clear correlation, and the standard error of the
difference is much less than the root mean square of the two separate standard errors. For
Darwin’s data there is little evidence of correlation. The standard error of differences of
pairs is about equal to the root mean square of the two separate standard errors. For the
elastic band data, the pairing was helpful; it led to a low SED. The pairing was not helpful
for Darwin’s data (note that Darwin (cited above) gives other data sets where the pairing
was helpful, in the sense of allowing a more accurate comparison).

If the data are paired, then the two-sample t-test corresponds to the wrong model! It is
appropriate to use the one-sample approach, whether or not there is evidence of correlation
between members of the same pair.

What if the standard deviations are unequal?

If variances are heterogeneous (unequal variances or standard deviations), the t-statistic
based on the pooled variance estimate is inappropriate. The Welch procedure gives an
adequate approximation, unless degrees of freedom are very small. The Welch statistic is

6 ## heated vs ambient: pair65 (DAAG); and cross vs self: mignonette (DAAG)
par(mfrow=c(1,2))
plot(heated ˜ ambient, data=pair65); abline(0, 1) # left panel
with(pair65, abline(mean(heated-ambient), 1, lty=2))
plot(cross ˜ self, data=mignonette); abline(0, 1) # right panel
with(mignonette, abline(mean(cross-self), 1, lty=2))
par(mfrow = c(1,1))



4.2 Confidence intervals and tests of hypotheses 111

the difference in means divided by a standard error of difference that allows for unequal
variances, i.e.,

t = x̄2 − x̄1

SED
,

where

SED =
√

s2
2

n2
+ s2

1

n1
.

If the two variances are unequal this does not have a t-distribution. However, critical
values are quite well approximated by the critical values of a t-distribution with degrees
of freedom given by a readily calculated function of the observed sample variances and
sample sizes. The most commonly used approximation is that of Welch (1949), leading to
the name Welch test. For details, see Miller (1986). The function t.test() has the Welch
test as its default; unequal variances are assumed unless the argument var.equal=TRUE
is given.

Note that if n1 = n2 then the statistic is the same as for the t-test that is based on the
pooled estimate of variance. However, the degrees of freedom are likely to be reduced.

Different ways to report results

For the paired elastic band data of Table 3.1, the mean difference in amount of stretch
before and after heating is 6.33, with a standard deviation of 6.10. The standard error of this
difference (SED) is thus 6.10/

√
9 = 2.03. The bare minimum of information that should

be reported is: “The mean change is 6.33 [SED 2.03, n = 9]”. In engineering and physical
science contexts where the aim is to accompany a report of the mean with a statement of
its precision, this may be enough. It is most appropriate when differences are large, of the
order of more than five times the SEM for any individual treatment or four times the SED
for comparing two means.

Confidence intervals and hypothesis testing give this form of report a more interpretive
twist. Here are some of the various alternatives:7

1. The mean change is 6.33 [SED 2.03, n = 9].
2. The t-statistic is t = 6.333/2.034 = 3.11, on 8 (= 9 − 1) degrees of freedom. In other

words, the difference is 3.11 times the standard error.
3. A 95% confidence interval for the change is

(6.33 − 2.306 × 2.034, 6.33 + 2.306 × 2.034), i.e., (1.64, 11.02).

[The multiplier, equal to 2.306, is the 5% two-sided critical value for a t-statistic on
8 (= 9 − 1) d.f.]

7 ## Different ways to report results: calculations
pair65.diff <- with(pair65, heated-ambient)
n <- length(pair65.diff)
av <- mean(pair65.diff); sd <- sqrt(var(pair65.diff)); se <- sd/sqrt(n)
print(c(mean=av, SED=se, "mean/SED"=av/se)) # Items 1 and 2
t.test(pair65.diff) # Items 3 and 4



112 A review of inference concepts

Table 4.3 Approximate 95%
confidence interval, assuming
0.35 ≤ π ≤ 0.65.

Approximate 95%
n confidence interval

25 p ± 20%
100 p ± 10%
400 p ± 5%

1000 p ± 3.1%

4. We reject the null hypothesis that the true mean difference is 0 (p = 0.014) – see
Subsection 4.2.1 for definitions.
[The two-sided p-value for t = 3.11 on 8 d.f. is 0.014.]

Alternative 1 is straightforward. The t-statistic (alternative 2) expresses the change as a
multiple of its standard error. The conventional wisdom is that the change is worthy of note
if the p-value is less than 0.05 or, equivalently, if the 95% confidence interval does not
contain 0. For this, the t-statistic must be somewhat greater than 1.96, i.e., for all practical
purposes >2.0. For small degrees of freedom, the t-statistic must be substantially greater
than 2.0.

Readers who have difficulty with alternatives 3 and 4 may find it helpful to note that
these restate and interpret the information in alternatives 1 and 2. If standard errors are
not enough and formal inferential information is required, confidence intervals may be
preferable to formal tests of hypotheses.

4.2.2 Confidence intervals and tests for proportions

We assume that individuals are drawn independently and at random from a binomial
population where individuals are in one of two categories – male as opposed to female, a
favorable treatment outcome as opposed to an unfavorable outcome, survival as opposed to
non-survival, defective as opposed to non-defective, Democrat as opposed to Republican,
etc. Let π be the population proportion. In a sample of size n, the proportion in the category
of interest is denoted by p. Then,

SE[p] =
√

π (1 − π )/n.

An upper bound for SE[p] is 1/(2
√

n). If π is between about 0.35 and 0.65, the inaccuracy
in taking SE[p] as 1/(2

√
n) is small.

This approximation leads to the confidence intervals shown in Table 4.3. Note again that
the approximation is poor if π is outside the range 0.35 to 0.65.

An alternative is to use the estimator

ŜE[p] =
√

p(1 − p)

n
.



4.2 Confidence intervals and tests of hypotheses 113

An approximate 95% confidence bound for the proportion π is then

p ± 1.96

√
p(1 − p)

n
.

4.2.3 Confidence intervals for the correlation

The correlation measure that we discuss here is the Pearson or product–moment correlation,
which measures linear association.

The standard error of the correlation coefficient is typically not a useful statistic. The dis-
tribution of the sample correlation, under the usual assumptions (e.g., bivariate normality),
is too skew. The function cor.test() may be used to test the null hypothesis that the
sample has been drawn from a population in which the correlation ρ is zero. For given x,
the distribution of y is assumed normal, independently for different ys and with mean given
by a linear function of x.

Classical methods for comparing the magnitudes of correlations, or for calculation of a
confidence interval for the correlation, rely on the assumption that the joint distribution of
(x, y) is bivariate normal. In addition to the assumption for the test that ρ = 0, we need to
know that x is normally distributed, independently between (x, y) pairs. This assumption
is required for the default confidence interval that cor.test() outputs. In practice, it
may be enough to check that both x and y have normal distributions.

4.2.4 Confidence intervals versus hypothesis tests

Those who have problems with confidence intervals and (especially) tests of hypotheses
(often called significance tests) are in good company. There is increasing support for the
view that they should play a relatively minor role in statistical analysis or be eliminated
altogether.

The methodology is too often abused. Papers that present a large number of significance
tests are, typically, not making good use of the data. It becomes difficult to know what to
make of the results. Among a large number of tests, some will be significant as a result of
chance.

Misunderstandings are common in the literature, even among mature researchers. A
p-value does not allow the researcher to say anything about the probability that either
hypothesis, the null or its alternative, is true. Then why use them? Perhaps the best that can
be said is that hypothesis tests often provide a convenient and quick answer to questions
about whether effects seem to stand out above background noise. However if all that
emerges from an investigation are a few p-values, we have to wonder what has been
achieved.

Because of these problems, there are strong moves away from hypothesis testing and
towards confidence intervals. Tukey (1991) argues strongly, and cogently, that confidence
intervals are more informative and more honest than p-values. He argues

Statisticians classically asked the wrong question – and were willing to answer with a lie, one that
was often a downright lie. They asked “Are the effects of A and B different?” and they were willing
to answer “no”.



114 A review of inference concepts

All we know about the world teaches us that the effects of A and B are always different – in some
decimal place – for every A and B. Thus asking “Are the effects different?” is foolish. What we
should be answering first is “Can we tell the direction in which the effects of A differ from the effects
of B?” In other words, can we be confident about the direction from A to B? Is it “up”, “down”, or
“uncertain”? [Tukey, 1991]

Tukey argues that we should never conclude that we “accept the null hypothesis”. Rather,
our uncertainty is about the direction in which A may differ from B. Confidence intervals
do much better at capturing the nature of this uncertainty.

Guidelines for significance testing

Few scientific papers make more than half-a-dozen points that are of consequence. Any
significance tests should be closely tied to these main points, preferably with just one
or two tests for each point that is made. Keep any significance tests and p-values in the
background. Once it is apparent that an effect is statistically significant, the focus of interest
should shift to its pattern and magnitude, and to its scientific significance.

It is poor practice to perform t-tests for each comparison between treatments when the
real interest is (or should be) in the overall pattern of response. Where the response depends
on a continuous variable, it is often pertinent to ask whether, e.g., the response keeps on
rising (falling), or whether it rises (falls) to a maximum (minimum) and then falls (rises).

Significance tests should give the researcher, and the reader of the research paper,
confidence that the effects that are discussed are real! The focus should then move to
the substantive scientific issues. Statistical modeling can be highly helpful for this. The
interest is often, finally, in eliciting the patterns of response that the data present.

4.3 Contingency tables

Table 4.4 is from US data that were used in the evaluation of labor training programs,
aimed at individuals who had experienced economic and social difficulties. The table
shows numbers of high school graduates and dropouts who had participated in a labour
training program (NSW group) and those who had not participated (PSID3 group).8 These
data will be discussed further in Section 13.2.

A glance at the table suggests that the proportion of high school dropouts in the NSW
group is much higher than in the PSID3 group. The chi-squared test for no association is
described in the next subsection; it can be used to check this formally:

> # To agree with hand calculation below, specify correct=FALSE

> chisq.test(with(nswpsid3, table(trt, nodeg)), correct=FALSE)

. . . .

X-squared = 19.9, df = 1, p-value = 8.189e-06

8 ## Compare number with a high school qualification, between ‘untreated’ rows
## from data frame psid3 and ‘treated’ rows from nswdemo
library(DAAG) # Data are from DAAG
nswpsid3 <- rbind(psid3, subset(nswdemo, trt==1))
table(nswpsid3$trt, nswpsid3$nodeg)
# PSID3 males are coded 0; NSW male trainees are coded 1.



4.3 Contingency tables 115

Table 4.4 Contingency table derived from
data that relates to the Lalonde (1986)
paper.

High school
graduate certificate

Yes No

PSID3 males 63 65
NSW male trainees 80 217

Table 4.5 The calculated expected values for the contingency table in Table 4.4.

High school graduate

Yes No Total Row proportion

PSID3 63 (115) 65 (12.95) 128 128/425 = 0.301
NSW74 trainees 80 (267.0) 217 (30.05) 297 217/425 = 0.699
Total 143 282 425
Column proportion 143/425 = 0.336 282/425 = 0.664

The small p-value confirms that high school dropouts are more strongly represented in the
NSW data.

The mechanics of the chi-squared test

The null hypothesis is that the proportion of the total in each cell is, to within random
error, the result of multiplying a row proportion by a column proportion. The independence
assumption, i.e., the assumption of independent allocation to the cells of the table, is
crucial.

Assume there are I rows and J columns. The expected value in cell (i, j ) is calculated
as

Eij = (proportion for row i) × (proportion for column j ) × total.

We can then obtain a score for each cell of the table by computing the absolute value
of the difference between the expected value and the observed value (with the continuity
correction that is the default, 0.5 would be subtracted at this point), squaring, dividing the
result by the expected value, and replacing any negative scores by zero. Summing over all
scores gives the chi-squared statistic.

Under the null hypothesis the chi-squared statistic has an approximate chi-squared dis-
tribution with (I − 1)(J − 1) degrees of freedom. In Table 4.5, the values in parentheses
are the expected values Eij .



116 A review of inference concepts

Table 4.6 Contingency table compiled
from Hobson (1988, Table 12.1, p. 248).

Object moves

Dreamer moves Yes No

Yes 5 17
No 3 85

The expected values are found by multiplying the column totals by the row proportions.
(Alternatively, the row totals can be multiplied by the column proportions.) Thus 117 ×
0.591 = 69.15, 196 × 0.591 = 115.85, etc.

An example where a chi-squared test may not be valid

In Table 4.6 we summarize information that Hobson (1988) derived from drawings of
dreams, made by an unknown person that he calls “The Engine Man”. Among other
information Hobson notes, for each of 110 drawings of dreams made, whether the dreamer
moves, and whether an object moves. Dreamer movement may occur if an object moves,
but is relatively rare if there is no object movement. (Note that Hobson does not give the
form of summary that we present in Table 4.6.)

It may also seem natural to do a chi-squared test for no association.9 This gives χ2 = 7.1
(1 d.f.), p = 0.008.

A reasonable rule, for the use of the chi-squared approximation, may be that all expected
values should be at least 2 (Miller, 1986), a requirement that is satisfied for this application
of the test. A check is to do a Fisher exact test. In this instance the Fisher exact test10 gives,
surprisingly, exactly the same result as the chi-squared test, i.e., p = 0.008.

A more serious concern is that there is a time sequence to the dreams. Thus, there could
well be runs of dreams of the same type. Hobson gives the numbers of the dreams in
sequence. Assuming these represent the sequence in time, this would allow a check of the
strength of any evidence for runs. Hobson’s table has information that our tabular summary
(Table 4.6) has not captured.

4.3.1 Rare and endangered plant species

The calculations for a test for no association in a two-way table can sometimes give useful
insight, even where a formal test of statistical significance would be invalid. The example
that now follows (Table 4.7) illustrates this point. Data are from species lists for various
regions of Australia. Species were classified CC, CR, RC and RR, with C denoting common
and R denoting rare. The first code letter relates to South Australia and Victoria, and the

9 ## Engine man data
engineman <- matrix(c(5,3,17,85), 2,2)
chisq.test(engineman)

10 fisher.test(engineman)



4.3 Contingency tables 117

Table 4.7 Cross-classification of
species occurring in South Australia/
Victoria and in Tasmania.

Habitat type
Common/rare
classification D W WD

CC 37 190 94
CR 23 59 23
RC 10 141 28
RR 15 58 16

second to Tasmania. They were further classified by habitat according to the Victorian
register, where D = dry only, W = wet only, and WD = wet or dry.11

We use a chi-squared calculation to check whether the classification into the different
habitats is similar for the different rows. Details of the calculations are:

> (x2 <- chisq.test(rareplants))

Pearson’s Chi-squared test

data: rareplants

X-squared = 35, df = 6, p-value = 4.336e-06

This low p-value should attract a level of skepticism. We do not have a random sample
from some meaningful larger population. Suppose that there is clustering, so that species
come in closely related pairs, with both members of the pair always falling into the same
cell of the table. This will inflate the chi-squared statistic by a factor of 2 (the net effect
of inflating the numerator by 22, and the denominator by 2). There probably is some such
clustering, though different from that of this simplistic example. Such clustering will inflate
the chi-squared statistic by an amount that the available information does not allow us to
estimate.

The standard Pearson chi-squared tests rely on multinomial sampling assumptions, with
counts entering independently into the cells. Where it is possible to form replicate tables,
the assumption should be tested.

Figure 4.4 shows expected number of species, by habitat.12

11 ## Enter the data thus:
rareplants <- matrix(c(37,190,94,23,59,23,10,141,28,15,58,16), ncol=3,

byrow=TRUE, dimnames=list(c("CC","CR","RC","RR"), c("D","W","WD")))
12 ## Expected number of species, by habitat (calculate x2 as above)
x2E <- stack(data.frame(t(x2$expected)))
habitat <- rep(c(1,2,3), 4)
plot(x2E$values ˜ habitat, axes=FALSE, xlim=c(0.5, 3.5), pch=16,

xlab="habitat", ylab="Expected Number of Species")
text(x2E$values ˜ habitat, labels=x2E$ind, pos=rep(c(4,4,2,2),3))
axis(1, at=seq(1,3), labels=c("D", "W", "WD"))
axis(2); box()



118 A review of inference concepts

●

●

●

●

●

●●

●

●

●

●

●

Habitat

E
xp

ec
te

d 
nu

m
be

r 
of

 s
pe

ci
es

CC

CC

CC

CR

CR

CRRC

RC

RC

RR

RR

RR

WD WD

50
10

0
15

0
20

0

Figure 4.4 Expected number of species, by habitat, for the rareplants data.

Examination of departures from a consistent overall row pattern

The investigator then needs to examine the nature of variation with the row clas-
sification. For this, it is helpful to look at the residuals; these are calculated as
(observed − expected)/expected0.5:

> x2 <- chisq.test(rareplants)

> ## Standardized residuals

> residuals(x2)

D W WD

CC -0.369 -1.1960 2.263

CR 2.828 -1.0666 -0.275

RC -2.547 2.3675 -2.099

RR 1.242 0.0722 -1.023

The null hypothesis implies that the expected relative numbers in different columns are
the same in every row. The chi-squared residuals show where there may be departures
from this pattern. In large tables these will, under the null hypothesis, behave like random
normal deviates with mean zero and variance one. The values that should be noted, if the
assumptions required for a chi-squared test are satisfied, are those whose absolute value
is somewhat greater than 2.0. For the present table, there are five standardized residuals
whose value is substantially greater than 2.0. It is these, and especially the two that are
largest, that should perhaps attract attention.

Notice that the CC species are, relative to the overall average, over-represented in the
WD classification, the CR species are over-represented in the D classification, while the RC
species are under-represented in D and WD and over-represented in W.

For reference, here is the table of expected values:

> x2$expected

D W WD

CC 39.3 207.2 74.5

CR 12.9 67.8 24.4

RC 21.9 115.6 41.5

RR 10.9 57.5 20.6



4.4 One-way unstructured comparisons 119

4.3.2 Additional notes

Interpretation issues

Having found an association in a contingency table, what does it mean? The interpretation
will differ depending on the context. The incidence of gastric cancer is relatively high in
Japan and China. Do screening programs help? Here are two ways in which the problem
has been studied:

� In a long-term follow-up study, patients who have undergone surgery for gastric cancer
may be classified into two groups – a “screened” group whose cancer was detected by
mass screening, and an “unscreened” group who presented at a clinic or hospital with
gastric cancer. The death rates over the subsequent five- or ten-year period are then
compared. For example, the five-year mortality may be around 58% in the unscreened
group, compared with 72% in the screened group, out of approximately 300 patients in
each group.

� In a prospective cohort study, two populations – a screened population and an unscreened
population – may be compared. The death rates in the two populations over a ten-year
period may then be compared. For example, the annual death rate may be of the order of
60 per 100 000 for the unscreened group, compared with 30 per 100 000 for the screened
group, in populations of several thousand individuals.

In the long-term follow-up study, the process that led to the detection of cancer was
different between the screened and unscreened groups. The screening may lead to surgery
for some cancers that would otherwise lie dormant long enough that they would never
attract clinical attention. The method of detection is a confounding factor. It is necessary,
as in the prospective cohort study, to compare all patients in a screened group with all
patients in an unscreened group. Even so, it is necessary, in a study where assignment of
participants is not random, to be sure that the two populations are comparable.

Modeling approaches

Modeling approaches typically work with data that record information on each case sepa-
rately. Data where there is a binary (yes/no) outcome, and where logistic regression may
be appropriate, are an important special case. Chapter 8 gives further details.

4.4 One-way unstructured comparisons

Figure 4.5 displays data from a one-way unstructured comparison between three treatments.
The weights of the plants were measured after two months on respective treatments: water
concentrated nutrient, and concentrated nutrient plus the selective herbicide 2,4-D. Data
are:

tomato <-

data.frame(weight=

c(1.5, 1.9, 1.3, 1.5, 2.4, 1.5, # water

1.5, 1.2, 1.2, 2.1, 2.9, 1.6, # Nutrient

1.9, 1.6, 0.8, 1.15, 0.9, 1.6), # Nutrient+24D

trt = rep(c("water", "Nutrient", "Nutrient+24D"),

c(6, 6, 6)))



120 A review of inference concepts

Weight

Water

Nutrient

Nutrient+24D

1.0 1.5 2.0 2.5

Figure 4.5 Weights of tomato plants, after two months of the three treatments.

## Make water the first level of trt. It will then appear as

## the initial level in the graphs. In aov or lm calculations,

## it will be the baseline or reference level.

tomato$trt <- relevel(tomato$trt, ref="water")

Figure 4.5 can be obtained with:

stripplot(trt˜weight, aspect=0.6, data=tomato)

The strip plots display “within-group” variability, as well as giving an indication of differ-
ences among the group means. Variances seem similar for the three treatments.

There is a single explanatory factor (trt), with one level for each of the different
treatments that were applied. A simple-minded approach is to calculate the means for
each of the three treatments, and then examine all three pairwise comparisons. With three
comparisons this is, arguably, a reasonable strategy.

If there were four treatments, there would be six comparisons, and it really would become
desirable to do one analysis rather than six. We would certainly not want to draw six graphs,
one for each pair of treatments that are compared. Hence the use of an analysis of variance
(really, as noted above, the fitting of a linear model) to do an overall analysis. We will first
examine an overall visual summary of the analysis results, then examine the analysis.

The tomato data – a visual summary

The function onewayPlot(), from the DAAG package, provides a convenient visual
summary of results, shown in Figure 4.6. The code is:

## Do analysis of variance calculations

tomato.aov <- aov(weight ˜ trt, data=tomato)

## Summarize results graphically

oneway.plot(obj=tomato.aov)

Notice that the graph gives two different assessments of the least difference that should
be treated as “significant”. These use different criteria:

� The 5% least significant difference (LSD) is designed so that, under the null model (no
differences), significant differences will be found in 5% of comparisons.

� The 5% honest significant difference (HSD) is designed so that, under the null model,
the maximum difference will be significant in 5% of experiments.



4.4 One-way unstructured comparisons 121

1.4 1.6 1.8 2.0 2.2

W
at

er

N
ut

rie
nt

N
ut

rie
nt

+2
4D

LSD
Tukey HSD

Figure 4.6 Graphical presentation of results from the analysis of the tomato weight data. Means that
differ by more than the LSD (least significant difference) are different, at the 5% level, in a t-test that
compares the two means. Tukey’s honest significant difference (HSD) takes into account the number
of means that are compared. See the text for details.

The LSD is commonly regarded as overly lax, while the HSD may be overly conservative.
There are a variety of alternatives to the HSD that are less conservative; see the more detailed
discussion of multiple comparisons in the next subsection.

The simplicity of Figure 4.6 is appealing, but it is important to note the assumption
that the standard error of difference is the same for all treatment comparisons. As all three
treatments have the same number of observations, it is enough for the variance to be the
same for all treatments.

The analysis of variance table

The analysis of variance table is given by the anova() function, thus:

> anova(tomato.aov)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

trt 2 0.63 0.31 1.2 0.33

Residuals 15 3.91 0.26

Observe that the residual mean squared error is 3.21. Note that two degrees of freedom are
associated with estimating the variance of the three group means. Each treatment contributes
6 − 1 = 5 d.f. to the pooled or residual sum of squares, giving 3 × 5 = 15 d.f. in all. Note
that 2 (for trt) plus 15 (for Residuals) equals 17, which is one less than the number of
observations. Estimation of the overall mean accounts for the remaining degree of freedom.

The Mean Sq (“mean square”) column has estimates of between-sample (trt) and
within-sample variability (Residuals). The between-sample variance can be calculated
by applying the function var() to the vector of treatment means, then multiplying by
the common sample size, in this case 6. The within-sample variability estimate is, effec-
tively, a pooled variance estimate for the three treatments. Each mean square is the result
from dividing the Sum Sq (“sum of squares”) column by the appropriate degrees of
freedom.



122 A review of inference concepts

In the absence of systematic differences between the sample means, the two mean squares
will have the same expected value, and their ratio (the F-statistic) will be near 1. Systematic
differences between the sample means will add extra variation into the treatment mean
square, with no effect on the residual mean square, resulting in an expected F -statistic that
is larger than 1. In the output above, the F -statistic is 0.33, on 3 and 8 degrees of freedom,
with p = 0.33. There is no convincing indication that there are indeed differences among
the treatment means. Interest then turns to teasing out the nature of those differences.

The one-way analysis of variance formally tests whether the variation among the means
is greater than what might occur simply because of the natural variation within each group.
This comparison is based on the F-statistic, which is given in the output column headed F
value. An F-statistic that is much larger than 1 points to the conclusion that the means
are different. The p-value is designed to assist this judgment.

Figure 4.6 is one of a number of graphical presentation possibilities for a one-way layout.
Others are (1) a side-by-side comparison of the histograms – but there are too few values
for that; (2) density plots – again there are too few values; and (3) a comparison of the
boxplots – this works quite well with 12 values for each treatment.

4.4.1 Multiple comparisons

In Figure 4.6 we gave two “yardsticks” – the LSD and the HSD – against which to com-
pare differences between means. Because neither of these suggested a difference between
treatments, the choice between them was not of great consequence. Also, there were
just three treatment levels, so that the difference between the LSD and the HSD is not
large.

The 5% HSD is designed so that, under the null model (no difference between treatments),
the maximum difference will be greater than the HSD in 5% of experiments. In other words,
the 5% relates to an experiment-wise error rate, defined as just described. The HSD is an
appropriate yardstick against which to compare treatment differences if the demand is for
a 5% or other specified probability of finding a difference between the largest and smallest
means when there was no difference in the populations from which they were drawn.

Contrast this with the 5% least significant difference (LSD). This is designed, if used
without a preliminary F -test, to give a 5% comparison-wise error rate.

A reasonable practical strategy is to do a preliminary analysis of variance F -test. If
that suggests differences between the means, then it is of interest to use both yardsticks in
comparing them. The LSD gives an anti-conservative yardstick, i.e., one that, in the absence
of the preliminary F -test, would be somewhat biased towards finding differences. Tukey’s
HSD gives a stricter conservative yardstick, i.e., one that is somewhat biased against finding
differences. Ignoring changes in degrees of freedom and possible associated changes in the
standard error, the HSD will increase as the number of treatment groups that are to be
compared increases.

∗Microarray data – severe multiplicity

Multiple tests are a serious issue in the analysis of microarray data, where an individual
slide (or sometimes, as for Plate 2, half-slide) may yield information on some thousands



4.4 One-way unstructured comparisons 123

of genes. Each slide (or, here, half-slide) is commonly used to compare, for each of a large
number of genes, the gene expression in two samples of genetic material.

The experiment that led to Plate 2 was designed to investigate changes in gene expression
between the pre-settlement free-swimming stage of coral, and the post-settlement stage. For
3042 genes (one for each of 3042 spots), which showed an increase in gene expression and
which a decrease? Note that each panel in Plate 2 has 3072 spots; this includes 30 blanks.
Where there was an increase, the spot should be fairly consistently blue, or bluish, over all
six panels. Where there was a decrease, the spot should be fairly consistently yellow, or
yellowish.

Here, all that will be attempted is to give broad indications of the experimental procedure,
and subsequent processing, that led to the plots shown in Plate 2. The slides are first printed
with probes, with one probe per spot. Each probe is designed to check for evidence of
the expression of one gene. The two samples are separately labeled so that when later a
spot “lights up” under a scanner, it will be possible to check for differences in the signal
intensity.

After labeling the separate samples, mixing them, and wiping the mixture over the slide
or half-slide, and various laboratory processing steps, a scanner was used to determine,
for each spot, the intensities generated from the two samples. Various corrections are then
necessary, leading finally to the calculation of logarithms of intensity ratios. Essentially, it
is logarithms of intensity ratios that are shown in Plate 2.

For these data there are, potentially, 3042 t-statistics. This is small, by the standards of
microarray experiments. There are severe problems of multiplicity to address. Details of a
defensible approach to analyzing the data shown in Plate 2 will be posted on the web site
for the book.

For further information on the analysis of microarray data, see Smyth (2004). For back-
ground on the coral data, see Grasso et al. (2008).

4.4.2 Data with a two-way structure, i.e., two factors

Consider now data from an experiment that compared wild type (wt) and genetically
modified rice plants (ANU843), each with three different chemical treatments. A first
factor relates to whether F10 or NH4Cl or NH4NO3 is applied. A second factor relates to
whether the plant is wild type (wt) or ANU843.

There are 72 sets of results, i.e., two types (variety) × three chemical treatments
(fert) × 6 replicates, with the experimental setup repeated across each of two blocks
(Block). Figures 4.7A and B show alternative perspectives on these data.13

13 ## Simplified version of code
library(lattice)
## Panel A
dotplot(trt ˜ ShootDryMass, data=rice, aspect=1,

panel=function(x,y,...){panel.dotplot(x, y, pch=1, col="gray40")
panel.average(x, y, type="p", col="black",

pch=3, cex=1.25)},
xlab="Shoot dry mass (g)")

## Panel B
with(rice, interaction.plot(fert, variety, ShootDryMass,

xlab="Level of first factor"))



124 A review of inference concepts

20
40

60
80

Level of first factor

M
ea

n 
of

  s
ho

ot
 d

ry
 m

as
s

F10 NH4Cl NH4NO3

wt
ANU843

  variety

BA

Shoot dry mass (g)

F10

NH4Cl

NH4NO3

F10 +ANU843

NH4Cl +ANU843

NH4NO3 +ANU843

0 50 100

●●●●● ●●●● ●

● ● ●●● ●●●●● ●●

● ●● ● ●● ●● ●● ●

●●●●●●●● ●●

● ●●●●● ●● ●●●

●● ●● ●●●●● ●● ●

Figure 4.7 Both panels are for rice shoot dry mass data. Panel A shows a one-way strip plot, with
different strips for different treatment regimes. Treatment means are shown with a large +. The
interaction plot in panel B shows how the effect of fertilizer (the first factor) changes with variety
(the second factor). Data relate to Perrine et al. (2001).

Figure 4.7B shows a large difference between ANU843 and wild type (wt) for the F10
treatment. For the other treatments, there is no detectable difference. A two-way analysis
will show a large interaction.

Note, finally, that the treatments were arranged in two blocks. In general, this has
implications for the analysis. This example will be discussed again in Chapter 7, where
block effects will be taken into account.

4.4.3 Presentation issues

The discussion so far has treated all comparisons as of equal interest. Often they are not.
There are several possibilities:

� Interest may be in comparing treatments with a control, with comparisons between
treatments of lesser interest.

� Interest may be in comparing treatments with one another, with any controls used as
a check that the order of magnitude of the treatment effect is pretty much what was
expected.

� There may be several groups of treatments, with the chief interest in comparisons
between the different groups.

Any of these situations should lead to specifying in advance the specific treatment compar-
isons that are of interest.

Often, however, scientists prefer to regard all treatments as of equal interest. Results
may be presented in a graph that displays, for each factor level, the mean and its associated
standard error. Alternatives to displaying bars that show the standard error may be to show
a 95% confidence interval for the mean, or to show the standard deviation. Displaying or
quoting the standard deviation may be appropriate when the interest is not in comparing
level means, but in obtaining an idea of the extent to which the different levels are clearly
separated.



4.5 Response curves 125

●
●

●

●
●
●

●

●
●

●

●

●

0 2 4 6 8 10

15
20

25
30

Distance up ramp (cm)

D
is

ta
nc

e 
tr

av
el

ed
 (

cm
)

Starting
point Distance traveled

3 31.38 30.38 33.63
6 26.63 25.75 27.13
9 18.75 22.50 21.63

12 13.88 11.75 14.88

Figure 4.8 Distance traveled (distance.traveled) by model car, as a function of starting
point (starting.point), up a 20◦ ramp.

In any case:

� For graphical presentation, use a layout that reflects the data structure, i.e., a one-way
layout for a one-way data structure, and a two-way layout for a two-way data structure.

� Explain clearly how error bars should be interpreted – ± SE limits, ± 95% confidence
interval, ± SED limits, or whatever. Or if the intention is to indicate the variation in
observed values, the SD (standard deviation) may be more appropriate.

� Where there is more than one source of variation, explain what source(s) of “error” is/are
represented. It is pointless and potentially misleading to present information on a source
of error that is of little or no interest, e.g., on analytical error when the relevant “error”
for the treatment comparisons that are of interest arises from fruit-to-fruit variation.

4.5 Response curves

The table shown to the right of Figure 4.8 exhibits data that are strongly structured. A model
car was released three times at each of four different distances (starting.point) up
a 20◦ ramp. The experimenter recorded distances traveled from the bottom of the ramp
across a concrete floor. Figure 4.8 shows a plot of these data.14 What is the pattern of the
response? This should be handled as a regression problem rather than as an analysis of
variance problem. It would be particularly nonsensical to examine all pairwise comparison,
thus doing violence to the treatment structure, and confusing interpretation. Response curve
analyses should be used whenever appropriate in preference to comparison of individual
pairs of means.

For these data, the physics can be used to suggest the likely form of response. Where no
such help is available, careful examination of the graph, followed by systematic examination
of plausible forms of response, may suggest a suitable form of response curve.

14 ## Data frame modelcars (DAAG)
plot(distance.traveled ˜ starting.point, data=modelcars,

xlim=c(0,12.5), xaxs="i", xlab = "Distance up ramp (cm)",
ylab="Distance traveled (cm)")



126 A review of inference concepts

Table 4.8 Each tester made
two firmness tests on each of
five fruit.

Fruit Tester Firmness Mean

1 1 6.8, 7.3 7.05
2 1 7.2, 7.3 7.25
3 1 7.4, 7.3 7.35
4 1 6.8, 7.6 7.2
5 1 7.2, 6.5 6.85
6 2 7.7, 7.7 7.7
7 2 7.4, 7.0 7.2
8 2 7.2, 7.6 7.4
9 2 6.7, 6.7 6.7

10 2 7.2, 6.8 7.0

Steps that are suitable for use with data that appear to follow a relatively simple form of
response are:

1. Does a straight line explain the data better than assuming a random scatter about a
horizontal line?

2. Does a quadratic response curve offer any improvement?
3. Would a cubic curve do better still?

Notice that at this stage we are not concerned to say that a quadratic or cubic curve is a
good description of the data. All we are examining is whether such a curve captures an
important part of the pattern of change. If it does, but the curve is still not quite right, it
may be worthwhile to look for a different form of curve that does fit the data adequately.

A representation of the response curve in terms of coefficients of orthogonal polynomials
provides information that makes it relatively easy to address questions 1–3. Consider, for
example, a model that has terms in x and x2. Orthogonal polynomials re-express this
combination of terms in such a way that the coefficient of the “linear” term is independent
of the coefficient of the “quadratic” term. Higher-order (cubic, . . . ) orthogonal polynomial
terms can of course be fitted, and it remains the case that the coefficients are mutually
independent. There is some further limited discussion of orthogonal polynomials in Section
7.4. Steel et al. (1993) discuss the practical use of orthogonal polynomials in some detail.

4.6 Data with a nested variation structure

Ten apples are taken from a box. A randomization procedure assigns five to one tester, and
the other five to another tester. Each tester makes two firmness tests on each of their five
fruit. Firmness is measured by the pressure needed to push the flat end of a piece of rod
through the surface of the fruit. Table 4.8 gives the results, in N/m2.

For comparing the testers, we have five experimental units for each tester, not ten. One
way to do a t-test is to take means for each fruit. We then have five values (means, italicized)
for one treatment, that we can compare with the five values for the other treatment.



4.6 Data with a nested variation structure 127

What happens if we ignore the data structure, and compare ten values for one tester with
ten values for the other tester? This pretends that we have ten experimental units for each
tester. The analysis will suggest that the treatment means are more accurate than is really
the case. We obtain a pretend standard error that is not the correct standard error of the
mean. We are likely to under-estimate the standard error of the treatment difference.

4.6.1 Degrees of freedom considerations

For comparison of two means when the sample sizes n1 and n2 are small, it is important to
have as many degrees of freedom as possible for the denominator of the t-test. It is worth
tolerating possible bias in some of the calculated SEDs in order to gain extra degrees of
freedom.

The same considerations arise in the one-way analysis of variance, and we pursue the
issue in that context. It is illuminating to plot out, side by side, say 10 SEDs based on
randomly generated normal variates, first for a comparison based on 2 d.f., then 10 SEDs
for a comparison based on 4 d.f., etc.

A formal statistical test is thus unlikely, unless the sample is large, to detect differences
in variance that may have a large effect on the result of the test. It is therefore necessary to
rely on judgment. Both past experience with similar data and subject area knowledge may
be important. In comparing two treatments that are qualitatively similar, differences in the
population variance may be unlikely, unless the difference in means is at least of the same
order of magnitude as the individual means. If the means are not much different then it is
reasonable, though this is by no means inevitable, to expect that the variances will not be
much different.

If the treatments are qualitatively different, then differences in variance may be expected.
Experiments in weed control provide an example where it would be surprising to find a
common variance. There will be few weeds in all plots where there is effective weed control,
and thus little variation. In control plots, or for plots given ineffective treatments, there may
be huge variation.

If there do seem to be differences in variance, it may be possible to model the variance
as a function of the mean. It may be possible to apply a variance-stabilizing transformation.
Or the variance may be a smooth function of the mean. Otherwise, if there are just one or
two degrees of freedom per mean, use a pooled estimate of variance unless the assumption
of equal variance seems clearly unacceptable.

4.6.2 General multi-way analysis of variance designs

Generalization to multi-way analysis of variance raises a variety of new issues. If each
combination of factor levels has the same number of observations, and if there is no
structure in the error (or noise), the extension is straightforward. The extension is less
straightforward when one or both of these conditions are not met. For unbalanced data
from designs with a simple error structure, it is necessary to use the lm() (linear model)
function. The lme() function in the nlme package, or alternatively lmer() in the lme4
package, is able to handle problems where there is structure in the error term, including
data from unbalanced designs. See Chapter 9 for further details.



128 A review of inference concepts

Table 4.9 These are the same data as in Table 3.1.

Pair #

1 2 3 4 5 6 7 8 9

Heated (mm) 244 255 253 254 251 269 248 252 292
Ambient 225 247 249 253 245 259 242 255 286
Difference 19 8 4 1 6 10 6 −3 6

4.7 Resampling methods for standard errors, tests, and confidence intervals

There are many different resampling methods. All rely on the selection of repeated samples
from a “population” that is constructed using the sample data. In general, there are too many
possible samples to take them all, and we therefore rely on repeated random samples. In
this section, we demonstrate permutation and bootstrap methods. We start with permutation
tests, illustrating their use for the equivalent of one-sample and two-sample t-tests.

4.7.1 The one-sample permutation test

Consider the paired elastic band data of Table 3.1 again, reproduced here as Table 4.9.
If the treatment has made no difference, then an outcome of 244 for the heated band

and 225 for the ambient band might equally well have been 225 for the heated band and
244 for the ambient band. A difference of 19 becomes a difference of −19. There are
29 = 512 permutations, and a mean difference associated with each permutation. We then
locate the mean difference for the data that we observed within this permutation distribution.
The p-value is the proportion of values that are as large in absolute value as, or larger than,
the mean for the data.

The absolute values of the nine differences are

Difference 19 8 4 1 6 10 6 3 6

In the permutation distribution, these each have an equal probability of taking a positive
or a negative sign. There are 29 possibilities, and hence 29 = 512 different values for d̄.
The possibilities that give a mean difference that is as large as or larger than in the actual
sample, where the value for pair 8 has a negative sign, are

Difference 19 8 4 1 6 10 6 3 6
19 8 4 −1 6 10 6 3 6
19 8 4 1 6 10 6 −3 6

There are another three possibilities that give a mean difference that is of the same absolute
value, but negative. Hence p = 6/512 = 0.0117.

In general, when the number of pairs is large, it will not be feasible to use such an
enumeration approach to get information on relevant parts of the upper and lower tails
of the distribution. We therefore take repeated random samples from the permutation



4.7 Resampling methods for standard errors, tests, and confidence intervals 129

−20 −10 0 10
0

00
0

02
0

04
0

06
0

08

D
en

si
ty

x2 −− x1−−((x2 −− x1))

Figure 4.9 Density curves for two samples of 2000 each from the permutation distribution of the
difference in means, for the two-sample elastic band data.

distribution. The function onetPermutation() in our DAAG package may be used for
this.

4.7.2 The two-sample permutation test

Suppose we have n1 values in one group and n2 in a second, with n = n1 + n2. The
permutation distribution results from taking all possible samples of n2 values from the total
of n values. For each such sample, we calculate

mean of the n2 values that are selected – mean of remaining n1 values.

The permutation distribution is the distribution of all such differences of means. We locate
the differences of means for the actual samples within this permutation distribution.

The calculation of the full permutation distribution is not usually feasible. We therefore
take perhaps 1000 samples from this distribution. The function twot.permutation()
that is in our DAAG package may be used for this repeated sampling.

Thus consider the data from Subsection 4.2.2:

Ambient: 254 252 239 240 250 256 267 249 259 269 (mean = 253.5)
Heated: 233 252 237 246 255 244 248 242 217 257 254 (mean = 244.1)

Figure 4.9 shows two estimates of the permutation distribution that were obtained by
taking, in each instance, 2000 random samples from this distribution. The point where the
difference in means falls with respect to this distribution (253.5 − 244.1 = 9.4) has been
marked, as has minus this difference.15

15 ## Draw one curve only; permutation distribution of difference in means
x1 <- two65$ambient; x2 <- two65$heated; x <- c(x1, x2)
n1 <- length(x1); n2 <- length(x2); n <- n1+n2
dbar <- mean(x2) - mean(x1)
z <- numeric(2000)
for(i in 1:2000){

mn <- sample(n, n2, replace=FALSE)
dbardash <- mean(x[mn]) - mean(x[-mn])
z[i]<- dbardash
}

plot(density(z), yaxs="i")
abline(v = dbar)
abline(v = -dbar, lty=2)
signif((sum(z > abs(dbar)) + sum (z< -abs(dbar)))/length(z), 3)



130 A review of inference concepts

The density estimate corresponding to the solid line gave a p-value of 0.051. The density
estimate corresponding to the dashed line gave a p-value of 0.060. Use of a larger sample
size will of course lead to more accurate p-values.

4.7.3∗ Estimating the standard error of the median: bootstrapping

The formula given in Subsection 4.1.3 for the SEM has the same form, irrespective of the
distribution, providing that the sample is chosen randomly. By contrast, the formula for
the standard error of the median (Subsection 4.1.5) applies only when data are normally
distributed.

The bootstrap estimate of the standard error of the median avoids this requirement, and
avoids also the need to look for some alternative distribution that may be a better fit to
the data. A comparison between the bootstrap estimate and the normal theory estimate
allows an assessment of the seriousness of any bias that may result from non-normality.
We proceed to calculate the bootstrap estimate of the standard error for the median length
for the eggs that were in wrens’ nests. (The boot package (Canty, 2002) is needed for all
bootstrap examples.) We will use the result as a check on our earlier computation.

The idea is as follows. In estimating the standard error of the median, we are seeking
the standard deviation of medians that could be obtained for all possible samples of egg
lengths in wrens’ nests. Of course, we have access to one sample only, but if our sample is
of reasonable size and has been collected properly it should give us a good approximation
to the entire population.

We estimate the standard deviation of the median by computing sample medians for each
of the resamples and taking the standard deviation of all of these medians. Even though the
resamples are not genuine new samples, this estimate for the standard error of the median
has good statistical properties, for purposes of estimating the standard error of the median.

Here is the output from R for the egg lengths from the wrens’ nests:

> ## bootstrap estimate of median of wren length: data frame cuckoos

(DAAG)

> wren <- split(cuckoos$length, cuckoos$species)$wren

> library(boot)

> ## First define median.fun(), with two required arguments:

> ## data specifies the data vector,

> ## indices selects vector elements for a each resample

> median.fun <- function(data, indices){median(data[indices])}

> ## Call boot(), with statistic=median.fun, R = # of resamples

> (wren.boot <- boot(data = wren, statistic = median.fun, R = 999))

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = wren, statistic = median.fun, R = 999)

Bootstrap Statistics :

original bias std. error

t1* 21 0.061 0.225



4.7 Resampling methods for standard errors, tests, and confidence intervals 131

The original estimate of the median was 21. The bootstap estimate of the standard error is
0.225, based on 999 resamples. Compare this with the slightly larger standard error estimate
of 0.244 given by the normal theory formula in Subsection 4.1.5. The bootstrap estimate of
the standard error will of course differ somewhat between different runs of the calculation.
Also given is an estimate of the bias, i.e., of the tendency to under- or over-estimate the
median.

4.7.4 Bootstrap estimates of confidence intervals

The usual approach to constructing confidence intervals is based on a statistical theory
that relies, in part, on the assumption of normally distributed observations. Sometimes this
theory is too complicated to work out, and/or the normal assumption is not applicable. In
such cases, the bootstrap may be helpful. We demonstrate the use of the methodology to
calculate confidence intervals for the median and for the correlation.

Several different confidence intervals can be calculated using bootstrap replicates of
the data. The function boot.ci() handles five of these. The perc (percentile) type
is probably the most commonly used method; it is not the most accurate. The bca type
(bias corrected accelerated or BCa) will often give a substantial improvement. Efron and
Tibshirani (1993) give a clear description of these methods, together with theoretical
justification for the use of the BCa method.

Bootstrap 95% confidence intervals for the median

As when computing bootstrap standard errors, we calculate sample medians for a large
number of resamples. The endpoints for the 95% percentile confidence interval are calcu-
lated as the 2.5 and 97.5 percentiles of the resulting distribution of medians. The endpoints
for the BCa confidence interval are calculated in a more complicated way; Efron and
Tibshirani (1993) can be consulted for the details.

> median.fun <- function(data, indices){median(data[indices])}

> ## Call the boot() function, with statistic=median.fun

> wren <- cuckoos[cuckoos$species=="wren", "length"]

> (wren.boot <- boot(data=wren, statistic=median.fun, R=9999))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = wren.boot, type = c("perc", "bca"))

Intervals :

Level Percentile BCa

95% (20.9, 22.0 ) (20.0, 21.0 )

Calculations and Intervals on Original Scale

Some BCa intervals may be unstable

Interestingly, the BCa interval is slightly narrower than the cruder percentile interval in
this example. The warning may be taken as an indication that the calculation should be



132 A review of inference concepts

run again, with a larger number (perhaps 99 999) of resamples. Such warnings may arise
because of outliers in the data. Use qqnorm(wren) to check that this is not an issue for
these data.

The correlation coefficient

Bootstrap methods do not require bivariate normality. Independence between observations,
i.e., between (x, y) pairs, is as important as ever. Note however that a correlation of, e.g.,
0.75 for a non-normal distribution may have quite different implications from a correlation
of 0.75 when normality assumptions apply.

We will compute 95% confidence intervals for the correlation between chest and
belly for the possum data frame:16

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = possum.boot, type = c("perc", "bca"))

Intervals :

Level Percentile BCa

95% ( 0.476, 0.709 ) ( 0.468, 0.704 )

Calculations and Intervals on Original Scale

The bootstrap – parting comments

Bootstrap methods are not a panacea. We must respect the structure of the data; any
form of dependence in the data must be taken into account. There are contexts where the
bootstrap is invalid and will mislead. As a rough guideline, the bootstrap is unlikely to
be satisfactory for statistics, including maximum, minimum and range, that are functions
of sample extremes. The bootstrap is usually appropriate for statistics from regression
analysis – means, variances, coefficient estimates, and correlation coefficients. It also
works reasonably well for medians and quartiles, and other such statistics. See Davison
and Hinkley (1997), Efron and Tibshirani (1993). See also the references in the help page
for the boot() function in the boot package.

4.8∗ Theories of inference

Formal statistical methodologies are of two broad types: frequentist and Bayesian. The
frequentist approach is usually based on the concept of likelihood; given the model, what
is the probability of obtaining a sample similar to that observed? Parameter values are

16 ## Bootstrap estimate of 95% CI of cor(chest, belly): data frame possum (DAAG)
possum.fun <- function(data, indices) {

chest <- data$chest[indices]
belly <- data$belly[indices]
cor(belly, chest)
}

possum.boot <- boot(possum, possum.fun, R=9999)
boot.ci(possum.boot, type=c("perc", "bca"))



4.8∗ Theories of inference 133

assumed to be unknown constants, and estimates are chosen to maximize this likelihood.
This has been the approach that we have followed for most of this chapter.

Another type of methodology, broadly known as “Bayesian” uses Bayes’ theorem. The
essential idea is that we might have prior information (knowledge or belief) about the distri-
bution of a parameter value before taking a sample of observations. This prior information
can be updated using the sample and the rules of probability.

4.8.1 Maximum likelihood estimation

Consider the model

yi = µ + εi, i = 1, 2, . . . , n

where µ is an unknown constant, and where the errors ε are assumed to be independent
and normally distributed with mean 0 and variance σ 2.

The probability density for the ith y-value is normal with mean µ and variance σ 2.
Because of the independence assumption, the probability density of the entire sample of
ys is simply the product of these normal densities. This product is the likelihood. The
maximum likelihood estimates are the values of µ and σ which maximize this function. A
calculus argument can be used to see that the estimates are ȳ and s

√
(n − 1)/n.

Note that the usual estimator of the standard deviation differs slightly from the maximum
likelihood estimator; the denominator in the usual variance estimate is the number of degrees
of freedom (n − 1 in this case), while it is n for the maximum likelihood estimate; this
difference is negligible in large samples.

For an example, consider the observed differences between heated and ambient,
assuming an independent normal errors model:

funlik <- function(mu, sigma, x=with(pair65, heated-ambient))

prod(dnorm(x, mu, sigma))

In practice, it is more convenient to work with the loglikelihood, rather than the likelihood.
Maximizing on the log scale leads to exactly the same estimates as on the original scale.
Try the following:

> log(funlik(6.3, 6.1)) # Close to estimated mean and SD

[1] -28.549

> log(funlik(6.33, 5.75)) # Close to the actual mle’s

[1] -28.520

> log(funlik(7, 5.75))

[1] -28.580

4.8.2 Bayesian estimation

As noted earlier, the Bayesian methodology provides a way to update our prior information
about the model parameters using sample information.

Usually, the prior information is summarized in the form of a probability law called
the prior distribution of the model parameters. Interest usually centers on the posterior
distribution of the parameters, which is proportional to the product of the likelihood and
the prior distribution.



134 A review of inference concepts

A simple application of Bayes’ theorem is as follows. The incidence of HIV in adult
Australian males (15–49 years) who do not have any known risk factor may be of the order
of 1 in 100 000, i.e., the prior probability of infection is 0.00001. A person in this group has
an initial test (for example, it may be required in order to obtain a US green card) that has a
specificity of 0.01%, i.e., for every 10 000 people tested, there will on average be one false
positive. How should such an individual interpret the result? If 100 000 individuals take the
test, one will on average have AIDS and will almost certainly return a positive test. On the
other hand there will, on average, be close to 10 false positives (0.1% of 99 999).

Not infected Infected

10000 × 0.001 = 10 (false) positives 1 true positive

The posterior odds that the person has AIDS are thus close to 1:10, certainly a narrowing
from the prior odds of 1:99 999.

Note that, as often happens when Bayesian calculations are used, the prior information
is not very precise. What we can say is that the prior probability is, in the case mentioned,
very low.

Bayesian estimation with normal prior and normal likelihood

A relatively simple example is that of a normal likelihood (as considered in the previous
section) where the unobserved true mean is now also assumed to have a normal distribution,
but this time with mean µ0 and variance σ 2

0 . The posterior density of the mean is then normal
with mean

nȳ + µ0σ
2/σ 2

0

n + σ 2/σ 2
0

and variance

σ 2

n + σ 2/σ 2
0

.

This assumes that σ 2 is actually known; an estimate can be obtained using the sample
variance. Alternatively, we could put a prior distribution on this parameter as well.

In problems where the model contains many parameters, each with its own prior distri-
bution, the exact calculation of the posterior distribution for each parameter can be quite
involved. Fortunately, in recent years, a simulation technique (called Markov Chain Monte
Carlo, or MCMC) has been shown to give very effective approximations to these posterior
distributions. Calculations must run for long enough that the posterior distribution reaches
a steady state that is independent of the starting values of parameters. The steady state or
stationary distribution is designed to be the posterior distribution of the parameter(s) of
interest.

Exercise 12 in Chapter 3, and the two following exercises, demonstrated the simulation
of finite state Markov chains. Section 5.9 will demonstrate the use of Bayesian MCMC for
straight line regression.



4.9 Recap 135

4.8.3 If there is strong prior information, use it!

Any methodology that ignores strong prior information is inappropriate, and may be highly
misleading. Diagnostic testing (the AIDS test example mentioned above) and criminal
investigations provide cogent examples.

Using the hypothesis testing framework, we take the null hypothesis H0, in the AIDS
test example, to be the hypothesis that the individual does not have HIV. Given this null
hypothesis, the probability of a positive result is 0.0001. Therefore the null hypothesis is
rejected. As we saw, the prior information makes such a conclusion entirely inappropriate.

In a serious criminal case, the police might scrutinize a large number of potential perpe-
trators. A figure of 10 000 or more is entirely within the range of possibility. Suppose there
is a form of incriminating evidence that is found in one person in 1000.

Scrutiny of 10 000 potential perpetrators will on average net 10 suspects. Suppose one
of these is later charged. The probability of such incriminating evidence, assuming that the
defendant is innocent, is indeed 0.001. The police screening will net around 10 innocent
people along with, perhaps, the one perpetrator. The following summarizes the expected
result of the police search for a suspect. It is optimistic in its assumption that the perpetrator
will be among those netted.

Not the perpetrator The perpetrator

10000 × 0.001 = 10 (false) positives 1 true positive

This evidence leads to odds of 1:10 or worse, i.e., less than 10%, that the defendant is
guilty. On its own, it should be discounted.

The interpretation of results from medical tests for AIDS is discussed in detail in
Gigerenzer (2002). The calculations just given made an informal use of Bayesian method-
ology. Such an approach is essential when, as here, there is strong prior knowledge. Where
there is no strong prior knowledge and the prior assessment of probabilities is little more
than a guess, a Bayesian analysis may nevertheless be insightful.

4.9 Recap

Dos and don’ts

� Do examine appropriate plots.
� Ensure that the analysis and graphs reflect any important structure in the data.
� Always present means, standard errors, and numbers for each group. Results from formal

significance tests have secondary usefulness.
� The use of a large number of significance tests readily leads to data summaries that

lack coherence and insight. Consider whether there is an alternative and more coherent
analysis that would provide better insight.

� Reserve multiple range tests for unstructured data.
� Think about the science behind the data. What analysis will best reflect that science?



136 A review of inference concepts

� The aim should be an insightful and coherent account of the data, placing it in the context
of what is already known. Ensure that the statistical analysis assists this larger purpose.

4.10 Further reading

On general issues of style and approach, see Wilkinson and Task Force on Statistical Infer-
ence (1999), Maindonald (1992), Krantz (1999) and Gigerenzer (1998, 2002). See also
the statistical good practice guidelines at the web site http://www.ssc.rdg.ac.uk/
publications/publications.html. Miller (1986) has extensive comment on
consequences of failure of assumptions, and on how to handle such failures. On the design
of experiments, and on analysis of the resulting data, see Cox (1958), Cox and Reid (2000).
We include further brief discussion of the design and analysis of experiments in Chapter 10.

Formal hypothesis testing, which at one time had become almost a ritual among
researchers in psychology, is now generating extensive controversy, reflected in the contri-
butions to Harlow et al. (1997). The review of the Harlow et al. book in Krantz (1999) is
a good guide to the controversy. See also Gigerenzer (1998), Wilkinson and Task Force on
Statistical Inference (1999), Nicholls (2000).

Gigerenzer et al. (1989) give interesting historical background to different styles and
approaches to inference that have grown up in one or other area of statistical application.
Wonnacott and Wonnacott (1990) have an elementary account of Bayesian methodology.
See also Gelman et al. (2003), Gill (2008). There is a helpful brief summary of Bayesian
methodology, including Bayesian modeling, in Chapters 4, 6 and 7 of Bolker (2008).
Gigerenzer (2002) demonstrates the use of Bayesian arguments in several important prac-
tical contexts, including AIDS testing and screening for breast cancer.

Chapter 4 of Senn (2003) has interesting comments on competing theories of statistical
inference. Young and Smith (2005) give a terse and remarkably comprehensive exposition
of competing theories, which does however make relatively severe technical demands.

References for further reading

Bolker, B. M. 2008. Ecological Models and Data in R.
Cox, D. R. 1958. Planning of Experiments.
Cox, D. R. and Reid, N. 2000. Theory of the Design of Experiments.
Gelman, A. B., Carlin, J. S., Stern, H. S. and Rubin, D. B. 2003. Bayesian Data Analysis,

2nd edn.
Gigerenzer, G. 1998. We need statistical thinking, not statistical rituals. Behavioural and

Brain Sciences 21: 199–200.
Gigerenzer, G. 2002. Reckoning with Risk: Learning to Live with Uncertainty.
Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J. and Krüger, L. 1989. The

Empire of Chance.
Gill, J. 2008. Bayesian Methods: A Social and Behavioral Sciences Approach, 2nd edn.
Harlow, L. L., Mulaik, S. A. and Steiger, J. H. (eds). 1997. What If There Were No

Significance Tests?
Krantz, D. H. 1999. The null hypothesis testing controversy in psychology. Journal of the

American Statistical Association 44: 1372–81.

http://www.ssc.rdg.ac.uk/
publications/publications.html


4.11 Exercises 137

Maindonald, J. H. 1992. Statistical design, analysis and presentation issues. New Zealand
Journal of Agricultural Research 35: 121–41.

Miller, R. G. 1986. Beyond ANOVA, Basics of Applied Statistics.
Nicholls, N. 2000. The insignificance of significance testing. Bulletin of the American

Meteorological Society 81: 981–6.
Senn, S. 2003. Dicing with Death: Chance, Risk and Health.
Wilkinson, L. and Task Force on Statistical Inference. 1999. Statistical methods in psy-

chology journals: guidelines and explanation. American Psychologist 54: 594–604.
Wonnacott, T. H. and Wonnacott, R. 1990. Introductory Statistics, 5th edn.
Young, G. and Smith, R. L. 2005. Essentials of Statistical Inference.

4.11 Exercises

1. Using the data set nswdemo (DAAG), determine 95% confidence intervals for: (a) the 1975
mean incomes of each group; (b) the 1978 mean incomes of each group. Finally, calculate a
95% confidence interval for the difference in mean income between treated and controls in
1978.

2. Draw graphs that show, for degrees of freedom between 1 and 100, the change in the 5%
critical value of the t-statistic. Compare a graph on which neither axis is transformed with a
graph on which the respective axis scales are proportional to log(t-statistic) and log(degrees
of freedom). Which graph gives the more useful visual indication of the change in the 5%
critical value of the t-statistic with increasing degrees of freedom?

3. Generate a random sample of 10 numbers from a normal distribution with mean 0 and standard
deviation 2. Use t.test() to test the null hypothesis that the mean is 0. Now generate a
random sample of 10 numbers from a normal distribution with mean 1.5 and standard deviation
2. Again use t.test() to test the null hypothesis that the mean is 0. Finally write a function
that generates a random sample of n numbers from a normal distribution with mean µ and
standard deviation 1, and returns the p-value for the test that the mean is 0.

4. Use the function that was created in Exercise 3 to generate 50 independent p-values, all with
a sample size n = 10 and with mean µ = 0. Use qqplot(), with the argument setting x =
qunif(ppoints(50)), to compare the distribution of the p-values with that of a uniform
random variable, on the interval [0, 1]. Comment on the plot.

5. The following code draws, in a 2 × 2 layout, 10 boxplots of random samples of 1000 from a
normal distribution, 10 boxplots of random samples of 1000 from a t-distribution with 7 d.f.,
10 boxplots of random samples of 200 from a normal distribution, and 10 boxplots of random
samples of 200 from a t-distribution with 7 d.f.:
oldpar <- par(mfrow=c(2,2))

tenfold1000 <- rep(1:10, rep(1000,10))

boxplot(split(rnorm(1000*10), tenfold1000), ylab="normal - 1000")

boxplot(split(rt(1000*10, 7), tenfold1000),

ylab=expression(t[7]*" - 1000"))

tenfold100 <- rep(1:10, rep(100, 10))

boxplot(split(rnorm(100*10), tenfold100), ylab="normal - 100")

boxplot(split(rt(100*10, 7), tenfold100),

ylab=expression(t[7]*" - 100"))

par(oldpar)



138 A review of inference concepts

Refer back to the discussion of heavy-tailed distributions in Subsection 3.2.2, and comment
on the different numbers and configurations of points that are flagged as possible outliers.

6. Here we generate random normal numbers with a sequential dependence structure:
y1 <- rnorm(51)

y <- y1[-1] + y1[-51]

acf(y1) # acf is ‘autocorrelation function’

# (see Chapter 9)

acf(y)

Repeat this several times. There should be no consistent pattern in the acf plot for different
random samples y1. There will be a fairly consistent pattern in the acf plot for y, a result of
the correlation that is introduced by adding to each value the next value in the sequence.

7. Create a function that does the calculations in the first two lines of the previous exercise.
Put the calculation in a loop that repeats 25 times. Calculate the mean and variance for each
vector y that is returned. Store the 25 means in the vector av, and store the 25 variances in
the vector v. Calculate the variance of av.

8. The following use the data frame nswpsid3, created as in footnote 8:

(a) For each column of the data set nswpsid3 after the first, compare the control group
(trt==0) with the treatment group (trt==1). Use overlaid density plots to compare
the continuous variables, and two-way tables to compare the binary (0/1) variables.
Where are the greatest differences?

(b) Repeat the comparison, but now for the data set nswdemo.
(c) Compare and contrast the two sets of results. Read carefully the help pages for psid3

and for nswdemo, and comment on why the different thrust of the two sets of results is
perhaps not surprising.

9. In a study that examined the use of acupuncture to treat migraine headaches, consenting
patients on a waiting list for treatment for migraine were randomly assigned in a 2:1:1 ratio
to acupuncture treatment, a “sham” acupuncture treatment in which needles were inserted at
non-acupuncture points, and waiting-list patients whose only treatment was self-administered
(Linde et al., 2005). (The “sham” acupuncture treatment was described to trial participants
as an acupuncture treatment that did not follow the principles of Chinese medicine.) Analyze
the following two tables. What, in each case, are the conclusions that should be drawn from
the analyses? Comment on implications for patient treatment and for further research:

(a) Outcome is classified according to numbers of patients who experienced a greater than
50% reduction in headaches over a four-week period, relative to a pre-randomization
baseline:

Acupuncture Sham acupuncture Waiting list

≥ 50% reduction 74 43 11
< 50% reduction 71 38 65

(b) Patients who received the acupuncture and sham acupuncture treatments were asked to
guess their treatment. Results were:



4.11 Exercises 139

Acupuncture Sham acupuncture

Chinese 82 30
Other 17 26
Don’t know 30 16

10. Use mosaicplot() to display the table rareplants (Subsection 4.3.1) that was created
using code in footnote 11. Annotate the mosaic plot to draw attention to the results that
emerged from the analysis in Subsection 4.3.1.

11. The table UCBAdmissions was discussed in Subsection 2.2.1. The following gives a table
that adds the 2 × 2 tables of admission data over all departments:

## UCBAdmissions is in the datasets package

## For each combination of margins 1 and 2, calculate the sum

UCBtotal <- apply(UCBAdmissions, c(1,2), sum)

What are the names of the two dimensions of this table?

(a) From the table UCBAdmissions, create mosaic plots for each faculty separately. (If
necessary refer to the code given in the help page for UCBAdmissions.)

(b) Compare the information in the table UCBtotal with the result from applying the
function mantelhaen.test() to the table UCBAdmissions. Compare the two
sets of results, and comment on the difference.

(c) The Mantel–Haenzel test is valid only if the male-to-female odds ratio for admission is
similar across departments. The following code calculates the relevant odds ratios:

apply(UCBAdmissions, 3, function(x)

(x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

Is the odds ratio consistent across departments? Which department(s) stand(s) out as
different? What is the nature of the difference?

[For further information on the Mantel–Haenszel test, see the help page for mantel-
haen.test and Agresti (2002, pp. 287f).]

12. Tables 4.10A and B contain fictitious data that illustrate issues that arise in combining data
across tables. To enter the data for Table 4.10A, type:
admissions <- array(c(30,30,10,10,15,5,30,10),

dim=c(2,2,2))

and similarly for Table 4.10B. The third dimension in each table is faculty, as required for
using faculty as a stratification variable for the Mantel–Haenzel test. From the help page for
mantelhaen.test(), extract and enter the code for the function woolf(). Apply the
function woolf(), followed by the function mantelhaen.test(), to the data of each
of Tables 4.10A and B. Explain, in words, the meaning of each of the outputs. Then apply the
Mantel–Haenzel test to each of these tables.

13. The function overlapDensity() in the DAAG package can be used to visualize the
unpaired version of the t-test. Type in

## Compare densities for ambient & heated: list two65 (DAAG)

with(two65, overlapDensity(ambient, heated))

# Do overlapDensity(ambient, heated) with ambient and heated

# taken, if not found elsewhere, from the columns of two65



140 A review of inference concepts

Table 4.10 These illustrate the dangers of adding over contingency
tables. In B, biases that go in different directions in the two faculties have
canceled in the table of totals.

A:
Engineering Sociology Total

Male Female Male Female Male Female

Admit 30 10 Admit 15 30 Admit 45 40
Deny 30 10 Deny 5 10 Deny 35 20

B:

Admit 30 20 Admit 10 20 Admit 40 40
Deny 30 10 Deny 5 25 Deny 35 35

in order to observe estimates of the stretch distributions of the ambient (control) and heated
(treatment) elastic bands.

14.∗ For constructing bootstrap confidence intervals for the correlation coefficient, it is advisable
to work with the Fisher z-transformation of the correlation coefficient. The following lines of
R code show how to obtain a bootstrap confidence interval for the z-transformed correlation
between chest and belly in the possum data frame. The last step of the procedure is to
apply the inverse of the z-transformation to the confidence interval to return it to the original
scale. Run the following code and compare the resulting interval with the one computed
without transformation. Is the z-transform necessary here?
z.transform <- function(r) .5*log((1+r)/(1-r))

z.inverse <- function(z) (exp(2*z)-1)/(exp(2*z)+1)

possum.fun <- function(data, indices) {

chest <- data$chest[indices]

belly <- data$belly[indices]

z.transform(cor(belly, chest))}

possum.boot <- boot(possum, possum.fun, R=999)

z.inverse(boot.ci(possum.boot, type="perc")$percent[4:5])

# See help(bootci.object). The 4th and 5th elements of

# the percent list element hold the interval endpoints.

15. The 24 paired observations in the data setmignonettewere from five pots. The observations
are in order of pot, with the numbers 5, 5, 5, 5, 4 in the respective pots. Plot the data in a
way that shows the pot to which each point belongs. Also do a plot that shows, by pot, the
differences between the two members of each pair. Do the height differences appear to be
different for different pots?

16. Add code to the function mean.and.sd(), defined in Subsection 1.4.3 for calculation of
a 95% confidence interval for the mean. Recall that the multiplier for the standard error is
qt(0.975, nu), where nu is the number of degrees of freedom for the standard deviation
estimate.

17. Use the function rexp() to simulate 100 random observations from an exponential distri-
bution with rate 1. Use the bootstrap (with 99 999 replications) to estimate the standard error



4.11 Exercises 141

of the median. Repeat several times. Compare with the result that would be obtained using
the normal approximation, i.e.,

√
π/(2n).

18. Low doses of the insecticide toxaphene may cause weight gain in rats (Chu et al., 1988).
A sample of 20 rats are given toxaphene in their diet, while a control group of 8 rats are
not given toxaphene. Assume further that weight gain among the treated rats is normally
distributed with a mean of 60 g and a standard deviation of 30 g, while weight gain among
the control rats is normally distributed with a mean of 10 g and a standard deviation of 50 g.
Using simulation, compare confidence intervals for the difference in mean weight gain, using
the pooled variance estimate and the Welch approximation. Which type of interval is correct
more often?

Repeat the simulation experiment under the assumption that the standard deviations are
40 g for both samples. Is there a difference between the two types of interval now? Hint: Is
one of the methods giving systematically larger confidence intervals? Which type of interval
do you think is best?

19. The following simulation experiment investigates least-squares estimation of the mean:
set.seed(32083)

x <- rnorm(100, mean=3, sd=7)

Next, confirm that the sample mean of the values in x is near 4.642. Now plot the sum of
squared deviations from µ:

100∑
i=1

(xi − µ)2

as a function of µ, using the following code:
lsfun <- function(mu) apply(outer(x, mu, "-")ˆ2, 2, sum)

curve(lsfun, from=4.6, to=4.7)

Repeat this experiment for different samples, noting where the minimum of the sum of the
squares is located each time.

20.∗ Experiment with the pair65 example and plot various views of the likelihood function,
either as a surface using the persp() function or as one-dimensional profiles using the
curve() function. Is there a single maximizer? Where does it occur?

21.∗ Suppose the mean reaction time to a particular stimulus has been estimated in several previous
studies, and it appears to be approximately normally distributed with mean 0.35 seconds with
standard deviation 0.1 seconds. On the basis of 10 new observations, the mean reaction time is
estimated to be 0.45 seconds with an estimated standard deviation of 0.15 seconds. Based on
the sample information, what is the maximum likelihood estimator for the true mean reaction
time? What is the Bayes’ estimate of the mean reaction time?

22.∗ Plot the likelihood function for the mean in the normal errors model for the pair65 differ-
ences. Assume a normal prior distribution with mean 6.0 and standard deviation 5.0. Plot the
prior distribution as well as the posterior distribution of the mean. Is it reasonable to view the
posterior distribution as a compromise between the prior distribution and the likelihood?



5

Regression with a single predictor

Data for which the models of this chapter may be appropriate can be displayed as a
scatterplot. The focus will be on the straight line model, though the use of transformations
makes it possible to accommodate specific forms of non-linear relationship within this
framework. By convention, the x-variable, plotted on the horizontal axis, has the role of
explanatory variable. The y-variable, plotted on the vertical axis, has the role of response
or outcome variable.

Many of the issues that arise for these simple regression models are fundamental to any
study of regression methods. Various special applications of linear regression raise their
own specific issues. One such special application, discussed in Subsection 5.6.2, is to size
and shape data.

Scrutiny of the scatterplot should precede regression calculations. Such a plot may
indicate that the intended regression is plausible, or it may reveal unexpected features.

If there are many observations, it is often useful to compare the fitted line with a fitted
smooth curve. If this differs substantially from an intended line, then straight line regression
may be inappropriate, as in Figure 2.6. The fitting of such smooth curves will be a major
focus of Chapter 7.

5.1 Fitting a line to data

How accurate is the line?

Application of the summary function to an lm object from a straight line regression, as
in Subsection 5.1.1 following, gives a standard error for each of a and b. Standard errors
of predicted values may also or alternatively be of interest; we defer discussion of these
until Section 5.3. Determination of these standard errors requires the specific statistical
assumptions that will now be noted.

In the model

yi = α + βxi + εi

the assumptions are that given xi , the response yi is from a normal distribution with mean
α + βxi , and that the yi are sampled independently. Equivalently, the εi are independently
and identically distributed as normal variables with mean 0 and variance σ 2.

With different assumptions (e.g., a sequential correlation between successive data points),
the standard errors will be different.



5.1 Fitting a line to data 143

5.1.1 Summary information – lawn roller example

As described in Subsection 3.1.2, we use the R model formula depression ˜ weight
to supply the model information to the function lm(). We then use summary() to display
the output:1

> library(DAAG)

> ## Fit lm model: data from roller (DAAG); output in roller.lm

> roller.lm <- lm(depression ˜ weight, data = roller)

> ## Use the extractor function summary() to summarize results

> summary(roller.lm)

Call:

lm(formula = depression ˜ weight, data = roller)

Residuals:

Min 1Q Median 3Q Max

-8.18 -5.58 -1.35 5.92 8.02

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.09 4.75 -0.44 0.6723

weight 2.67 0.70 3.81 0.0052

Residual standard error: 6.74 on 8 degrees of freedom

Multiple R-Squared: 0.644, Adjusted R-squared: 0.6

F-statistic: 14.5 on 1 and 8 DF, p-value: 0.00518

Following a numerical summary of the residuals, there is a table of the estimated regres-
sion coefficients and their standard errors. The intercept of the fitted line is a = −2.09 (SE =
4.75), while the estimated slope is b = 2.67 (SE = 0.70).

The p-value for the slope (testing the null hypothesis that β = true slope = 0) is small,
consistent with the evident linear trend. The p-value for the intercept (testing α = 0) is
0.67, i.e., the difference from zero may well be random sampling error. Thus, consistently
with the intuition that depression should be proportional to weight, it would be reasonable
to fit a model that lacks an intercept term. We leave this as an exercise for the reader.2

The standard deviation of the noise term, here identified as the residual standard error, is
6.735. We defer comment on R2 and the F -statistic until Subsection 5.1.4.

5.1.2 Residual plots

The residuals provide information about the noise term in the model, and allow limited
checks on model assumptions. Note however that, in such a small data set, departures from
assumptions will be hard to detect.

1 ## Global options used for this and most later output
options(show.signif.stars=FALSE, digits=4)
# show.signif.stars=FALSE suppresses interpretive features that,
# for our use of the output, are unhelpful.

2 ## Fit model that omits intercept term; i.e., y = bx
lm(depression ˜ -1 + weight, data=roller)



144 Regression with a single predictor

●

●

●

●

●

●

●

●

●

●

5 15 25

0
5

Fitted values

R
es

id
ua

ls

A

●

●

●

●

●

●

●

●

●

●

0.5 1.5

0
5

Quantiles of normal distribution

O
rd

er
ed

 d
at

a 
va

lu
es

B

Figure 5.1 Diagnostic plots for the regression of Figure 3.2A. Panel A plots residuals against fitted
values. Panel B is a normal probability plot of residuals, giving a visual check whether data are
consistent with a normal error distribution.

Two common checks, both available by using the plot() function with an lm object,
are:

� A plot of residuals versus fitted values, as in Figure 5.1A. This allows a visual check for
any pattern in the residuals that might suggest a curve rather than a line.

� A normal probability plot of residuals, as in Figure 5.1B. If residuals are from a normal
distribution points should lie, to within statistical error, close to a line.

Code for these plots is:3

## A: Plot residuals vs fitted values; B: normal probability plot

plot(roller.lm, which = 1:2)

Note that if the argument which is left at its default, i.e., type plot(roller.lm),
there are two further plots. These further default plots will be demonstrated later.

In Figure 5.1A, there is a suggestion of clustering in the residuals, but no clear indication
that there should be a curve rather than a line.

For interpreting the normal probability plot in Figure 5.1B, the eye needs a reference
standard. It is useful to compare a plot such as Figure 5.1B against a number of independent
plots from computer-generated normal data with the same number of observations, as in
Figure 5.2, thus in effect calibrating the eye. The function qreference() (DAAG) may
be used to generate suitable plots:4

## Normal probability plot, plus 7 reference plots

qreference(residuals(roller.lm), nrep=8, nrows=2)

3 For side-by-side plots, precede with par(mfrow=c(1,2)).
4 ## Alternatively, use the following code:
test <- residuals(roller.lm); n <- length(test)
av <- mean(test); sdev <- sd(test)
y <- c(test, rnorm(7*n, av, sdev))
fac <- c(rep("residuals(roller.lm)",n), paste("reference", rep(1:7, rep(n,7))))
fac <- factor(fac, levels=unique(fac))
library(lattice)
qqmath(˜ y|fac, aspect=1, layout=c(4,2))



5.1 Fitting a line to data 145

−10

0

10

−10 −5 0 5 10

●
● ● ●

● ●

● ●
● ●

residuals(roller.lm)

●

● ● ● ●

● ● ●
●

●

reference 1

−10 −5 0 5 10

●
●

●

●

● ● ●
●

●

●

reference 2

●
● ● ●

● ●

●

●
●

●

reference 3

●

●

●
● ● ●

●
● ●

●

reference 4

−10 −5 0 5 10

●

●
● ●

●
●

● ●

●
●

reference 5

●

● ● ● ●
●

●
●

●

●

reference 6

−10 −5 0 5 10

−10

0

10

●

●

● ●
●

● ●
● ●

●

reference 7

Figure 5.2 The normal probability plot for the regression of Figure 3.2A is shown in the lower left
panel. Other panels show normal probability plots for computer-generated normal data.

5.1.3 Iron slag example: is there a pattern in the residuals?

Now consider an example where there is an evident pattern in residuals from a straight
line regression. The data compare two methods for measuring the iron content in slag –
a magnetic method and a chemical method (data are from Roberts, 1974, p. 126). The
chemical method requires greater effort and is presumably expensive, while the magnetic
method is quicker and easier.

Figure 5.3A suggests that the straight line model is wrong.5 The smooth curve (shown
with a dashed line) gives a better indication of the pattern in the data. Panel B shows the
residuals from the straight line fit.6 The non-linearity is now more evident. Panel C plots
observed values against predicted values.7 Panel D allows a visual check on whether the
error variance is constant.8 There are theoretical reasons for plotting the square root of
absolute values of the residuals on the vertical axis in panel D.

Taken at face value, Figure 5.3D might seem to indicate that the variance decreases with
increasing value of magnetic. Note, however, that the residuals are from the straight line
model, which Figures 5.3A and B suggested was inappropriate. Thus the plot in panel D

5 ## Panel A: chemical vs magnetic (Data frame ironslag from DAAG)
plot(chemical ˜ magnetic, data=ironslag)
ironslag.lm <- lm(chemical ˜ magnetic, data=ironslag)
abline(ironslag.lm)
with(ironslag, lines(lowess(chemical ˜ magnetic, f=.9), lty=2))

6 ## Panel B: Residuals from straight line fit, vs magnetic
res <- residuals(ironslag.lm)
plot(res ˜ magnetic, xlab="Residual", data=ironslag)
with(ironslag, lines(lowess(res ˜ magnetic, f=.9), lty=2))

7 ## Panel C: Observed vs predicted
yhat <- fitted(ironslag.lm)
plot(chemical ˜ yhat, data=ironslag, xlab="Predicted chemical", ylab="Chemical")
with(ironslag, lines(lowess(chemical ˜ yhat, f=.9), lty=2))

8 ## Panel D: Check whether error variance seems constant
sqrtabs <- sqrt(abs(res))
plot(sqrtabs ˜ yhat, data=ironslag, xlab = "Predicted chemical",

ylab = expression(sqrt(abs(residual))), type = "n")
panel.smooth(yhat, sqrtabs, span = 0.95)



146 Regression with a single predictor

10 20 30 40

10
15

20
25

30

Magnetic

C
he

m
ic

al

A Fitted line and lowess curve

●

●

●

●●

●

●

●

●

●
●

●
●

●
●
●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

10 20 30 40

2
4

6

Magnetic

R
es

id
ua

l

B Residuals from line, with smooth

●

●

●

●
●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●●

● ●

●●

●

●
●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●●

●

●
●

●
●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

15 20 25 30

10
15

20
25

30

Predicted chemical

C
he

m
ic

al ●

●

●

●●

●

●

●

●

●
●

●
●

●
●
●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●

●

●

C Observed, vs prediction from line

15 20 25 30

0.
5

1.
5

2.
5

Predicted chemical

R
es

id
ua

l

D Is variance constant about line?

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

Figure 5.3 Chemical test of iron content in slag versus magnetic test. The fitted curves used the
lowess smooth. In panel D, the downward slope suggests lower variance for larger fitted values. See
however Figure 5.4.

10 20 30 40

−
6

−
2

2
6

Magnetic

R
es

id
ua

l

A
Residuals from fitted lowess curve.

15 20 25 30

0.
5

1.
5

2.
5

Predicted chemical

re
si

du
al

B
Is variance about curve constant?

Figure 5.4 Residuals (panel A), and square root of absolute values of residuals (panel B), for the
lowess smooth for the data of Figure 5.3. (Exercise 8 at the end of the chapter has the R code.)

may be misleading. For an accurate assessment, it is necessary to examine the equivalent
plot for residuals from the smooth curve.

Figure 5.4 shows the plot of residuals from the smooth curve versus magnetic, together
with the plot of square root of absolute values of residuals against predicted chemical test
result. Any suggestion of heterogeneity is now of small consequence.

Where there is genuine heterogeneity of variance, and an accurate estimate of the variance
at each data point is available, data points should be weighted proportionately to the
reciprocal of the variance. Getting an estimate to within some constant of proportionality
is enough. It may be possible to guess at a suitable functional form for the change in
variance with x or (equivalently, since y = a + bx) with y. For example, the variance may
be proportional to y.



5.2 Outliers, influence, and robust regression 147

5.1.4 The analysis of variance table

The analysis of variance table breaks the sum of squares about the mean, for the y-variable,
into two parts: a part that is accounted for by the deterministic component of the model, i.e.,
by a linear function of weight, and a part attributed to the noise component or residual.
For the lawn roller example, the analysis of variance table is:

> anova(roller.lm)

Analysis of Variance Table

Response: depression

Df Sum Sq Mean Sq F value Pr(>F)

weight 1 657.97 657.97 14.503 0.005175

Residuals 8 362.93 45.37

The total sum of squares (about the mean) for the 10 observations is 1020.9 (= 658.0 +
362.9; we round to one decimal place). Including weight reduced this by 658.0,
giving a residual sum of squares equal to 362.9. For comparing the reduction with
the residual, it is best to look at the column headed Mean Sq, i.e., mean square. The
mean square for weight was 658.0; this compares with a mean square of 45.4 for the
residual.

The degrees of freedom can be understood thus: Two points determine a line. With
just two observations, both residuals would be zero, yielding no information about the
noise. Every additional observation beyond two yields one additional degree of freedom
for estimating the noise variance. Thus with 10 points, 10 − 2 (= 8) degrees of freedom are
available (in the residuals) for estimating the noise variance. (Where a line is constrained
to pass through the origin, one point is enough to determine the line, and with 10 points the
variance would be estimated with 9 degrees of freedom.)

This table has the information needed for calculating R2 (also known as the “coefficient of
determination”) and adjusted R2. The R2 statistic is the square of the correlation coefficient,
and is the sum of squares due to weight divided by the total sum of squares:

R2 = 658.0

1020.9
= 0.64,

while

adjusted R2 = 1 − 362.9/8

1020.9/9
= 0.60.

Adjusted R2 takes into account the number of degrees of freedom, and is in general
preferable to R2. Neither statistic gives any direct indication of how well the regression
equation will predict when applied to a new data set. Subsection 6.3.2 will argue against
use of these statistics, and suggest alternatives. See also Section 5.4.

5.2 Outliers, influence, and robust regression

The data displayed in Figure 5.5, with data shown on the right, are for a collection of eight
softback books. Additionally, the figure shows the fitted regression line, with information
on the residuals from the line.



148 Regression with a single predictor

●

●

●

●

●

●

●

●

400 800 1200 1600

40
0

60
0

80
0

10
00

Volume (cc)

W
ei

gh
t (

g)

●
●

●

●

●

●

●

5

21.3

215.9

a = 41.4   SE = 97.6
b = 0.686   SE = 0.106

volume weight

412 250
953 700
929 650

1492 975
419 350

1010 950
595 425

1034 725

Figure 5.5 Volumes (≤m3) and weights (g), for eight softback books. The figure also shows the
fitted regression line, with information on the residuals from the line.

400 600 800 1000

−
10

0
0

10
0

20
0

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

● ●

A: Residuals vs Fitted
6

4
1 ●

●

●

●

●

●

●●

−1.5 −0.5 0.5 1.5

−
1

0
1

2

Theoretical quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

B: Normal Q−Q
6

4

1

400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

● ●

C: Scale−Location
6

4

1

1 2 3 4 5 6 7 8

0.
0

0.
4

0.
8

1.
2

Obs. number

C
oo

k'
s 

di
st

an
ce

D: Cook's Distance
4

6

1

Figure 5.6 Diagnostic plots for Figure 5.5.

Here is the output from the regression calculations:

## Fit lm model: data frame softbacks (DAAG)

> softbacks.lm <- lm(weight ˜ volume, data=softbacks)

> summary(softbacks.lm)

. . . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.372 97.559 0.42 0.68629

volume 0.686 0.106 6.47 0.00064

. . . .

Figure 5.6 shows regression diagnostics. Suitable code is:

par(mfrow=c(2,2)) # Use par(mfrow=c(1,4)) for layout in figure

plot(softbacks.lm, which=1:4)

# By default, plots 1:3 and 5 [which=c(1:3,5)] are given

par(mfrow=c(1,1))

We should already be familiar with plots A and B from Figure 5.6. For regression with
one explanatory variable, plot A is equivalent to a plot of residuals against the explanatory
variable. Plot C, which is not of much interest for the present data, is designed for examining
the constancy of the variance. Plot D identifies residuals that are influential in determining



5.3 Standard errors and confidence intervals 149

the form of the regression line. Points with Cook’s distances that are greater than one,
or whose Cook’s distances are substantially larger than for other points, may warrant
investigation. The largest two residuals in Figure 5.6D, for observations 4 and 6, are
identified with their row labels. For thesoftbacks data, the row labels are the observation
numbers.

Cook’s distance is a measure of influence; it measures the extent to which the line would
change if the point were omitted. Although observation 6 has the largest residual, its Cook’s
distance is relatively small. Observation 4 has the largest Cook’s distance. In part, the value
is large because this point is at the extreme end of the range of x-values. It is a high leverage
point that exerts a greater pull on the regression line than observations closer to the center
of the range. Since its y-value is lower than would be predicted by the line, it pulls the line
downward.

Diagnostic plots, such as Figure 5.6, are not definitive. Rather, they draw attention to
points that require further investigation. Here, with only eight points, it would not make
sense to omit any of them, especially as points 4 and 6 are both, for different reasons,
candidates for omission.

It may, on checking, turn out that an outlier has arisen from a recording or similar error.
Where an outlier seems a genuine data value, it is good practice to do the analysis both
with and without the outlier. If retention of an apparent outlier makes little difference to
the practical use and interpretation of the results, it is usually best to retain it in the main
analysis. If an outlier that seems a genuine data value is omitted from the main analysis, it
should be reported along with the main analysis, and included in graphs.

Robust regression

Robust regression offers a half-way house between including outliers and omitting them
entirely. Rather than omitting outliers, it downweights them, reducing their influence on the
fitted regression line. This has the additional advantage of making outliers stand out more
strongly against the line. The MASS package has the robust regression function rlm().
Note also the resistant regression function lqs(), also in the MASS package. Resistant
regression methods aim to ensure that outliers do not contribute to the regression fit. For
both robust and resistant methods, it is important that residuals have an approximately
symmetric distribution. See further, Section 6.3 and Exercise 14 at the end of Chapter 6.

5.3 Standard errors and confidence intervals

Recall that since two parameters (the slope and intercept) have been estimated, the error
mean square is calculated with n − 2 degrees of freedom. As a consequence, the standard
errors for the slope and for predicted values are calculated with n − 2 degrees of freedom.
Both involve the use of the square root of the error mean square.

Additionally, as will be demonstrated in Subsection 5.3.2, the predict() function can
be used to obtain standard errors and/or confidence intervals for predicted values. A wide
confidence interval for the regression slope implies that intervals for predicted values will
likewise be wide.



150 Regression with a single predictor

5.3.1 Confidence intervals and tests for the slope

A 95% confidence interval for the regression slope is

b ± t.975SEb

where t.975 is the 97.5% point of the t-distribution with n − 2 degrees of freedom, and SEb

is the standard error of b.
We demonstrate the calculation for the roller data. From the second row of the

Coefficients table in the summary output of Subsection 5.1.1, the slope estimate is
2.67, with SE = 0.70. The t-critical value for a 95% confidence interval on 10 − 2 = 8
degrees of freedom is t.975 = 2.30. Therefore, the 95% confidence interval is:9

2.67 ± 2.3 × 0.7 = (1.1, 4.3).

If the 95% confidence interval for b contains 0, the null hypothesis that the slope is zero
will be rejected at the 95% significance level. (For the testing of such hypotheses, refer
back to Subsection 5.1.1.)

5.3.2 SEs and confidence intervals for predicted values

There are two types of predictions: prediction of points on the line, and prediction of a
new data value. The SE estimates of predictions for new data values take account both of
uncertainty in the line and of the variation of individual points about the line. Thus the SE
for prediction of a new data value is larger than that for prediction of points on the line.

Table 5.1 shows expected values of the depression, with SEs, for various roller weights.10

The column headed SE indicates the precision of points on the line. The column headed
SE.OBS indicates the precision with which new observations can be predicted. For deter-
mining SE.OBS, there are two sources of uncertainty: the standard error for the fitted value
(estimated at 3.6 in row 1) and the noise standard error (estimated at 6.74) associated with
a new observation.

Figure 5.7 shows 95% pointwise confidence bounds for the fitted line.11 It bears empha-
sizing that the validity of these calculations depends crucially on the appropriateness of the
fitted model for the given data.

9 ## Code for confidence interval calculations
SEb <- summary(roller.lm)$coefficients[2, 2]
coef(roller.lm)[2] + qt(c(0.025,.975), 8)*SEb

10 ## Code to obtain fitted values and standard errors (SE, then SE.OBS)
fit.with.se <- predict(roller.lm, se.fit=TRUE)
fit.with.se$se.fit # SE
sqrt(fit.with.se$se.fitˆ2+fit.with.se$residual.scaleˆ2) # SE.OBS

11 ## Plot depression vs weight, with 95\% pointwise bounds for the fitted line
plot(depression ˜ weight, data=roller, xlab = "Weight of Roller (tonnes)",

ylab = "Depression in Lawn (mm)", pch = 16)
roller.lm <- lm(depression ˜ weight, data = roller)
abline(roller.lm$coef, lty = 1)
xy <- data.frame(weight = pretty(roller$weight, 20))
yhat <- predict(roller.lm, newdata = xy, interval="confidence")
ci <- data.frame(lower=yhat[, "lwr"], upper=yhat[, "upr"])
lines(xy$weight, ci$lower, lty = 2, lwd=2, col="grey")
lines(xy$weight, ci$upper, lty = 2, lwd=2, col="grey")



5.3 Standard errors and confidence intervals 151

Table 5.1 Observed and fitted values of depression at the given
weight values, together with two different types of SE. The column
headed SE gives the precision of the predicted value. The column headed
SE.OBS gives the precision of a new observation.

Predictor Observed
weight depression Fitted SE SE.OBS

1 1.9 2 3.0 3.6 7.6
√

3.62 + 6.742

2 3.1 1 6.2 3.0 7.4
√

3.02 + 6.742

3 3.3 5 6.7 2.9 7.3
. . . 10 12.4 25 31.0 4.9 8.3

●
●

● ●

● ●

●

●

●

●

0 2 4 6 8 10

0
5

10
20

30

Weight of roller (tonnes)

D
ep

re
ss

io
n 

in
 la

w
n 

(m
m

)

Figure 5.7 Lawn depression, for various weights of roller, with fitted line and showing 95% point-
wise confidence bounds for points on the fitted line.

5.3.3∗ Implications for design

An emphasis of this subsection is that the choice of location of the x-values, which is a
design issue, is closely connected with sample size considerations. Increasing the sample
size is not the only, or necessarily the best, way to improve precision.

The estimated variance of the slope estimate is

SE2
b = s2

ns2
x

,

where we define

s2
x =

∑
i(xi − x̄)2

n
.

Here s2 is the error mean square, i.e., s is the estimated SD for the population from which
the residuals are taken. The expected value of SE2

b is

E[SE2
b] = σ 2

ns2
x

.

Now consider two alternative ways to reduce SEb by a factor of 2:



152 Regression with a single predictor

10
0

20
0

30
0

30 40 50 60

30 40 50 60

D
is

ta
nc

e 
m

ov
ed

 (
cm

)

Amount of stretch (mm)

Figure 5.8 Two rubber band experiments, with different ranges of x-values. The dashed curves are
pointwise 95% confidence bounds for points on the fitted line. Note that, for the panel on the right, the
axis labels appear above the panel, as is done for lattice plots. Data are from elastic1 (left panel,
7 points) and elastic2 (right panel, 9 points), both from DAAG. Even with 9 points as against 7,
the right panel has much wider pointwise bounds.

� By fixing the configuration of x-values, but multiplying by 4 the number of values at
each discrete x-value, sx is unchanged. As n increases by a factor of 4, the expected
value of SE2

b reduces by a factor of 4, and SEb by a factor of 2.
� Alternatively, increasing the average separation between x-values by a factor of 2 will

reduce SEb by a factor of 2.

Spreading out the x-values achieves the same reduction in SEb, as increasing the number of
points. Checking for linearity over the extended range of x-values is, however, important.

Reducing SEb reduces the standard error of the fitted values as well. Figure 5.8 shows the
effect of increasing the range of x-values (the code for both panels is a ready adaptation of
the code for Figure 5.7). Both experiments used the same rubber band. The first experiment
used a much wider range of values of x (= amount by which the rubber band was stretched).
For the left panel of Figure 5.8, sx = 10.8, while for the right panel, sx = 4.3.

5.4 Assessing predictive accuracy

The training data estimate of predictive accuracy, derived by direct application of model
predictions to the data from which the regression relationship was derived, gives in general
an optimistic assessment. There is a mutual dependence between the model prediction
and the data used to derive that prediction. It is because of this dependence that degrees
of freedom for the variance are adjusted to take account of the number of parameters
estimated.

The issue becomes more important in contexts, such as the classification models that will
be discussed in Chapter 11 and Section 12.2, where no satisfactory theoretical adjustment
for the dependence is available. The simple models discussed in the present chapter are a
good context in which to demonstrate general approaches that address this issue.



5.4 Assessing predictive accuracy 153

Table 5.2 Floor area and sale price, for 15 houses in
Aranda, a suburb of Canberra, Australia.

Row number area bedrooms sale.price

1 694 4 192.0
2 905 4 215.0

· · · · · · · · ·
15 1191 6 375.0

5.4.1 Training/test sets and cross-validation

An ideal is to assess the performance of the model on a new data set. It is good practice
to split the data into two sets: the training set is for developing the model, and the test
set is for testing predictions. This is a valid procedure, if the test set can be regarded as
a random sample of the population to which predictions will be applied. If there are too
few data to make it reasonable to divide data into training and test sets, then the method of
cross-validation can be used.

Cross-validation extends the training/test set approach. As with that approach, it estimates
predictive accuracy for data that are sampled from the population in the same way as the
existing data. The data are divided into k sets (or folds), where k is typically in the range 3
to 10. Each of the k sets becomes in turn the test set, with the remaining data forming the
training set. The predictive accuracy assessments from the k folds are combined to give a
measure of the predictive performance of the model. This may be done for several different
measures of predictive performance.

5.4.2 Cross-validation – an example

We present an example of the use of cross-validation with a small data set. In order to
simplify the discussion, we will use threefold validation only.

Table 5.2 shows data on floor area and sale price for 15 houses in a suburb of Canberra, in
1999. Rows of data have been numbered from 1 to 15. For demonstrating cross-validation,
we use a random number sampling system to divide the data up into three equal groups.12

The observation numbers for the three groups we obtain are:

2 3 12 13 15

1 5 7 8 14

4 6 9 10 11

Rerunning the calculations will of course lead to a different division into three groups.
At the first pass (fold 1) the first set of rows will be set aside as the test data, with

remaining rows making up the training data. Each such division between training data and

12 ## Split row numbers randomly into 3 groups
rand <- sample(1:15)%%3 + 1
# a%%3 is the remainder of a, modulo 3
# Subtract from a the largest multiple of 3 that is <= a; take remainder

(1:15)[rand == 1] # Observation numbers for the first group
(1:15)[rand == 2] # Observation numbers for the second group
(1:15)[rand == 3] # Observation numbers for the third group.



154 Regression with a single predictor

700 900 1100 1300
15

0
25

0
35

0

Floor area

S
al

e 
pr

ic
e

Fold 1  Fold 2  Fold 3  

Figure 5.9 Graphical summary of threefold cross-validation for the house sale data (Table 5.2). The
line is fitted leaving out the corresponding “test” set of points. Predictions for these omitted points
are used to assess predictive accuracy.

test data is known as a fold. At the second pass (fold 2) the second set of rows will be
set aside as the test data, while at the third pass (fold 3) the third set of rows will be set
aside as the test data. A crucial point is that at each pass the data that are used for testing
are separate from the data used for prediction. Figure 5.9 is a visual summary, obtained by
using the function CVlm() (DAAG) with the default setting plotit=TRUE.

The following summary of the cross-validation results includes, for each fold, estimates
of the mean square error.

> ## Cross-validate lm calculations: data frame houseprices (DAAG)

> houseprices.lm <- lm(sale.price ˜ area, data=houseprices)

> CVlm(houseprices, houseprices.lm, plotit=TRUE)

fold 1

Observations in test set: 2 3 12 13 15

Floor area 905.0 802.00 696.0 771.0 1191

Predicted price 225.9 208.63 190.9 203.4 274

Observed price 215.0 215.00 255.0 260.0 375

Residual -10.9 6.37 64.1 56.6 101

Sum of squares = 17719 Mean square = 3544 n = 5

fold 2

Observations in test set: 1 5 7 8 14

Floor area 694.0 716 821.0 714.00 1006.0

Predicted price 222.4 225 238.6 224.97 262.2

Observed price 192.0 113 212.0 220.00 293.0

Residual -30.4 -113 -26.6 -4.97 30.8

Sum of squares = 15269 Mean square = 3054 n = 5

fold 3



5.4 Assessing predictive accuracy 155

Observations in test set: 4 6 9 10 11

Floor area 1366 963.0 1018.0 887.00 790.00

Predicted price 412 278.4 296.6 253.28 221.22

Observed price 274 185.0 276.0 260.00 221.50

Residual -138 -93.4 -20.6 6.72 0.28

Sum of squares = 28127 Mean square = 5625 n = 5

Overall ms

4074

At each fold, the training set consists of the remaining rows of data.
To obtain the estimate of the error mean square, take the total of the sums of squares and

divide by 15. This gives

s2 = (17 719 + 15 269 + 28 127)/15 = 4074.

Actually, what we have is an estimate of the error mean square when we use only two-thirds
of the data. Thus we expect the cross-validated error to be larger than the error if all the
data could be used. We can reduce the error by doing 10-fold rather than threefold cross-
validation. Or we can do leave-one-out cross-validation, which for these data is 15-fold
cross-validation.

Contrast s2 = 4074 with the estimate s2 = 2323 that we obtained from the model-based
estimate in the regression output for the total data.13

5.4.3∗ Bootstrapping

We first indicate how resampling methods can be used to estimate the standard error of slope
of a regression line. Recalling that the standard error of the slope is the standard deviation
of the sampling distribution of the slope, we need a way of approximating this sampling
distribution. One way of obtaining such an approximation is to resample the observations
or cases directly. For example, suppose five observations have been taken on a predictor x

and response y:

(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5).

Generate five random numbers with replacement from the set {1, 2, 3, 4, 5}: 3, 5, 5, 1, 2,
say. The corresponding resample is then

(x3, y3), (x5, y5), (x5, y5), (x1, y1), (x2, y2).

Note we are only demonstrating the so-called case-resampling approach. Another approach
involves fitting a model and resampling the residuals. Details for both methods are in
Davison and Hinkley (1997, Chapter 6). A regression line can be fit to the resampled
observations, yielding a slope estimate. Repeatedly taking such resamples, we obtain a
distribution of slope estimates, the bootstrap distribution.

13 ## Estimate of sigmaˆ2 from regression output
summary(houseprices.lm)$sigmaˆ2



156 Regression with a single predictor

As an example, consider the regression relating sale.price to area in the
houseprices data. We will compute a bootstrap estimate of the standard error of the
slope. For comparison purposes, note first the estimate given by lm(): 0.0664.

> houseprices.lm <- lm(sale.price ˜ area, data=houseprices)

> summary(houseprices.lm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 70.750 60.3477 1.17 0.2621

area 0.188 0.0664 2.83 0.0142

In order to use the boot() function, we need a function that will evaluate the slope for
each of the bootstrap resamples:

houseprices.fn <- function (houseprices, index){

house.resample <- houseprices[index, ]

house.lm <- lm(sale.price ˜ area, data=house.resample)

coef(house.lm)[2] # slope estimate for resampled data

}

We then use theboot() function to make 999 calls to thehouseprices.fn() function
with different randomly generated resamples from the data frame houseprices.

> set.seed(1028) # use to replicate the exact results below

> library(boot) # ensure that the boot package is loaded

> ## requires the data frame houseprices (DAAG)

> (houseprices.boot <- boot(houseprices, R=999, statistic=houseprices.fn))

. . . .

Bootstrap Statistics :

original bias std. error

t1* 0.188 0.0169 0.0916

The output shows us the original slope estimate, a bootstrap estimate of the bias of this
estimate, and the standard error estimate: 0.0916. This standard error was computed from
the standard deviation of the 999 resampled slope estimates.

By changing the statistic argument in the boot() function appropriately, we can com-
pute standard errors and confidence intervals for fitted values. Here we use thepredict()
function to obtain predictions for the given area:

housepred.fn <- function(houseprices, index){

house.resample <- houseprices[index, ]

house.lm <- lm(sale.price ˜ area, data=house.resample)

predict(house.lm, newdata=data.frame(area=1200))

}

For example, a 95% confidence interval for the expected sale price of a house (in Aranda)
having an area of 1200 square feet is (249 000, 363 000).14

14 ## 95% CI for predicted price of 1200 square foot house
housepred.boot <- boot(houseprices, R=999, statistic=housepred.fn)
boot.ci(housepred.boot, type="perc") # "basic" is an alternative to "perc"



5.4 Assessing predictive accuracy 157

●●

●

●

●●

●

●●
● ●

●●●

●●
●

●
●●

●●
●

●●

●

●●
●

●

●

1 4 7 10 13

0
10

0
20

0

House

P
re

di
ct

io
n 

er
ro

rs

A

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

2 4 6 8 12

0.
9

1.
0

1.
1

1.
2

1.
3

House

R
at

io
 o

f S
E

s
bo

ot
st

ra
p 

to
 m

od
el

-b
as

ed

B

Figure 5.10 (A) Plot of bootstrap distributions of prediction errors for regression relating
sale.price to area, each based on 200 bootstrap estimates of the prediction error. (B) Ratios of
bootstrap prediction standard errors to model-based prediction standard errors.

The bootstrap procedure can be used to gain additional insight into how well a regression
model is making predictions. Regression estimates for each resample are used to compute
predicted values at all of the original values of the predictor. The differences (i.e., the
prediction errors) between the observed responses and these resampled predictions can be
plotted against observation number. Repeating this procedure a number of times gives a
distribution of the prediction errors at each observation. Figure 5.10 A displays a prediction
error plot for the houseprices data.15 Note the large variability in the prediction error
associated with observation 4. We can use the same bootstrap output to estimate the standard
errors. These can be compared with the usual estimates obtained by lm. Figure 5.10B
displays ratios of the bootstrap standard errors to the model-based standard errors.16 In
this case, the model-based standard errors are generally smaller than the bootstrap standard
errors. A cautious data analyst might prefer the bootstrap standard errors.

We can also compute an estimate of the aggregate prediction error, as an alternative to
the cross-validation estimate obtained in the previous subsection. There are a number of
ways to do this, and some care should be taken. We refer the interested reader to Davison
and Hinkley (1997, Section 6.4).

15 ## Bootstrap estimates of prediction errors of house prices
houseprices2.fn <- function (houseprices, index)
{
house.resample <- houseprices[index, ]
house.lm <- lm(sale.price ˜ area, data=house.resample)
houseprices$sale.price - predict(house.lm, houseprices) # resampled prediction

# errors
}
n <- length(houseprices$area); R <- 200
houseprices2.boot <- boot(houseprices, R=R, statistic=houseprices2.fn)
house.fac <- factor(rep(1:n, rep(R, n)))
plot(house.fac, as.vector(houseprices2.boot$t), ylab="Prediction Errors",

xlab="House")
16 ## Ratios of bootstrap to model-based standard errors
bootse <- apply(houseprices2.boot$t, 2, sd)
usualse <- predict.lm(houseprices.lm, se.fit=TRUE)$se.fit
plot(bootse/usualse, ylab="Ratio of Bootstrap SE’s to Model-Based SE’s",

xlab="House", pch=16)
abline(1, 0)



158 Regression with a single predictor

Commentary

The cross-validation and bootstrap estimates of mean square error are valid, provided we
can assume a homogeneous variance. This is true even if data values are not independent.
However, the estimate of predictive error applies only to data that have been sampled in the
same way as the data that are used as the basis for the calculations. They assume that the
target population will be highly comparable to the source population that generated
the data. In the present instance, the estimate of predictive accuracy applies only to 1999
house prices in the same city suburb.

Such standard errors may have little relevance to the prediction of house prices in
another suburb, even if thought to be comparable, or to prediction for more than a
very short period of time into the future. This point has relevance to the use of regres-
sion methods in business “data mining” applications. A prediction that a change will
make cost savings of $500 000 in the current year may have little relevance to subse-
quent years. The point has special force if changes will take years rather than months to
implement.

A realistic, though still not very adequate, assessment of accuracy may be derived by
testing a model that is based on data from previous years on a test set that is formed from the
current year’s data. Predictions based on the current year’s data may, if other features of the
business environment do not change, have a roughly comparable accuracy for prediction a
year into the future. If the data series is long enough, we might, starting at a point part-way
through the series, compare predictions one year into the future with data for that year.
The estimated predictive accuracy would be the average accuracy for all such predictions.
A more sophisticated approach might involve incorporation of temporal components into
the model, i.e., use of a time series model. See Maindonald (2003) for more extended
commentary on such issues.

5.5 Regression versus qualitative anova comparisons – issues of power

An analysis that fails to take advantage of structure in the data may fail to find what is
there. Figure 5.11 shows six sets of data that have been simulated to follow a linear trend.
Simulation of regression models was discussed in Subsection 3.3.2.

The first p-value tests for linear trend, while the second p-value tests for qualitative
differences between treatment effects, ignoring the fact that the levels are quantitative
(note that the test for linear trend is equivalent to the test for a linear contrast from the
aov()function that is available when the explanatory term is an ordered factor). A test
for linear trend is more powerful than an analysis of variance that treats the five levels as
qualitatively different levels. In repeated simulations of Figure 5.11, the p-values in the
test for linear trend will on average be smaller than in the analysis of variance that makes
qualitative comparisons between the five levels.

To get a clear indication of the effect, we need a more extensive simulation. Figure 5.12
plots results from 200 simulations. Both axes use a scale of log(p/(1 − p)). On the vertical
axis are the p-values for a test for linear trend, while the horizontal axis plots p-values for
an aov test for qualitative differences. The majority of points (for this simulation, 91%) lie
below the line y = x.



5.5 Regression versus qualitative anova comparisons – issues of power 159

1 2 3 4 5

98
10

2
10

6

R
es

po
ns

e
p-values are –

Linear trend:0.096
aov: 0.3

1 2 3 4 5

98
10

2
10

6

Linear trend:0.0014
aov: 0.013

1 2 3 4 5

98
10

2
10

6

Linear trend:0.13
aov: 0.17

1 2 3 4 5

98
10

2

Treatment level

R
es

po
ns

e

Linear trend:0.0018
aov: 0.062

1 2 3 4 5

98
10

2
10

6

Treatment level

Linear trend:0.0021
aov: 0.039

1 2 3 4 5

99
10

2
10

5

Treatment level

Linear trend:0.11
aov: 0.057

Figure 5.11 Test for linear trend, versus analysis of variance comparison that treats the levels as
qualitatively different. The six panels are six different simulations from the straight line model with
slope 0.8, SD = 2, and 4 replications per level.

Figure 5.12 This plot compares p-values from a test for linear trend with p-values from an analysis
of variance test for qualitative differences, in each of 200 sets of simulated results. The line y = x is
superimposed.

The function simulateLinear() in our DAAG package allows readers to exper-
iment with such simulations. Write the p-values for a test for linear trend as pl , and
the p-values for the analysis of variance test for qualitative differences as pa . Spec-
ifying type="density" gives overlaid plots of the densities for the two sets of
p-values, both on a scale of log(p/(1 − p)), together with a plot of the density of
log(pl/(1 − pl)) − log(pa/(1 − pa)). As the data are paired, this last plot is the preferred
way to make the comparison.

The pattern of change

There are other reasons for fitting a line or curve, where this is possible, rather than fitting
an analysis of variance model that has a separate parameter for each separate level of



160 Regression with a single predictor

0 2 4 6 8 10

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

y ==
x

Replace y  by y~ == y 2

0 2 4 6 8 10

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

y == x
0.25

Replace y  by y~== y4

0 2 4 6 8 10

0
1

2

y == log(x)
Replace y  by y~ == exp((y)

0 2 4 6 8 10

0
20

40
60

80
10

0

x

y

y == x
2

Replace y  by y~ == y

0 2 4 6 8 10

0
20

00
60

00
10

00
0

x

y == x
4

Replace y  by y~== y0.25

0 2 4 6 8 10

0
50

00
15

00
0

x

y == exp((x))

Replace y  by y~ == log((x))

Figure 5.13 The above panels show some alternative response curves. The formula for ỹ gives the
power family transformation of y that will make ỹ a linear function of x. Thus, if y = log(x), then
the transformation ỹ = exp(y) will make ỹ a linear function of x.

the explanatory variable. Fitting a line (or a curve) allows interpolation between successive
levels of the explanatory variable. It may be reasonable to hazard prediction a small distance
beyond the range of the data. The pattern of response may give scientific insight.

5.6 Logarithmic and other transformations

5.6.1∗ A note on power transformations

Among the more common transformations for continuous data are:

� Logarithmic. This is often the right transformation for size measurements (linear,
surface, volume or weight) of biological organisms. Some data may be too skewed even
for a logarithmic transformation. For example, counts of insects on leaves may have this
character.

� Square root or cube root. These are milder than the logarithmic transformation. If linear
measurements on insects are normally distributed, then we might expect the cube root
of weight to be approximately normally distributed. The square root is useful for data
for counts of “rare events”. The power transformation generalizes the transformations
that we have just discussed. Examples of power transformations are y2, y0.5, y3, etc.
Figure 5.13 shows a number of response curves, and describes the particular power
transformation that would make the relationship linear.

If the ratio of largest to smallest data value is greater than 10, and especially if it is more
than 100, then the logarithmic transformation should be tried as a matter of course. Check
this advice against the response curves shown in Figure 5.13.



5.6 Logarithmic and other transformations 161

●

●
●●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

Body weight (kg, log scale)

H
ea

rt
 w

ei
gh

t (
g,

 lo
g 

sc
al

e)

20 40 60 100 160

10
0

20
0

40
0

70
0

log y = 1.2  [SE  0.211 ] +  1.126  [ 0.05 ] log x

Figure 5.14 Heart weight versus body weight, for 30 Cape fur seals.

We have so far mentioned only transformation of y. We might alternatively transform x,
or transform both x and y.

∗General power transformations

For λ 	= 0, the power transformation replaces a value y by yλ. The logarithmic transforma-
tion corresponds to λ = 0. In order to make this connection, a location and scale correction
is needed. The transformation is then

y(λ) = yλ − 1

λ
, if λ 	= 0,

y(λ) = log(y), if λ = 0.

� If the small values of a variable need to be spread, make λ smaller.
� If the large values of a variable need to be spread, make λ larger.

This is called the Box–Cox transformation, as proposed in Box and Cox (1964).
The function boxcox() (MASS), whose syntax is similar to that of lm(), can be

used to obtain data-driven estimates of λ. An exercise at the end of the chapter pursues
investigation of boxcox().

5.6.2 Size and shape data – allometric growth

The logarithmic transformation is commonly important for morphometric data, i.e., for
data on the size and shape of organisms. Figure 5.14 uses logarithmic scales to plot heart
weight against body weight, for 30 seals that had been snared in trawl nets as an unintended
consequence of commercial fishing (Stewardson et al., 1999).

For each animal, the data provide information at just one point in time, when they died.
The data thus have limited usefulness for the study of growth profiles through time. At best,
if conditions have not changed too much over the lifetimes of the animals in the sample,
the data may provide an indication of the average of the population growth profiles. If, e.g.,
sample ages range from 1 to 10 years, it is pertinent to ask how food availability may have



162 Regression with a single predictor

changed over the past 10 years, and whether this may have had differential effects on the
different ages of animal in the sample.

The allometric growth equation

The allometric growth equation is

y = axb

where x may, e.g., be body weight and y heart weight. It may alternatively be written

log y = log a + b log x,

i.e.,

Y = A + bX,

where

Y = log y, A = log a, and X = log x.

Thus, we have an equation that can be fitted by linear regression methods, allowing predic-
tion of values of Y given a value for X. If b = 1, then the two organs (e.g., heart and body
weight) grow at the same rate.

Here is the R output for the calculations that fit the regression line in Figure 5.14:

> summary(cfseal.lm <- lm(log(heart) ˜ log(weight), data=cfseal))

. . . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2043 0.2113 5.7 4.1e-06

log(weight) 1.1261 0.0547 20.6 < 2e-16

Residual standard error: 0.18 on 28 degrees of freedom

Multiple R-Squared: 0.938, Adjusted R-squared: 0.936

F-statistic: 424 on 1 and 28 DF, p-value: <2e-16

Note that the estimate of the exponent b (= 1.126) differs from 1.0 by 2.3
(= 0.126/0.0547) times its standard error. Thus for these data, the relative rate of increase
seems slightly greater for heart weight than for body weight. We have no interest in the
comparison between b and zero, for which the t-statistic and p-value in the regression
output are appropriate (authors sometimes present p-values that focus on the comparison
with zero, even though their interest is in the comparison with 1.0. See Table 10 and other
similar tables in Gihr and Pilleri (1969, p. 43)). For an elementary discussion of allometric
growth, see Schmidt-Nielsen (1984).

5.7 There are two regression lines!

At this point, we note that there are two regression lines – a regression line for y on x, and
a regression line for x on y. It makes a difference which is the explanatory variable, and



5.8 The model matrix in regression 163

●

●
● ●

●

●

●

●

●

230 250 270

25
0

27
0

29
0

Stretch (band held at ambient)

S
tr

et
ch

 (
he

at
ed

 b
an

d)

r = 0.93

A

Petiole length (mm)

Le
af

 le
ng

th
 (

m
m

) ●●
●

●
●● ●● ●● ●●●●● ●●

● ●● ●

●●
●

●

● ●

●
● ●● ●
●●

●
●

●
●●
●●●

●
●●
●● ●●● ●

●●●●

●●

● ●

●
●
●

●
●

●

●

●

●
●

● ●
● ● ● ●●● ●● ●● ●● ●●●

●●● ● ●● ● ● ●

●● ●● ● ●
●

● ●●●
●

●●

●

●● ●
● ●●●● ●● ●●●● ●● ●

● ●● ●● ●●●● ●●
●● ●
●

●

●

● ●● ●●●
● ● ●● ●● ●●

●● ●

●
●

●

●

●
● ●

●●●
●

●●●●

●

●
●

●●●●
● ●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

r = 0.69

B

0.5 10 40

20
60

Figure 5.15 Each plot shows both the regression line for y on x (solid line), and the regression line
for x on y (dotted line). In panel A the lines are quite similar, while in panel B where the correlation
is smaller, the lines are quite different. Plot A is for the data of Table 3.1, while B is for a leaf data
set.

which the dependent variable. The two lines are quite different if the correlation is small.
Figure 5.15 illustrates the point for two other data sets.

An alternative to a regression line

There are yet other possibilities. A perspective that makes good sense for the seal organ
growth data is that there is an underlying linear functional relationship. The analysis assumes
that observed values of log(organ weight) and log(body weight) differ from the values for
this underlying functional relationship by independent random amounts. The line that is
obtained will lie between the regression line for y on x and the line for x on y. See Sprent
(1966). Exercise 12 demonstrates a method for finding such a line.

5.8 The model matrix in regression

For many of the uses of the lm() function in later chapters, it will be important to
understand the use of the model matrix to structure calculations for practical computation.
This is especially true for Chapter 7. Straight line regression is a simple context in which
to introduce these ideas.

In straight line regression, the model or X matrix has two columns – a column of 1s and
a column that holds values of the explanatory variable x. As fitted, the straight line model is

ŷ = a + bx

which we can write as

ŷ = 1 × a + x × b.

For an example, we return to the lawn roller data. The model matrix, with the y-vector
alongside, is given in Table 5.3. To obtain the model matrix, specify:

model.matrix(roller.lm)



164 Regression with a single predictor

Table 5.3 The model matrix, for the lawn
roller data, with the vector of observed values
in the column to the right.

X y

weight (t) depression (mm)

1 1.9 2
1 3.1 1
1 3.3 5
1 4.8 5
1 5.3 20
1 6.1 20
1 6.4 23
1 7.6 10
1 9.8 30
1 12.4 25

Table 5.4 The use of the model matrix for calculation of fitted values and
residuals, in fitting a straight line to the lawn roller data.

Model matrix

× 2.67
Multiply and add to Compare with Residual =

× −2.09 weight yield fitted value ŷ observed y y − ŷ

1 1.9 −2.1 + 2.67 × 1.9 = 2.98 2 2 − 2.98
1 3.1 −2.1 + 2.67 × 3.1 = 6.18 1 1 − 6.18
1 3.3 −2.1 + 2.67 × 3.3 = 6.71 5 5 − 6.71
1 4.8 −2.1 + 2.67 × 4.8 = 10.71 5 5 − 10.71
1 5.3 −2.1 + 2.67 × 5.3 = 12.05 20 20 − 12.05
1 6.1 −2.1 + 2.67 × 6.1 = 14.18 20 20 − 14.18
1 6.4 −2.1 + 2.67 × 6.4 = 14.98 23 23 − 14.98
1 7.6 −2.1 + 2.67 × 7.6 = 18.18 10 10 − 18.18
1 9.8 −2.1 + 2.67 × 9.8 = 24.05 30 30 − 24.05
1 12.4 −2.1 + 2.67 × 12.4 = 30.98 25 25 − 30.98

For each row, we take some multiple of the value in the first column, another multiple of
the value in the second column, and add them. Table 5.4 shows how calculations proceed
given the estimates of a and b obtained earlier.

Note also the simpler (no intercept) model. For this:

ŷ = bx.

In this case the model matrix has only a single column, containing the values of x.



5.9∗ Bayesian regression estimation using the MCMCpack package 165

5.9∗ Bayesian regression estimation using the MCMCpack package

Subsection 4.8.2 discussed ideas of Bayesian estimation, drawing attention to the use of
the Markov Chain Monte Carlo (MCMC) simulation technique to generate successive
parameter estimates. The simulation process must be allowed to burn in, i.e., run for long
enough that the posterior distribution reaches a steady state that is independent of the
starting values of parameters.

The MCMCpack package has the function MCMCregress(), with a similar syntax
to lm(), that can be used for regression calculations. The following is intended as a
straightforward demonstration of the methodology, albeit for an example where use of the
function lm() might in practice be preferable.

The default is to assume independent uniform priors for the regression coefficients, to
allow the simulation to run for 10 000 iterations, and to take the first 1000 iterations as
burn-in. Here is the code and accompanying output, for the roller data:

> library(MCMCpack)

> roller.mcmc <- MCMCregress(depression ˜ weight, data=roller)

> summary(roller.mcmc)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept) -2.00 5.486 0.05486 0.05422

weight 2.65 0.812 0.00812 0.00843

sigma2 60.47 40.610 0.40610 0.57218

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) -12.80 -5.38 -1.99 1.29 9.25

weight 1.01 2.17 2.66 3.16 4.26

sigma2 21.01 35.40 49.39 71.42 166.23

Because estimates from the previous iteration are the starting values for the current iteration,
the sequence of estimates is Markovian and there is a lag 1 partial autocorrelation. The time
series SE in the final column is designed to adjust for this autocorrelation. (See Section 9.1
for the relevant time series concepts. Specifically, it is assumed that the sequence of estimates
follows an autoregressive process of order 1.) The standard error is inflated to take account
of the correlation between successive estimates. Notice that the coefficient estimates are
very similar to those obtained in Subsection 5.1.1 using lm(), while the SEs (both sets)
are slightly larger.



166 Regression with a single predictor

Figure 5.16 Diagnostic plots for the Bayesian analysis that used MCMCregress().

There is a plot method for objects of class mcmc that allows a check on whether an
adequate number of iterations were allowed for burn-in. Figure 5.16 shows this information.
The layout has been changed somewhat from the default. The code is:

mat <- matrix(c(1:6), byrow=TRUE, ncol=2)

# panels are 1, then 2, ... 6. Layout=dim(mat), i.e., 3 by 2

layout(mat, widths=rep(c(2,1),3), heights=rep(1,6))

# NB: widths & heights are relative

plot(roller.mcmc, auto.layout=FALSE, ask=FALSE, col="gray40")

# The method is plot.mcmc()

These plots are unremarkable. For this very simple model, burn-in occurs quickly, and
none of the plots show any indication of a trend. The posterior distributions of the model
coefficients all look plausibly normal.

The coda package, on which MCMCpack depends, has several other functions that
give diagnostic information that may be helpful in interpreting the MCMC results. See
help(package="coda").

5.10 Recap

In exploring the relationships in bivariate data, the correlation coefficient can be a crude
and unduly simplistic summary measure. Keep in mind that it measures linear association.
Wherever possible, use the richer and more insightful regression framework.



5.12 Exercises 167

The model matrix, together with the coefficients, allows calculation of predicted values.
The coefficients give the values by which the values in the respective columns must be
multiplied. These are then summed over all columns. In later chapters, we will use the
model matrix formulation to fit models that are not inherently linear.

In the study of regression relationships, there are many more possibilities than regression
lines. If a line is adequate, use that. It is in any case useful to fit a smooth curve, to see
whether it suggests systematic departure from a line.

Simple alternatives to straight line regression using the original data are:

� Transform x and/or y.
� Use polynomial regression.
� Fit a smoothing curve.

Following the calculations:

� Plot residuals against fitted values.
� If it seems necessary, do a plot that checks homogeneity of variance.

Use of the function plot(), with an lm model, gives both these plots, by default as the
first and third plots (cf. panels A and C in Figure 5.6.)

For size and shape data, the equation that assumes allometric variation is a good starting
point. Relationships between the logarithms of the size variables are linear.

The line for the regression of y on x is different from the line for the regression of x

on y. The difference between the two lines is most marked when the correlation is small.

5.11 Methodological references

We refer the reader to the suggestions for further reading at the end of Chapter 6.

5.12 Exercises

1. The data sets elastic1 and elastic2 were obtained using the same apparatus, including
the same rubber band, as the data frame elasticband. Using a different symbol and/or a
different color, plot the data from the two data frames elastic1 and elastic2 on the same
graph. Do the two sets of results appear consistent?

2. For each of the data sets elastic1 and elastic2, determine the regression of stretch
on distance. In each case determine

(i) fitted values and standard errors of fitted values and
(ii) the R2 statistic. Compare the two sets of results. What is the key difference between the

two sets of data?

Use the robust regression function rlm() from the MASS package to fit lines to the data
in elastic1 and elastic2. Compare the results with those from use of lm(). Compare
regression coefficients, standard errors of coefficients, and plots of residuals against fitted values.

3. Using the data frame cars (datasets), plot distance (i.e., stopping distance) versus speed.
Fit a line to this relationship, and plot the line. Then try fitting and plotting a quadratic curve.
Does the quadratic curve give a useful improvement to the fit? [Readers who have studied the



168 Regression with a single predictor

relevant physics might develop a model for the change in stopping distance with speed, and
check the data against this model.]

4. Calculate volumes (volume) and page areas (area) for the books on which information is
given in the data frame oddbooks (DAAG).

(a) Plot log(weight) against log(volume), and fit a regression line.
(b) Plot log(weight) against log(area), and again fit a regression line.
(c) Which of the lines (a) and (b) gives the better fit?
(d) Repeat (a) and (b), now with log(density) in place of log(weight) as the depen-

dent variable. Comment on how results from these regressions may help explain the results
obtained in (a) and (b).

5. In the data set pressure (datasets), examine the dependence of pressure on temperature.
[The relevant theory is that associated with the Claudius–Clapeyron equation, by which the
logarithm of the vapor pressure is approximately inversely proportional to the absolute temper-
ature. For further details of the Claudius–Clapeyron equation, search on the internet, or look in
a suitable reference text.]

6.∗ Look up the help page for the functionboxcox() from the MASS package, and use this function
to determine a transformation for use in connection with Exercise 5. Examine diagnostics for
the regression fit that results following this transformation. In particular, examine the plot
of residuals against temperature. Comment on the plot. What are its implications for further
investigation of these data?

7. Annotate the code that gives panels B and D of Figure 5.3, explaining what each function does,
and what the function arguments are.

8. The following is a simplified version of the code used for the two panels of Figure 5.4:
## requires the data frame ironslag (DAAG)

xy <- with(ironslag, lowess(chemical ˜ magnetic))

chemfit <- approx(xy$x, xy$y, xout=ironslag$magnetic, ties=

"ordered")$y

res2 <- with(ironslag, chemical - chemfit)

plot(res2 ˜ magnetic, data=ironslag) # Panel A

abline(v=0, lty=2)

sqrtabs2 <- sqrt(abs(res2))

plot(sqrtabs2 ˜ chemfit, type="n") # Panel B

panel.smooth(chemfit, sqrtabs2)

Examine the help page for lowess(), and explain why the call to approx() is needed.

9. In the data frame nswdemo (DAAG), plot 1978 income (re78) against 1975 income (re75).
What features of the plot make the fitting of a regression relationship a challenge?

(a) Restricting attention to observations for which both re78 and re75 are non-zero, plot
log(re78) against log(re75), and fit a trend curve. Additionally, fit a regression line
to the plot. Does the regression line accurately describe the relationship. In what respects
is it deficient?

(b) Now examine the diagnostic plot that is obtained by using plot() with the regression
object as parameter. What further light does this shed on the regression line model?

10. Write a function which simulates simple linear regression data from the model

y = 2 + 3x + ε

where the noise terms are independent normal random variables with mean 0 and variance 1.



5.12 Exercises 169

Using the function, simulate two samples of size 10. Consider two designs: first, assume
that the x-values are independent uniform variates on the interval [−1, 1]; second, assume that
half of the x-values are −1s, and the remainder are 1s. In each case, compute slope estimates,
standard error estimates, and estimates of the noise standard deviation. What are the advantages
and disadvantages of each type of design?

11. For each of the data sets elastic1 and elastic2, simulate artificial data from the model
that was fitted.

(a) Thus, after fitting the elastic1 data using
e1.lm <- lm(distance ˜ stretch, data=elastic1)

simulate artificial data from this model (conditional on the stretch measurements) using
elastic1$newdistance <-

cbind(rep(1, 7), elastic1$stretch)%*%coef(e1.lm) +

rnorm(7, sd=summary(e1.lm)$sigma)

(b) Investigate the use of the function simulate() as an alternative to using the above code.
(c) Now, regress newdistance against stretch and obtain side-by-side residual plots for

the original data and the artificial data. Repeat this procedure several times. Does it seem
that the outliers in the original residual plot are consistent with the fitted model? Apply the
same procedure to the elastic2 data.
[Technically, the methodology used here is that of a parametric bootstrap.]

12.∗ The following function returns the coefficient of the estimated linear functional relationship
between x and y:
"funRel" <-

function(x=leafshape$logpet, y=leafshape$loglen, scale=c(1,1)){

## Find principal components rotation; see Section 11.1

## Here (unlike 11.1) the interest is in the final component

xy.prc <- prcomp(cbind(x,y), scale=scale)

b <- xy.prc$rotation[,2]/scale

bxy <- -b[1]/b[2] # slope - functional eqn line

c(bxy = bxy)

}

## Try the following:

funRel(scale=c(1,1)) # Take x and y errors as equally important

funRel(scale=c(1,10)) # Error is mostly in y; structural relation

# line is close to regression line of y on x

funRel(scale=c(10,1)) # Error is mostly in x ...

## Note that all lines pass through (xbar, ybar)

(a) Note where, for each of the three settings of the argument scale, the values of the
functional coefficient lie in the range between by.x and b−1

x.y , where by.x is the slope of the
regression line of y on x and bx.y is the slope of the regression line of x on y.

(b) Repeat this for each of the data frames softbacks and elastic2 and (with the
variables logpet and loglen) leafshape17.

(c) Explain the effect of changing the settings of the argument scale.



6

Multiple linear regression

In straight line regression, a response variable y is regressed on a single explanatory vari-
able x. Multiple linear regression generalizes this methodology to allow multiple explana-
tory or predictor variables. The focus may be on accurate prediction. Or it may, alternatively
or additionally, be on the regression coefficients themselves. Be warned that interpreting
the regression coefficients is not as straightforward as it might appear.

The discussion will emphasize the use of model diagnostics, and of graphs that give
insight into the model fit. Diagnostic checks are intended to assist in the tuning of models
so that they perform well when used for their intended purpose, and do not give unexpected
and perhaps unpleasant surprises. For example, a model fit that is unduly affected by
influential outliers may give results that are less than satisfactory with the main body of
the data. This is one of several common types of departure from model assumptions that
diagnostic checks may bring to attention.

6.1 Basic ideas: a book weight example

The book weight example has two x-variables in the regression equation. In the data shown
in Figure 6.1 and printed to the right of the figure, seven books with hardback covers have
been added to the eight softbacks. Code for the figure is:

## Plot weight vs volume: data frame allbacks (DAAG)

plot(weight ˜ volume, data=allbacks, pch=c(16,1)[unclass(cover)])

# unclass(cover) gives the integer codes that identify levels

with(allbacks, text(weight ˜ volume, labels=paste(1:15),

pos=c(2,4)[unclass(cover)]))

Explanatory variables are the volume of the book ignoring the covers, and the total area
of the front and back covers. We might expect that

weight of book = b0 + b1 × volume + b2 × area of covers.

The intercept, b0, may not be needed. However, we will retain it for the moment. Later, we
can decide whether to set it to zero. Here is the regression output:

> summary(allbacks.lm <- lm(weight ˜ volume+area, data=allbacks))

. . . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)



6.1 Basic ideas: a book weight example 171

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

500 1000 1500

40
0

60
0

80
0

10
00

Volume

W
ei

gh
t 1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

volume area weight
(cm3) (cm2) (g) cover

1 885 382 800 hb
. . .

7 1228 396 1075 hb
8 412 0 250 pb

. . .
15 1034 0 725 pb

Figure 6.1 Weight versus volume, for seven hardback and eight softback books. Filled dots are
hardbacks, while open dots are softbacks. Selected data are shown to the right of the graph.

(Intercept) 22.4134 58.4025 0.38 0.70786

volume 0.7082 0.0611 11.60 7e-08

area 0.4684 0.1019 4.59 0.00062

Residual standard error: 77.7 on 12 degrees of freedom

Multiple R-Squared: 0.928, Adjusted R-squared: 0.917

F-statistic: 77.9 on 2 and 12 DF, p-value: 1.34e-007

> ## coefficient estimates and SEs only: summary(allbacks.lm)$coef

The coefficient estimates are b0 = 22.4, b1 = 0.708, and b2 = 0.468. Standard errors
and p-values are provided for each estimate. Note that the p-value for the intercept suggests
that it cannot be distinguished from 0, as we guessed earlier. The p-value for volume tests
b1 = 0, in the equation that has both volume and area as explanatory variables.

The estimate of the noise standard deviation (the residual standard error) is 77.7. There
are now 15 − 3 = 12 degrees of freedom for the residual; we start with 15 observations
and estimate three parameters. In addition, there are two versions of R2.

The output is geared towards various tests of hypotheses. The F -statistic allows an overall
test of significance of the regression. The null hypothesis for this test is that all coefficients
(other than the intercept) are 0. Here, we obviously reject this hypothesis and conclude that
the equation does have explanatory power.

The t-statistics and associated p-values should however be used informally, rather than
as a basis for formal tests of significance. Even in this simple example, the output has four
p-values. This may not be too bad, but what if there are six or eight p-values? There are
severe problems in interpreting results from such a multiplicity of formal tests, with varying
amounts of dependence between the various tests.

The information on individual regression coefficients can readily be adapted to obtain a
confidence interval for the coefficient. The 5% critical value for a t-statistic with 12 degrees
of freedom is 2.18.1 Thus, a 95% confidence interval forvolume is 0.708 ± 2.18 × 0.0611,

1 ## 5% critical value; t-statistic with 12 d.f.
qt(0.975, 12)



172 Multiple linear regression

i.e., it ranges from 0.575 to 0.841. As for the tests of hypotheses that were noted, these
confidence intervals are not independent between parameters.

A sequential analysis of variance table assesses the contribution of each predictor variable
to the model in turn, assuming inclusion of previously assessed variables. It can be obtained
using the anova() function.

> anova(allbacks.lm)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

volume 1 812132 812132 134.7 7e-08

area 1 127328 127328 21.1 0.00062

Residuals 12 72373 6031

This table gives the contribution of volume after fitting the overall mean, then the
contribution of area after fitting both the overall mean and volume. The p-value for
area in the anova table must agree with that in the main regression output, since both these
p-values test the contribution of area after including volume in the model. The p-values
for volume will differ if there is a correlation between volume and area. Here, the
correlation of volume with area is 0.0015, i.e., small.2 As a consequence, the p-values
for volume are very nearly equal.

Finally, note the model matrix that has been used in the least square calculations:

> model.matrix(allbacks.lm)

(Intercept) volume area

1 1 885 382

. . . .

7 1 1228 396

8 1 412 0

. . . .

15 1 1034 0

Predicted values are given by multiplying the first column by b0 (=22.4), the second by b1

(=0.708), the third by b2 (=0.468), and adding.

6.1.1 Omission of the intercept term

We now investigate the effect of leaving out the intercept. Here is the regression output:

> allbacks.lm0 <- lm(weight ˜ -1+volume+area, data=allbacks)

> summary(allbacks.lm0)

. . .

Coefficients:

2 ## Correlation of volume with area
with(allbacks, cor(volume,area))



6.1 Basic ideas: a book weight example 173

400 600 800 1000

−
10

0
0

10
0

20
0

Fitted values

R
es

id
ua

ls

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

A: Resids vs Fitted
13

11

5

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1 0 1

−
2

−
1

0
1

2
3

Theoretical quantiles
S

ta
nd

ar
di

ze
d 

re
si

du
al

s

B: Normal Q−Q
13

11

5

400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C: Scale−Location
13

11

5

0.00 0.10 0.20 0.30

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

Cook's distance
1

0 5

0 5

1

13

11

5

Figure 6.2 Diagnostic plots for the model that fits weight as a function of volume and area,
omitting the intercept.

Estimate Std. Error t value Pr(>|t|)

volume 0.7289 0.0277 26.34 1.1e-12

area 0.4809 0.0934 5.15 0.00019

Residual standard error: 75.1 on 13 degrees of freedom

Multiple R-Squared: 0.991, Adjusted R-squared: 0.99

F-statistic: 748 on 2 and 13 DF, p-value: 3.8e-014

The regression coefficients now have smaller standard errors. The reason is that, in the
model that included the intercept, there was a substantial negative correlation between the
estimate of the intercept and the coefficient estimates. The reduction in standard error is
greater for the coefficient of volume, where the correlation was −0.88, than for area,
where the correlation was −0.32. Correlations between estimates can be obtained by setting
corr=TRUE in the call to summary():

## Display correlations between estimates of model coefficients

summary(allbacks.lm, corr=TRUE)

6.1.2 Diagnostic plots

Figure 6.2 displays useful information for checking on the adequacy of the model fit to the
allbacks data. It used the code:

par(mfrow=c(2,2)) # Get all 4 plots on one page

plot(allbacks.lm0)

par(mfrow=c(1,1))

Figure 6.2 gives the default set of diagnostic plots. By comparison with Figure 5.6D in
Section 5.2, it disentangles the contributions that the residual and the leverage make to the
influence. Note the large residual (panel A) for observation 13. Note also that observation
13 lies outside the 0.5 contour of Cook’s distance, well out towards the contour for a Cook’s
distance of 1. Thus it is a (somewhat) influential point. The Cook’s distance measure, which
was mentioned in Section 5.2, will be discussed in more detail in Subsection 6.3.1.

Should we omit observation 13? The first task is to check the data, which are however
correct. The book is a computing book, with a smaller height to width ratio than any of the
other books. It has heavier paper, though differences in the paper may not be immediately
obvious. It may be legitimate to omit it from the main analysis, but noting the omission



174 Multiple linear regression

Table 6.1 Distance (dist), height climbed (climb), and record times (time),
for four of the 23 Northern Irish hill races.

Name dist (mi) climb (ft) time (h) timef (h)

1 Binevenagh 7.5 1740 0.86 1.06
2 Slieve Gullion 4.2 1110 0.47 0.62
3 Glenariff Mountain 5.9 1210 0.70 0.89

· · · · · · · · · · · · · · · · · ·
23 BARF Turkey Trot 5.7 1430 0.71 0.94

of this one book that had a much higher weight-to-volume ratio than other books. The
following omits observation 13:

> allbacks.lm13 <- lm(weight ˜ -1+volume+area, data=allbacks[-13, ])

> summary(allbacks.lm13)

. . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

volume 0.6949 0.0163 42.6 1.8e-14

area 0.5539 0.0527 10.5 2.1e-07

Residual standard error: 41 on 12 degrees of freedom

Multiple R-Squared: 0.997, Adjusted R-squared: 0.997

F-statistic: 2.25e+003 on 2 and 12 DF, p-value: 3.33e-016

The residual standard error is substantially smaller (41 instead of 75.1) in the absence
of observation 13. Observation 11 now has a Cook’s distance that is close to 1, but does
not stand out in the plot of residuals. This is about as far as it is reasonable to go in the
investigation of diagnostic plots. With just 15 points, there is a risk of over-interpretation.

6.2 The interpretation of model coefficients

If an aim is a scientific understanding that involves interpretation of model coefficients,
then it is important to fit a model whose coefficients are open to the relevant interpretations.
Different formulations of the regression model, or different models, may serve different
explanatory purposes. Predictive accuracy is in any case a consideration, and is often the
main interest.

Three examples will demonstrate issues for the interpretation of model coefficients. The
first is a data set on record times, distances, and amounts of climb for Northern Irish hill
races. The second has data on mouse brain weight, litter size, and body weight. The third
has data on book dimensions and weight, from a highly biased sample of books.

6.2.1 Times for Northern Irish hill races

The data set nihills (DAAG), from which Table 6.1 has selected observations, gives
distances (dist), heights climbed (climb), male record times (time), and female record
times (timef), for 23 Northern Irish hill races.



6.2 The interpretation of model coefficients 175

A: Untransformed scales B: Logarithmic scales

dist
(miles)

15

20

15 2

5

10

105

●

●

●
●

●●

●●

●

● ●●●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●●
●●

●

●

●
●

●
●

● ●
●

●

●●

● ●

climb
(feet)

6000

8000 6000 8000

2000

4000

2000 4000 ●
●

●

●
●●

●

●

●
●

●
●

● ●
●

●

●●

●●

●
●

●

●●●●

●

●●

●

●

●

●

●●

● ●
●

●
●

●

● ●

●

●
●

●●●

●

●

●

●

●●

●●

time
(hours)

3

4

3 4

1

2

1 2

dist
(log miles)

2.0

2.5

3.0

2.0 2.5 3.0

1.0

1.5

2.0

1.0 1.5 2.0

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

climb
(log feet)

8.0

8.5

9.0
8.0 8.5 9.0

6 5

7.0

7.5

.5 7.0 7.5

●

●
●

●

●

●

●●●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

time
(log hours)

0.5

1.0

1.5

0.5 1.0 1

−1.0

−0.5

0.0

−1.0−0.5 0.0

Figure 6.3 Scatterplot matrix for the nihills data (Table 6.1). Panel A uses the untransformed
scales, while panel B uses logarithmic scales.

We begin with scatterplot matrices, both for the untransformed data (Figure 6.3A), and
for the log transformed data (Figure 6.3B). Attention is limited to the male results.3 The
diagonal panels give the x-variable names for all plots in the column above or below, and
the y-variable names for all plots in the row to the left or right. Note that the vertical axis
labels alternate between the axis on the extreme left and the axis on the extreme right, and
similarly for the horizontal axis labels. This avoids a proliferation of axis labels on the
extreme left and lower axes.

Apart from a possible outlier, the relationship between dist and climb seems approx-
imately linear. The same is true when logarithmic scales are used, and the outlier is now
much less evident. Nonlinear relationships are undesirable, in part, because they create
problems for the interpretation of diagnostic plots.

The following are reasons for investigating the taking of logarithms:

� The range of values of time is large (3.9:0.32, i.e., >10:1), and similarly for dist and
climb. The times are bunched up towards zero, with a long tail. In such instances, use
of a logarithmic transformation is likely to lead to a more symmetric distribution.

� One point in particular has a time that is more than twice that of the next largest time,
as is evident in Figure 6.3A. The values of dist and climb similarly stand out as
much larger than for other points. In a regression that uses the untransformed variables,
this point will have a much greater say in determining the regression equation than any

3 ## : data frame nihills (DAAG)
## Panel A: Scatterplot matrix, untransformed data, data frame nihills (DAAG)
library(lattice); library(DAAG)
splom(˜ nihills[, c("dist","climb","time")], cex.labels=1.2,

varnames=c("dist\n(miles)","climb\n(feet)", "time\n(hours)"))
## Panel B: log transformed data
splom(˜ log(nihills[, c("dist","climb","time")]), cex.labels=1.2,

varnames=c("dist\n(log miles)", "climb\n(log feet)", "time\n(log hours)"))



176 Multiple linear regression

−1.0 0.0 0.5 1.0

−
0.

20
−

0.
05

0.
05

0.
15

Fitted values

R
es

id
ua

ls

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

A: Resids vs Fitted

Meelbeg Meelmore

Hen & Cock

Dona d Forest

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical quantiles
S

ta
nd

ar
di

ze
d 

re
si

du
al

s

B: Normal Q−Q

Mee beg Meelmore

Hen & Cock
Seven Sevens

−1.0 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

C: Scale−Location
Meelbeg Meelmore

Hen & Cock
Seven Sevens

0.0 0.1 0.2 0.3 0.4

−
3

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

Cook's distance

1
0 5

0 5
1Seven Sevens

Hen & Cock

Meelbeg Meelmore

Figure 6.4 Diagnostic plots for the regression of log(time) on log(dist) and log(climb).

other point. In the terminology of Subsection 6.3.1, it has large leverage. Even after
taking logarithms (Figure 6.3B), its leverage remains large, but not quite so dominating.

� It can be expected that time will increase more than linearly at very long times, and
similarly for climb, as physiological demands on the human athlete move closer to
limits of human endurance.

� Such relationship as is evident between the explanatory variables (dist and climb) is
more nearly linear on the logarithmic scale of Figure 6.3B.

Additionally, use of a logarithmic scale may help stabilize the variance.
These considerations suggest fitting the equation

log(time) = a + b1 log(dist) + b2 log(climb).

This is equivalent to the power relationship

time = A(dist)b1 (climb)b2 ,

where a = log(A).
Now fit the model and examine the diagnostic plots (shown in Figure 6.4):

nihills.lm <- lm(log(time) ˜ log(dist) + log(climb), data = nihills)

plot(nihills.lm)

The diagnostic plots do not indicate problems, apart from the moderately large residual
associated with the Meelbeg Meelmore race.

The estimates of the coefficients (a, b1 and b2) are:

> summary(nihills.lm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.961 0.2739 -18.1 7.09e-14

log(dist) 0.681 0.0552 12.3 8.19e-11

log(climb) 0.466 0.0453 10.3 1.98e-09

Estimate Std. Error t value Pr(>|t|)

Interpreting the coefficients

The estimated equation is

log(time) = −4.96

[SE = 0.27]

+0.68

[SE = 0.055]

× log(dist)+ 0.47

[SE = 0.045]

× log(climb).



6.2 The interpretation of model coefficients 177

Exponentiating both sides of this equation, and noting exp(−4.96) = 0.0070, gives

time = 0.00070 × dist0.68 × climb0.47.

This equation implies that for a given height of climb, the time taken is smaller for the
second three miles than for the first three miles. The relative rate of increase in time is 68%
of the relative rate of increase in distance. Is this plausible?

The answer comes from examination of the implications of holding climb constant.
For a given value of climb, short races will be steep while for long races the slope will be
relatively gentle. Thus a coefficient that is less than 1.0 is unsurprising.

A meaningful coefficient for logdist

The coefficient for logdist will be more meaningful if we regress on logdist and
log(climb/dist). Then we find:

> lognihills <- log(nihills)

> names(lognihills) <- paste("log", names(nihills), sep="")

> lognihills$logGrad <- with(nihills, log(climb/dist))

> nihillsG.lm <- lm(logtime ˜ logdist + logGrad, data=lognihills)

> summary(nihillsG.lm)$coef

Estimate Std. Error t value Pr(>|t|)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.961 0.2739 -18.1 7.09e-14

logdist 1.147 0.0346 33.2 5.90e-19

logGrad 0.466 0.0453 10.3 1.98e-09

The coefficient of logdist is now, reassuringly, greater than 1. The coefficient of
logdist depends, critically, on what other explanatory variables are used!

There is another, related, benefit. The correlation between logdist and logGra-
dient is −0.065, negligible relative to the correlation of 0.78 between logdist and
logclimb.4 Because the correlation between logdist and logGradient is so small,
the coefficient of logdist (=1.124) in the regression on logdist alone is almost
identical to the coefficient of logdist (=1.147) in the regression on logdist and
logGradient.

The standard error of the coefficient of logdist is smaller – 0.035 as against 0.055 –
when the second explanatory variable is logGradient rather than logclimb. Note
that the predicted values do not change. The models nihills.lm nihillsG.lm are
different mathematical formulations of the same underlying model.

6.2.2 Plots that show the contribution of individual terms

For simplicity, the discussion will assume just two explanatory variables, x1 and x2, with
the intention of showing the contribution of each in turn to the model.

4 ## Correlations of logGrad and logclimb with logdist
with(lognihills, cor(cbind(logGrad, logclimb), logdist))



178 Multiple linear regression

1.0 1.5 2.0 2.5 3.0

−
0.

5
0.

0
0.

5
1.

0

logdist

P
ar

tia
l f

or
 lo

gd
is

t
●

●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

7.0 8.0 9.0

−
0.

5
0.

0
0.

5
1.

0

logclimb

P
ar

tia
l f

or
 lo

gc
lim

b

●

●

●

●

●
●

●
●
●

●

●

●

●
●●

●●
●

●

●
●

●●

Figure 6.5 The solid lines show the respective contributions of the two model terms, in the regression
of logtime on logdist and logclimb. Partial residuals (specify partial.resid=TRUE)
and an associated smooth curve (specify smooth=panel.smooth) have been added.

The fitting of a regression model makes it possible to write:

y = b0 + b1x1 + b2x2 + e (6.1)

= ŷ + e, (6.2)

where ŷ = b0 + b1x1 + b2x2.
Another way to write the model that is to be fitted is:

y − ȳ = a + b1(x1 − x̄1) + b2(x2 − x̄2) + e.

It is a fairly straightforward algebraic exercise to show that a = 0. Notice that, for fitting
the model in this form:

� The observations are y − ȳ, with mean zero.
� The first explanatory variable is x1 − x̄1, with mean zero, and the first term in the model

is b1(x1 − x̄1), with mean zero.
� The second explanatory variable is x2 − x̄2, with mean zero, and the first term in the

model is b1(x1 − x̄1), with mean zero.

The residuals e are exactly the same as before, and have mean zero.
The fitted model can then be written:

y = ȳ + b1(x1 − x̄1) + b2(x2 − x̄2) + e

= ȳ + t1 + t2 + e.

This neatly splits the response value y into three parts – an overall mean ȳ, a term that is
due to x1, a term that is due to x2, and a residual e. Moreover, the values of t1 and t2 sum,
in each case, to zero.

The predict() function has an option (type="terms") that gives t1 and t2.

yterms <- predict(nihills.lm, type="terms")

The first column of yterms has the values of t1 = b1(x1 − x̄1), while the second has the
values of t2. Values in both these columns sum to zero. The solid lines of the component
plus residual plot in Figure 6.5 show the contributions of the individual terms to the model.



6.2 The interpretation of model coefficients 179

The solid line in the left panel shows a plot of b1(x1 − x̄1) against x1, while the solid line
in the right panel shows a plot of b2(x2 − x̄2) against x2.

The lines can be obtained directly with thetermplot() command. As the contributions
of the terms are linear on a logarithmic scale, a plot in which the x-axis variables are the
log transformed variables will serve the purpose best. We therefore refit the equation before
using termplot(), thus:

lognihills <- log(nihills)

names(lognihills) <- paste("log", names(nihills), sep="")

nihills.lm <- lm(logtime ˜ logdist + logclimb, data = lognihills)

## To show points, specify partial.resid=TRUE

## For a smooth curve, specify smooth=panel.smooth

termplot(nihills.lm, partial.resid=TRUE, smooth=panel.smooth,

col.res="gray30")

The plotted points are the partial residuals, for the respective term.

� The vector t1 + e = ŷ − t2 holds the partial residuals for x1 given x2, i.e., they account
for that part of the response that is not explained by the term in x2.

� The vector t2 + e holds the partial residuals for x2 given x1.

The smooth curve that has been passed through the partial residuals is designed to help in
assessing any departure from the lines. Both plots show a hint of curvature, more pronounced
for logdist than logclimb. The difference from a line is however small, and may not
be of much practical consequence.

Each plot indicates the pattern in the residuals when there is no change to the linear
pattern of response that is assumed for the other variable. Both plots suggest a slight but
noticeable departure from linearity, though in the right panel largely due to a single point.
Further investigation, if it should seem warranted, can best proceed using methods for
fitting smooth curves that will be described in Chapter 7.

6.2.3 Mouse brain weight example

The litters data frame (DAAG library) has observations on brain weight, body weight,
and litter size of 20 mice. As Figure 6.6 makes clear, the explanatory variables lsize and
bodywt are strongly correlated. Code for obtaining a simplified version of Figure 6.6 is:5

pairs(litters) # For improved labeling, see the footnote.

Observe now that, in a regression with brainwt as the dependent variable, the coeffi-
cient forlsize has a different sign (−ve versus +ve) depending on whether or notbodywt

5 ## Scatterplot matrix for data frame litters (DAAG); labels as in figure
library(lattice)
splom(˜litters, varnames=c("lsize\n\n(litter size)", "bodywt\n\n(Body Weight)",

"brainwt\n\n(Brain Weight)"))



180 Multiple linear regression

Scatter Plot Matrix

lsize

(litter size)

8

10

12

8 10 12

4

6

8

4 6 8

bodywt

(Body Weight)

8

9

10

8 9 1

6

7

8

6 7 8

brainwt

(Brain Weight)

0 42

0 44
0 42 0 44

0 38

0 40

0 38 0 40

Figure 6.6 Scatterplot matrix for the litters data set. Data relate to Wainright et al. (1989).

also appears as an explanatory variable. Both coefficients are significant (p < 0.05). Here
are the calculations:

> ## Regression of brainwt on lsize

> summary(lm(brainwt ˜ lsize, data = litters))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.44700 0.00962 46.44 3.39e-20

lsize -0.00403 0.00120 -3.37 3.44e-03

> ## Regression of brainwt on lsize and bodywt

> summary(lm(brainwt ˜ lsize + bodywt, data = litters))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.17825 0.07532 2.37 0.03010

lsize 0.00669 0.00313 2.14 0.04751

bodywt 0.02431 0.00678 3.59 0.00228

The coefficients have different interpretations in the two cases:

� In the first regression, variation in brainwt is being explained only with lsize,
regardless of bodywt. No adjustment has been made for the fact that bodywt increases
as lsize decreases: individuals having small values of lsize have brainwt values
corresponding to large values of bodywt, while individuals with large values of lsize
have brainwt values corresponding to low bodywt values.

� In the multiple regression, the coefficient for lsize is a measure of the change in
brainwt with lsize, when bodywt is held constant. For any particular value of
bodywt, brainwt increases with lsize. This was a noteworthy finding for the
purposes of the study.

The results are consistent with the biological concept of brain sparing, whereby the nutri-
tional deprivation that results from large litter sizes has a proportionately smaller effect on
brain weight than on body weight.



6.2 The interpretation of model coefficients 181

log(thick)

●
●

●

●●●
●●● ●

●

●

●
●

●

●● ●
●●● ●

●

●

●
●

●

● ●●
●●● ●

●

●

●
●

●

●
●
●

●●

●

●

●

●

log(breadth)

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

log(height)

●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

log(weight)

A

log(density)

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

log(area)

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

● ●●
●●● ●

●

●

●
●

●

●● ●
●●● ●

●

●

log(thick)

●
●

●

● ●●
●●● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

log(weight)

B

Figure 6.7 Panel A is the scatterplot matrix for the logarithms of the variables in the oddbooks
data frame. Books were selected in such a way that weight increased with decreasing thickness. Panel
B has the scatterplot matrix for the logarithms of the derived variables density and area, together
with log(thick) and log(weight).

6.2.4 Book dimensions, density, and book weight

The way that data are sampled can affect the coefficients. This section will examine data,
sampled in a deliberately biased way, on the effect of book dimensions (thickness, height,
and width) on book weight.

Figure 6.7A shows a scatterplot matrix for logged measurements, from the data frame
oddbooks, on 12 soft-cover books. Figure 6.7B is for later reference.6 Books were
selected in such a way that weight increased with decreasing thickness, reflected in the
strong negative correlation between log(weight) and log(thick).

It might be expected that weight would be proportional to volume, i.e., w = tbh and

l̂og(w) = log(t) + log(b) + log(h) (6.3)

where w = weight, t = thick, b = breadth, and h = height.
Although equation (6.3) seems plausible, there can be no guarantee that it will give a

result that makes sense for data where there have been strong constraints on the choice of
books. We will fit models in which the fitted values take the following forms:

1 : log(w) = a0 + a1(log(t) + log(b) + log(h))
2 : log(w) = a0 + a1 log(t) + a2(log(b) + log(h))
3 : log(w) = a0 + a1 log(t) + a2 log(b) + a3 log(h)

6 ## Code for Panel A
splom(˜log(oddbooks), varnames=c("thick\n\nlog(mm)", "breadth\n\nlog(cm)",

"height\n\nlog(cm)", "weight\n\nlog(g)"), pscales=0)
## Code for Panel B
oddothers <-
with(oddbooks,

data.frame(density = weight/(breadth*height*thick),
area = breadth*height, thick=thick, weight=weight))

splom(˜log(oddothers), pscales=0,
varnames=c("log(density)", "log(area)", "log(thick)", "log(weight)"))



182 Multiple linear regression

●

●

●

●

●
●

●

●

●

●

●

8.6 8.8 9.0 9.2

5.
5

6.
0

6.
5

7.
0

log(thick)+log(breadth)+log(height)

lo
g(

w
ei

gh
t)

A
●

●

●

●

●
●

●●

●

●

●

●

5.6 6.0 6.4 6.8

5.
5

6.
0

6.
5

7.
0

Predicted log(weight)

lo
g(

w
ei

gh
t)

B
●

●

●

●

●
●

●

●

●

●

●

5.6 6.0 6.4 6.8

5.
5

6.
0

6.
5

7.
0

Predicted log(weight)

lo
g(

w
ei

gh
t)

C

Figure 6.8 Panel A plots log(weight) against log(thick) + log(breadth) + log(height). The
dashed line shows the fitted values for model 1. Panel B plots observed values against fitted values
for model 2, with the line y = x superposed. Panel C plots observed values against fitted values for
model 3 and again shows the line y = x.

Figure 6.8 assists comparison of these models. The coefficients in the fitted equations,
with SEs in square brackets underneath, are:7

1 : log(w) = −8.9
[SE=2.7]

+ 1.7
[0.31]

× (log(t) + log(b) + log(h))

2 : log(w) = −1.6
[2.9]

+ 0.48
[0.42]

log(t) + 1.10
[0.28]

(log(b) + log(h))

3 : log(w) = −0.72
[3.2]

+ 0.46
[0.43]

log(t) + 1.88
[1.07]

log(b) + 0.15
[1.27]

log(h))

Transforming back to a relationship between weight and volume, the result for model 1
is that weight ∝ volume1.7, implying that weight increases faster than volume. As the
volume of books increases, their density increases. Almost certainly, the effect has arisen
because the books with larger page sizes are printed on heavier paper.

Note that the predicted values in model 2 are very similar to those for model 3. The
coefficient of area in model 2 indicates that, for a given value of thick, weight is very
nearly proportional to page area.

Note finally that the regression of log(weight) on log(thick) yields:

> coef(summary(lm(log(weight) ˜ log(thick), data=oddbooks)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.69 0.708 13.7 8.35e-08

log(thick) -1.07 0.219 -4.9 6.26e-04

The implication is that weight decreases as thick increases. For these data, it does!
The oddbooks data were contrived to give a skewed picture of the way that book

weight varies with dimensions. Correlations between area and thick, and between both
area and thick and density of paper, make it impossible to use multiple regression to
separate the effects of these different variables. The one fairly solid piece of information

7 ## Details of calculations
volume <- apply(oddbooks[, 1:3], 1, prod)
area <- apply(oddbooks[, 2:3], 1, prod)
lob1.lm <- lm(log(weight) ˜ log(volume), data=oddbooks)
lob2.lm <- lm(log(weight) ˜ log(thick)+log(area), data=oddbooks)
lob3.lm <- lm(log(weight) ˜ log(thick)+log(breadth)+log(height), data=oddbooks)
coef(summary(lob1.lm))
## Similarly for coefficients and SEs for other models



6.3 Multiple regression assumptions, diagnostics, and efficacy measures 183

that is available from these data is obtained by using our knowledge of what the relationship
should be, to indicate how density changes with area or thick, thus:

> book.density <- oddbooks$weight/volume

> bookDensity.lm <- lm(log(book.density) ˜ log(area), data=oddbooks)

> coef(summary(bookDensity.lm))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.109 0.5514 -9.27 3.18e-06

log(area) 0.419 0.0958 4.37 1.39e-03

Observational data is very susceptible to such bias. For example solar radiation, wind-
speed, temperature, and rainfall may change systematically with distance up a hillside, and
it may be impossible to distinguish the effects of the different factors on plant growth or
on the ecology. Worse, effects may be at work that will be discerned only from substantial
understanding of the physical processes and which are not obvious from the measured data.

6.3 Multiple regression assumptions, diagnostics, and efficacy measures

At this point, as a preliminary to setting out a general strategy for fitting multiple regression
models, we describe the assumptions that underpin multiple regression modeling. Given
the explanatory variables x1, x2, . . . , xp, the assumptions are that:

� The expectation E[y] is some linear combination of x1, x2,. . . , xp:

E[y] = α + β1x1 + β2x2 + · · · + βpxp.

� The distribution of y is normal with mean E[y] and constant variance, independently
between observations.

In general, the assumption that E[y] is a linear combination of the xs is likely to be false.
It may, however, be a good approximation. In addition, there are simple checks that, if
the assumption fails, may indicate the nature of the failure. The assumption may be hard
to fault when the range of variation of each explanatory variable is small relative to the
noise component of the variation in y, so that any non-linearity in the effects of explanatory
variables is unlikely to show up. Even where there are indications that it is not entirely
adequate, a simple form of multiple regression model may be a reasonable starting point
for analysis, on which we can then try to improve.

6.3.1 Outliers, leverage, influence, and Cook’s distance

This extends earlier discussions of regression diagnostics in Section 5.2 and Subsection
6.1.2.

Detection of outliers

Outliers can be hard to detect. Two (or more) outliers that are influential may mask each
other. If this seems a possible issue, it is best to work with residuals from a resistant fit.
Resistant fits aim to completely ignore the effect of outliers. Use of this methodology
will be demonstrated in Subsection 6.4.3. See also Exercise 14 at the end of the chapter.



184 Multiple linear regression

0.0 0.1 0.2 0.3 0.4

0
1

2
Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Cook's distance

1

0.5

0.5

1

Residuals vs Leverage

Seven Sevens

Hen & Cock

Meelbeg Meelmore

log (clim

e

Sevens

log (dist)

mb)

Annalong Horseshoe

Seven S

log (time)

Figure 6.9 The left panel is a snapshot of a three-dimensional dynamic graphic plot. The two points
that have the largest leverage in the regression of logtime on logdist and logclimb have been
labeled. In the right panel, standardized residuals are plotted against leverages. Contours are shown
for Cook’s distances of 0.5 and 1.0.

This demonstrates the type of aberrant results that may result from resistant regression, if
residuals do not have an approximately symmetric distribution.

Dynamic graphic exploration can be helpful. Abilities in the rgl package for dynamic
three-dimensional plots can be accessed conveniently from the graphics menu of the R
Commander GUI. The rgobi package (Cook and Weisberg, 1999) has very extensive abilities
for dynamic graphic exploration.

∗Leverage and the hat matrix

What difference does replacing of yi by yi + 	i , while leaving other y-values unchanged,
make to the fitted surface. There is a straightforward answer; the fitted value changes from
ŷi to ŷi + hii	i , where hii is the leverage for that point.

The leverage values hii are the diagonal elements of the so-called hat matrix that can
be derived from the model matrix. (The name of the hat matrix H is due to the fact that
the vector of fitted values (“hat” values) is related to the observed response vector by
ŷ = Hy.) Large values represent high leverage. Use the function hatvalues() to obtain
the leverages, thus:

> as.vector(hatvalues(nihills.lm)) # as.vector() strips off names

[1] 0.119 0.074 0.134 0.109 0.085 0.146 0.052 0.146 0.247 0.218

[11] 0.090 0.057 0.056 0.127 0.049 0.103 0.175 0.214 0.444 0.090

[21] 0.139 0.048 0.077

The largest leverage, for observation 19, is 0.44. As this is more than three times the average
value of 0.13, it warrants attention. (There are p = 3 coefficients and n = 23 observations,
so that the average is p/n = 0.13.)

The left panel of Figure 6.9 is a snapshot of a three-dimensional dynamic graphic plot that
shows the regression plane in the regression of logtime on logdist and logclimb.



6.3 Multiple regression assumptions, diagnostics, and efficacy measures 185

The two points that have the largest leverage have been labeled. The right panel is a plot of
residuals against leverage values, in which the Cook’s distances are shown as contours.

The snapshot in the left panel can be obtained from the 3D graph submenu on the R
Commander’s Graphs pulldown menu, then rotating the graph to give the view shown.
Alternatively, enter from the command line the code that is given in Section 15.7. To rotate
the display, hold down the left mouse button and move the mouse. Try it! The snapshot is
a poor substitute for the experience of rotating the display on a computer screen!

The right panel can be obtained thus:

## Residuals versus leverages

plot(nihills.lm, which=5, add.smooth=FALSE)

## The points can alternatively be plotted using

## plot(hatvalues(model.matrix(nihills.lm)), residuals(nihills.lm))

Influential points and Cook’s distance

Data points that distort the fitted response are “influential”. Such distortion is a combined
effect of the size of the residual, and its leverage. The Cook’s distance statistic is a commonly
used measure of “influence”. It measures, for each observation, the change in model
estimates when that observation is omitted. It measures the combined effect of leverage
and of the magnitude of the residual. Recall the guideline that was given in Section 5.2,
that any Cook’s distance of 1.0 or more, or that is substantially larger than other Cook’s
distances, should be noted.

Any serious distortion of the fitted response may lead to residuals that are hard to interpret
or even misleading. Thus it is wise to check the effect of removing any highly influential
data points before proceeding far with the analysis.

Influence on the regression coefficients

In addition to the diagnostic plots, it is useful to investigate the effect of each observation on
the estimated regression coefficients. One approach is to calculate the difference in the coef-
ficient estimates obtained with and without each observation. The function dfbetas()
does these calculations and standardizes the resulting differences, i.e., they are divided by a
standard error estimate. These are more readily interpretable than absolute differences. For
the regression model fit to the allbacks data set, without the intercept term, the values
are shown in Figure 6.10.

If the distributional assumptions are satisfied, standardized changes that are larger than
2 can be expected, for a specified coefficient, in about 1 observation in 20. Here, the only
change that seems worthy of note is for volume in observation 13. For absolute changes,
should they be required, use the function lm.influence().

Outliers, influential or not, should be taken seriously

Outliers, influential or not, should never be disregarded. Careful scrutiny of the original data
may reveal an error in data entry that can be corrected. Alternatively, their exclusion may be
a result of use of the wrong model, so that with the right model they can be re-incorporated.



186 Multiple linear regression

Standardized change in coefficient

0 1 2

| ||| || ||| | |||

|| | || | || | ||| | |

13

13

volume

area

dfbetas(allbacks.lm0)

Figure 6.10 Standardized changes in regression coefficients, for the model that was fitted to the
allbacks data set. The points for the one row (row 13) where the change for one of the coefficients
was greater than 2 in absolute value are labeled with the row number.

If apparently genuine outliers remain excluded from the final fitted model, they must be
noted in the eventual report or paper. They should be included, separately identified, in
graphs.

∗Additional diagnostic plots

The functions in the car package, designed to accompany Fox (2002), greatly extend the
range of diagnostic plots. See the examples and references included on the help pages for
this package. As an indication of what is available, try

library(car)

leverage.plots(allbacks.lm, term.name="volume",

identify.points=FALSE)

6.3.2 Assessment and comparison of regression models

The measures that will be discussed all focus on predictive accuracy, assuming that data
used for fitting the model can be treated as a random sample from the data that will
be used in making predictions. This assumption may be incorrect. Also, as pointed out
earlier, predictive accuracy may not be the only or the most important consideration.
It is nonetheless always an important consideration, even where interpretation of model
parameters is the primary focus of interest.

R2 and adjusted R2

The R2 and adjusted R2 that are included in the default output from summary.lm() (cf.
Section 6.1) are commonly used to give a rough sense of the adequacy of a model. R2 is the
proportion of the sum of squares about the mean that is explained by the model. Adjusted
R2, which is the proportion of the mean sum of squares that is explained, is preferable to
R2. Neither is appropriate for comparisons between different studies, where the ranges of
values of the explanatory variables may be different. Both are likely to be largest in those
studies where the range of values of the explanatory variables is greatest.

The R2 statistic (whether or not adjusted) has a more legitimate use for comparing
different models for the same data. For this purpose, however, AIC and related statistics are
much preferable. The next subsection will discuss these “information measure” statistics.



6.3 Multiple regression assumptions, diagnostics, and efficacy measures 187

AIC and related statistics

These statistics are designed to choose, from among a small number of alternatives, the
model with the best predictive power. Statistics that are in use include the Akaike Informa-
tion Criterion (AIC), Mallows’ Cp, and various elaborations of the AIC. The AIC criterion
and related statistics can be used for more general models than multiple regression. We
give the version that is used in R.

The model that gives the smallest value is preferred, whether for the AIC or for the Cp

statistic. The variance estimate σ̂ 2 is often determined from the full model.
Another statistic is the Bayesian Information Criterion (BIC), which is claimed as an

improvement on the AIC. The AIC is inclined to over-fit, i.e., to choose too complex a
model.

Calculation of R’s version of the AIC

Let n be the number of observations, let p be the number of parameters that have been
fitted, and let RSS denote the residual sum of squares. Then, if the variance is known, R
takes the AIC statistic as

AIC = RSS

σ 2
+ 2p + const.

where, here, the constant term arises from the assumption of an i.i.d. normal distribution
for the errors. In the more usual situation where the variance is not known, R takes the AIC
statistic as

AIC = n log

(
RSS

n

)
+ 2p + const.

The BIC (Schwarz’s Bayesian criterion) statistic, which replaces 2p by log(n) × p, penal-
izes models with many parameters more strongly.

The Cp statistic differs from the AIC statistic only by subtraction of n, and by omission
of the constant term. It is

Cp = n log

(
RSS

n

)
+ 2p − n.

6.3.3 How accurately does the equation predict?

The best test of how well an equation predicts is the accuracy of its predictions. We
can measure this theoretically, by examining, e.g., 95% confidence intervals for predicted
values. Alternatively we can use cross-validation, or another resampling procedure, to
assess predictive accuracy. Both methods (theoretical and cross-validation) for assessing
predictive accuracy assume that the sample is randomly drawn from the population that is
of interest, and that any new sample for which predictions are formed is from that same
population.

Earlier, we noted that a quadratic term in ldist would probably improve the model
slightly. We can accommodate this by replacing logdist by poly(logdist,2), or



188 Multiple linear regression

Observed time

R
es

id
ua

l/(
fit

te
d 

va
lu

e)

A: Logarithmic scales

0.5 1 1.5 2.5 4

0.
9

1
1.

1

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.5 1.5 2.5 3.5

0.
0

0.
4

Observed time

R
es

id
ua

l

B: Untransformed scales (time)

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●

●●

Figure 6.11 Residuals versus predicted values for the hill race data. The vertical limits of the
bounding curves are 95% pointwise confidence limits, with the predicted value subtracted off. Black
points and 95% curves are for the model that is linear in logdist, Gray points and 95% curves are
for the model that is quadratic in logdist. Panel A uses logarithmic scales, with the points labeled
on the untransformed scale.

by poly(logdist,2,raw=TRUE) if coefficients are required that are immediately
interpretable. Orthogonal polynomials will be discussed in Section 7.4.

The following table gives 95% coverage (confidence) intervals for predicted times in
the regression of log(time) on log(climb) and log(dist), for the first few
observations from the data set nihills:

> lognihills <- log(nihills)

> names(lognihills) <- paste("log", names(nihills), sep="")

> nihills.lm <- lm(logtime ˜ logdist + logclimb, data = lognihills)

## Coverage intervals; use exp() to undo the log transformation

> exp(predict(nihills.lm, interval="confidence"))[1:5, ]

fit lwr upr

Binevenagh 0.893 0.845 0.944

Slieve Gullion 0.488 0.467 0.510

Glenariff Mountain 0.640 0.604 0.679

Donard & Commedagh 1.126 1.068 1.187

McVeigh Classic 0.570 0.544 0.597

Prediction intervals from the model that replaceslogGrad bylogclimbwill be identical.
Figure 6.11 shows these prediction intervals graphically. Panel A plots the points on

a scale of time, while panel B plots the points on a scale of log(time). The 95%
pointwise intervals apply to the fitted values, that is, to the values on the vertical axis.
Fitted values and 95% confidence bounds are shown both for the model that is linear in
log(dist) and for the model that is quadratic in log(dist).8

Notice that the bounds for the quadratic model are narrower within the main body of
the data, but fan out as time increases. The quadratic bounds better indicate the uncertainty
in the predictions for large times. Note the trade-off between bias for the model that
lacks the quadratic term, and increased variance for the model that includes the quadratic
term.

8 ## Model that is quadratic in logdist
nihills2.lm <- lm(logtime ˜ poly(logdist,2) + logclimb, data = lognihills)
citimes2 <- exp(predict(nihills2.lm, interval="confidence"))



6.4 A strategy for fitting multiple regression models 189

This assessment of predictive accuracy has important limitations:

1. It is crucially dependent on the model assumptions – independence of the data points,
homogeneity of variance, and normality. If the theoretical assumptions are wrong, per-
haps because of clustering or other forms of dependence, then these prediction intervals
will also be wrong. Departures from normality are commonly of less consequence than
the other assumptions.

2. It applies only to the population from which these data have been sampled. If the sample
for which predictions are made is really from a different population, or is drawn with
a different sampling bias, the assessments of predictive accuracy will be wrong. Thus
it might be hazardous to use the above model to predict winning times for hill races in
England or Mexico or Tasmania.

Point 2 can be addressed only by testing the model against data from these other locations.
Thus, it is interesting to compare the results from the Scottish hills2000 data with
results from the Northern Irish nihills data. The results are broadly comparable. We
leave further investigation of this comparison to the exercises.

Better still, where this is possible, is to use data from multiple locations to develop a
model that allows for variation between locations as well as variation within locations.
Chapter 10 discusses models that are, in principle, suitable for such applications.

We might consider cross-validation, or the bootstrap, or another resampling method.
Cross-validation and other resampling methods can cope, to a limited extent and depending
on how they are used, with lack of independence. Note that neither this nor any other such
internal method can address sampling bias. Heterogeneity is just as much an issue as for
model-based assessments of accuracy. Thus for the hill race data, if there is no adjustment
for changing variability with increasing length of race:

1. If we use the untransformed data, cross-validation will exaggerate the accuracy for
long races and be slightly too pessimistic for short races.

2. If we use the log transformed data, cross-validation will exaggerate the accuracy for
short races and under-rate the accuracy for long races.

6.4 A strategy for fitting multiple regression models

Careful graphical scrutiny of the explanatory variables is an essential first step. This may
lead to any or all of:
� Transformation of some or all variables.
� Replacement of existing variables by newly constructed variables that are a better

summary of the information. For example, we might want to replace variables x1 and x2

by the new variables x1 + x2 and x1 − x2.
� Omission of some variables.

Why are linear relationships between explanatory variables preferable?

Where there are many explanatory variables, the class of models that would result from
allowing all possible transformations of explanatory variables is too wide to be a satisfac-
tory starting point for investigation. The following are reasons for restricting attention to



190 Multiple linear regression

transformations, where available, that lead to scatterplots in which relationships between
explanatory variables are approximately linear.

� If relationships between explanatory variables are non-linear, diagnostic plots may be
misleading. See Cook and Weisberg (1999).

� Approximately linear relationships ensure that all explanatory variables have similar
distributions, preferably distributions that are not asymmetric to an extent that gives the
smallest or largest points undue leverage.

� If relationships are linear, it is useful to check the plots of explanatory variables against
the response variable for indications of the relationship with the dependent variable.
Contrary to what might be expected, this is more helpful than looking at the plots of the
response variable against explanatory variables.

Surprisingly often, logarithmic or other standard forms of transformation give more sym-
metric distributions, lead to scatterplots where the relationships appear more nearly linear,
and make it straightforward to identify a regression equation that has good predictive
power.

6.4.1 Suggested steps

Here are steps that are reasonable to follow. They involve examination of the distributions
of values of explanatory variables, and of the pairwise scatterplots.

� Examine the distribution of each of the explanatory variables, and of the dependent
variable. Look for any instances where distributions are highly skew, or where there are
outlying values. Check whether any outlying values may be mistakes.

� Examine the scatterplot matrix involving all the explanatory variables. (Including the
dependent variable is, at this point, optional.) Look first for evidence of non-linearity
in the plots of explanatory variables against each other. Look for values that appear as
outliers in any of the pairwise scatterplots.

� Note the ranges of each of the explanatory variables. Do they vary sufficiently to affect
values of the dependent variable?

� How accurately are each of the explanatory variables measured? At worst, the inaccuracy
may be so serious that it is unlikely that any effect can be detected, and/or that coefficients
of other explanatory variables are seriously in error. Section 6.7 has further details.

� If some pairwise plots show evidence of non-linearity, consider use of transformation(s)
to give more nearly linear relationships.

� Where the distribution is skew, consider transformations that may lead to a more sym-
metric distribution.

� Look for pairs of explanatory variables that are so highly correlated that they appear to
give the same information. Do scientific considerations help in judging whether both
variables should be retained? For example, the two members of the pair may measure
what is essentially the same quantity. Note however that there will be instances where
the difference, although small, is important. Section 8.2 has an example.



6.4 A strategy for fitting multiple regression models 191

Figure 6.12 Scatterplot matrix for the hills2000 data (Table 6.1).

6.4.2 Diagnostic checks

Checks should include:

� Plot residuals against fitted values. For initial checks, consider the use of residuals from
a resistant regression model. Check for patterns in the residuals, and for the fanning out
(or in) of residuals as the fitted values change. (Do not plot residuals against observed
values. This is potentially deceptive; there is an inevitable positive correlation.)

� Examine the Cook’s distance statistics. If it seems helpful, examine standardized versions
of the drop-1 coefficients directly, using dfbetas(). It may be necessary to delete
influential data points and refit the model.

� For each explanatory variable, construct a component plus residual plot, to check whether
any of the explanatory variables require transformation.

A further question is whether multiple regression methodology is adequate, or whether
a non-linear form of equation may be required. Ideas of “structural dimension”, which
are beyond the scope of the present text, become important. The package dr (dimension
reduction) addresses such issues.

6.4.3 An example – Scottish hill race data

The data in hills2000 is comparable to nihills, but for Scotland rather than Northern
Ireland. Again, we will work on the logarithmic scale and limit attention to the male results.
Figure 6.12 shows the scatterplot matrix.9 Apart from a possible outlier, the relationship
between dist and climb seems approximately linear on the log scale.

9 ## Scatterplot matrix: data frame hills2000 (DAAG), log scales
splom(˜ log(hills2000[, c("dist","climb","time")]), cex.labels=1.2,

varnames=c("dist\n(log miles)", "climb\n(log feet)", "time\n(log hours)"))



192 Multiple linear regression

Figure 6.13 Plots of residuals against fitted values from the regression of log(time) on
log(climb) and log(dist). Panel A is from the least squares (lm) fit, while panel B is
for a resistant fit that uses lqs from the MASS package. Note that the resistant fit relies on repeated
sampling of the data, and will differ slightly from one run to the next.

The help page for races2000 (hills2000 is a subset of races2000) suggests
uncertainty about the distance for the Caerketton race in row 42. We will include Caerketton
during our initial analysis and check whether it appears to be an outlier.

Figure 6.13 shows residuals (A) from a least squares (lm) fit and (B) from a resistant lqs
fit, in both cases plotted against fitted values. Resistant fits completely ignore the effects of
large residuals. By default, even if almost half the observations are outliers, the effect on
the fitted model would be small. See the help page for lqs for more information. The code
is:

## Panel A

lhills2k.lm <- lm(log(time) ˜ log(climb) + log(dist),

data = hills2000)

plot(lhills2k.lm, caption="", which=1)

## Panel B

library(MASS) # lqs() is in the MASS package

lhills2k.lqs <- lqs(log(time) ˜ log(climb) + log(dist),

data = hills2000)

reres <- residuals(lhills2k.lqs)

refit <- fitted(lhills2k.lqs)

big3 <- which(abs(reres) >= sort(abs(reres), decreasing=TRUE)[3])

plot(reres ˜ refit, xlab="Fitted values (resistant fit)",

ylab="Residuals (resistant fit)")

lines(lowess(reres ˜ refit), col=2)

text(reres[big3] ˜ refit[big3], labels=rownames(hills2000)[big3],

pos=4-2*(refit[big3] > mean(refit)), cex=0.8)

Caerketton shows up rather clearly as an outlier, in both panels. Its residual in panel 1
is −0.356 (visual inspection might suggest −0.35). The predicted log(time) for this race is
conveniently written as log(t̂ime). Then

log(time) − log(t̂ime) = −0.356.



6.4 A strategy for fitting multiple regression models 193

0.5 1.5 2.5 3.5

−
1.

0
0.

0
1.

0
2.

0

logdist

P
ar

tia
l f

or
 lo

gd
is

t

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

6.5 7.5 8.5

−
1.

0
0.

0
1.

0
2.

0

logclimb

P
ar

tia
l f

or
 lo

gc
lim

b

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●●
●

●

●

●

●

●

●
●

●

●

●
●

● ●●

●
●

●

●

●

Figure 6.14 The solid lines show the respective contributions of the two model terms, in the
regression of logtime on logdist and logclimb. Partial residuals, and an associated smooth
curve, have been added.

Thus

log(
time

t̂ime
) = −0.356, i.e.,

time

t̂ime
� exp −0.356 = 0.7.

Thus the time given for this race is 70% of that predicted by the regression equation, a very
large difference indeed. The standardized difference is −3; this can be seen by use of

plot(lhills2k.lm, which=2)

If the model is correct and residuals are approximately normally distributed, a residual of
this magnitude will occur about 2.6 times in 1000 residuals.10

The resistant fit in panel B suggests that Beinn Lee and 12 Trig Trog are also outliers.
These outliers may be a result of non-linearity. We next usetermplot() to check whether
log(dist) and/or log(climb) should enter the model non-linearly.

The contribution of the separate terms

In order to get a plot that is easy to interpret, it is best to transform the variables before
entering them into the model, thus:

## Create data frame that has logs of time, dist & climb

lhills2k <- log(hills2000[, c("dist", "climb", "time")])

names(lhills2k) <- paste("log", names(lhills2k), sep="")

lhills2k.lm <- lm(logtime ˜ logdist+logclimb, data=lhills2k)

termplot(lhills2k.lm, partial.resid=TRUE, smooth=panel.smooth,

col.res="gray30")

Figure 6.14 shows the result. There is a small but clear departure from linearity, most
evident for logdist. The linear model does however give a good general summary of
the indications in the data. If the shortest and longest of the races are left out, it appears
entirely adequate.

10

> ## Probability of a value <= -3 or >= 3
> 2 * pnorm(-3)
[1] 0.0027



194 Multiple linear regression

It is necessary to model the departure from linearity before proceeding further with
checking residuals. A quadratic term in logdist will work well here.

A resistant fit that has a polynomial term in logdist

The quadratic term needs to be entered as I(logdistˆ2); this ensures that
I(logdistˆ2) is taken as the square, rather than as an interaction of logdist with
itself. It is however better, as will be explained in Section 7.4, to combine logdist
and I(logdistˆ2) together into a single orthogonal polynomial “term”. Subsequent
use of the termplot() function then shows the combined effects from logdist and
I(logdistˆ2). Here is the code:

> reres2 <- residuals(lqs(logtime ˜ poly(logdist,2)+logclimb, data=lhills2k))
> reres2[order(abs(reres2), decreasing=TRUE)[1:4]]
Caerketton Beinn Lee Yetholm Ardoch Rig

-0.417 0.299 0.200 0.188

As might have been expected, Caerketton is now the only large residual. In the sequel, we
therefore omit Caerketton.

Refining the model

The component plus residual plot suggested taking a quadratic function of distance. Another
possibility might be to add the interaction term logdist:logclimb or, equivalently
(as these are continuous variables), I(logdist*logclimb). The following compares
these possibilities, using AIC as a criterion. (Lower AIC is better.)

> add1(lhills2k.lm, ˜ logdist+I(logdistˆ2)+logclimb+logdist:logclimb,

+ test="F")

Single term additions

Model:

logtime ˜ logdist + logclimb

Df Sum of Sq RSS AIC F value Pr(F)

<none> 0.77 -233.89

I(logdistˆ2) 1 0.17 0.61 -245.52 14.331 0.000399

logdist:logclimb 1 0.06 0.71 -236.69 4.651 0.035682

On its own, the AIC value is pretty meaningless. What matters is the comparison between
the values of the statistic for the different models. A smaller AIC is preferred; it indicates
that the model has better predictive power. Clearly the quadratic term in logdist is doing
the job much better.

We now examine the diagnostic plots for the model that includes poly(logdist,2).
The code is:

lhills2k.lm2 <- lm(logtime ˜ poly(logdist,2)+logclimb, data=lhills2k[-42, ])

plot(lhills2k.lm2)

Figure 6.15 shows the result.



6.4 A strategy for fitting multiple regression models 195

−1.0 0.0 1.0 2.0

−
0.

2
0.

0
0.

1
0.

2

Fitted values

R
es

id
ua

ls

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●
●

●

A: Resids vs Fitted
Beinn Lee

Dollar
Ben Lomond

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

−2 −1 0 1 2

−
2

−
1

0
1

2
Theoretical quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

B: Normal Q−Q
Beinn Lee

Dollar
Ben Lomond

−1.0 0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

C: Scale−Location
Beinn Lee

Dollar
Ben Lomond

0.0 0.2 0.4 0.6

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●●
●

●

Cook's distance

1
0 5

0 5
1

Beinn Lee

Chapelgi l

Oban

Figure 6.15 Diagnostic plots from the fit of logtime to a polynomial of degree 2 in logdist
and logclimb.

Note that poly(logdist,2) generates orthogonal polynomial contrasts. To get a
result in which the parameters are coefficients of logdist and logdistˆ2, repeat the
fit specifying the quadratic term as poly(logdist,2, raw=TRUE).

Additionally, the reader may wish to check that adding the interaction term to a model
that already has the quadratic term gives no useful improvement.11 It will be found that use
of the interaction term increases the AIC slightly.

The model without the interaction term

As noted earlier, the model that is linear in logdist and logclimb would be adequate
for many practical purposes. The coefficients are:

> lhills2k.lm <- lm(logtime ˜ logdist+logclimb, data=lhills2k[-42, ])
> summary(lhills2k.lm)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.023 0.1865 -21.6 1.33e-27
logdist 0.778 0.0335 23.2 3.89e-29
logclimb 0.317 0.0302 10.5 1.90e-14

The estimated equation is:

log(time) = −4.02 + 0.78 log(dist) + 0.32 log(climb).

By noting that exp(−4.02) = 0.018, this can be rewritten as

time = 0.018 × dist0.78 × climb0.32.

Are “errors in x” an issue?

Most distances are given to the nearest half mile, and may in any case not be known at
all accurately. The error is, however, likely to be small relative to the range of values of
distances, so that the attenuation effects that will be discussed in Section 6.7 are likely to
be small and of little consequence. See Section 6.7 for the theory that is relevant to the
assessment of likely attenuation effects.

11
## Check addition of interaction term
add1(lhills2k.lm2, ˜ poly(logdist,2)+logclimb+logdist:logclimb)



196 Multiple linear regression

What happens if we do not transform?

If we avoid transformation and do not allow for increasing variability for the longer races
(see Exercise 6 at the end of the chapter for further development), we find several outlying
observations, with the race that has the longest time highly influential.

Venables and Ripley (2002, p. 154) point out that it is reasonable to expect that variances
will be larger for longer races. Using dist as a surrogate for time, they give observations
weights of 1/distˆ2. This is roughly equivalent, in its effect on the variance, to our use
of log(time) as the dependent variable.

6.5 Problems with many explanatory variables

Variable selection is an issue when the aim is to obtain the best prediction possible. Be sure
to distinguish the variable selection problem from that of determining which variables have
greatest explanatory power. If the interest is in which variables have useful explanatory
power, then the choice of variables will depend on which quantities are to be held constant
when the effects of other quantities are estimated. There should in any case be an initial
exploratory investigation of explanatory variables, as described in Section 6.4, leading
perhaps to transformation of one or more of the variables.

One suggested rule is that there should be at least 10 times as many observations as
variables, before any use of variable selection takes place. For any qualitative factor, subtract
one from the number of levels, and count this as the number of variables contributed by
that factor. This may be a reasonable working rule when working with relatively noisy data
where none of the variables have a dominant effect. There are important contexts where it
is clearly inapplicable.

For an extended discussion of state-of-the-art approaches to variable selection, we refer
the reader to Harrell (2001), Hastie et al. (2009, Sections 4.3 and 4.7). The technically
demanding paper by Rao and Wu (2001) was, at the time of publication, a good summary
of the literature on model selection.

We begin by noting strategies that are designed, broadly, to keep to a minimum the
number of different models that will be compared. The following strategies may be used
individually, or in combination.

1. A first step may be an informed guess as to what variables/factors are likely to be
important. An extension of this approach classifies explanatory variables into a small
number of groups according to an assessment of scientific “importance”. Fit the most
important variables first, then add the next set of variables as a group, checking whether
the fit improves from the inclusion of all variables in the new group.

2. Interaction effects are sometimes modeled by including pairwise multiples of explana-
tory variables, e.g., x1 × x2 as well as x1 and x2. Use is made of an omnibus check for
all interaction terms, rather than checking for interaction effects one at a time.

3. Principal components analysis is one of several methods that may be able to identify
a small number of components, i.e., combinations of the explanatory variables, that
together account for most of the variation in the explanatory variables. In favorable
circumstances, one or more of the first few principal components will prove to be
useful explanatory variables, or may suggest useful simple forms of summary of the



6.5 Problems with many explanatory variables 197

original variables. In unfavorable circumstances, the components will prove irrelevant!
See Section 13.1 and Harrell (2001, Sections 4.7 and 8.6) for further commentary and
examples. See Chapter 13 for examples.

4. Discriminant analysis can sometimes be used to identify a summary variable. There is
an example in Chapter 13.

6.5.1 Variable selection issues

We caution against giving much credence to output from conventional automatic variable
selection techniques – various forms of stepwise regression, and best subsets regression. The
resulting regression equation may have poorer genuine predictive power than the regression
that includes all explanatory variables. The standard errors and t-statistics typically ignore
the effects of the selection process; estimates of standard errors, p-values, and F -statistics
will be optimistic. Estimates of regression coefficients are biased upwards in absolute
value – positive coefficients will be larger than they should be, and negative coefficients
will be smaller than they should be. See Harrell (2001) for further discussion.

Variable selection – a simulation with random data

Repeated simulation of a regression problem where the data consist entirely of noise will
demonstrate the extent of the problem. In each regression there are 41 vectors of 100
numbers that have been generated independently and at random from a normal distribution.
In these data:12

1. The first vector is the response variable y.
2. The remaining 40 vectors are the variables x1, x2, . . . , x40.

If we find any regression relationships in these data, this will indicate faults with our
methodology. (In computer simulation, we should not however totally discount the possi-
bility that a quirk of the random number generator will affect results. We do not consider
this an issue for the present simulation!)

We perform a best subsets regression in which we look for the three x-variables that
best explain y. (This subsection has an example that requires access to the leaps package,
implemented by Thomas Lumley using Fortran code by Alan Miller. Before running the
code, be sure that leaps is installed.)13

Call:

lm(formula = y ˜ -1 + xx[, subvar])

. . . .

12 ## Generate a 100 by 40 matrix of random normal data
y <- rnorm(100)
xx <- matrix(rnorm(4000), ncol = 40)
dimnames(xx)<- list(NULL, paste("X",1:40, sep=""))

13 ## Find the best fitting model
library(leaps)
xx.subsets <- regsubsets(xx, y, method = "exhaustive", nvmax = 3, nbest = 1)
subvar <- summary(xx.subsets)$which[3,-1]
best3.lm <- lm(y ˜ -1+xx[, subvar])
print(summary(best3.lm, corr = FALSE))
## The following call to bestsetNoise() (from DAAG) achieves the same purpose
bestsetNoise(m=100, n=40)



198 Multiple linear regression

Coefficients:

Estimate Std. Error t value Pr(>|t|)

xx[, subvar]X12 0.2204 0.0896 2.46 0.0156

xx[, subvar]X23 -0.1431 0.0750 -1.91 0.0593

xx[, subvar]X28 0.2529 0.0927 2.73 0.0076

Residual standard error: 0.892 on 97 degrees of freedom

Multiple R-Squared: 0.132, Adjusted R-squared: 0.105

F-statistic: 4.93 on 3 and 97 DF, p-value: 0.00314

Note that two of the three variables selected have p-values less than 0.05.
When we repeated this experiment 10 times, the outcomes were as follows. Categories

are exclusive:

Instances

All three variables selected were significant at p < 0.01 1
All three variables had p < 0.05 3
Two out of three variables had p < 0.05 3
One variable with p < 0.05 3

Total 10

In the modeling process there are two steps:

1. Select variables.
2. Do a regression and determine SEs and p-values, etc.

The p-value calculations have taken no account of step 1. Our ability to find “significance”
in data sets that consist only of noise is evidence of a large bias.

Cross-validation that accounts for the variable selection process

Cross-validation is one way to determine realistic standard errors and p-values. At each
cross-validation step, we repeat both of steps 1 and 2 above, i.e., both the variable selection
step and the comparison of predictions from the regression equation with data different
from that used in forming the regression equation.

Estimates of regression coefficients and standard errors should similarly be based on
fitting regressions, at each fold, to the test data for that fold. The issue here is that the
equation must be fitted to data that were not used for variable selection. The estimates from
the separate folds must then be combined.

Regression on principal components

Regression on principal components, which we discussed briefly in the preamble to this
section and will demonstrate in Section 13.1, may sometimes be a useful recourse. Hastie
et al. (2009) discuss principal components regression alongside a number of other methods
that are available. Note especially the “shrinkage” methods, which directly shrink the



6.6 Multicollinearity 199

coefficients. The function lars(), in the package with the same name, implements a class
of methods of this type that has the name least angle regression, allowing also for variable
selection. See Efron et al. (2003).

6.6 Multicollinearity

Some explanatory variables may be linearly related to combinations of one or more of
the other explanatory variables. Technically, this is known as multicollinearity. For each
multicollinear relationship, there is one redundant variable.

The approaches that we have advocated – careful thinking about the background science,
careful initial scrutiny of the data, and removal of variables whose effect is already accounted
for by other variables – will generally avoid the more extreme effects of multicollinearity
that we will illustrate. Milder consequences are pervasive, especially for observational data.

An example – compositional data

The data set Coxite, in the compositions package, has the mineral compositions of
25 rock specimens of coxite type. Each composition consists of the percentage by weight of
five minerals, the depth of location, and porosity. The names of the minerals are abbreviated
to A = albite, B = blandite, C = cornite, D = daubite, and E = endite. The analysis that
follows is a relatively crude use of these data. For an analysis that uses a method that is
designed for compositional data, see Aitchison (2003).

Figure 6.16 shows the scatterplot matrix. Notice that the relationship between D and E
is close to linear. Also, the percentages of the five minerals sum, in each row, to 100. The
code for Figure 6.16 is:

library(compositions)

data(Coxite) # For pkg compositions, needed to access data

coxite <- as.data.frame(Coxite) # From matrix, create data frame

## Scatterplot matrix for data frame coxite

pairs(coxite)

We will look for a model that explains porosity as a function of mineral composition.
Here is a model that tries to use all six explanatory variables:

> coxiteAll.lm <- lm(porosity ˜ A+B+C+D+E+depth, data=coxite)

> summary(coxiteAll.lm)

. . . .

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -217.7466 253.4439 -0.86 0.40

A 2.6486 2.4825 1.07 0.30

B 2.1915 2.6015 0.84 0.41

C 0.2113 2.2271 0.09 0.93

D 4.9492 4.6720 1.06 0.30

E NA NA NA NA

depth 0.0145 0.0333 0.44 0.67



200 Multiple linear regression

A

24 28 32

●
●●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●
● ●

●
●●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

9.5 11.0 12.5

●

●
● ●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

5 15 25

●

●
●●

●

●

●

●
●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

42
46

50●
●●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

24
28

32 ●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

B

●

●
●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●
● C

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

5.
0

6.
5

8.
0

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●
●

9.
5

11
.0

12
.5

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

D
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

E ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

7.
0

8.
0

9.
0

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

5
15

25

● ● ●●
●●● ●●●● ● ● ●●

●●● ● ● ● ●●● ●

●●●●
●● ●●● ●●

● ●●● ●● ●●●● ●●
●●

● ●●
● ● ●●● ●● ●●

●● ●● ●●●●●● ●●
●

● ●● ●● ●●●
●● ● ●● ● ●● ●● ●●

●● ●●●

● ●● ●● ●●● ●● ● ●● ● ●● ●● ●●●● ● ●●

depth

● ● ●●
●●●●

● ●● ● ● ●●●●● ● ● ●●
●● ●

42 46 50

●
●●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

5.0 6.5 8.0

●

●
●●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
● ●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

7.0 8.0 9.0

●

●
● ●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●●

●

●
●●

●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

20 24

20
24porosity

Figure 6.16 Scatterplot matrix for the variables in the constructed Coxite data set.

Residual standard error: 0.649 on 19 degrees of freedom

Multiple R-squared: 0.936, Adjusted R-squared: 0.919

F-statistic: 55.1 on 5 and 19 DF, p-value: 1.18e-10

Notice that:

� The variableE, because it is a linear combination of earlier variables, adds no information
additional to those variables. Effectively, its coefficient has been set to zero.

� None of the individual coefficients comes anywhere near the usual standards of statistical
significance.

� The overall regression fit, with a p-value of 1.18 × 10−10, is highly significant.

The overall regression fit has good predictive power, notwithstanding the inability to
tease out the contributions of the individual coefficients. Figure 6.17 shows 95% pointwise
confidence intervals for fitted values at several points within the range. Pointwise confidence
bounds can be obtained thus:

hat <- predict(coxiteAll.lm, interval="confidence", level=0.95)

The object that is returned is a matrix, with columns fit (fitted values), lwr (lower
confidence limits), and upr (upper confidence limits).



6.6 Multicollinearity 201

Figure 6.17 Line y = x, with 95% pointwise confidence bounds for fitted values shown at several
locations along the range of fitted values. The points show the observed porosities at each of the fitted
values.

6.6.1 The variance inflation factor

The variance inflation factor (VIF) measures the effect of correlation with other variables in
increasing the standard error of a regression coefficient. If xj , with values xij (i = 1, . . . , n)
is the only variable in a straight line regression model, and bj is the estimated coefficient,
then:

var[bj] = σ 2

sjj
, where sjj =

n∑
i=1

(xij − x̄j)
2

and σ 2 is the variance of the error term in the model. When further terms are included in
the regression model, this variance is inflated, as a multiple of σ 2, by the variance inflation
factor. Notice that the VIF depends only on the model matrix. It does not reflect changes in
the residual variance.

In order to obtain VIFs, we need to explicitly omit E (or one of A, B, C, or D) from the
model, thus:

> vif(lm(porosity ˜ A+B+C+D+depth, data=coxite))

A B C D depth

2717.82 2484.98 192.59 566.14 3.42

Given the size of these factors, it is unsurprising that none of the individual coefficients can
be estimated meaningfully.

It is reasonable to try a model that uses those variables that, individually, correlate most
strongly with porosity. Here are the correlations:

> cor(coxite$porosity, coxite)

A B C D E depth porosity

[1,] 0.869 -0.551 -0.723 -0.32 -0.408 -0.147 1

Thus we try:

> summary(coxiteABC.lm <- lm(porosity ˜ A+B+C, data=coxite))

. . . .



202 Multiple linear regression

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 53.3046 13.2219 4.03 0.00060

A -0.0125 0.1558 -0.08 0.93700

B -0.5867 0.1513 -3.88 0.00087

C -2.2188 0.3389 -6.55 1.7e-06

. . . .

> vif(coxiteABC.lm)

A B C

10.94 8.59 4.56

It is then reasonable to simplify this to:

> summary(coxiteBC.lm <- lm(porosity ˜ B+C, data=coxite))

. . . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 52.2571 1.7831 29.3 < 2e-16

B -0.5753 0.0508 -11.3 1.2e-10

C -2.1949 0.1562 -14.1 1.8e-12

> vif(coxiteBC.lm)

B C

1.01 1.01

Using the AIC statistic to compare this model with the model that used all six explanatory
variables, we have:

> AIC(coxiteAll.lm, coxiteBC.lm)

df AIC

coxiteAll.lm 7 56.5

coxiteBC.lm 4 52.5

The simpler model wins. Predictions from this simpler model should have slightly narrower
confidence bounds than those shown in Figure 6.17. Verification of this is left as an exercise.

Numbers that do not quite add up

Now round all the percentages to whole numbers, and repeat the analysis that uses all six
available explanatory variables.

> coxiteR <- coxite

> coxiteR[, 1:5] <- round(coxiteR[, 1:5])

> summary(lm(porosity ˜ ., data=coxiteR))

. . . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.4251 23.4043 -0.06 0.95212

A 0.5597 0.2457 2.28 0.03515

B 0.0157 0.2403 0.07 0.94865

C -1.3180 0.2940 -4.48 0.00029



6.7 Errors in x 203

D 0.9748 0.4222 2.31 0.03305

E -0.5530 0.5242 -1.05 0.30543

depth -0.0149 0.0223 -0.67 0.51310

Residual standard error: 0.708 on 18 degrees of freedom

Multiple R-squared: 0.927, Adjusted R-squared: 0.903

F-statistic: 38.3 on 6 and 18 DF, p-value: 2.69e-09

> vif(lm(porosity ˜ .-E, data=coxiteR))

A B C D depth

16.96 16.49 3.28 4.66 1.25

This result may seem surprising. Noise has been introduced that has removed some of the
correlation, so that C now appears significant even when all other explanatory variables are
included. Perhaps more surprising is the p = 0.033 for D.

While this is contrived, we have from time to time seen comparable effects in computer
output that researchers have brought us for scrutiny.

6.6.2 Remedies for multicollinearity

As noted at the beginning of the section, careful initial choice of variables, based on scientific
knowledge and careful scrutiny of relevant exploratory plots of explanatory variables, will
often avert the problem. Occasionally, it may be possible to find or collect additional data
that will reduce correlations among the explanatory variables.

Ridge regression is one of several approaches that may be used to alleviate the effects of
multicollinearity, in inflating coefficients and their standard errors. We refer the reader to
the help page for the function lm.ridge() in the MASS package and to the discussions in
Berk (2008), Myers (1990), Harrell (2001). For a less elementary and more comprehensive
account, see Hastie et al. (2009). Use of the function lm.ridge() requires the user
to choose the tuning parameter lambda. Typically, the analyst tries several settings and
chooses the value that, according to one of several available criteria, is optimal. Principal
components regression is another possible remedy.

6.7 Errors in x

The issues that are canvassed here have large practical importance. It can be difficult to
assess the implications of the theoretical results for particular practical circumstances.

The discussion so far has been assumed: either that the explanatory variables are measured
with negligible error, or that the interest is in the regression relationship given the observed
values of explanatory variables. This subsection draws attention to the effect that errors
in the explanatory variables can have on regression slope. Discussion is mainly on the
relatively simple “classical” errors in x model.

With a single explanatory variable, the effect under the classical “errors in x” model is to
reduce the expected magnitude of the slope, that is, the slope is attenuated. Furthermore, the
estimated slope is less likely to be distinguishable from statistical noise. For estimating the
magnitude of the error and consequent attenuation of the slope, there must be information



204 Multiple linear regression

additional to that shown in a scatterplot of y versus x. There must be a direct comparison
with values that are measured with negligible error.

The study of the measurement of dietary intake that is reported in Schatzkin et al. (2003)
illustrates some of the key points. The error in the explanatory variable, as commonly
measured, was shown to be larger and of greater consequence than most researchers had
been willing to contemplate.

Measurement of dietary intake

The 36-page Diet History Questionnaire is a Food Frequency Questionnaire (FFQ) that
was developed and evaluated at the US National Cancer Institute. In large-scale trials that
look for dietary effects on cancer and on other diseases, it has been important to have an
instrument for measuring food intake that is relatively cheap and convenient. (Some trials
have cost US$100 000 000 or more.)

The FFQ asks for details of food intake over the previous year for 124 food items. It
queries frequency of intake and, for most items, portion sizes. Supplementary questions
query such matters as seasonal intake and food type. More detailed food records may be
collected at specific times, which can then be used to calibrate the FFQ results. One such
instrument is a 24-hour dietary recall, which questions participants on their dietary intake
in the previous 24 hours.

Schatzkin et al. (2003) compared FFQ measurements with those from Doubly Labeled
Water, used as an accurate but highly expensive biomarker. They conclude that the FFQ
is too inaccurate for its intended purpose. The 24-hour dietary recall, although better, was
still seriously inaccurate.

In some instances, the standard deviation for estimated energy intake was seven times
the standard deviation, between different individuals, of the reference. There was a bias in
the relationship between FFQ and reference that further reduced the attenuation factor, to
0.04 for women and to 0.08 for men. For the relationship between the 24-hour recalls and
the reference, the attenuation factors were 0.1 for women and 0.18 for men, though these
can be improved by use of repeated 24-hour recalls.

These results raise serious questions about what such studies can achieve, using presently
available instruments that are sufficiently cheap and convenient that they can be used in
large studies. Carroll (2004) gives an accessible summary of the issues. Subsection 10.7.6
has further brief comment on the modeling issues.

Simulations of the effect of measurement error

Suppose that the underlying regression relationship that is of interest is:

yi = α + βxi + εi, where var[εi] = σ 2 (i = 1, . . . , n).

Let sx =
√∑n

i=1(xi − x̄)2/(n − 1) be the standard deviation of the values that are measured
without error.

Take the measured values as

wi = xi + ηi, where var[ηi] = s2
x τ 2.

The ηi are assumed independent of the εi .



6.7 Errors in x 205

Figure 6.18 The fitted solid lines show the change in the regression line as the error in x

changes. The underlying relationship, shown with the dashed line, is in each instance y = 15 +
1.5x. For the definition of τ , see the text. This figure was obtained by use of the DAAG function
errorsINx(), with default arguments.

Figure 6.18 shows results from a number of simulations that use the wi as the explanatory
values. If τ = 0.4 (the added error has a variance that is 40% of sx), the effect on the slope
is modest. If τ = 2, the attenuation is severe. The function errorsINx() (DAAG) can
be used for additional simulations such as are shown in Figure 6.18.

An estimate of the attenuation in the slope is, to a close approximation:

λ = 1

1 + τ 2
.

Here, λ has the name reliability ratio.
If, for example, τ = 0.4, then λ � 0.86. Whether a reduction in the estimated slope

by a factor of 0.86 is of consequence will depend on the application. Often there will be
more important concerns. Very small attenuation factors (large attenuations), e.g., less than
0.1 such as were found in the Schatzkin et al. (2003) study, are likely to have serious
consequences for the use of analysis results.

Points to note are:

� From the data used in the panels of Figure 6.18, it is impossible to estimate τ , or to
know the underlying xi values. This can be determined only from an investigation that
compares the wi with an accurate, i.e., for all practical purposes error-free, determination
of the xi .

� A test for β = 0 can be undertaken in the usual way, but with reduced power to detect
an effect that may be of interest.



206 Multiple linear regression

� The t-statistic for testing β = 0 is affected in two ways; the numerator is reduced by an
expected factor of λ, while the standard error that appears in the numerator increases.
Thus if λ = 0.1, the sample size required to detect a non-zero slope is inflated by more
than the factor of 100 that is suggested by the effect on the slope alone.

∗Two explanatory variables

Consider first the case where one predictor is measured with error, and others without
error. The coefficient of the variable that is measured with error is attenuated, as in
the single variable case. The coefficients of other variables may be reversed in sign, or
show an effect when there is none. See Carroll et al. (2006, pp. 52–55) for summary
comment.

Suppose that

y = β1x1 + β2x2 + ε.

If w1 is unbiased for x1 and the measurement error η is independent of x1 and x2, then least
squares regression with explanatory variables w1 and x2 yields an estimate of λβ1, where if
ρ is the correlation between x1 and x2:

λ = 1 − ρ2

1 − ρ2 + τ 2
.

A new feature is the bias in the least squares estimate of β2. The naive least squares
estimator estimates

β2 + β1(1 − λ) γ12, where γ12 = ρ
s1

s2
. (6.4)

Here, γ12 is the coefficient of x2 in the least squares regression of x1 on x2, s1 = SD[x1]
and s2 = SD[x2]. The estimate of β2 may be substantially different from zero, even though
β2 = 0. Where β2 	= 0, the least squares estimate can be reversed in sign from β2. Some of
the effect of x1 is transferred to the estimate of the effect of x2.

Two explanatory variables, one measured without error – a simulation

The function errorsINx() (DAAG), when supplied with a non-zero value for the argu-
ment gpdiff, simulates the effect when the variable that is measured without error codes
for a categorical effect. Figure 6.19 had gpdiff=1.5. Two lines appear, suggesting a
“treatment” effect where there was none.

The functionerrorsINseveral() simulates a model where there are two continuous
variables x1 and x2. The default choice of arguments has

β1 = 1.5, β2 = 0, ρ = −0.5, s1 = s2 = 2, τ = 1.5, var[ε] = 0.25.

Measurement error variances are x1: s2
1τ

2, x2: 0. Then λ = 0.25, γ12 = −0.5, and the
expected value for the naive least squares estimator of β2 is

β2 + β1(1 − λ)γ12 = 0 + 1.5 × 0.75 × (−0.5) = −0.5675.

Here is a simulation result, with default arguments as noted:



6.7 Errors in x 207

Figure 6.19 In the simulations whose results are shown here, y is a linear function of x. The mean
value of x is 12.5 for the first level (“ctl”) of a grouping variable, and 14.0 for the second level
(“trt”) of the grouping variable. In the panel on the left, the values of x are measured without error.
In the middle and right panels, independent errors have been added to x from distributions with SDs
that are 0.8 and 1.6 times that of the within-group standard deviation of x. The SEDs are conditional
on w = xWITHerr.

> errorsINseveral()

Intercept b1 b2

Values for simulation 2.482 1.500 0.000

Estimates: no error in x1 2.554 1.494 0.009

LS Estimates: error in x1 35.448 0.400 -0.597

An arbitrary number of variables

Where two or more variables are measured with substantial error, there is an increased
range of possibilities for transferring some part or parts of effects between variables. By
specifying the arguments V and xerrV, the function errorsINseveral() can be used
for simulations with an arbitrary correlation structure for the explanatory variables, and
with an arbitrary variance–covariance matrix for the added errors.14

∗The classical error model versus the Berkson error model

In the classical model, E[wi |xi] = xi . In the Berkson model, E[xi |wi] = wi . This may be
a realistic model in an experiment where wi is an instrument setting, but the true value
varies randomly about the instrument setting. For example, the temperature in an oven or
kiln may be set to wi , but the resulting (and unknown) actual temperature is xi . In straight
line regression, the coefficient is then unbiased, but the variance of the estimate of the
coefficient increases.

14 If β is the vector of coefficients in the model without errors in the measured values, V corresponds in the obvious way to V,
and U to xerrV, then an estimate for the resulting least squares estimates for regression on the values that are measured
with error is β ′V (V + U )−1. Note that Zeger et al. (2000, p. 421) have an initial T (our U ), where V is required.



208 Multiple linear regression

Zeger et al. (2000) discuss the practical consequences of both types of error, though
giving most of their attention to the classical model. In their context, realistic models may
have elements of both the classical and Berkson models.

6.8 Multiple regression models – additional points

The following notes should help dispel any residual notion that this chapter’s account of
multiple regression models has covered everything of importance.

6.8.1 Confusion between explanatory and response variables

As an example, we return to the allbacks data. We compare the coefficients in the
equation for predicting area given volume and weightwith the rearranged coefficients
from the equation that predicts weight given volume and area:

> coef(lm(area ˜ volume + weight, data=allbacks))

(Intercept) volume weight

35.459 -0.964 1.361

> b <- as.vector(coef(lm(weight ˜ volume + area, data=allbacks)))

> c("_Intercept_"=-b[1]/b[3], volume=-b[2]/b[3], weight=1/b[3])

_Intercept_ volume weight

-47.85 -1.51 2.13

Only if the relationship is exact, so that predicted time is the same as observed time, will
the equations be exactly the same. For examples from the earth sciences literature, see
Williams (1983).

Unintended correlations

Suppose that xi (i = 1, 2, . . . , n) are results from a series of controls, while yi (i =
1, 2, . . . , n) are results from the corresponding treated group. It is tempting to plot y − x

versus x. Unfortunately, there is likely to be a negative correlation between y − x and
x, though this is not inevitable. This emphasizes the desirability of maintaining a clear
distinction between explanatory and response variables. See the example in Sharp et al.
(1996).

6.8.2 Missing explanatory variables

Here the issue is use of the wrong model for the expected value. With the right “balance”
in the data, the expected values are unbiased or nearly unbiased. Where there is serious
imbalance, the bias may be huge.

Figure 6.20 relates to data collected in an experiment on the use of painkillers (Gordon
et al., 1995). Pain was measured as a VAS (Visual-Analogue Scale) score. Researchers were
investigating differences in the pain score between the two analgesic treatments, without
and with baclofen.



6.8 Multiple regression models – additional points 209

Figure 6.20 Does baclofen, following operation (additional to earlier painkiller), reduce pain?
Subgroup numbers, shown below each point in the graph, weight the overall averages when sex is
ignored.

Notice that the overall comparison (average for baclofen versus average for no baclofen)
goes in a different direction from the comparison for the two sexes separately. As the two
treatment groups had very different numbers of men and women, and as there was a strong
sex effect, an analysis that does not account for the sex effect gives an incorrect estimate of
the treatment effect (Cohen, 1996).

The overall averages in Figure 6.20 reflect the following subgroup weighting effects (f
is shorthand for female and m for male):

Baclofen: 15f to 3m, i.e., 15
18 to 3

18 (a little less than f average)
No baclofen: 7f to 9m, i.e., 7

16 to 9
16 (≈ 1

2 -way between m & f)

There is a sequel. More careful investigation revealed that the response to pain has a
different pattern over time. For males, the sensation of pain declined more rapidly over
time.

Strategies

(i) Simple approach. Calculate means for each subgroup separately.
Overall treatment effect is average of subgroup differences.
Effect of baclofen (reduction in pain score from time 0) is:

Females: 3.479 − 4.151 = −0.672 (−ve, therefore an increase)
Males: 1.311 − 1.647 = −0.336
Average over male and female = −0.5 × (0.672 + 0.336) = −0.504

(ii) Fit a model that accounts for sex and baclofen effects. y = overall mean + sex
effect + baclofen effect + interaction.
(At this point, we are not including an error term.)

When variables or factors are omitted from models, values of the outcome variable are
as far as possible accounted for using those that remain. The mouse brain weight example
in Subsection 6.2.3 can be understood in this way. Bland and Altman (2005) give several
examples of published results where conclusions have been vitiated by effects of this
type.



210 Multiple linear regression

Another example of this same type, albeit in the context of contingency tables, was
discussed in Subsection 3.4.5. The analysis of the UCB admissions data in Section 8.3
formulates the analysis of contingency table data as a regression problem.

6.8.3∗ The use of transformations

Often there are scientific reasons for transformations. Thus, suppose we have weights w
of individual apples, but the effects under study are more likely to be related to surface
area. We should consider using x = w

2
3 as the explanatory variable. If the interest is in

studying relative, rather than absolute, changes, it may be best to work with the logarithms
of measurements.

Statisticians use transformations for one or more of the following reasons:

1. To form a straight line or other simple relationship.
2. To ensure that the “scatter” of the data is similar for all categories, i.e., to ensure that

the boxplots all have a similar shape. In more technical language, the aim is to achieve
homogeneity of variance.

3. To make the distribution of data more symmetric and closer to normal.

If there is a transformation that deals with all these issues at once, we are fortunate. It may
greatly simplify the analysis.

A log transformation may both remove an interaction and give more nearly normal data.
It may, on the other hand, introduce an interaction where there was none before. Or a
transformation may reduce skewness while increasing heterogeneity. The availability of
direct methods for fitting special classes of model with non-normal errors, for example
the generalized linear models that we will discuss in Chapter 8, has reduced the need for
transformations.

6.8.4∗ Non-linear methods – an alternative to transformation?

This is a highly important area for which, apart from the present brief discussion, we have
not found room in the present book. We will investigate the use of the R nls() function
(stats package) to shed light on the loglinear model that we used for the hill race data in
Subsection 6.2.1.

The analysis of Subsection 6.2.1 assumed additive errors on the transformed logarithmic
scale. This implies, on the untransformed scale, multiplicative errors. We noted that the
assumption of homogeneity of errors was in doubt.

One might alternatively assume that the noise term is additive on the untransformed
scale, leading to the non-linear model

y = xα
1 x

β

2 + ε

where y = time, x1 = dist, and x2 = climb.
We will use the nls() non-linear least squares function to estimate α and β. The

procedure used to solve the resulting non-linear equations is iterative, requiring starting
values for α and β. We use the estimates from the earlier loglinear regression as starting



6.8 Multiple regression models – additional points 211

values. Because we could be taking a square or cube of the climb term, we prefer to work
with the variable climb.mi that is obtained by dividing climb by 5280, so that numbers
are of modest size:

nihills$climb.mi <- nihills$climb/5280

nihills.nls0 <- nls(time ˜ (distˆalpha)*(climb.miˆbeta), start =

c(alpha = 0.68, beta = 0.465), data = nihills)

plot(residuals(nihills.nls0) ˜ log(predict(nihills.nls0)))

Output from the summary() function includes the following:

Parameters:

Estimate Std. Error t value Pr(>|t|)

alpha 0.31516 0.00806 39.1 <2e-16

beta 0.81429 0.02949 27.6 <2e-16

These parameter estimates differ substantially from those obtained under the assumption
of multiplicative errors. This is not an unusual occurrence; the non-linear least squares
problem has an error structure that is different from the linearized least-squares problem
solved earlier. Residuals suggest a non-linear pattern.

Another possibility, that allows time to increase non-linearly with climb.mi, is

y = α + βx1 + γ xδ
2 + ε.

We then fit the model, using an arbitrary starting guess:

nihills.nls <- nls(time ˜ gamma + delta1*distˆalpha +

delta2*climb.miˆbeta,

start=c(gamma = .045, delta1 = .09, alpha = 1,

delta2=.9, beta = 1.65), data=nihills)

plot(residuals(nihills.nls) ˜ log(predict(nihills.nls)))

The starting values were obtained by fitting an initial model in which alpha was con-
strained to equal 1. The result is:

Parameters:

Estimate Std. Error t value Pr(>|t|)

gamma 0.1522 0.0714 2.13 0.04708

delta1 0.0399 0.0284 1.41 0.17694

alpha 1.3102 0.2709 4.84 0.00013

delta2 0.8657 0.0922 9.39 2.3e-08

beta 1.5066 0.1810 8.32 1.4e-07

Estimate Std. Error t value Pr(>|t|)

There are no obvious outliers in the residual plot. In addition, there is no indication
of an increase in the variance as the fitted values increase. Thus, a variance-stabilizing
transformation or the use of weighted least squares is unnecessary.



212 Multiple linear regression

6.9 Recap

A coefficient in a multiple regression equation predicts the effect of a variable when other
variables are held constant. Coefficients can thus be different, sometimes dramatically, for
a different choice of explanatory variables.

Regression equation predictions are for the data used to derive the equation, and reflect
any sampling biases that affect that data. Biases that arise because data were not randomly
sampled from the population can lead to predictions that, for the population as a whole, are
seriously astray.

Plots that can be useful for checking regression assumptions and/or for checking whether
results may be unduly influenced by individual data points include: scatterplot matrices of
the variables in the regression equation, plots of residuals against fitted values, partial
residual plots such as are provided by the termplot() function (these are a better guide
than plots of residuals against individual explanatory variables), normal probability plots
of residuals, scale–location plots, and Cook’s distance and related plots.

Robust methods downweight points that may be outliers. Resistant regression methods
are designed to completely remove the contribution of outliers to the regression fit.

6.10 Further reading

Faraway (2004) is a wide-ranging account that covers many of the important practical issues.
Harrell (2001) is likewise wide-ranging, with an emphasis on biostatistical applications.
Again it has a great deal of useful practical advice. Weisberg (1985) offers a relatively
conventional approach. Cook and Weisberg (1999) rely heavily on graphical explorations
to uncover regression relationships. Venables and Ripley (2002) is a basic reference for
using R for regression calculations. See also Fox (2002). Hastie et al. (2009) offer wide-
ranging challenges for the reader who would like to explore beyond the forms of analysis
that we have described.

On variable selection, which warrants more attention than we have given it, see Bolker
(2008), Harrell (2001), Hastie et al. (2009), Venables (1998). There is certain to be, in the
next several years, substantial enhancement to what R packages offer in this area. Bolker’s
account extends (p. 215) to approaches that weight and average models.

Rosenbaum (2002) is required reading for anyone who wishes to engage seriously with
the analysis of data from observational studies. Results can rarely be interpreted with the
same confidence as for a carefully designed experimental study. There are however checks
and approaches that, depending on the context, can be helpful in assessing the credence
that should be given one or other interpretation of analysis results.

On errors in variables, see Carroll et al. (2006). Linear models are a special case of
non-linear models.

Several of the studies that are discussed in Leavitt and Dubner (2005), some with major
public policy relevance, relied to a greater or lesser extent on regression methods. References
in the notes at the end of their book allow interested readers to pursue technical details
of the statistical and other methodology. The conflation of multiple sources of insight and
evidence is invariably necessary, in such studies, if conclusions are to carry conviction.

Especially hazardous is the use of analyses where there are multiple potential confound-
ing variables, i.e., variables whose effects must be accounted for if coefficients for remaining



6.10 Further reading 213

variables are to be genuinely suggestive of a causal link. Not only must confounders be
included; their effects, including possible interaction effects, must be correctly modeled.
Controversy over studies on the health effects of moderate alcohol consumption provide a
good example; see, for example, Jackson et al. (2005).

For commentary on the use of regression and other models for predictive purposes, see
Maindonald (2003).

Structural equation models allow, in addition to explanatory variables and dependent
variables, intermediate variables that are dependent with respect to one or more of the
explanatory variables, and explanatory with respect to one or more of the dependent vari-
ables. Cox and Wermuth (1996) and Edwards (2000) describe approaches that use regression
methods to elucidate the relationships. Cox and Wermuth is useful for the large number
of examples and for its illuminating comments on practical issues, while Edwards is more
up-to-date in its account of the methodology.

Bates and Watts (1988) discuss non-linear models in detail. A more elementary presen-
tation is given in one of the chapters of Myers (1990).

References for further reading

Bates, D. M. and Watts, D. G. 1988. Non-linear Regression Analysis and Its Applications.
Bolker, B. M. 2008. Ecological Models and Data in R.
Carroll, R. J., Ruppert, D. and Stefanski, L. A. 2006. Measurement Error in Nonlinear

Models: A Modern Perspective, 2nd edn.
Cook, R. D. and Weisberg, S. 1999. Applied Regression Including Computing and Graphics.
Cox, D. R. and Wermuth, N. 1996. Multivariate Dependencies: Models, Analysis and

Interpretation.
Edwards, D. 2000. Introduction to Graphical Modelling, 2nd edn.
Faraway, J. J. 2004. Linear Models with R.
Fox, J. 2002. An R and S-PLUS Companion to Applied Regression.
Harrell, F. E. 2001. Regression Modelling Strategies, with Applications to Linear Models,

Logistic Regression and Survival Analysis.
Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learning. Data

Mining, Inference and Prediction, 2nd edn.
Jackson, R., Broad, J., Connor, J. and Wells, S. 2005. Alcohol and ischaemic heart disease:

probably no free lunch. The Lancet 366: 1911–12.
Leavitt, S. D. and Dubner, S. J. 2005. Freakonomics. A Rogue Economist Explores the

Hidden Side of Everything.
Maindonald, J. H. 2003. The role of models in predictive validation. Invited Paper, ISI

Meeting, Berlin.
Myers, R. H. 1990. Classical and Modern Regression with Applications, 2nd edn.
Rosenbaum, P. R. 2002. Observational Studies, 2nd edn.
Venables, W. N. 1998. Exegeses on linear models. Proceedings of the 1998 International

S-PLUS User Conference.
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.
Weisberg, S. 1985. Applied Linear Regression, 2nd edn.



214 Multiple linear regression

6.11 Exercises

1. The data set cities lists the populations (in thousands) of Canada’s largest cities over 1992
to 1996. There is a division between Ontario and the West (the so-called “have” regions) and
other regions of the country (the “have-not” regions) that show less rapid growth. To identify the
“have” cities we can specify
## Set up factor that identifies the ‘have’ cities

## Data frame cities (DAAG)

cities$have <- factor((cities$REGION=="ON")|

(cities$REGION=="WEST"))

Plot the 1996 population against the 1992 population, using different colors to distinguish the
two categories of city, both using the raw data and taking logarithms of data values, thus:
plot(POP1996 ˜ POP1992, data=cities,

col=as.integer(cities$have))

plot(log(POP1996) ˜ log(POP1992), data=cities,

col=as.integer(cities$have))
Which of these plots is preferable? Explain.
Now carry out the regressions
cities.lm1 <- lm(POP1996 ˜ have+POP1992, data=cities)

cities.lm2 <- lm(log(POP1996) ˜ have+log(POP1992),

data=cities)
and examine diagnostic plots. Which of these seems preferable? Interpret the results.

2. In the data setcement (MASS package), examine the dependence ofy (amount of heat produced)
on x1, x2, x3 and x4 (which are proportions of four constituents). Begin by examining the
scatterplot matrix. As the explanatory variables are proportions, do they require transformation,
perhaps by taking log(x/(100 − x))? What alternative strategies might be useful for finding an
equation for predicting heat?

3. Use the model that was fitted to the data in nihills to give predicted values for the data in
hills2000. Plot these against predicted values from the model fitted to hills2000, and
use differences from observed values of log(time) to estimate a prediction variance that is
relevant when Northern Irish data are used to predict Scottish times. Would you expect this
variance to be larger or smaller than the estimated error variance from the hills2000 model
fit? Is this expectation born out?

4. The data frame hills2000 (DAAG) updates the 1984 information in the data set hills. Fit
regression models, for men and women separately, based on the data in hills. Check whether
they fit satisfactorily over the whole range of race times. Compare the two equations.

5. Section 6.1 used lm() to analyze the allbacks data that are presented in Figure 6.1. Repeat the
analysis using (1) the function rlm() in the MASS package, and (2) the function lqs() in the
MASS package. Compare the two sets of results with the results in Section 6.1.

6. The following investigates the consequences of not using a logarithmic transformation for the
nihills data analysis. The second differs from the first in having a dist× climb interaction
term, additional to linear terms in dist and climb.

(a) Fit the two models:
nihills.lm <- lm(time ˜ dist+climb, data=nihills)

nihills2.lm <- lm(time ˜ dist+climb+dist:climb, data=nihills)

anova(nihills.lm, nihills2.lm)



6.11 Exercises 215

(b) Using the F -test result, make a tentative choice of model, and proceed to examine diag-
nostic plots. Are there any problematic observations? What happens if these points are
removed? Refit both of the above models, and check the diagnostics again.

7. Check the variance inflation factors for bodywt and lsize for the model
brainwt ˜ bodywt + lsize, fitted to the litters data set. Comment.

8. Apply the lm.ridge() function to the litters data, using the generalized cross-validation
(GCV) criterion to choose the tuning parameter. (GCV is an approximation to cross-validation.)

(a) In particular, estimate the coefficients of the model relating brainwt to bodywt and
lsize and compare with the results obtained using lm().

(b) Using both ridge and ordinary regression, estimate the mean brain weight when litter
size is 10 and body weight is 7. Use the bootstrap, with case-resampling, to compute
approximate 95% percentile confidence intervals using each method. Compare with the
interval obtained using predict.lm().

9.∗ Compare the ranges of dist and climb in the data frames nihills and hills2000. In
which case would you expect it to be more difficult to find a model that fits well? For each of
these data frames, fit both the model based on the formula
log(time) ˜ log(dist) + log(climb)

and the model based on the formula
time ˜ alpha*dist + beta*I(climbˆ2)

Is there one model that gives the best fit in both cases?

10. The data frame table.b3 in the MPV package contains data on gas mileage and 11 other
variables for a sample of 32 automobiles.

(a) Construct a scatterplot of y (mpg) versus x1 (displacement). Is the relationship between
these variables non-linear?

(b) Use the xyplot() function, and x11 (type of transmission) as a group variable. Is a
linear model reasonable for these data?

(c) Fit the model relating y to x1 and x11 which gives two lines having possibly different
slopes and intercepts. Check the diagnostics. Are there any influential observations? Are
there any influential outliers?

(d) Plot the residuals against the variable x7 (number of transmission speeds), again using
x11 as a group variable. Is there anything striking about this plot?

11. The following code is designed to explore effects that can result from the omission of explanatory
variables:
> x1 <- runif(10) # predictor which will be missing

> x2 <- rbinom(10, 1, 1-x1) # observed predictor which depends

> # on missing predictor

> y <- 5*x1 + x2 + rnorm(10,sd=.1) # simulated model; coef

> # of x2 is positive

> y.lm <- lm(y ˜ factor(x2)) # model fitted to observed data

> coef(y.lm)

(Intercept) factor(x2)1

2.8224119 -0.6808925 # effect of missing variable:

# coefficient of x2 has wrong sign

> y.lm2 <- lm(y ˜ x1 + factor(x2)) # correct model

> coef(y.lm2)



216 Multiple linear regression

(Intercept) x1 factor(x2)1

0.06654892 4.91216206 0.92489061 # coef estimates are now OK

What happens if x2 is generated according to x2 <- rbinom(10, 1, x1)?
x2 <- rbinom(10, 1, .5)?

12. Fit the model investigated in Subsection 6.8.4, omitting the parameter α. Investigate and com-
ment on changes in the fitted coefficients, standard errors, and fitted values.

13. Figure 6.19 used the function errorsINx(), with the argument gpdiff=1.5, to simulate
data in which the regression relationship y = 15 + 1.5x is the same in each of two groups
(called ctl and trt). The left panel identifies the two fitted lines when the explanatory
variable is measured without error. These are, to within statistical error, identical. The right
panel shows the fitted regression lines when random error of the same order of magnitude as
the within-groups variation in x is added to x, giving the column of values zWITHerr.

(a) Run the function for several different values of gpdiff in the interval (0, 1.5), and plot
the estimate of the treatment effect against gpdiff.

(b) Run the function for several different values of timesSDz in the interval (0, 1.5), and
plot the estimate of the treatment effect against gpdiff.

(c) Run the function with beta = c(-1.5,0). How does the estimate of the treatment
effect change, as compared with b = c(1.5,0)? Explain the change.

14. Fit the following two resistant regressions, in each case plotting the residuals against Year.
library(MASS}

nraw.lqs <- lqs(northRain ˜ SOI + CO2, data=bomregions)

north.lqs <- lqs(I(northRainˆ(1/3)) ˜ SOI + CO2, data=bomregions)

par(mfrow=c(2,1))

plot(residuals(nraw.lqs) ˜ Year, data=bomregions)

plot(residuals(north.lqs) ˜ Year, data=bomregions)

par(mfrow=c(1,1))

Compare, also, normal probably plots for the two sets of residuals.

(a) Repeat the calculations several times. Comment on the extent of variation, from one run
to the next, in the regression coefficients.

(b) Based on examination of the residuals, which regression model seems more acceptable:
nraw.lqs or north.lqs?

(c) Compare the two sets of regression coefficients. Can you explain why they are so very
different?

(More careful modeling will take into account the temporal sequence in the observations. See
Section 9.2 for an analysis that does this.)



7

Exploiting the linear model framework

The model matrix X is fundamental to all calculations for a linear model. The model matrix
carries the information needed to calculate the fitted values that correspond to any particular
choice of coefficients. There is a one-to-one correspondence between columns of X and
regression coefficients.

In Chapter 6, the columns of the model matrix contained the observed values of the
explanatory variables, perhaps after transformation. Fitted values were obtained by multi-
plying the first column by the first coefficient (usually the intercept), the second column by
the second coefficient, and so on across all columns. The sum of the products in any row is
the fitted value for that row.

This chapter will explore new ways to relate the columns of the model matrix to the
explanatory variables, where a variable may be either a vector of numeric values, or a
factor. Vectors of zeros and ones (columns of “dummy” variables) can be used to handle
factor levels, but as noted below there are other possibilities. For modeling a quadratic
form of response, we take values of x as one of the columns and values of x2 as another.
The model matrix framework also allows the modeling of many other forms of non-linear
response. As before, the regression calculations find the set of coefficients that best predicts
the observed responses, in the sense of minimizing the sum of squares of the residuals.

The latter part of this chapter will describe the fitting of smooth curves and surfaces that
do not necessarily have a simple parametric form of mathematical description. Although not
as convenient as linear or other simple parametric relationships, such curves and surfaces
do allow the calculation of predicted values and associated standard error estimates. For
many purposes, this is all that is needed.

7.1 Levels of a factor – using indicator variables

7.1.1 Example – sugar weight

Figure 7.1 displays data from an experiment that compared an unmodified wild-type plant
with three different genetically modified (GM) forms (data are in the data set sugar in
our DAAG package). The measurements are weights (mg) of sugar that were obtained by
breaking down the cellulose. There is a single explanatory factor (treatment), with one
level for each of the different control agents. For convenience, we will call the factor levels
Control, A (GM1), B (GM2), and C (GM3).1

1 stripplot(trt ˜ weight, pch=0, xlab="Weight (mg)", data=sugar, aspect=0.5))



218 Exploiting the linear model framework

Weight (mg)

Control

A

B

C

50 60 70 80 90 100

Control A B C
(WTa) (GM1) (GM2) (GM3)

82.0 58.3 68.1 50.7
97.8 67.9 70.8 47.1
69.9 59.3 63.6 48.9

Mean =
83.2 61.8 67.5 48.9

a WT = Wild Type; GM = Genetically Modified

Figure 7.1 Weights (weight) of sugar extracted from a control (wild-type) plant, and from three
different genetically modified plant types.

We could reduce the apparent difference in variability between treatments by work-
ing with log(weight). For present illustrative purposes, we will however work with
the variable weight, leaving as an exercise for the reader the analysis that works with
log(weight).

The model can be fitted either using the function lm() or using the function aov().
The two functions give different default output.

For any problem that involves factor(s), there are several different ways to set up the
model matrix. A common strategy (on a vanilla setup, the default) is to set up one of the
treatment levels as a baseline or reference, with the effects of other treatment levels then
measured from the baseline. Here it makes sense to set Control (Wild) as the baseline.

Before proceeding, it may pay to do the following check:

> options()$contrasts # Check the default factor contrasts

unordered ordered

"contr.treatment" "contr.poly"

> ## If your output does not agree with the above, then enter

> options(contrasts=c("contr.treatment", "contr.poly"))

The reason for this check will become apparent shortly.
With Control as baseline, a one-way analysis of variance of the data in Figure 7.1 has

the model matrix that is shown in Table 7.1; values of the response (sugar$weight)
have been added in the final column. The following checks the order of the levels in the
column trt and prints the model matrix:

> levels(sugar$trt) # Note the order of the levels

[1] "Control" "A" "B" "C"

> sugar.aov <- aov(weight ˜ trt, data=sugar)

> model.matrix(sugar.aov)

Here are the results from the least squares calculations:

> summary.lm(sugar.aov) # NB: summary.lm(),

+ # not summary() or summary.aov()

Call:

aov(formula = weight ˜ trt, data = sugar)

Residuals:



7.1 Levels of a factor – using indicator variables 219

Table 7.1 Model matrix for the analysis of variance
calculation for the data in Figure 7.1. The values of
the response are in the final column.

Control (baseline) A B C weight

1 0 0 0 82.0
1 0 0 0 97.8
1 0 0 0 69.9
1 1 0 0 58.3
1 1 0 0 67.9
1 1 0 0 59.3
1 0 1 0 68.1
1 0 1 0 70.8
1 0 1 0 63.6
1 0 0 1 50.7
1 0 0 1 47.1
1 0 0 1 48.9

Min 1Q Median 3Q Max

-13.333 -2.783 -0.617 2.175 14.567

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 83.23 4.47 18.61 7.2e-08

trtA -21.40 6.33 -3.38 0.00960

trtB -15.73 6.33 -2.49 0.03768

trtC -34.33 6.33 -5.43 0.00062

Residual standard error: 7.75 on 8 degrees of freedom

Multiple R-Squared: 0.791, Adjusted R-squared: 0.713

F-statistic: 10.1 on 3 and

8 degrees of freedom, p-value: 0.00425

The row labeled (Intercept) gives the estimate (= 83.23) for the baseline, i.e.,
Control. The remaining coefficients (differences from the baseline) are:

A: weight differs by −21.40.
B: weight differs by −15.73.
C: weight differs by −34.33.

All three differences from the control are significant at the conventional 5% level.
In Table 7.2, the multiples determined by the least squares calculations are shown above

each column. Also shown is ŷ, which is the fitted or predicted value, calculated either as
fitted(sugar.aov) or as predict(sugar.aov).

Residuals can be obtained by subtracting the predicted values (ŷ) in Table 7.2 from the
observed values (y) in Table 7.1.

In this example, the estimate for each treatment is the treatment mean. Regression
calculations have given us a complicated way to compute averages! The methodology



220 Exploiting the linear model framework

Table 7.2 At the head of each column is the multiple, as determined by
least squares, that is taken in forming the fitted values.

Control: 83.2 A: −21.4 B: −15.7 C: −34.3 Fitted value

1 0 0 0 83.2
1 0 0 0 83.2
1 0 0 0 83.2
1 1 0 0 61.8
1 1 0 0 61.8
1 1 0 0 61.8
1 0 1 0 67.5
1 0 1 0 67.5
1 0 1 0 67.5
1 0 0 1 48.9
1 0 0 1 48.9
1 0 0 1 48.9

shows its power to better effect in more complex models, where there is no such simple
alternative.

Use of the overall analysis of variance F -test, prior to these individual comparisons, is
often a sufficient safeguard against over-interpretation of the results of such comparisons.
Nevertheless, insight may be gained from assessing differences against Tukey’s experimen-
twise HSD criterion that was discussed in Subsection 4.4.1.

> sem <- summary.lm(sugar.aov)$sigma/sqrt(3) # 3 results/trt

> # Alternatively, sem <- 6.33/sqrt(2)

> qtukey(p=.95, nmeans=4, df=8) * sem

1] 20.26

Using this stricter criterion, B cannot be distinguished from the control, and A, B and C
cannot be distinguished from each other.

7.1.2 Different choices for the model matrix when there are factors

In the language used in the R help pages, different choices of contrasts are available,
with each different choice leading to a different model matrix. The different choices thus
give different mathematical descriptions for the same model. The coefficients (parameters)
change and must be interpreted differently. The fitted values and the analysis of variance
table do not change. The choice of contrasts may call for careful consideration, in order to
obtain coefficient estimates with the interpretation that is most helpful for the problem in
hand. Or, more than one run of the analysis may be necessary, to gain information on all
effects of interest.

The default (treatment) choice of contrasts uses the initial factor level as baseline, as we
have noted. Different choices of the baseline or reference level lead to different versions
of the model matrix. The other common choice, i.e., sum contrasts, uses the average of
treatment effects as the baseline.



7.1 Levels of a factor – using indicator variables 221

In order to use sum contrasts in place of treatment contrasts, specify options
(contrasts=c("contr.sum", "contr.poly")). It is also possible to set con-
trasts separately for each factor. See help(C).

Here is the output when the baseline is the average of the treatment effects, i.e., from
using the sum contrasts:2

> oldoptions <- options(contrasts=c("contr.sum", "contr.poly"))

> # The mean over all treatment levels is now the baseline.

> # (The second setting ("contr.poly") is for ordered factors.)

> summary.lm(aov(weight ˜ trt, data = sugar))

. . . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.37 2.24 29.23 2.0e-09

trt1 17.87 3.87 4.61 0.0017

trt2 -3.53 3.87 -0.91 0.3883

trt3 2.13 3.87 0.55 0.5968

Residual standard error: 7.75 on 8 degrees of freedom

Multiple R-Squared: 0.791, Adjusted R-squared: 0.713

F-statistic: 10.1 on 3 and

8 degrees of freedom, p-value: 0.00425

> options(oldoptions) # Restore default treatment contrasts

Note the differences from the output from the default choice of contrasts. The baseline,
labeled (Intercept), is now the treatment mean. This equals 65.37. Remaining coeffi-
cients are differences, for Control and for treatment levels A and B, from this mean. The
sum of the differences for all three treatments is zero. Thus the difference for C is (rounding
up)

−(17.87 − 3.53 + 2.13) = −16.5.

The estimates (means) are:

Control: 65.37 + 17.87 = 83.2.
A: 65.37 − 3.53 = 61.8.
B: 65.37 + 2.13 = 67.5.
C: 65.37 − 16.5 = 48.9.

Note also the possibility of using helmert contrasts. For a factor that has two levels,
helmert contrasts lead to a parameter estimate that is just half that for treatment contrasts.
For factors with more than two levels, the parameter estimates that are associated with
helmert contrasts rarely correspond to the scientific questions that are of interest.

For ordered factors, polynomial contrasts are the default. There is a brief discussion of
contrasts in Section 14.6.

2 The first vector element specifies the choice of contrasts for factors (i.e., unordered factors), while the second specifies the
choice for ordered factors.



222 Exploiting the linear model framework

7.2 Block designs and balanced incomplete block designs

Data in the data frame rice (DAAG) were displayed in Figure 4.7. They were from an
experiment where the plants were laid out in blocks, with each treatment combination
occurring once in each block. As all combinations of factors occur equally often in each
block, the experimental design is a complete block design.

The data in appletaste are from a balanced incomplete block design (BIBD). In this
particular BIBD, one treatment is left out of each block, but in such a way that the number
of blocks in which a treatment is left out is the same for all treatments. (More generally,
the requirement for a BIBD is that all treatments must occur together equally often in the
same block.)

Blocks should be chosen so that conditions are as uniform as possible within each block.
In a glasshouse (or greenhouse) experiment all plants in a single block should be in a similar
position in the glasshouse, with a similar exposure to light.

7.2.1 Analysis of the rice data, allowing for block effects

In general, there should be allowance for block differences when data from block designs
are analyzed. Otherwise, if there are substantial differences between blocks, treatment
effects are likely to be masked by these substantial block differences. The interest is in
knowing the extent to which treatment differences are consistent across blocks, irrespective
of block-to-block differences that affect all plants in a block pretty much equally.

The analysis of variance table is a useful first point of reference, for examining results:

> ricebl.aov <- aov(ShootDryMass ˜ Block + variety * fert,

data=rice)

> summary(ricebl.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Block 1 3528 3528 10.9 0.0016

variety 1 22685 22685 70.1 6.4e-12

fert 2 7019 3509 10.8 8.6e-05

variety:fert 2 38622 19311 59.7 1.9e-15

Residuals 65 21034 324

This makes it clear that there are substantial differences between blocks.
Use summary.lm() to obtain details of the effects:

> summary.lm(ricebl.aov)

. . . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 115.33 5.61 20.56 < 2e-16

Block2 -14.00 4.24 -3.30 0.0016

varietyANU843 -101.00 7.34 -13.75 < 2e-16

fertNH4Cl -58.08 7.34 -7.91 4.2e-11

fertNH4NO3 -35.00 7.34 -4.77 1.1e-05

varietyANU843:fertNH4Cl 97.33 10.39 9.37 1.1e-13

varietyANU843:fertNH4NO3 99.17 10.39 9.55 5.4e-14



7.2 Block designs and balanced incomplete block designs 223

Residual standard error: 18 on 65 degrees of freedom

Multiple R-Squared: 0.774, Adjusted R-squared: 0.753

F-statistic: 37 on 6 and 65 DF, p-value: <2e-16

The above residual standard error, i.e., 18.0 on 65 degrees of freedom, may be compared
with a standard error of 19.3 on 66 degrees of freedom when there is no allowance for block
effects.3

Because this was a complete balanced design, the function model.tables() can be
used to obtain a summary of treatment effects in a pleasantly laid out form. Any visual
summary of results should, at a minimum, include the information given in Figure 4.7. (Do
not try to use model.tables() for anything other than complete balanced designs. Even
for balanced “incomplete” results such as will now be discussed, results will be incorrect.)

7.2.2 A balanced incomplete block design

In tasting experiments, a number of different products, e.g., wines, are to be compared. If
presented with too many different specimens to test, tasters can become confused, even
when precautions are taken (including washing the palette) to minimize carry-over effects
from one product to another. Hence it is usual to limit the number of products given to any
one taster.

In the example that will now be given, the products were different varieties of apple,
identified by the numerical codes 298, 493, 649, and 937. The 20 tasters were divided
into four groups of five. For each group of five tasters, a different product was omitted.
Panelists made a mark on a line that gave their rating of aftertaste (0 for extreme
dislike; 150 for extreme approval). The following is a summary of the experimental design:

> table(appletaste$product, appletaste$panelist)

a b c d e f g h i j k l m n o p q r s t

298 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

493 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

649 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

937 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

The tasters play the role that blocks would play in a field design. In spite of differences
in the way that different raters use the scale (some will tend to score low and some high),
there may be acceptable consistency in their comparative ratings of the products.

For analysis, it is necessary only to specify factorspanelist andproduct as explana-
tory factors.

> sapply(appletaste, is.factor) # panelist & product are factors

aftertaste panelist product

FALSE TRUE TRUE

> summary(appletaste.aov <- aov(aftertaste ˜ panelist + product,

+ data=appletaste))

3 ## AOV calculations, ignoring block effects
rice.aov <- aov(ShootDryMass ˜ variety * fert, data=rice)
summary.lm(rice.aov)$sigma



224 Exploiting the linear model framework

−
50

0
50

Panelist

P
ar

tia
l f

or
 p

an
el

is
t

a d g j m q t

●

●
●

●
●

●
●

●
●

●

●

●

●
●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

−
50

0
50

Product

P
ar

tia
l f

or
 p

ro
du

ct

298 649

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

Figure 7.2 These plots show the respective contributions of the factors panelist and product
to aftertaste scores, in an apple tasting experiment.

Df Sum Sq Mean Sq F value Pr(>F)

panelist 19 30461 1603 2.21 0.019

product 3 34014 11338 15.60 1.0e-06

Residuals 37 26892 727

There are differences between the ratings of different panelists, but they are of minor
consequence relative to differences between products.

Figure 7.2 shows the partial residual plot, obtained using the function termplot()
with the argument partial=TRUE; this gives a useful summary of the results. Notice
that ratings seem generally lower for the final few raters. Had product quality deteriorated
over time?

In its present form, this function is useful only for displaying the effects of fac-
tors for which no interaction terms are present. As noted above, do not try to use
model.tables() to obtain estimates of effects; the results, for this incomplete block
design, will be incorrect.

7.3 Fitting multiple lines

Multiple regression can be used to fit multiple lines. In the example that follows
(Table 7.3), there are measurements of vapor pressure (vapPress) and of the differ-
ence between leaf and air temperature (tempDiff), for three different levels of carbon
dioxide.

Possibilities we may want to consider are:

� Model 1 (constant response): y = a.
� Model 2 (a single line): y = a + bx.
� Model 3 (three parallel lines): y = a1 + a2z2 + a3z3 + bx.

(For the low CO2 group (z2 = 0 and z3 = 0) the constant term is a1; for the medium
CO2 group (z2 = 1 and z3 = 0) the constant term is a1 + a2; while for the high CO2

group (z2 = 0 and z3 = 1) the constant term is a1 + a3.)
� Model 4 (three separate lines): y = a1 + a2z2 + a3z3 + b1x + b2z2x + b3z3x.

(Here, z2 and z3 are as in model 3 (panel B). For the low CO2 group (z2 = 0 and z3 = 0)
the slope is b1; for the medium CO2 group (z2 = 1 and z3 = 0) the slope is b1 + b2;
while for the high CO2 group (z2 = 0 and z3 = 1) the slope is b1 + b3.)



7.3 Fitting multiple lines 225

Table 7.3 Selected rows,
showing values of CO2level,
vapPress and tempDiff,
from the data set leaftemp.

CO2level vapPress tempDiff

low 1.88 1.36
low 2.20 0.60
. . . . . . . . .

medium 2.38 1.94
medium 2.72 0.83
. . . . . . . . .

high 2.56 1.50
high 2.55 0.85
. . . . . . . . .

Table 7.4 Model matrix for fitting three
parallel lines (model 3) to the data of Table 7.3.
The y-values are in the separate column to the
right.

(Inter-

cept) Medium High vapPress tempDiff

1 0 0 1.88 1.36
1 0 0 2.2 0.6
. . . . . . . . . . . . . . .

1 1 0 2.38 1.94
1 1 0 2.72 0.83
. . . . . . . . . . . . . . .

1 0 1 2.56 1.5
1 0 1 2.55 0.85
. . . . . . . . . . . . . . .

Table 7.5 Model matrix for fitting three separate lines (model 4), with y-values in the
separate column to the right.

Medium: High:
(Intercept) Medium High vapPress vapPress vapPress tempDiff

1 0 0 1.88 0 0 1.36
1 0 0 2.2 0 0 0.6
. . . . . . . . . . . . . . . . . . . . .

1 1 0 2.38 2.38 0 1.94
1 1 0 2.72 2.72 0 0.83
. . . . . . . . . . . . . . . . . . . . .

1 0 1 2.56 0 2.56 1.5
1 0 1 2.55 0 2.55 0.85
. . . . . . . . . . . . . . . . . . . . .

Selected rows from the model matrices for model 3 and model 4 are displayed in Tables 7.4
and 7.5, respectively.

The statements used to fit the four models are:

## Fit various models to columns of data frame leaftemp (DAAG)

leaf.lm1 <- lm(tempDiff ˜ 1 , data = leaftemp)

leaf.lm2 <- lm(tempDiff ˜ vapPress, data = leaftemp)

leaf.lm3 <- lm(tempDiff ˜ CO2level + vapPress, data = leaftemp)

leaf.lm4 <- lm(tempDiff ˜ CO2level + vapPress

+ vapPress:CO2level, data = leaftemp)

Recall that CO2level is a factor and vapPress is a variable. Technically,
vapPress:CO2level is an interaction. The effect of an interaction between a factor
and a variable is to allow different slopes for different levels of the factor.

The analysis of variance table is helpful in making a choice between these models:



226 Exploiting the linear model framework

Table 7.6 Analysis of variance information. The starting point is a model that has only
an intercept or “constant" term. The entries in rows 1–3 of the Df column and of the
Sum of Sq column are then sequential decreases from fitting, in turn, vapPress,
then three parallel lines, and then finally three separate lines.

Df Sum of Sq Mean square F Pr(<F)

vapPress 1 5.272 5.272 11.3 0.0014 Reduction in SS due
(variable) to fitting one line

Three parallel 2 6.544 3.272 7.0 0.0019 Additional reduction
lines in SS due to fitting

two parallel lines
Three different 2 2.126 1.063 2.3 0.1112 Additional reduction

lines in SS due to fitting
two separate lines

Residuals 61 40.000 0.656

> anova(leaf.lm1, leaf.lm2, leaf.lm3, leaf.lm4)

Analysis of Variance Table

Model 1: tempDiff ˜ 1

Model 2: tempDiff ˜ vapPress

Model 3: tempDiff ˜ CO2level + vapPress

Model 4: tempDiff ˜ CO2level + vapPress + CO2level:vapPress

Res.Df RSS Df Sum of Sq F Pr(>F)

1 61 40.00

2 60 34.73 1 5.272 11.33 0.0014

3 58 28.18 2 6.544 7.03 0.0019

4 56 26.06 2 2.126 2.28 0.1112

This is a sequential analysis of variance table. Thus, the quantity in the sum of squares
column (Sum of Sq) is the reduction in the residual sum of squares due to the inclusion of
that term, given that earlier terms had already been included. The Df (degrees of freedom)
column gives the change in the degrees of freedom due to the addition of that term. Table 7.6
explains this in detail.

The analysis of variance table suggests use of the parallel line model, shown in panel
B of Figure 7.3. The reduction in the mean square from model 3 (panel B in Figure 7.3)
to model 4 (panel C) in the analysis of variance table has a p-value equal to 0.1112. The
coefficients and standard errors for model 3 are:

> summary(leaf.lm3)

Call:

lm(formula = tempDiff ˜ CO2level + vapPress,

data = leaftemp)

. . . .



7.3 Fitting multiple lines 227

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

1.4 1.8 2.2 2.6

0.
0

1.
0

2.
0

3.
0

Vapor pressure

Te
m

pe
ra

tu
re

 d
iff

er
en

ce

A: Single line
tempDiff = 3.1−0.86 x vapPress

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

1.4 1.8 2.2 2.6

0.
0

1.
0

2.
0

3.
0

Vapor pressure

B: Parallel lines
Intercepts are: 2.68, 3, 3.48
Slope is −0.84

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

1.4 1.8 2.2 2.6

0.
0

1.
0

2.
0

3.
0

Vapor pressure

C: Separate lines
Intercepts are: 1, 2.85, 4.69
Slopes are −0.02, −0.76, −1.43

● low medium high

Figure 7.3 A sequence of models fitted to the plot of tempDiff versus vapPress, for low,
medium and high levels of CO2level. Panel A relates to model 2, panel B to model 3, and panel C
to model 4.

0.5 1.0 1.5 2.0

−
2.

0
−

1.
0

0.
0

1.
0

Fitted values

R
es

id
ua

ls

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●● ●

●

● ●
●

●

●
●● ●

●● ●

●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

●
● ●

●

●
●

Resids vs Fitted

7

24

8

●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●●

●

●●
●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●●

●

●
●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

7

24

8

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

● ●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

Scale−Location
7

248

0.00 0.04 0.08 0.12

−
3

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●●

●

●

●

●

●

●

●
●
●

●
●

● ●

●

●

●

●

●
●

●
●●

●

●●
●

●

●
● ●

●

●●●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●
● ●

●

●
●

Cook's distance

0 12

0 12

Resid vs Leverage

45

7

43

Figure 7.4 Diagnostic plots for the parallel line model of Figure 7.3.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.685 0.560 4.80 1.16e-05

CO2levelmedium 0.320 0.219 1.46 0.14861

CO2levelhigh 0.793 0.218 3.64 0.00058

vapPress -0.839 0.261 -3.22 0.00213

Residual standard error: 0.69707 on 58 degrees of freedom

Multiple R-Squared: 0.295, Adjusted R-squared: 0.259

F-statistic: 8.106 on 3 and

58 degrees of freedom, p-value: 0.000135

The coefficients in the equations for this parallel line model are given in the annotation for
Figure 7.3B. For the first equation (low CO2), the constant term is 2.685; for the second
equation (medium CO2), the constant term is 2.685 + 0.320 = 3.005; while for the third
equation, the constant term is 2.685 + 0.793 = 3.478.

In addition, we examine a plot of residuals against fitted values, and a normal probability
plot of residuals (Figure 7.4). These plots seem unexceptional.



228 Exploiting the linear model framework

●

●

●

●

●

Seeding rate

G
ra

in
s 

pe
r 

he
ad

50 75 100 125 150

18
.0

19
.0

20
.0

21
.0 Data

rate grain

1 50 21.2
2 75 19.9
3 100 19.2
4 125 18.4
5 150 17.9

Model matrix – quadratic fit

(Intercept) rate rate2

1 50 2 500
1 75 5 625
1 100 10 000
1 125 15 625
1 150 22 500

Figure 7.5 Plot of number of grains per head versus seeding rate, for the barley seeding rate data
shown to the right of the figure, with fitted quadratic curve. The model matrix for fitting a quadratic
curve is shown on the far right. Data relate to McLeod (1982).

7.4 Polynomial regression

Polynomial regression provides a straightforward way to model simple forms of departure
from linearity. The simplest case is where the response curve has a simple cup-up or cup-
down shape. For a cup-down shape, the curve has some part of the profile of a path that
follows the steepest slope up a rounded hilltop towards the summit and down over the other
side. For a cup-up shape the curve passes through a valley. Such cup-down or cup-up shapes
can often be modeled quite well using quadratic, i.e., polynomial with degree 2, regression.
For this the analyst uses x2 as well as x as explanatory variables. If a straight line is not
adequate, and the departure from linearity suggests a simple cup-up or cup-down form of
response, then it is reasonable to try a quadratic regression. The calculations are formally
identical to those for multiple regression.

To avoid numerical problems, it is often preferable to use orthogonal polynomial regres-
sion. Interested readers may wish to pursue for themselves the use of orthogonal polynomial
regression, perhaps using as a starting point Exercise 18 at the end of the chapter. Orthog-
onal polynomials have the advantage that the coefficient(s) of lower-order terms (linear,
. . .) do(es) not change when higher-order terms are added. One model fit, with the highest-
order term present that we wish to consider, provides the information needed to make
an assessment about the order of polynomial that is required. The orthogonal polynomial
coefficients must be translated back into coefficients of powers of x (these are not of course
independent), if these are required.

Figure 7.5 shows number of grains per head (averaged over eight replicates), for different
seeding rates of barley. A quadratic curve has been fitted. The code is:

## Fit quadratic curve: data frame seedrates (DAAG)

seedrates.lm2 <- lm(grain ˜ rate + I(rateˆ2), data = seedrates)

# The wrapper function I() ensures that the result from

# calculating rateˆ2 is treated as a variable in its own right.

plot(grain ˜ rate, data = seedrates, pch = 16,

xlim = c(50, 160), cex=1.4)

new.df <- data.frame(rate = (1:14) * 12.5) # for plotting the fitted curve

hat2 <- predict(seedrates.lm2, newdata = new.df, interval="predict",

coverage = 0.95)

lines(new.df$rate, hat2[, "fit"], lty = 2, lwd=2)



7.4 Polynomial regression 229

The quadratic regression appears, from visual inspection, a good fit to the data. The fitted
model may be written

ŷ = a + b1x1 + b2x2

where x1 = x, and x2 = x2. Thus, the model matrix has a column of 1s, a column of values
of x, and a column that has values of x2.

Here is the output from R:

> summary(seedrates.lm2, corr=TRUE)

Call:

lm(formula = grain ˜ rate + I(rateˆ2), data = seedrates)

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 24.060 0.456 52.799 0.000

rate -0.067 0.010 -6.728 0.021

I(rateˆ2) 0.000 0.000 3.497 0.073

Residual standard error: 0.115 on 2 degrees of freedom

Multiple R-Squared: 0.996

F-statistic: 256 on 2 and 2 degrees of freedom,

the p-value is 0.0039

Correlation of Coefficients:

(Intercept) rate

rate -0.978

I(rateˆ2) 0.941 -0.989

(In a model formula, rateˆ2 will be interpreted as rate:rate = rate. Hence the
use of I(rateˆ2) to denote the square of rate.) Observe the high correlations between
the coefficients. Note in particular the large negative correlation between the coefficients
for rate and I(rateˆ2). Forcing the coefficient for rate to be high would lead to a
low coefficient for I(rateˆ2), and so on.

In orthogonal polynomial regression, the separate terms rate and I(rateˆ2) are
replaced by the single term poly(rate,2), i.e., an orthogonal polynomial of degree 2
in rate. The fitted values will be identical, but the coefficients are then coefficients of the
orthogonal polynomials, not coefficients of rate and I(rateˆ2).

7.4.1 Issues in the choice of model

The coefficient of the x2 term in the quadratic model fell short of statistical significance at
the 5% level. Fitting the x2 leaves only two degrees of freedom for error. For prediction,
our interest is likely to be in choosing the model that is on balance likely to give the more
accurate predictions; for this, use of the model that includes the quadratic term may be
preferred.



230 Exploiting the linear model framework

●

●

●

●

●

60 80 100 120 140 160 180

16
17

18
19

20
21

22

Seeding rate

G
ra

in
s 

pe
r 

he
ad

Figure 7.6 Number of grains per head versus seeding rate, with fitted line (solid) and fitted quadratic
curve (dashed). Also shown are 95% pointwise confidence bounds.

Figure 7.6 shows both a fitted line and a fitted curve, in both cases with 95% confidence
bounds.4 It shows a quadratic curve (dashed line) as well as a line (solid line). In addition,
the graph shows 95% pointwise confidence bounds for the expected number of grains per
head, both about the line and about the curve.

The curve is a better fit to the data than the line. For a short distance beyond the final
data point, it almost certainly gives a better estimate than does the line. Notice that the
confidence bounds for the curve are much wider, beyond a rate of about 160, than the line.
Not only does the line almost certainly give a biased estimate, it also gives unrealistically
narrow bounds for that estimate. If the model is wrong, it will give wrong estimates of
predictive accuracy. This is especially serious for extrapolation beyond the limits of the
data.

Beyond the limits of the data, it would be unwise to put much trust in either the line or
the curve. Our point is that the bounds for the quadratic curve do better reflect uncertainty
in the curve that ought to be fitted. We could try other, single-parameter, models. Selecting
a model from a number of choices that allow for the curvature may not however be much
different, in its effect on the effective degrees of freedom, from adding an x2 term. The wider
confidence bounds for the quadratic model reflect this uncertainty in choice of model, better
than results from any individual model that has one parameter additional to the intercept.

We can in fact fit the data well by modeling grain as a linear function of log(rate).
This model seems intuitively more acceptable; the fitted value of grain continues to

4 ## Fit line, fit curve, determine pointwise bounds, and create the plots
CIcurves <-
function(form=grain˜rate, data=seedrates, lty=1, col=3,

newdata=data.frame(rate=seq(from=50, to=175, by=25))){
seedrates.lm <- lm(form, data=data)
x <- newdata[, all.vars(form)[2]]
hat <- predict(seedrates.lm, newdata=newdata, interval="confidence")
lines(spline(x, hat[, "fit"]))
lines(spline(x, hat[, "lwr"]), lty=lty, col=col)
lines(spline(x, hat[, "upr"]), lty=lty, col=col)

}
plot(grain ˜ rate, data=seedrates, xlim=c(50,175), ylim=c(15.5,22))
CIcurves()
CIcurves(form=grain˜rate+I(rateˆ2), lty=2)



7.5∗ Methods for passing smooth curves through data 231

decrease as the rate increases beyond the highest rate used in the experiment. This is
perhaps the model that we should have chosen initially on scientific grounds.

7.5∗ Methods for passing smooth curves through data

In the previous section, we used the linear model framework to fit a curve that had x and
x2, etc. terms. This framework can be adapted to fit higher-order polynomial curves to
regression data. For a polynomial of degree m, the model matrix must have, in addition to
a column of 1s, columns that hold values of x, x2, . . . , xm. Polynomials can be effective
when a curve of degree m equal to 2 or 3 is appropriate. Polynomial curves where m is
greater than 3 can be problematic. High-degree polynomials tend to move up and down
between the data values in a snake-like manner. Splines, or piecewise polynomials, which
we now consider, are usually preferable to polynomials of degree greater than 3.

A spline curve joins two or more polynomial curves, and is sometimes called a piecewise
polynomial curve. The locations of the joints are called knots.

The following is a simple piecewise linear spline function, with a knot at x = 2:

y = 3 + 4x − 5(x − 2)I{x≥2}. (7.1)

The indicator I takes the value 1, when x ≥ 2 and the value 0, when x < 2. For values of
x less than 2, this spline function behaves as a straight line with slope 4, but for x greater
than 2, the slope switches to 4 − 5 = −1.

More generally, spline functions take the form

y = b0P0(x) + b1P1(x) + · · · + bkPk(x)

where the bis are constant coefficients, and the functions Pi(x) are either polynomial
functions like the first two terms of equation (7.1), or polynomial functions multiplied by
indicators like the last term in equation (7.1).

Given a set of knots, there are many different ways to choose the Pi(x). Some choices
that are useful in practice may involve relatively complicated forms of algebraic expression
that are different from those used in our definition. The Pi(x) are known as basis functions.

A particularly convenient set of basis functions for splines is referred to as B-splines.
Given data of the form (x1, y1), (x2, y2), . . . , (xn, yn), we can write a regression model in
terms of these B-spline functions as:

y = b0B0(x) + b1B1(x) + · · · + bkBk(x) + ε

where ε represents an error term as in the previous chapter. Written in this form, it is clear
that a spline regression model can be fit using the same methods as for fitting multiple
regression models. The columns of the model matrix are constructed from evaluating each
of the B-splines at each of the values of x. Once the basis functions have been evaluated,
the lm() function can be used to carry out the estimation of the regression coefficients.

Natural splines, implemented using the function ns() from the splines package, are
an alternative to B-splines. For natural splines, the slope of the curve is constrained to be
constant at and beyond the boundary knots. For B-splines, there are no boundary constraints,
though there are boundary knots that anchor the spline basis. By default, these are placed
at the limits of the data.



232 Exploiting the linear model framework

Table 7.7 Resistance (ohms) versus apparent juice content. The table shows a selection
of the data.

Juice Juice Juice Juice
(%) Ohms (%) Ohms (%) Ohms (%) Ohms

1 4 4860 33 20 7500 65 41.5 3350 123 58.5 3650
2 5 5860 34 20.5 8500 66 42.5 2700 124 58.5 3750
3 5.5 6650 35 21.5 5600 67 43 2750 125 58.5 4550
4 7.5 7050 36 21.5 6950 68 43 3150 126 59.5 3300
5 8.5 5960 37 21.5 7200 69 43 3250 127 60 3600
. . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9 9850

The number of degrees of freedom (df) additional to the intercept will be specified for
the spline curve, with the software then allowed to determine the number and location of
internal join points (=knots). For B-splines, the number of internal knots is df - degree,
where degree is the degree (by default 3) of the piecewise polynomial. For natural
splines, the number of internal knots is df - degree+ 2, where degree must be 3. (The
difference in df is a result of the boundary constraints.) In either case, internal knots are
by default placed at equally spaced quantiles of the data.

The use of regression splines, using B-spline or N-spline bases, will be demonstrated
in the next subsection. The discussion will then move to more general types of smoothing
terms. We will take a simple example where there is just one explanatory variable, and try
several different methods on it.

7.5.1 Scatterplot smoothing – regression splines

We have (in Table 7.7) the apparent juice content and resistance (in ohms) for 128 slabs of
fruit (these data relate to Harker and Maindonald, 1994). Figure 7.7 shows four different
curves fitted to these data:5 Figures 7.7A and B show spline curves, the first with one
knot and the second with two knots. Figures 7.7C and D show, for comparison, third- and
fourth-degree polynomials. The polynomials do quite well here relative to the splines. Also
shown are 95% pointwise confidence intervals for the fitted curves.

Diagnostic plots can be used, just as for the models considered in earlier chapters, to
highlight points that are associated with large residuals, or that are having a strong influence

5 ## Fit various models to columns of data frame fruitohms (DAAG)
library(splines)
## Panel A
plot(ohms ˜ juice, cex=0.8, xlab="Apparent juice content (%)",

ylab="Resistance (ohms)", data=fruitohms)
CIcurves(form=ohms ˜ ns(juice, 2), data=fruitohms,

newdata=data.frame(juice=pretty(fruitohms$juice,20)))
## For panels B, C, D replace form = ohms ˜ ns(juice,2) by:
## form = ohms ˜ ns(juice,3) # panel B: nspline, df = 4
## ohms ˜ poly(juice,2) # panel C: polynomial, df = 3
## ohms ˜ poly(juice,3) # panel D: polynomial, df = 4
# For more information on poly(), see help(poly) and Exercise 15.



7.5∗ Methods for passing smooth curves through data 233

10 20 30 40 50 60

20
00

60
00

10
00

0

R
es

is
ta

nc
e 

(o
hm

s)
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●●
●●

●

●

●

●

●
●

●

●●●

●

●
●●

●

●
●
●

●

●

●

●●
●●

●
●●

●

●

●
●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●

A: N−spline, 1 internal knots (d.f. = 2+1)

10 20 30 40 50 60

20
00

60
00

10
00

0

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●●
●●

●

●

●

●

●
●
●
●
●

●●

●
●

●

●
●
●

●

●

●

●●
●●

●
●●

●

●●

●
●

●
●
●●●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

B: N−spline, 2 internal knots (d.f. = 3 + 1) 

10 20 30 40 50 60

20
00

60
00

10
00

0

R
es

is
ta

nc
e 

(o
hm

s)

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●
●●

●

●
●
●

●

●

●

●●
●●

●
●●

●

●●

●
●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●

C: Polynomial (d.f. = 2+1)

10 20 30 40 50 60

20
00

60
00

10
00

0

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●●

●
●●

●

●●

●
●

●
●
●●●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●

D: Polynomial (d.f. = 3+1)

Figure 7.7 Different smooth curves fitted to the data of Table 7.7. The dashed lines show 95%
pointwise confidence bounds for the fitted curve. In panels A and B, vertical lines show the locations
of the knots. The degrees of freedom (“df” or “degree”) shown are those supplied to ns() or
poly(). These must in each case be increased by one to allow for the intercept.

3000 5000 7000

−
40

00
0

20
00

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●
●
●●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●●
●

●

●

●

●
●

●
●

●

●
●●

●●

●
●

●
●●●●
●

●●
●
●

●

●

●

●

●
●

Resids vs Fitted

52
1

34

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●●

●
●

●
●●

●

●
●

●
●

●

●
●●

●

●
●

−2 −1 0 1 2

−
3

−
1

1
2

3

Theoretical quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

52
1

34

3000 5000 7000

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s ●

●

●

●

●

●

●●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Scale−Location
52

134

0.00 0.02 0.04 0.06

−
4

−
2

0
2

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●
●

●●

●
●

●●●

●

●●
●

●
●

●

●
●

●

●
●●

●●
●●

●
●●

●●

●●

●
●

●
●●●●

●

●
●

● ●
●

●

●

●

●
●●

●

●
●

Cook's distance

0 12

0 12

Resids vs Leverage

152

128

Figure 7.8 Diagnostic plots for the fitted model given in Figure 7.7A.

on the curve. Figure 7.8 shows the default diagnostic plots for the fitted model shown in
Figure 7.7A.6

Apart from the large residual associated with point 52 (at 32.5% apparent juice content),
these plots show nothing of note. The curves have bent to accommodate points near the
extremes that might otherwise have appeared as outliers.

Here is the summary information:

> summary(fruit.lm2)

. . . .

6 ## Fit degree 2 normal spline, plot diagnostics
par(mfrow = c(2,2))
fruit.lm2 <- lm(ohms ˜ ns(juice,2), data=fruitohms)
# for panel B: ns(juice,3)

plot(fruit.lm2)
par(mfrow = c(1,1))



234 Exploiting the linear model framework

●●
●

●●●●
●●●●●●
●●●●
●●●
●●●●●●
●●
●●●●

●●
●●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.2

0.0

0.2

0.4

0.6
S

pl
in

e 
ba

si
s 

fu
nc

tio
ns

A: Degree 2 N−spline

Intercept = 8041

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●
●
●●●
●●●●
●●●●●
●●●●
●●●●●●●●●●
●●●
●●●
●●●●●●
●●●
●●●
●●●
●●●●
●●●●●●

●●
●
●
●
●●●●
●
●

−8596

−2105

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●●
●●●●
●●

●●
●●
●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●
●●
●●●
●●●

●●
●
●

●
●●●●

●
●

−0.4

−0.2

0.0

0.2

0.4

0.6

B: Degree 3 N−spline

Intercept = 7569

●
●●

●
●●●●●
●●●●
●●
●●●
●●
●●●●●
●●
●●●
●●
●●
●●●●

●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●
●
●●●
●●●●
●●●●●
●●●●
●●●●●●●●●●
●●●
●●●
●●●●●●
●●●
●●●
●●●
●●●●
●●●●●●

●●
●
●
●
●●●●
●
●

−4535

−6329

−2569

10 20 30 40 50 60

30
00

50
00

70
00

F
itt

ed
 c

ur
ve

 (
oh

m
s)

Apparent juice content

10 20 30 40 50 60
30

00
50

00
70

00

Apparent juice content

Figure 7.9 Panel A shows the N-spline basis curves (one knot) fitted in Figure 7.7A. The fitted
curve, obtained by multiplying the values by −8596 and −2108, respectively, summing, and adding
an intercept of 8041, is shown below. Panel B (two knots) relates, similarly, to Figure 7.7B.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8041 260 30.9 < 2e-16

ns(juice, 2)1 -8596 578 -14.9 < 2e-16

ns(juice, 2)2 -2105 357 -5.9 3.3e-08

Residual standard error: 1030 on 125 degrees of freedom

Multiple R-Squared: 0.701, Adjusted R-squared: 0.696

F-statistic: 146 on 2 and 125 DF, p-value: <2e-16

Attention is best focused on the fitted curve, ignoring the fact that the curve can be
constructed by the smooth joining of separate cubic curves, or as a linear combination of
basis functions. Nevertheless, comments that will help make sense of the coefficients and
standard errors in the R output may be helpful. To help understand how the curve has been
formed as a linear combination of basis functions, we plot graphs that show the curves
for which these are the coefficients. For this, we plot the relevant column of the X-matrix
against x, and join up the points, as in Figure 7.9.7

7 ## Display the basis curves as in panel A
mm2 <- model.matrix(fruit.lm2)
ylim <- range(mm2[, -1])
plot(mm2[, 2] ˜ juice, ylim=ylim, xlab="Apparent Juice Content (%)",

ylab="Spline basis functions", type="l", data=fruitohms)
lines(fruitohms$juice, mm2[, 3], col="gray")
# NB: Values of juice are already ordered

## For panel B basis curves: mm3 <- model.matrix(fruit.lm3), etc.



7.5∗ Methods for passing smooth curves through data 235

Looking back again at the coefficients, basis curve 2 (with a coefficient of −8596) seems
more strongly represented than the other basis curve.

Compare sets of N-spline basis functions with sets of polynomial basis functions. An
orthogonal polynomial basis gives successively more accurate approximations to the data.
A set of polynomial basis functions of degree 3 is the set of degree 2 with another basis
function added. For the splines this is not the case. All the basis functions change if
another degree of freedom is added. For given degrees of freedom, the prediction that they
combine to give is accurate. If one basis function is dropped from the set of basis functions,
predictions will be disastrously inaccurate. Instead, it is necessary to find a complete new
set of basis functions for a spline curve with the reduced degrees of freedom.

The regression splines that we described above are attractive because they fit easily
within a linear model framework, i.e., we can fit them by specifying an appropriate X-
matrix. There are a wide variety of other methods, most of which do not fit within the linear
model framework required for use of lm().

7.5.2∗ Roughness penalty methods and generalized additive models

In the use of regression splines in the previous subsection, the approach was to specify the
degrees of freedom for the spline curve; knots were then located at equal quantiles of the
data. This is unlikely to be optimal. Use of too few knots can lead to a curve that fails to
capture all of the nuances of the regression function while choosing too many can result in
excessive bumpiness, i.e., the details of the curve capture noise.

The function gam() in the mgcv package implements generalized additive models
(GAMs). The function s() is used to generate smoothing terms. A brief explanation will
now be provided of some of the methods that are available, in the mgcv package, for
generating smoothing terms. For more extended information, attach the mgcv package, and
type help(smooth.terms).

The roughness penalty approach is designed to reduce or remove arbitrariness that can
result from the choice of the number and placement of knots. Cubic smoothing spline
methods assign a knot to each predictor value, while applying a roughness penalty that
constrains the fitted spline to smoothly pass through the cloud of observations. Note that
without such a constraint, the spline would interpolate the observations, usually rendering
a rough curve.

In order to reduce the time and memory requirements, knots can be placed at a subset
of the predictor values. Even so, there will be many more knots than would be used in
the absence of a roughness penalty. The “cubic regression splines” that are provided in
the mgcv package place knots at equally spaced quantiles of the data, as does the function
smooth.spline() (stats package). Penalized splines, as implemented by pspline()
in the survival package, are another approach that places knots at values that are evenly
spaced through the data.

Thin plate splines circumvent the overt choice of knots. The roughness penalty is, on
its own, enough to determine a set of basis functions. The basis functions do, moreover,
plausibly give successively more accurate approximations. They generalize in a natural
manner to the fitting of smooth surfaces, in an arbitrary number of dimensions. In practice,
in order to keep computational demands within reason, a low rank approximation is used,



236 Exploiting the linear model framework

resulting in a much reduced number of basis functions. Wood (2006) calls these thin plate
regression splines.

The fruitohms data set furnishes examples:

library(mgcv)

## Thin plate regression splines (bs="tp")

fruit.tp <- gam(ohms ˜ s(juice, bs="tp"), data=fruitohms)

## Plot points, fitted curve, and +/- 1SE limits

plot(fruit.tp, residuals=TRUE)

## Cubic regression splines (bs="cr")

fruit.cr <- gam(ohms ˜ s(juice, bs="cr"), data=fruitohms)

## Plot points, fitted curve, and +/- 1SE limits

plot(fruit.cr, residuals=TRUE)

Note also the gam package, which ports to R the code used for the gam() function in
S-PLUS.

7.5.3 Distributional assumptions for automatic choice of roughness penalty

The residual sum of squares is increased by a roughness (or wiggliness) penalty that is
a multiple λ of the integral of the squared second derivative, to give a penalized sum of
squares. Parameter estimates (multiples of the basis terms) are chosen to minimize this
penalized residual sum of squares.

The gam() function’s default method for choosing λ is a variant of generalized cross-
validation. This relies on an analytical approximation to the expected value of the cross-
validation estimate of the residual sum of squares. All automatic methods for choosing
the penalty assume that errors are independently and identically distributed (i.i.d.), with
implications that users will do well to keep in mind.

Sequential correlation structures, which are the major focus of Chapter 9, are a common
type of departure from i.i.d. errors. Where there is a sequential correlation structure in the
data, the methodology will – if possible – use a smooth curve to account for it. The pattern
that is thus extracted will not be reproducible under a re-run of the process. Exercise 19 at
the end of the chapter is designed to illustrate this point.

7.5.4 Other smoothing methods

Lowess curves are a popular alternative to spline curves. Figure 2.6 showed a curve that was
fitted to the fruitohms data using the function lowess(), which always uses a resistant
form of smoothing. The curve is thus relatively insensitive to large residuals. Special steps
are taken to avoid distortions due to end effects. As implemented in R, lowess() is not
available for use when there are multiple explanatory variables, and there is no mechanism
(or theory) for calculating pointwise confidence bounds.

The loess() function is an alternative to lowess() that is able to handle multi-
dimensional smoothing. The default for loess() is a non-resistant smooth; for a resistant
smooth, specify family=symmetric.



7.5∗ Methods for passing smooth curves through data 237

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●
●
●●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●●
●●

●

●

●

●

●
●
●
●
●

●●

●

●
●
●
●●

●

●
●
●
●

●

●

●●
●●

●
●●

●●

●●

●
●

●
●●●●

●

●
●

●●

●
●

●

●

●
●●

●

●
●

10 20 30 40 50 60

20
00

60
00

10
00

0

Apparent juice content (%)

R
es

is
ta

nc
e 

(o
hm

s)

Figure 7.10 A monotonic decreasing spline curve has been fitted to the points shown in Figures 7.7
and 7.9.

Both lowess() and loess() implement a locally weighted regression methodology.
The following description is directly relevant to lowess(); calculations for loess()
follow the same general pattern. The method is said to be local, because the fitted value
m(x) at a point x uses only the data within a specified neighborhood of x. Points nearest to x

are given highest weight. Those farther away are given little or no weight. Outlier resistance
is achieved by assigning low weight to observations which generate large residuals; this
allows for curves which are relatively unaffected by the presence of outliers. An iterative
method is used, with the residual at the previous iteration determining the weight at the
current iteration.

Kernel smoothing methods further widen the range of possibilities. For example, see the
documentation for the function locpoly() in the KernSmooth package.

On lowess smoothing, see Cleveland (1981). There is a useful brief discussion of smooth-
ing methods in Venables and Ripley (2002) and a fuller discussion of kernel smoothing,
splines, and lowess in Fan and Gijbels (1996). See also Hall (2001).

∗Monotone curves

Constraints can be included that force curves to be monotone increasing or monotone
decreasing. The function monoproc() in the monoProc package can be used, starting
with a fit using loess() or another function whose output follows the same conventions,
to create a monotone fit, as in Figure 7.10.

The code is:

library(monoProc)

fit.mono <- monoproc(loess(ohms˜juice, data=fruitohms),

bandwidth=0.1, mono1="decreasing",

gridsize=30)

plot(ohms ˜ juice, data=fruitohms,

xlab="Apparent juice content (%)", ylab="Resistance (ohms)")

lines(fit.mono)



238 Exploiting the linear model framework

Table 7.8 Average dewpoint (dewpt), for available combinations of
monthly averages of minimum temperature (mintemp) and maximum
temperature (maxtemp). The table shows a selection of the data.

maxtemp mintemp dewpt maxtemp mintemp dewpt

1 18 8 7 67 38 26 20
2 18 10 10 68 40 18 5
3 20 6 5 69 40 20 8
4 20 8 7 70 40 22 11
5 20 10 9 71 40 24 14
. . . . . . . . . . . . 72 40 26 17

10 15 20 25

−
15

−
5

0
5

10

mintemp

20 25 30 35 40

−
15

−
5

0
5

10

maxtemp

C
on

tr
ib

ut
io

n 
to

 p
re

di
ct

ed
 d

ew
po

in
t

Figure 7.11 Representation of average dewpoint (dewpt) as the sum of an effect due to minimum
temperature (mintemp), and an effect due to maximum temperature (maxtemp). (Data are from
Table 7.8.) The dashed lines are 95% pointwise confidence bounds.

7.6 Smoothing with multiple explanatory variables

Attention will now move to models with multiple explanatory variables. Table 7.8 has data
on monthly averages of minimum temperature, maximum temperature, and dewpoint. For
the background to these data, see Linacre (1992), Linacre and Geerts (1997). The dewpoint
is the maximum temperature at which the relative humidity reaches 100%. Monthly data
were obtained for a large number of sites worldwide. For each combination of minimum
and maximum temperature, the average dewpoint was then determined.

7.6.1 An additive model with two smooth terms

Figure 7.11 shows a representation of these data using an additive model with two spline-
smoothing terms. A simplified version of the code used for the fit and for the graph is:

## Regression of dewpt vs maxtemp: data frame dewpoint (DAAG)

library(mgcv)

ds.gam <- lm(dewpt ˜ s(mintemp) + s(maxtemp), data=dewpoint)

oldpar <- par(mfrow = c(1,2), pty="s")



7.6 Smoothing with multiple explanatory variables 239

Maximum temperature

R
es

id
ua

l

−0.5

0.0

0.5

1.0

20 25 30 35 40

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

mintempRange

20 25 30 35 40

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●
●

●

●●

●

●●

mintempRange

20 25 30 35 40

●
●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●

●

●

●

●●●

●

mintempRange

Figure 7.12 Plot of residuals against maximum temperature, for three different ranges of values
of minimum temperature. Panel strips are shaded to show the range of values of the conditioning
variable.

plot(ds.gam, se=2) # se=2: Show 2SE limits

## Try also: plot(ds.gam, se=2, residuals=TRUE, pch=1, cex=0.4)

par(oldpar)

We can write the model as

y = µ + f1(x1) + f2(x2) + ε

where y = dewpt, x1 = maxtemp, and x2 = mintemp.
Here µ is estimated by the mean of y, so that the estimates of f1(x1) and f2(x2) give

differences from this overall mean. In Figure 7.11, both f1(x1) and f2(x2) are modeled by
spline functions with five degrees of freedom. The left panel is a plot of the estimate of
f1(x1) against x1, while the right panel plots f2(x2) against x2.

There is no obvious reason why the additive model should work so well. In general, we
might expect an interaction term, i.e., we might expect that f1(x1) would be different for
different values of x2, or equivalently that f2(x2) would be different for different values
of x1. Even where the effects are not additive, an additive model is often a good starting
approximation. We can fit the additive model, and then check whether there are departures
from it that require examination of the dependence of y upon x1 and x2 jointly.

One check is to take, e.g., for x1 =mintemp, three perhaps overlapping ranges of values,
which we might call “low”, “medium”, and “high”. For this purpose we are then treating
mintemp as a conditioning variable. We then plot residuals against 5u = maxtemp for
each range of values of x1, as in Figure 7.12. If there is a pattern in these plots that changes
with the range of the conditioning variable, this is an indication that there are non-additive
effects that require attention.8

8 ## Residuals vs maxtemp, for different mintemp ranges
library(lattice)
mintempRange <- equal.count(dewpoint$mintemp, number=3)
xyplot(residuals(ds.lm) ˜ maxtemp | mintempRange, data=dewpoint, aspect=1,

layout=c(3,1), type=c("p","smooth"),
xlab="Maximum temperature", ylab="Residual")



240 Exploiting the linear model framework

7.6.2∗ A smooth surface

If it is suspected that the additive model is inappropriate, an alternative is to use a thin plate
regression spline basis for mintemp and maxtemp jointly. For this, specify:

ds.tp <- gam(dewpt ˜ s(mintemp, maxtemp), data=dewpoint)

vis.gam(ds.tp, plot.type="contour") # gives a contour plot of the

# fitted regression surface

vis.gam(ds.gam, plot.type="contour") # cf. model with 2 smooth terms

Three-dimensional perspective plots can also be obtained with the argument
plot.type="persp".

7.7 Further reading

There is a review of the methodologies we have described, and of extensions, in Venables
and Ripley (2002). See also references on the help pages for functions in the locfit and
mgcv packages. Eubank (1999) gives a comprehensive and readable introduction to the use
of splines in non-parametric regression. Maindonald (1984) has an elementary introduction
to B-splines, starting with piecewise linear functions. Faraway (2006) is a wide-ranging
and practically oriented account that starts with Generalized Linear Models. Wood (2006)
is even more wide-ranging, with stronger technical demands. It has extensive coverage of
Linear Models and Generalized Linear Models, then proceeding to an account of Gener-
alized Additive Models and Generalized Additive Mixed Models that makes heavy use of
various forms of spline bases.

References for further reading

Eubank, R. L. 1999. Nonparametric Regression and Spline Smoothing, 2nd edn.
Faraway, J. J. 2006. Extending the Linear Model with R. Generalized Linear, Mixed Effects

and Nonparametric Regression Models.
Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learning. Data

Mining, Inference and Prediction, 2nd edn.
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.
Wood, S. N. 2006. Generalized Additive Models. An Introduction with R.

7.8 Exercises

1. Reanalyze the sugar weight data of Subsection 7.1.1 usinglog(weight) in place ofweight.

2. Use anova() to compare the two models:
roller.lm <- lm(depression˜weight, data=roller)

roller.lm2 <- lm(depression˜weight+I(weightˆ2), data=roller)

Is there any justification for including the squared term?

3. Use the method of Section 7.3 to compare, formally, the regression lines for the two data frames
elastic1 and elastic2 from Exercise 1 in Chapter 5.



7.8 Exercises 241

4. The data frame toycars consists of 27 observations on the distance (in meters) traveled by
one of three different toy cars on a smooth surface, starting from rest at the top of a 16-inch-long
ramp tilted at varying angles (measured in degrees). Because of differing frictional effects for
the three different cars, we seek three regression lines that relate distance traveled to angle.

(a) As a first try, fit three lines that have the same slope but different intercepts.
(b) Note the value of R2 from the summary table. Examine the diagnostic plots carefully. Is

there an influential outlier? How should it be treated?
(c) The physics of the problem actually suggests that the three lines should have the same

intercept (very close to 0, in fact), and possibly differing slopes, where the slopes are
inversely related to the coefficient of dynamic friction for each car. Fit the model, and note
that the value of R2 is slightly lower than that for the previously fitted model. Examine
the diagnostic plots. What has happened to the influential outlier? In fact, this is
an example where it is inadvisable to take R2 too seriously; in this case, a more care-
fully considered model can accommodate all of the data satisfactorily. Maximizing R2

does not necessarily give the best model!

5. The data frame cuckoos holds data on the lengths and breadths of eggs of cuckoos, found in
the nests of six different species of host birds. Fit models for the regression of length on breadth
that have:

A: a single line for all six species.
B: different parallel lines for the different host species.
C: separate lines for the separate host species.

Use the anova() function to print out the sequential analysis of variance table. Which of the
three models is preferred? Print out the diagnostic plots for this model. Do they show anything
worthy of note? Examine the output coefficients from this model carefully, and decide whether
the results seem grouped by host species. How might the results be summarized for reporting
purposes?

6. Fit the three models A, B and C from the previous exercise, but now using the robust regression
function rlm() from the MASS package. Do the diagnostic plots look any different from those
from the output from lm()? Is there any substantial change in the regression coefficients?

7. Apply polynomial regression to the seismic timing data in the data frame geophones. Specif-
ically, check the fits of linear, quadratic, cubic, and quartic (degree = 4) polynomial estimates
of the expected thickness as a function of distance. What do you observe about the fitted quar-
tic curve? Do any of the fitted curves capture the curvature of the data in the region where
distance is large?

8. Apply spline regression to the geophones data frame. Specifically, regress thickness against
distance, and check the fits of 4-, 5- and 6-degree-of-freedom cases. Which case gives the best
fit to the data? How does this fitted curve compare with the polynomial curves obtained in the
previous exercise? Calculate pointwise confidence bounds for the 5-degree-of-freedom case.

9. In the data frame worldRecords (DAAG): (i) fit log(Time) as a linear function of
log(Distance); (ii) fit log(Time) as a polynomial of degree 4 in log(Distance);
(iii) fit log(Time) as a natural spline function of degree 4 in log(Distance).

(a) Use anova() to compare the fits (i) and (ii).
(b) Compare the R2 statistics from the fits (i), (ii) and (iii). Do they convey useful information

about the adequacy of the models?



242 Exploiting the linear model framework

(c) For each of (i), (ii) and (iii), plot residuals against log(Distance). Which model best
accounts for the pattern of change of time with log(Distance)? For what range(s) of
distances does there seem, for all three models, to be some apparent residual bias?

10. Apply lowess() to the geophones data as in the previous two exercises. You will need to
experiment with the f argument, since the default value oversmooths this data. Small values of
f (less than 0.2) give a very rough plot, while larger values give a smoother plot. A value of
about 0.25 seems a good compromise.

11. Check the diagnostic plots for the results of Exercise 8 for the 5-degree-of-freedom case. Are
there any influential outliers?

12. Continuing to refer to Exercise 8, obtain plots of the spline basis curves for the 5-degree-of-
freedom case. That is, plot the relevant column of the model matrix against y.

13. Apply the penalized spline to the geophones data using the default arguments in mgcv’s s()
function. Is this a satisfactory fit to the data? The argument k controls the number of knots. Try
setting k to 20, and examine the fit. How might an “optimal” value of k be selected?

14. The ozone data frame holds data, for nine months only, on ozone levels at the Halley Bay
station between 1956 and 2000. (See Christie (2000), Shanklin (2001) for the scientific back-
ground.) Up-to-date data are available from the web site given under help(ozone, pack-

age="DAAG"). Replace zeros by missing values. Determine, for each month, the number of
missing values. Plot the October levels against Year, and fit a smooth curve. At what point does
there seem to be clear evidence of a decline? Plot the data for other months also. Do other
months show a similar pattern of decline?

15. The wages1833 data frame holds data on the wages of Lancashire cotton factory workers in
1833. Plot male wages against age and fit a smooth curve. Repeat using the numbers of male
workers as weights. Do the two curves seem noticeably different? Repeat the exercise for female
workers. [See Boot and Maindonald (2008) for background information on these data.]

16. Clutton-Brock et al. (1999) studied how the time that adult meerkats spent on guarding varied
with the size of the group. (Studies were conducted in the Kalahari Gemsbok Park in South
Africa.) Approximate percentages of time were:
Group size 1: 50,47; 2: 26; 3: 26; 4: 24,23; 5: 19; 6: 13; 7: 3.
(NB: These numbers were read off from a graph.)
Model the percentage of time as a function of group size.

17. From the data set cricketers extract the subset for which year (year of birth) is in the
range 1840 to 1960, inclusive. Fit the following:

(a) A polynomial of degree 2 in year.
(b) A polynomial of degree 3 in year.

Plot the fitted curves on a graph of proportion left-handed versus year of birth. Does the
polynomial of degree 3 give any worthwhile improvement over a polynomial of degree 2?
Compare also with a regression B-spline of degree 3; i.e., bs(year, 3).

18.∗ Compare the two results:
seedrates.lm <- lm(grain ˜ rate + I(rateˆ2), data=seedrates)

seedrates.pol <- lm(grain ˜ poly(rate,2), data=seedrates)

Check that the fitted values and residuals from the two calculations are the same, and that
the t-statistic and p-value are the same for the coefficient labeled poly(rate, 2)2 in the



7.8 Exercises 243

polynomial regression as for the coefficient labeled I(rateˆ2) in the regression on rate

and rateˆ2.
Check that the coefficients remain the same if, in the calculation of seedrates.lm,

rate + I(rateˆ2) is replaced by poly(rate, 2, raw=TRUE).
Regress the second column of model.matrix(seedrates.pol) on rate and

I(rateˆ2), and similarly for the third column of model.matrix(seedrates.pol).
Hence, express the first and second orthogonal polynomial terms as functions of rate and
rateˆ2.

19.∗ The following fits a gam model to data that have a strong sequential correlation (see Section 9.1
for the basic time series concepts assumed in this exercise):
library(mgcv)

xy <- data.frame(x=1:200, y=arima.sim(list(ar=0.75), n=200))

df.gam <- gam(y ˜ s(x), data=xy)

plot(df.gam, residuals=TRUE)

(a) Run the code several times. (Be sure, on each occasion, to simulate a new data frame xy.)
Is the function gam() overfitting? What is overfitting in this context? Compare with the
result from re-running the code with ar=0.

(b) Repeat, now with ar=-0.75 in the code that generates the sequentially correlated series.
Why is the result so very different?



8

Generalized linear models and survival analysis

The straight line regression model we considered in Chapter 5 had the form

y = α + βx + ε

where, if we were especially careful, we would add a subscript i to each of y, x, and ε.
In this chapter, we will resume with models where there is just one x, as in Chapter 5, in
order to keep the initial discussion simple. Later, we will add more predictor variables, as
required.

The regression model can be written

E[y] = α + βx

where E is expectation. This form of the equation is a convenient point of departure for
moving to generalized linear models, abbreviated to GLMs. This class of models, first
introduced in the 1970s, gives a unified theoretical and computational approach to models
that had previously been treated as distinct. They have been a powerful addition to the data
analyst’s armory of statistical tools.

The present chapter will limit attention to a few important special cases. The chapter
will end with a discussion of survival methods. Survival methods, while having important
theoretical connections with generalized linear models, require a distinct theoretical and
computational treatment.

8.1 Generalized linear models

Generalized linear models (GLMs) differ in two ways from the models used in earlier
chapters. They allow a more general form of expression for the expectation, and they allow
various types of non-normal error terms. Logistic regression models are perhaps the most
widely used GLM.

8.1.1 Transformation of the expected value on the left

GLMs allow a transformation f () to the left-hand side of the regression equation, i.e., to
E[y]. The result specifies a linear relation with x. In other words,

f (E[y]) = α + βx



8.1 Generalized linear models 245

0.0 0.2 0.4 0.6 0.8 1.0

−6

−4

−2

0

2

4

6

Proportion

lo
gi

t(
P

ro
po

rt
io

n)
 =

 lo
g(

O
dd

s)
0.001

0.01

0.1

0.5

0.9

0.99

0.999

Figure 8.1 The logit or log(odds) transformation. Shown here is a plot of log(odds) versus proportion.
Notice how the range is stretched out at both ends.

where f () is a function, which is usually called the link function. In the fitted model, we call
α + βx the linear predictor, while E[y] is the expected value of the response. The function
f () transforms from the scale of the response to the scale of the linear predictor.

Some common examples of link functions are: f (x) = x, f (x) = 1/x, f (x) = log(x),
and f (x) = log(x/(1 − x)). The last, shown in Figure 8.1, is the logit link that is the link
function for logistic regression.1 Observe that these functions are all monotonic, i.e., they
increase or (in the case of 1/x) decrease with increasing values of x.

8.1.2 Noise terms need not be normal

We may write

y = E[y] + ε.

Here, the elements of y may have a distribution different from the normal. Common
distributions are the binomial where y is the number responding out of a given total n, and
the Poisson where y is a count.

Even more common may be models where the random component differs from the
binomial or Poisson by having a variance that is larger than the mean. The analysis proceeds
as though the distribution were binomial or Poisson, but the theoretical binomial or Poisson
variance estimates are replaced by a variance that is estimated from the data. Such models
are called, respectively, quasi-binomial models and quasi-Poisson models.

8.1.3 Log odds in contingency tables

With proportions that range from less than 0.1 to greater than 0.9, it is not reasonable to
expect that the expected proportion will be a linear function of x. A transformation (link
function) such as the logit is required. A good way to think about logit models is that they

1 ## Simplified plot showing the logit link function
p <- (1:999)/1000
gitp <- log(p/(1 - p))
plot(p, gitp, xlab = "Proportion", ylab = "", type = "l", pch = 1)



246 Generalized linear models and survival analysis

Table 8.1 Terminology used for logistic regression (or more generally for generalized
linear models), compared with multiple regression terminology.

Regression Logistic regression

Degrees of freedom Degrees of freedom
Sum of squares (SS) Deviance (D)
Mean sum of squares (divide by degrees of

freedom)
Mean deviance (divide by degrees of freedom)

Fit models by minimizing the residual sum of
squares.

Fit models by minimizing the deviance.

work on a log(odds) scale. If p is a probability (e.g., that horse A will win the race), then
the corresponding odds are p/(1 − p), and

log(odds) = log(p/(1 − p)) = log(p) − log(1 − p).

Logistic regression provides a framework for analyzing contingency table data. Let us
now recall the fictitious admissions data presented in Table 4.10. The observed proportion
of students (male and female) admitted into Engineering is 40/80 = 0.5. For Sociology,
the admission proportion is 15/60 = 0.25. Thus, we have

log(odds) = log(0.5/0.5) = 0 for Engineering,

log(odds) = log(0.75/0.25) = 1.0986 for Sociology.

What determines whether a student will be admitted to Engineering? What determines
whether a student will be admitted to Sociology? Is age a factor? Logistic regression allows
us to model log(odds of admission) as a function of age, or as a function of any other
predictor that we may wish to investigate.

For such data, we may write

log(odds) = constant + effect due to faculty + effect due to gender.

This now has the form of a linear model.

8.1.4 Logistic regression with a continuous explanatory variable

The likelihood is the joint probability of the observed data values, given the model parame-
ters. It is thus a function of the model parameters. The deviance is minus twice the logarithm
of the likelihood. Maximizing the likelihood is equivalent to minimizing the deviance.

The fitting of the logistic model is accomplished by minimizing deviances. A deviance
has a role very similar to a sum of squares in regression (in fact, if the data are normally
distributed, the two quantities are equivalent). This aspect of the analogy between regression
and logistic regression is furnished by Table 8.1.

Data for the example that now follows are in the data frame anesthetic (DAAG).
Thirty patients were given an anesthetic agent that was maintained at a predetermined
(alveolar) concentration for 15 minutes before making an incision. It was then noted
whether the patient moved, i.e., jerked or twisted. The interest is in estimating how the



8.1 Generalized linear models 247

●
●

● ●

●●

Concentration

P
ro

po
rt

io
n

0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

0.
25

0.
75

7
5

6 6

24 Value of nomove

conc 0 (move) 1 (no move) prop

0.8 6 1 0.17
1 4 1 0.20
1.2 2 4 0.67
1.4 2 4 0.67
1.6 0 4 1.00
2.5 0 2 1.00

Figure 8.2 Plot, versus concentration, of proportion of patients not moving, for each of six different
alveolar concentrations. The horizontal line is the proportion of no-moves over the data as a whole.
Data are displayed to the right of the plot.

probability of jerking or twisting varies with increasing concentration of the anesthetic
agent.

We take the response as nomove, because the proportion then increases with increas-
ing concentration. The totals and proportions, for each of the six concentrations, can be
calculated thus:

library(DAAG)

anestot <- aggregate(anesthetic[, c("move","nomove")],

by=list(conc=anesthetic$conc), FUN=sum)

## The column ’conc’, because from the ’by’ list, is then a factor.

## The next line recovers the numeric values

anestot$conc <- as.numeric(as.character(anestot$conc))

anestot$total <- apply(anestot[, c("move","nomove")], 1 , sum)

anestot$prop <- anestot$nomove/anestot$total

Figure 8.2 plots the proportions. The table that is shown to the right of Figure 8.2 gives
the information in the data frame anestot that has just been calculated. It gives, for
each concentration, the respective numbers with nomove equal to 0 (i.e., movement) and
nomove equal to 1 (i.e., no movement).2

We can fit the logit model either directly to the 0/1 data, or to the proportions in the table
that appears to the right of Figure 8.2:

## Fit model directly to the 0/1 data in nomove

anes.logit <- glm(nomove ˜ conc, family=binomial(link="logit"),

data=anesthetic)

## Fit model to the proportions; supply total numbers as weights

anes1.logit <- glm(prop ˜ conc, family=binomial(link="logit"),

weights=total, data=anestot)

2 ## Plot proportion moving vs conc: data frame anesthetic (DAAG)
plot(prop ˜ conc, data=anestot, xlab = "Concentration",

ylab = "Proportion", xlim = c(.5,2.5), ylim = c(0, 1), pch = 16)
with(anestot,

{text(conc, prop, paste(total), pos=2)
abline(h=sum(nomove)/sum(total), lty=2)})



248 Generalized linear models and survival analysis

●
●

●●

●

●

0.0 0.5 1.0 1.5 2.0 2.5

−
2

−
1

0
1

2
Concentration

E
m

pi
ric

al
 lo

gi
t

0.14
0.2

0.67 0.67

1

1

Figure 8.3 Plot, on an empirical logit scale, of log(odds) = logit(proportion) of patients not moving,
versus concentration. If x is the number of patients not moving, and n is the total, then the empirical
logit is log( x+0.5

n−x+0.5 ). Notice that the order changes from the order of the untransformed proportions.
Labels on the points show the observed proportions. The line gives the estimate of the proportion of
moves, based on the fitted logit model.

The analysis assumes that individuals respond independently with a probability, estimated
from the data, that on a logistic scale is a linear function of the concentration. For any fixed
concentration, the assumption is that we have Bernoulli trials, i.e., that individual responses
are drawn at random from the same population.

Output from the summary() function (see also Figure 8.33) is:

> summary(anes.logit)

. . . .

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.47 2.42 -2.67 0.0075

conc 5.57 2.04 2.72 0.0064

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 41.455 on 29 degrees of freedom

Residual deviance: 27.754 on 28 degrees of freedom

AIC: 31.75

Number of Fisher Scoring iterations: 5

With such a small sample size, a convincing check of the adequacy of the model is
impossible.

3 ## Graphical summary of logistic regression results
anestot$emplogit <- with(anestot, log((nomove+0.5)/(move+0.5)))
plot(emplogit ˜ conc, data=anestot,

xlab = "Concentration", xlim = c(0, 2.75), xaxs="i",
ylab = "Empirical logit", ylim=c(-2, 2.4), cex=1.5, pch = 16)

with(anestot, text(conc, emplogit, paste(round(prop,2)), pos=c(2,4,2,4,4,4)))
abline(anes.logit)



8.2 Logistic multiple regression 249

●●●●●●

●●●
●●

●
●●

●●
●●●●●●●

●
●

●●

●●
●

●●

●
●●

●●●●

●
●●

●

●●
●●●●

●●

●
●

●

●

●
● ●●●

●

●

●

●
●

● ●●
●

●

●
●●

●●

●
●
●

●

●
●

●
●

●●
●● ●●

●

● ●●●
●
●

●

●●
●

●●
● ●●● ●

●●
●
●

●
●

●●●●

●

●●

●
●

●
●●

●
●

●
●

●

●

●
●
●

● ●

●

●

●
●●●●●

●

●

●●

●

●

●

●●●
●
●

●

●

●
●

●●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●●

●
●

●
●

●

●
●

●●

●

●
●

●

●
●

●

●

700 800 900 1000 1100 1200

10
0

15
0

20
0

25
0

30
0

Meters east of reference point

M
et

er
s 

no
rt

h

Figure 8.4 Location of sites, relative to reference point, that were examined for frogs. The sites
are all in the Snowy Mountains region of New South Wales, Australia. The filled points are for sites
where frogs were found.

8.2 Logistic multiple regression

We now consider data on the distribution of the Southern Corroboree frog, that occurs in
the Snowy Mountains area of New South Wales, Australia (data are from Hunter, 2000). In
all, 212 sites were surveyed. In Figure 8.4 filled circles denote sites where the frogs were
found; open circles denote the absence of frogs.4

The variables in the data set are pres.abs (were frogs found?), easting (reference
point), northing (reference point), altitude (in meters), distance (distance in
meters to nearest extant population), NoOfPools (number of potential breeding pools),
NoOfSites (number of potential breeding sites within a 2 km radius), avrain (mean
rainfall for Spring period), meanmin (mean minimum Spring temperature), and meanmax
(mean maximum Spring temperature).

As with multiple linear regression, a desirable first step is to check relationships among
explanatory variables. Where possible, we will transform so that those relationships are
made linear, as far as we can tell from the scatterplot matrix. If we can so transform the
variables, this gives, as noted earlier in connection with classical multiple regression, access
to a theory that can be highly helpful in guiding the process of regression modeling.

We wish to explain frog distribution as a function of the other variables. Because we are
working within a very restricted geographic area, we do not expect that the distribution will
change as a function of latitude and longitude per se, so that easting and northing
will not be used as explanatory variables. Figure 8.5 shows the scatterplot matrix for the
remaining explanatory variables.5

Notice that the relationships between altitude, avrain, meanmin, and meanmax
are close to linear. For the remaining variables, the distributions are severely skewed, to
the extent that it is difficult to tell whether the relationship is linear. For a distance, the
logarithmic transformation is often reasonable. Two of the variables are counts, so that

4 ## Presence/absence information: data frame frogs (DAAGS)
plot(northing ˜ easting, data=frogs, pch=c(1,16)[frogs$pres.abs+1],

xlab="Meters east of reference point", ylab="Meters north")
5 ## Pairs plot; frogs data
pairs(frogs[, c(5:10,4)], oma=c(2,2,2,2), cex=0.5)



250 Generalized linear models and survival analysis

distance

0 100 200

●● ●●● ●● ●
●

●●●

● ●

●

●

●

●●

●● ●●

●

●
●● ●

●

●● ●●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●● ●

●●

●●●

●

●

●
●

●
●

●
● ●

●
●
●●●

●
●●●

●●●

●

●
● ●

●

●●●●●● ● ● ●●●●● ●● ●●●● ●●●●●●● ● ●●● ●●●

● ●
●

●
●

●

●
●

●●

●

●
●

● ●

●
●

● ●
●

●
●●

●●●

●●
● ●

●

●

●
●●

● ●

●
●

●●● ●●

●
●

●
●

●

●

●
● ●

●

●

●
● ●

●

●
●

● ●● ●
●●●

●
● ● ●●

●●
● ●●

●

●

●

●
●

●
●
●

● ● ●
●●●
● ● ●●●

●
●● ●

●● ●

●

●
●●

●

140 180

●●●●●●●●

●

●
●

●

●

●

●

● ●

●

●
●●

●●●

●●
●●

●

●

●
●●

●

●●

●
●

●●

●

●

●

●
●

● ●

●

●
●

●

●
●●

●

●

●
● ●

●
●●●●

●
●●●

●

●

●
●

●●

●●
● ●

●
●

●●● ●
●
●●●

●●●

●

●
● ●

●

●●● ● ●●●●●●●●

●

●
●●●●● ●●

●●●●

●

●

● ●

●

●
●

●

● ●

●
●

●

●

●
●●

●●
●

●

●

●
●●

●●

●
●

●

●

●

●
●

●
●

●

●
●●

●
●●●

●

●

●
● ●

●

●

●●● ●● ●● ●

●
●●●●

●●●
●

●

●

●
●

●●
●
●

●●●
●●

●
●

● ● ●●●●●●●
●● ●

●

●
●●

●

12 14 16

●●●● ●● ●●●●●

●

●

●

● ●●●●●●
●

●●●●

● ●●

●

●

●

●● ●

● ●●

●

●
●●

●●

●
● ●

●
●

●

●
●●

●●

●
●

●●●

●

●

●

●
●

●

●●

●
● ●

●

●
● ●

●

●

● ●●●●

●
●●●●

●●●
●

●

●

●
●

●●
●

●
● ●●
●●

●
●

● ● ●●●●
●
●●●

●● ●

●

●
●●

●

0
10

00
0

●●● ●●●●●●●●● ●●●●●●●●●●● ●

●

●

●

●● ●●●●●●● ●
●

● ●●●●

●●●●

●

●

●

●

●●●

●
●
●●

●

●
●●

●●

●●●

●

●

●
●●

●

●●

●
●

●●

●

●

●
●

●
●

● ●
●

●
●●

●

●
●●

●

●
●

●● ●●● ●

●
●●●●

●●●
●

●

●

●
●

● ●
●

●
●●●
● ●

●
●

●●● ●
●●●

●●●

●

●
●●

●

0
10

0
20

0 ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

● ● ●●●

●

●

●
●

●

●
●

●●
●

●

●●●
●

●●

●
●

●

●

●●●

●●
●
●
●

●● ●
●

●

●

●

NoOfPools

●

●

● ●
●

●
●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●●
●

●

● ●

●
●

●

●●●

●

●

●

●

●
●

●
●
●

●

●

● ●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

● ●●
●

●
●●

●
●

●

● ● ● ●

●●
●

●
●●● ●●

●
●

●

●

●

● ●

●
●●

● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●
●

●●●
●

●
●

●●●
●

●●

●

● ●
●

●

●

●●●
●●

●●
●

●●●●●
●

●

●

●

●

●●

●
●

● ●
●

●

●

●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●●
●

●
●●

●

●

●

●
●

●●●

●

●● ● ●

●

●
●

●●

●
●

●
●

●●
●

●●●

●

●

●

●

●
●●

●
●

●

●

● ●●
● ●

●

●●
●

●
●●● ● ●

●
●

●

●

●

●●

●

●●●

●

●

●

●
● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●
●

●
●

●●
●

●

●●

●

● ●●

●

●
●

●

●
●

●
●●●

●●●

●

●

● ●
●

●●●
●

●
●

●

● ●●
●

●
●
●

●
●●● ● ●

●
●

●

●

●

●

●
●●

●

● ●● ●

●

●

●
●

●

●
●●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●●
●

●

●

●
●●●

●

●● ●

●

●

●
●

●

●
●

●
●

●●
●

●●●

●

●

●●

●

●
●

●● ●
●

●
●

●

●● ●
●●
●

●●
●●●●●●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●● ●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

● ● ●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

NoOfSites ●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●● ●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● 0
2

4
6

8

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

14
0

18
0

●
●●

●
●

●
● ●

●

●●● ●

●

●

●

●

●

●
●●

●●

●

●●●

●

●●

●

●●
●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●
●

●

●

● ●

●●

●●
●

●●

●
●●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●
●

●●
●
●

● ●

● ●

●

●

●
●●● ●

●
●

●

●●

●

●

●

●●

●

●

● ●

●

● ●

●
●

●●●●
●

●

●

●

●

●

●

● ●

● ●
● ●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●
●

●●

●
●●

●

●●●●
●

●
●
●

●

●
●

●

●

●

●●●● ● ●

● ●●

● ● ●● ●●
●

●
●

●
●

●●●
●

●

●●

●

●

●
●

●

●

●

●

●

● ●●●●
●

●●

●
●

●●● ●

●

●

●●

●

● ●
●

●
●●● ●●

●
●

●●

●

●
●

●

●

●

● ●

● ●
●

●

●
●

●

●●

●

●
● ● ●

●

●
●

● ●
●

●

●

●

●●

●●

●

●●

●
● ●

●

●●
●

● ●
●

●
●

●

●

●
●

●

●

●

avrain
●

●●

●● ●●●●

●●
●

●● ●

●

●

●●
●

●

●●

●●

●
●

●

●●●

●

●

●
●●

●

●

●

● ●●

●

●●

●

●●●

●

●●●

●
●

●

●●●
●

●

●●

●
●

●

●●
●

●
●

●

●

●

●

● ●●
●

●

●

●
●●●

●

●
●

●●
●

●

●

●

●●

●●

●●●
●

●
●

●●

●
● ●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●●●● ●●

●
●

●●

●●●
●

●
●

●

●●
●●●

●
●●

●
●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

● ●

●●●

●

●●●

●

●●●

●

●
●

●●
●

●

●
●●

●
●

●

●●

●

●

●

●

●●
●

●

●

●
●●●

●

●

●
●

●

●

●

●●

●●

●●●
●

●
●

●

●
● ●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●●

●●●●●●

●
●

●●

●●●
●

●

●

●●
● ●●

●
●●

●
●

●●

●

●
●●

●

●●

●

●

●
●●

●

●

●

●●
●

●

●●●

● ●●●

●

●●●

●

●
●

●●●
●

●

●
●●

●
●

●

●●●

●

●

●

●

●●
●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

● ●

● ●

●● ●
●

●
●

●●

●
●●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●●

●

●
●●
●●●
●●

●●

●

●
●
●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●●●●●

●

●

●● ●

●

●

●

●●●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●
●●
●

●●
●

●

●

●

●

●

●
●

●●

●
●●●

●●

●
●

●

●

●
●
●
●

●●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●
●

●

●●● ● ●●●●
●●

●

●

●

●

●●●

●

●

●
●

●

●●
●

●

●

●

●
●●● ●

●

●

●
●●

●
● ●

● ●

●

●

●●

●

● ●●

●

●

●
●●

●
●

●

● ●

●

● ●
●
●

●
●

●

●

●●
●●

●

●

●●
●

●

●

●

●

●

●

●

●
●●●

●●

●
●

●

●
●

●
●

●●
●

●

●

●
● ●

●

●

●

● ● ●

●
●

●
●●

●● ●
●●

●
●

●●

●

●

●

●
●

●●●●
●●

● ●
●

●

●

●

●

●●●
●

●

●● ●

● ●
●

●
● ●

●

● ●

●

●

●
●

●

● ●●

●

●

●●●●
●

●

●●

●●

●●
●

●

●●
● ●

●

●●

●

● ●

●

●
●●●●

●

●

● ●●

●
●

●

●

●
●● ●

●

●

●
●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●
●

●●

●
● ●●

●●

●
●

●

●

●
●●●

●
●

●●
●

●

●

●
●●

●

●
●●

●●

●●

●

●
●●

●●

●

●
●

●●
●

●

●
●

●

●●●
●

●●

●
●

●

●

●
●
●

● ●

●

●

●

●

●●●

●

●
●●

●

●●●●

●

●●

●

●

●●●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●●
●

● ●

●●
●

●

●

●

●

●

●
●

●●

●
●●●

●●

●
●

●

●

●
●

●
●

●●
●

●

●

●
● ●

●

meanmin
●

●●

●●●

●

●●

●●

●

●

●

●

●

●

●●●●
●

●●

●

●
●

●●●

● ●

●

●

●

●

●●

●●

●

●●●

●

●

●
●●

●

●

●●●●

●

●●

●

●

●

●

●●●

●

●

●

●●
●

●
●

●●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●
●

●●

●●●

●●

●
●

●

●

●
●●●
●

●

●●
●

●

●

●
●●

●

2.
0

3.
0

4.
0

●●

●●

●●●
●●

●●

●●

●

●

●

●

●
●

●

●
● ●●

●

●●

●

●

●
●

●

●

●●
●●

●

●
●

●

●●

●●
●

●

●

●

●

●●

●

●

●●

●

●●●

●
●●

●

●●
●●

●

●

●●●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●
●

●●

●
●●●

●●

●
●

●

●

●
●●●
●

●

●●
●

●

●

●
●●

●

12
14

16

●

●●

●●
●

●●

●
●●
●

●

●

●

●

●

●

●
●●
●●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●
●

●
●

●●●●

●
●

●

●

●●●● ●
●

●

●
●

●

●●

●

● ●

●

●

●

●●

●

●

●
●●

●●
●●
●

●●●

●
●

●

●

●

●
●

●●

●
●●
●

●●

●
●

●

●

●●●●
●
●●●

●

●

●

●
●

●

●
●

●

●● ●
●

●

●
●

●
●

●
●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●●● ●

●

●●

●

●
●

●

● ●●

●

●
●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

● ●●

●

●●

●●
●

●

●●●

●
●

●

●
●

●●

●
●●

●

●●

●
●

●

●●●●
●

●●●

●

●

●

●
●

●

●●●

●

●●

●● ● ●● ●●
●

●●●

●

●

●

●

●

●

●● ●
●

●

●
●

●
●

● ●

●

●

●

●

●●●●

●

●●●
●

●
●

●

●

●
● ●

●

●

●

●●●
●

●●

●

●

●●
● ●

●● ●

●

●
●

●

●
●●●●

●

●

●

●
●
●

●●
●●

●
●

●

●
●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●●
● ●
●

●●

● ●●

●
●

●

●

●
●

●●

●
● ●

●

●●

●
●

●

●

●●●● ●
●

●●●

●

●

●

●
●

●

●
●
●

●●
●●
●

●

●

●●

●●●●

●

●

●

●

● ●
●
●

●

●●

●

●●

●●● ●●
●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●
●●

●

●●●

●
●

●●
●

●

●
●
●

●●

●

●

●●

●

●

●

●●●●

● ●

●●
●

●

●

●●●

●
●

●

●

●
●

●●

●
●●

●

●●

●
●

●

●

● ●
●

●●●

●

●

●

●
●

●

●

●●

●●
●

●

●● ●●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●●

●

●●

●●●● ●●

●

●

●

●

●

●

●

● ●●
●

●

●●

●

●

●●
●●

●
●

●●●●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●●

●

●

●●

●

●

●

●●
●

●

●

●●●

●
●

●

●

●

●
●

●●

●●
●

●●

●
●

●

●

●●●●●
●

●●●

●

●

●

●
●

●

meanmax
●●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●●

●●
●

●
●●

●
●

●●●●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●●●

●

●

●

●

●
●

●●

●
●●

●

●●

●
●

●

●

●●●●●
●

●●●

●

●

●

●
●

●

0 10000

●
●
●

●●●●
●●●
●●●

●●
●●
●●●●●

●

●

●

●

●
●

●
●
●
●●
●●
●

●

●
●●●●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●
●

●
●

●●●

●

●

● ●

●●●

●
●

●

●

●

●● ●
●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●●

●

●
●

●

●
●

●

●

●●
●●
●

●●●

● ●

●

●

●

●

●

●
●

●
●
●

●

●●

●
●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●

●

●● ●
●

●

●

●
●

● ●●
●

●
●

●

●

●

●
●

●
●●●

●

●●

●●
● ●

●

●

●
●

●
●

● ●● ●●

●
●

●●

●
●

●

●

●
●

●

● ●

●

●
●

●●

●

●
●
●

●

●

●
●●

●

●

●
●

●
●

● ●
●

●●

●●

●
●●

●

●●●

● ●

●
●

●

●
●

●
●

●
●

●●

●
●

●

●●●
●
●
●

●

●

●

●
●

●

0 2 4 6 8

●
●

●●
● ● ●

●

●

●

●●
●●

●●● ●
●●

●
●●●

●

●

●

●
●

●● ●
●

●

●●●
●

●
● ●

●

●

●

●
●

●
●

●
●●●

●
●

●
●

●

●● ●

●

●
●

●

●●●
● ●

●

●

●
●

●
●

●

●

●●

●

● ●●●●
●

●
●

●
●

●●

●
●

●

●●
● ●

●●●

●
●

●

●

●
●●● ●●

●

●

●

●
●
●

●
●●

●● ●

●

●

●

●
●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●●
● ●
●

●
●

● ●●

●●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●

●

●●●● ●
●

●●
●

●

●

●

●
●

●

●
●

●●●●
●●
●

●

●●

●●
●
●

●
●

●

● ●
●
●

●
●●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●
●

●●
●●

●

●●●

●

●
●

●●●
●

●

●
●
●

●

●

●

●●

●

●

●

●●
●

●

●●

● ●

●
●●
●

●

●●

● ●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●

●

● ●
●

●●
●

●

●

●

●
●

●

2.0 3.0 4.0

●

●●
●●●

●

●●
●●

●

●

●

●

●

●

●
●

●
●

●
●●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●

●
●●

●

●●
●●

●●

●●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●
●

●

●

●

●
●

●●

●

●
●

●

● ●

●
●

●

●

●●●

●●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●

●

●●●●●
●

●●
●

●

●

●

●
●

●

●

●●

●

●●

●●
●

●●●●
●●●

●

●

●

●

●

●●●●●●●

●

●
●

●
●

●
●●
●

●

●

●

●
●

●●

●
●

●

●
●

●

●●

●
●

●
●

●●

●

●
●●

●●

●●●●

●
●

●

●

●
●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●

●

●●●●●
●

●●
●

●

●

●

●
●

●

1300 1600
13

00
16

00

altitude

Figure 8.5 Scatterplot matrix for predictor variables in the frogs data set.

a square root transformation might be appropriate. Figure 8.6 shows three density plots
for each of these variables: untransformed, after a square root, and after a logarithmic
transformation.6 For NoOfSites, a large number of values of NoOfSites are zero.
Hence we plot log(NoOfSites+1).

For distance and NoOfPools, we prefer a logarithmic transformation, while
NoOfSites is best not transformed at all.

Figure 8.7 makes it clear that altitude and meanmax, with a correlation of −0.9966,
tell essentially the same story.7

6 ## Here is code for the top row of plots
par(mfrow=c(3,3))
for(nam in c("distance","NoOfPools","NoOfSites")){

y <- frogs[, nam]
plot(density(y), main="", xlab=nam)
}

# The other rows can be obtained by replacing y by
# sqrt(y) or log(y) (or, for NoOfSites, by log(y+1))

par(mfrow=c(1,1))
7 ## Correlation between altitude and meanmax
with(frogs, cor(altitude,meanmax))



8.2 Logistic multiple regression 251

0 5000 150000e
+

00
3e

−
04

distance

D
is

ta
nc

e
0 50 150 250

0.
00

0
0.

01
5

0.
03

0

NoOfPools

−2 8642 12

0.
00

0.
10

0.
20

NoOfSites

0 50 100 150

0.
00

0
0.

01
5

sqrt(distance)

D
is

ta
nc

e

0 5 10 15

0.
00

0.
10

sqrt(NoOfPools)

43210

0.
0

0.
2

0.
4

0.
6

sqrt(NoOfSites)

5 6 7 8 9 11

0.
0

0.
2

log(distance)

D
is

ta
nc

e

0 2 4 6

0.
0

0.
2

log(NoOfPools)

−0.5 0.5 1.5 2.5

0.
0

0.
4

0.
8

log(NoOfSites+1)

Figure 8.6 Density plots for distance (distance), number of pools (NoOfPools), and number
of sites (NoOfSites), before and after transformation.

Rather than working with meanmin and meanmax, it is in principle better to work with
meanmax-meanmin and meanmax+meanmin (or 0.5*(meanmax+meanmin)),
which are much less strongly correlated. Here is the correlation matrix:

> with(frogs, cor(cbind(altitude,

+ "meanmax+meanmin" = meanmin+meanmax,

+ "meanmax-meanmin" = meanmax-meanmin)))

altitude meanmax+meanmin meanmax-meanmin

altitude 1.0000 -0.9933 -0.9095

meanmax+meanmin -0.9933 1.0000 0.8730

meanmax-meanmin -0.9095 0.8730 1.0000

The variance inflation factor (VIF) for altitude and for meanmax+meanmin will be
at least (1 − 0.99332)−1 � 74.9 (the squared correlation between, e.g., altitude and any
one other explanatory variable is a lower bound for the squared multiple correlation with all
other explanatory variables). It is pointless to include both of these as explanatory variables;
the standard errrors will be so large as to render the calculated coefficients meaningless.

We now (using Figure 8.7) investigate the scatterplot matrix for the variables that are
transformed as above. We replace meanmin and meanmax by meanmax-meanmin and
meanmax+meanmin.8

8 with(frogs,
pairs(cbind(log(distance), log(NoOfPools), NoOfSites, avrain,

altitude, meanmax+meanmin, meanmax-meanmin), col="gray",
labels=c("log(distance)", "log(NoOfPools)", "NoOfSites",

"Av. rainfall", "altitude", "meanmax+meanmin",
"meanmax-meanmin"),

panel=panel.smooth))



252 Generalized linear models and survival analysis

Figure 8.7 Scatterplot matrix for altitude, transformed versions of distance and NoOfPools,
and NoOfSites. We are particularly interested in whether the relationship with altitude is
plausibly linear. If the relationship with altitude is linear, then it will be close to linear also with
the temperature and rain variables.

The smoothing curves for log(distance) and log(NoOfPools) are nearly linear.
There appears to be some non-linearity associated with NoOfSites, so that we might
consider including NoOfSites2 (the square of NoOfSites) as well as NoOfSites in
the regression equation.

8.2.1 Selection of model terms, and fitting the model

For prediction, meanmax+meanmin may be preferable to altitude. A change in
temperature at a given altitude may well influence the choice of sites.

We try the simpler model (without NoOfSites2) first:

> summary(frogs.glm0 <- glm(formula = pres.abs ˜ log(distance) +

+ log(NoOfPools) + NoOfSites + avrain +

+ I(meanmax+meanmin)+I(meanmax-meanmin),



8.2 Logistic multiple regression 253

+ family = binomial, data = frogs))

. . . .

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 18.26890 16.13819 1.13 0.2576

log(distance) -0.75832 0.25581 -2.96 0.0030

log(NoOfPools) 0.57090 0.21533 2.65 0.0080

NoOfSites -0.00362 0.10615 -0.03 0.9728

avrain 0.00070 0.04117 0.02 0.9864

I(meanmax + meanmin) 1.49581 0.31532 4.74 2.1e-06

I(meanmax - meanmin) -3.85827 1.27839 -3.02 0.0025

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 279.99 on 211 degrees of freedom

Residual deviance: 197.65 on 205 degrees of freedom

AIC: 211.7

Number of Fisher Scoring iterations: 5

Because we have taken no account of spatial clustering, and because there are questions
about the adequacy of the asymptotic approximation that is required for their calculation,
the p-values should be used with caution. We do however note the clear separation of the
predictor variables into two groups – in one group the p-values are 0.5 or more, while for
those in the other group the p-values are all very small.

Note that NoOfSites has a coefficient with a large p-value. Replacing it with
NoOfSites2 makes little difference. We can almost certainly, without loss of predic-
tive power, omit NoOfSites and avrain. The regression equation becomes:

> frogs.glm <- glm(pres.abs ˜ log(distance) + log(NoOfPools) +

+ I(meanmax+meanmin)+ I(meanmax-meanmin),

+ family = binomial, data = frogs)

> summary(frogs.glm)

. . . .

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 18.527 5.267 3.52 0.00044

log(distance) -0.755 0.226 -3.34 0.00084

log(NoOfPools) 0.571 0.215 2.65 0.00800

I(meanmax + meanmin) 1.498 0.309 4.85 1.2e-06

I(meanmax - meanmin) -3.881 0.900 -4.31 1.6e-05

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 279.99 on 211 degrees of freedom

Residual deviance: 197.66 on 207 degrees of freedom

AIC: 207.7

Number of Fisher Scoring iterations: 5



254 Generalized linear models and survival analysis

The residual deviance is almost unchanged. The coefficients that are retained have scarecely
changed. Thus, conditioning on the variables that have been left out of the regression
equation makes no difference of consequence to the estimates of the effects of variables
that have been included.

8.2.2 Fitted values

The function fitted() calculates fitted values that are on the scale of the response.
The values that are returned by the linear predictor are back-transformed to give the fitted
values. For logistic regression, the link function is the logit, i.e.:

f (x) = log

(
x

1 − x

)
, where 0 < x < 1.

The inverse of the logit, used for the back transformation, is:

g(u) = exp(u)

1 + exp(u)
.

An alternative is to calculate fitted values on the scale of the linear predictor. The default
action of the function predict() is to return fitted values on the scale of the linear
predictor. The possibilities are:

fitted(frogs.glm) # Fitted values’ scale of response

predict(frogs.glm, type="response") # Same as fitted(frogs.glm)

predict(frogs.glm, type="link") # Scale of linear predictor

## For approximate SEs, specify

predict(frogs.glm, type="link", se.fit=TRUE)

Plate 3 allows a comparison of model predictions with observed occurrences of frogs,
with respect to geographical co-ordinates. Because our modeling has taken no account
of spatial correlation, examination of such a plot is more than ordinarily desirable. We
should be concerned if we see any patterns in the spatial arrangement of points where
frogs were predicted with high probability but few frogs were found; or where frogs were
not expected but appeared with some frequency. There is little overt evidence of such
clusters.

For models with a binary outcome, plots of residuals are not, in general, very useful. At
each point the residual is obtained by subtracting the fitted value from either 0 or 1. Given
the fitted model, the residual can take just one of two possible values. For the frogs.glm
model it makes sense, as noted above, to look for patterns in the spatial arrangement
of points where there seems a discrepancy between observations of frogs and predicted
probabilities of occurrence.



8.2 Logistic multiple regression 255

0 5000 15000

−
4

−
2

0
2

4

distance

P
ar

tia
l f

or
 lo

g(
di

st
an

ce
)

0 50 100 200

−
4

−
2

0
2

4

NoOfPools
P

ar
tia

l f
or

 lo
g(

N
oO

fP
oo

ls
)

14 16 18 20

−
4

−
2

0
2

4

maxminSum

P
ar

tia
l f

or
 m

ax
m

in
S

um

9.5 10.5 11.5

−
4

−
2

0
2

4

maxminDiff

P
ar

tia
l f

or
 m

ax
m

in
D

iff

Figure 8.8 Plots showing the contributions of the explanatory variables to the fitted values, on the
scale of the linear predictor.

8.2.3 A plot of contributions of explanatory variables

The equation that we have just fitted adds together the effects of log(distance),
log(NoOfPools), meanmin, and meanmax. Figure 8.8 shows the change due to each
of these variables in turn, when other terms are held at their means. The code is:9

par(mfrow=c(1,4), pty="s")

frogs$maxminSum <- with(frogs, meanmax+meanmin)

frogs$maxminDiff <- with(frogs, meanmax-meanmin)

frogs.glm <- glm(pres.abs ˜ log(distance) + log(NoOfPools) +

maxminSum + maxminDiff, family = binomial,

data = frogs)

termplot(frogs.glm)

par(mfrow=c(1,1))

The y-scale on these plots is that of the linear predictor. Under the logit link, zero
corresponds to a probability of 0.5. Probabilities for other values are −4: 0.02, −2: 0.12,
2: 0.88, and 4: 0.98. The ranges on the vertical scale indicate that easily the biggest
effects are for meanmax+meanmin and meanmax-meanmin. A high value of
meanmax+meanmin greatly increases the probability of finding frogs, while a large
difference meanmax-meanmin greatly reduces that probability. The contributions from
log(distance) and log(NoOfPools) are much smaller.

8.2.4 Cross-validation estimates of predictive accuracy

Our function CVbinary() calculates cross-validation estimates of predictive accuracy
for these models. Folds are numbered according to the part of the data that is used, at that
fold, for testing. The resubstitution measure of accuracy makes predictions for the data used
to derive the model, and calculates the proportion of correct predictions. By the time the
cross-validation calculations are complete, each observation has been a member of a test set
at one of the folds only; thus predictions are available for all observations that are derived
independently of those observations. The cross-validation measure is the proportion that
are correct:

9 ## For binary response data, plots of residuals are not insightful
## To see what they look like, try:
termplot(frogs.glm, data=frogs, partial.resid=TRUE)



256 Generalized linear models and survival analysis

> CVbinary(frogs.glm0)

Fold: 5 1 3 8 7 10 2 4 9 6

Training data estimate of accuracy = 0.778

Cross-validation estimate of accuracy = 0.769

> CVbinary(frogs.glm)

Fold: 8 5 6 10 7 4 9 1 2 3

Training data estimate of accuracy = 0.778

Cross-validation estimate of accuracy = 0.774

The training estimate assesses the accuracy of prediction for the data used in deriving the
model. Cross-validation estimates the accuracy that might be expected for a new sample.

The cross-validation estimates can be highly variable; it is best to run the cross-validation
routine a large number of times and to make comparisons in as accurate a manner as possible.
When assessing the appropriateness of the proposed model for the frogs data, we com-
puted four separate cross-validation estimates of prediction accuracy using the initial model,
and we repeated these computations independently using the reduced model with vari-
ables log(distance), log(NoOfPools), meanmax+meanmin, and meanmax-
meanmin. The accuracy estimates for the initial model came to 78.8%, 77.8%, 77.4%, and
78.8%, while the accuracy estimates for the reduced model were 76.9%, 77.8%, 78.3%,
and 77.8%. The variability of these estimates makes it difficult to discern a difference.

A more accurate comparison can be obtained by matching the cross-validation runs for
each model. We do this by making a random assignment of observations to folds before
we call the cross-validation function, first with the full model and then with the reduced
model. The first four cross-validation comparisons are as follows:10

Initial: 0.783 Reduced: 0.783

Initial: 0.774 Reduced: 0.774

Initial: 0.774 Reduced: 0.774

Initial: 0.774 Reduced: 0.774

The pairwise comparisons show no difference.

8.3 Logistic models for categorical data – an example

The array UCBAdmissions in the datasets package is a 2×2×6 array, with dimensions:
Admit (Admitted/Rejected) × Gender (Male/Female) × Dept (A, B, C, D, E, F).

10 ## The cross-validated estimate of accuracy is stored in the list
## element acc.cv, in the output from the function CVbinary(), thus:
for (j in 1:4){

randsam <- sample(1:10, 212, replace=TRUE)
initial.acc <- CVbinary(frogs.glm0, rand=randsam,

print.details=FALSE)$acc.cv
reduced.acc <- CVbinary(frogs.glm, rand=randsam,

print.details=FALSE)$acc.cv
cat("Initial:", round(initial.acc,3), " Reduced:", round(reduced.acc,3), "\n")
}



8.3 Logistic models for categorical data – an example 257

A first step is to create, from this table, a data frame whose columns hold the information
in the observations by variables format that will be required for the use of glm():

## Create data frame from multi-way table UCBAdmissions (datasets)

dimnames(UCBAdmissions) # Check levels of table margins

UCB <- as.data.frame.table(UCBAdmissions["Admitted", , ])

names(UCB)[3] <- "admit"

UCB$reject <- as.data.frame.table(UCBAdmissions["Rejected", , ])$Freq

UCB$Gender <- relevel(UCB$Gender, ref="Male")

## Add further columns total and p (proportion admitted)

UCB$total <- UCB$admit + UCB$reject

UCB$p <- UCB$admit/UCB$total

We use a loglinear model to model the probability of admission of applicants. It is
important, for present purposes, to fit Dept, thus adjusting for different admission rates in
different departments, before fitting Gender:

UCB.glm <- glm(p ˜ Dept*Gender, family=binomial,

data=UCB, weights=total)

anova(UCB.glm, test="Chisq")

The output is:

Analysis of Deviance Table

Model: binomial, link: logit

Response: p

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 11 877

Dept 5 855 6 22 1.2e-182

Gender 1 2 5 20 2.2e-01

Dept:Gender 5 20 0 -2.6e-13 1.1e-03

>

After allowance for overall departmental differences in admission rate (but not for the
Dept:Gender interaction; this is a sequential table), there is no detectable main effect
of Gender. The significant interaction term suggests that there are department-specific
gender biases, which average out to reduce the main effect of Gender to close to
zero.

We now examine the individual coefficients in the model:

> summary(UCB.glm)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4921 0.0717 6.859 6.94e-12

DeptB 0.0416 0.1132 0.368 7.13e-01



258 Generalized linear models and survival analysis

DeptC -1.0276 0.1355 -7.584 3.34e-14

DeptD -1.1961 0.1264 -9.462 3.02e-21

DeptE -1.4491 0.1768 -8.196 2.49e-16

DeptF -3.2619 0.2312 -14.110 3.31e-45

GenderFemale 1.0521 0.2627 4.005 6.20e-05

DeptB:GenderFemale -0.8321 0.5104 -1.630 1.03e-01

DeptC:GenderFemale -1.1770 0.2995 -3.929 8.52e-05

DeptD:GenderFemale -0.9701 0.3026 -3.206 1.35e-03

DeptE:GenderFemale -1.2523 0.3303 -3.791 1.50e-04

DeptF:GenderFemale -0.8632 0.4026 -2.144 3.20e-02

The first six coefficients relate to overall admission rates, for males, in the six departments.
The strongly significant positive coefficient for GenderFemale indicates that log(odds)
is increased by 1.05, in department A, for females relative to males. In departments C, D,
E and F, the log(odds) is reduced for females, relative to males.

8.4 Poisson and quasi-Poisson regression

8.4.1 Data on aberrant crypt foci

The data frame ACF1 consists of two columns: count and endtime. The first column
contains the counts of simple aberrant crypt foci (ACFs) – these are aberrant aggregations
of tube-like structures – in the rectal end of 22 rat colons after administration of a dose of
the carcinogen azoxymethane. Each rat was sacrificed after 6, 12 or 18 weeks (recorded in
the column endtime). For further background information, see McLellan et al. (1991).

The argument is that there are a large number of sites where ACFs might occur, in each
instance with the same low probability. Because “site" does not have a precise definition,
the total number of sites is unknown, but it is clearly large. If we can assume independence
between sites, then we might expect a Poisson model, for the total number of ACF sites.
The output from fitting the model will include information that indicates whether a Poisson
model was, after all, satisfactory. If a Poisson model does not seem satisfactory, then a
quasi-Poisson model may be a reasonable alternative. A model of a quasi-Poisson type is
consistent with clustering in the appearance of ACFs. This might happen because some rats
are more prone to ACFs than others, or because ACFs tend to appear in clusters within the
same rat.

Figure 8.9 provides plots of the data.11 A logarithmic scale is appropriate on the x-axis
because the Poisson model will use a log link. Observe that the counts increase with time.
For fitting a Poisson regression model, we use the poisson family in the glm() function.
Momentarily ignoring the apparent quadratic relation, we fit a simple linear model:

> summary(ACF.glm0 <- glm(formula = count ˜ endtime,

+ family = poisson, data = ACF1))

. . . .

Coefficients:

Estimate Std. Error z value Pr(>|z|)

11 ## Plot count vs endtime: data frame ACF1 (DAAG)
plot(count ˜ endtime, data=ACF1, pch=16, log="x")



8.4 Poisson and quasi-Poisson regression 259

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

86 10 12 16

0
2

4
6

8
10

endtime

co
un

t

Figure 8.9 Plot of number of simple aberrant crypt foci (count) versus endtime.

(Intercept) -0.3215 0.4002 -0.80 0.42

endtime 0.1192 0.0264 4.51 6.4e-06

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 51.105 on 21 degrees of freedom

Residual deviance: 28.369 on 20 degrees of freedom

AIC: 92.21

Number of Fisher Scoring iterations: 4

We see that the relation between count and endtime is highly significant. In order to
accommodate the apparent quadratic effect, we try adding an endtimeˆ2 term. The code
and output summary is:

> summary(ACF.glm <- glm(formula = count ˜ endtime + I(endtimeˆ2),

+ family = poisson, data = ACF1))

. . . .

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.72235 1.09177 1.58 0.115

endtime -0.26235 0.19950 -1.32 0.188

I(endtimeˆ2) 0.01514 0.00795 1.90 0.057

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 51.105 on 21 degrees of freedom

Residual deviance: 24.515 on 19 degrees of freedom

AIC: 90.35

. . . .

The fitted values are:

> (etime <- unique(ACF1$endtime))

[1] 6 12 18

> exp(-0.3215 + 0.1192*etime) # Linear term only

[1] 1.48 3.03 6.20



260 Generalized linear models and survival analysis

> exp(1.72235 - 0.26235*etime + 0.01514*etimeˆ2) # Quadratic model

[1] 2.00 2.13 6.72

These fitted values are alternatively available as unique(fitted(ACF.glm0)) and
unique(fitted(ACF.glm)).

Observe that the residual mean deviance is 24.515/19 = 1.29. For a Poisson model this
should, unless a substantial proportion of fitted values are small (e.g., less than about 2), be
close to 1. This may be used as an estimate of the dispersion, i.e., of the amount by which
the variance is increased relative to the expected variance for a Poisson model. A better
estimate (it has only a very small bias) is, however, that based on the Pearson chi-squared
measure of lack of fit. This can be obtained as follows:

> sum(resid(ACF.glm, type="pearson")ˆ2)/19

[1] 1.25

This suggests that standard errors should be increased, and t-statistics reduced by
√

1.25 �
1.12, relative to those given above for the Poisson model.

The following fits a quasi-Poisson model, which incorporates this adjustment to the
variance. As the increased residual variance will take the quadratic term even further from
the conventional 5% significance level, we do not bother to fit it:

> ACFq.glm <- glm(formula = count ˜ endtime,

+ family = quasipoisson, data = ACF1)

> summary(ACFq.glm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.322 0.4553 -0.706 0.488239

endtime 0.119 0.0300 3.968 0.000758

Notice that the z value has now become a t value, suggesting that is should be
referred to a t-distribution with 19 degrees of freedom (19 d.f. were available to estimate
the dispersion).

There are enough small expected counts that the dispersion estimate and resultant t-
statistics should be treated with modest caution. Additionally, there is a question whether
the same dispersion estimate should apply to all values of endtime. This can be checked
with:

> sapply(split(residuals(ACFq.glm), ACF1$endtime), var)

6 12 18

1.096 1.979 0.365

Under the assumed model, these should be approximately equal. The differences in variance
are, however, nowhere near statistical significance. The following approximate test ignores
the small amount of dependence in the residuals:

> fligner.test(resid(ACFq.glm) ˜ factor(ACF1$endtime))

Fligner-Killeen test of homogeneity of variances

data: resid(ACFq.glm) by factor(ACF1$endtime)

Fligner-Killeen:med chi-squared = 2.17, df = 2, p-value = 0.3371



8.4 Poisson and quasi-Poisson regression 261

Number of moths (species A)

Bank
Disturbed
Lowerside

NEsoak
NWsoak
SEsoak
SWsoak

Upperside

100 20 30 40

●

●

●●

●

●●●●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●● ●

●

●

●●●

●

●●

●

●

Individual transects Mean●

Figure 8.10 Dotplot summary of the numbers of moths of species A, by habitat type.

8.4.2 Moth habitat example

The moths data are from a study of the effect of habitat on the densities of two species
of moth. Transects were set out across the search area. Within transects, sections were
identified according to habitat type. The end result was that there were:

� 41 different lengths (meters) of transect ranging from 2 meters to 233 meters,
� grouped into eight habitat types within the search area – Bank, Disturbed,
Lowerside, NEsoak, NWsoak, SEsoak, SWsoak, Upperside,

� with records taken at 20 different times (morning and afternoon) over 16 weeks.

The variables A and P give the numbers of moths of the two different species. Here is a
tabular summary, by habitat:12

Bank Disturbed Lowerside NEsoak NWsoak SEsoak SWsoak Upperside

Number 1 7 9 6 3 7 3 5

meters 21 49 191 254 65 193 116 952

A 0 8 41 14 71 37 20 28

P 4 33 17 14 19 6 48 8

The Number is the total number of transects for that habitat, while meters is the total
length.

Figure 8.10 gives a visual summary of the data. The code is:

library(lattice)

dotplot(habitat ˜ A, data=moths, xlab="Number of moths (species A)",

panel=function(x, y, ...){

panel.dotplot(x,y, pch=1, col="black", ...)

panel.average(x, y, pch=3, cex=1.25, type="p", col="gray45")

},

key=list(text=list(c("Individual transects", "Mean")),

points=list(pch=c(1,3), cex=c(1,1.25), col=c("black","gray45")),

columns=2))

12 ## Number of moths by habitat: data frame moths (DAAG)
rbind(Number=table(moths[, 4]), sapply(split(moths[, -4], moths$habitat),

apply, 2, sum))



262 Generalized linear models and survival analysis

For data such as these, there is no reason to accept the Poisson distribution assump-
tion that moths appear independently. The quasipoisson family, used in place of the
poisson, will now be the starting point for analysis. The dispersion estimate from the
quasipoisson model will indicate whether a Poisson distribution assumption might
have been adequate.

The model will take the form

y = habitat effect + β log(length of section)

where y = log(expected number of moths).
The use of a logarithmic link function, so that the model works with log(expected number

of moths), is the default. With this model, effects are multiplicative. This form of model
allows for the possibility that the number of moths per meter might be relatively lower or
higher for long than for short sections.

Comparisons are made against a reference (or baseline) factor level. The default reference
level determined according to the alphanumeric order of the level names is not always the
most useful, so that the relevel() function must be used to change it. Before making
such a change, let’s see what happens if we proceed blindly and use as reference Bank,
which is the initial level of habitat in the data as included in the DAAG package.

An unsatisfactory choice of reference level

No moths of the first species (A) were found in the Bank habitat. This zero count creates
problems for the calculation of standard errors, as will now be apparent:

> summary(A.glm <- glm(A ˜ habitat + log(meters),

+ family = quasipoisson, data = moths))

. . . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -15.696 2096.588 -0.01 0.99

log(meters) 0.129 0.153 0.85 0.40

habitatDisturbed 15.622 2096.588 0.01 0.99

habitatLowerside 16.906 2096.588 0.01 0.99

habitatNEsoak 16.084 2096.588 0.01 0.99

habitatNWsoak 18.468 2096.588 0.01 0.99

habitatSEsoak 16.968 2096.588 0.01 0.99

habitatSWsoak 17.137 2096.588 0.01 0.99

habitatUpperside 16.743 2096.588 0.01 0.99

(Dispersion parameter for quasipoisson family taken to be 2.7)

Null deviance: 257.108 on 40 degrees of freedom

Residual deviance: 93.991 on 32 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 13

The row of the data frame that has the information for Bank is:



8.4 Poisson and quasi-Poisson regression 263

> subset(moths, habitat=="Bank")

meters A P habitat

40 21 0 4 Bank

The estimate for (Intercept) is −15.696; note that this is on a logarithmic scale. Thus
the expected number of moths, according to the fitted model, is

exp(−15.696 + 0.129 log(21)) = −2.27 × 10−7.

This is an approximation to zero! A tightening of the convergence criteria would give
an even smaller intercept and an expected value that is even closer to zero, which is the
observed value.13

The huge standard errors, and the value of NA for the AIC statistic, are an indication that
the output should not be taken at face value. A further indication comes from examination
of the standard errors of predicted values:

> ## SEs of predicted values

> A.se <- predict(A.glm, se=T)$se.fit

> A.se[moths$habitat=="Bank"]

40

2097

> range(A.se[moths$habitat!="Bank"])

[1] 0.197 0.631

The generalized linear model approximation to the standard error breaks down when, as
here, the fitted value for the reference level is zero. We cannot, from this output, say anything
about the accuracy of comparisons with Bank or between other types of habitat.

A more satisfactory choice of reference level

The difficulty can be avoided, for habitats other than Bank, by taking Lowerside as the
reference:

> moths$habitat <- relevel(moths$habitat, ref="Lowerside")

> summary(A.glm <- glm(A ˜ habitat + log(meters),

+ family=quasipoisson, data=moths))

. . . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2098 0.4553 2.66 0.012

habitatBank -16.9057 2096.5884 -0.01 0.994

habitatDisturbed -1.2832 0.6474 -1.98 0.056

13 > ## Analysis with tighter convergence criterion
> A.glm <- update(A.glm, epsilon=1e-10)
> summary(A.glm)$coef
> head(summary(A.glm)$coefficients, 3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -20.70 25542 -0.0008103 0.9994
habitatDisturbed 20.62 25542 0.0008074 0.9994
habitatLowerside 21.91 25542 0.0008576 0.9993
# Notice the large increase in standard errors that were already large



264 Generalized linear models and survival analysis

habitatNEsoak -0.8217 0.5370 -1.53 0.136

habitatNWsoak 1.5624 0.3343 4.67 5.1e-05

habitatSEsoak 0.0621 0.3852 0.16 0.873

habitatSWsoak 0.2314 0.4781 0.48 0.632

habitatUpperside -0.1623 0.5843 -0.28 0.783

log(meters) 0.1292 0.1528 0.85 0.404

(Dispersion parameter for quasipoisson family taken to be 2.7)

Null deviance: 257.108 on 40 degrees of freedom

Residual deviance: 93.991 on 32 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 13

Note that the dispersion parameter, which for a Poisson distribution should equal 1, is
2.7. (One of several possible explanations for the dispersion is that there is a clustering
effect, with an average cluster size of 2.7. Such clustering need not imply that moths will
necessarily be seen together – they may appear at different times and places in the same
transect.) Thus, standard errors and p-values from a model that assumed Poisson errors
would be highly misleading. Use of a quasi-Poisson model, rather than a Poisson model,
has increased standard errors by a factor of

√
2.7 = 1.64. The ratio of estimate to standard

error is shown as t value, implying that a t-distribution should be used as the reference.
The number of degrees of freedom is that used for estimating the dispersion.

The estimates are on a logarithmic scale. Thus, the model predicts exp(-1.283) =
0.277 times as many moths on Disturbed as on Lowerside. There remains a problem
for the comparison between Bank and other habitats. We will return to this shortly.

The fitted values remain the same as when Bank was the reference. Thus for Dis-
turbed, the earlier model calculated the fitted values (on a log scale) as

−15.696 + 15.622 + 0.129 log(meters) = −0.074 + 0.129 log(meters)

while the model with Lowerside as the reference calculates them as

1.2098 − 1.2832 + 0.129 log(meters) = −0.0734 + 0.129 log(meters).

According to the model:

log(expected number of moths) = 1.21 + 0.13 log(meters)

+ habitat (change from Lowerside as reference),

i.e., expected number of moths = 0.93 × meters0.13 × ehabitat.
The above output indicates that moths are much more abundant in NWsoak than in other

habitats. Notice that the coefficient of log(meters) is not statistically significant. This
species (A) avoids flying over long open regions. Their preferred habitats were typically
at the ends of transects. As a result, the length of the transect made little difference to the
number of moths observed.



8.4 Poisson and quasi-Poisson regression 265

The comparison between Bank and other habitats

Enough has been said to indicate that the t value or Wald statistic, which is anyway
approximate, is meaningless for comparisons that involve Bank. The deviances can how-
ever be used, in an adaptation of a likelihood ratio test, to make the comparison. (The
adaptation is needed to account for the dispersion; standard likelihood theory does not
apply.) Here is the comparison between Bank and NWsoak:

> ## Examine change in deviance from merging Bank with NWsoak

> habitatNW <- moths$habitat

> habitatNW[habitatNW=="Bank"] <- "NWsoak"

> habitatNW <- factor(habitatNW) # NB: Bank and NWsoak

> table(habitatNW)

habitatNW

Lowerside Disturbed NEsoak NWsoak SEsoak SWsoak Upperside

9 7 6 4 7 3 5

> ANW.glm <- glm(A ˜ habitatNW + log(meters), family = quasipoisson,

+ data=moths)

> anova(A.glm, ANW.glm, test="F")

Analysis of Deviance Table

Model 1: A ˜ habitat + log(meters)

Model 2: A ˜ habitatNW + log(meters)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 32 94.0

2 33 134.9 -1 -40.9 15.1 0.00047

An F -test is used because the dispersion estimate is greater than one. The quantity that
is labeled F is calculated as (Change in deviance)/Dispersion = 40.9/2.7 � 15.1. While
this scaled change in deviance statistic does not have the problems that can arise in the
calculation of the denominator for the Wald statistic, there can be no guarantee that it will
be well approximated by an F -distribution, as assumed here. The diagnostic plots that will
now be examined shortly are however encouraging.

Code for the comparison between Bank and Disturbed is:

habitatD <- moths$habitat

habitatD[habitatD=="Bank"] <- "Disturbed"

habitatD <- factor(habitatD)

A.glm <- glm(A ˜ habitat + log(meters), family = quasipoisson,

data=moths)

AD.glm <- glm(A ˜ habitatD + log(meters), family = quasipoisson,

data=moths)

anova(A.glm, AD.glm, test="F")

Here, the p-value is 0.34, i.e., the two habitats cannot be distinguished.



266 Generalized linear models and survival analysis

0.0 1.0 2.0 3.0

−
4

−
2

0
2

Predicted values

R
es

id
ua

ls

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Resids vs Fitted

1

12

4

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2
Theoretical quantiles

S
td

. d
ev

ia
nc

e 
re

si
d.

Normal Q−Q

1

1012

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

Predicted values

S
td

.d
ev

ia
nc

e
re

si
d.

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

Scale−Location
1

1012

0.0 0.1 0.2 0.3 0.4

−
2

−
1

0
1

2
3

Leverage

S
td

. P
ea

rs
on

 r
es

id
.

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Cook's distance 0 5

0 5

Resids vs Leverage

1

1012

Figure 8.11 Diagnostic plots for modeling A (the number of moths of species A) as a function of
habitat and log(meters), for habitats other than Bank.

Diagnostic plots

For the plot now presented (Figure 8.11), the habitat Bank was omitted from the analysis.
To see why, readers may care to repeat the use of plot() with the model that includes
Bank. The code is:

A1.glm <- glm(formula = A ˜ habitat + log(meters), family = quasipoisson,

data = moths, subset=habitat!="Bank")

plot(A1.glm, panel=panel.smooth)

Observe that the standardized residuals follow a distribution that seems close to normal.
Moreover, the scale–location plot is consistent with the assumption that the dispersion is
constant, independent of the predicted value.

8.5 Additional notes on generalized linear models

8.5.1∗ Residuals, and estimating the dispersion

The R function residuals.glm(), which is called when residuals() is used with
glm object as its argument, offers a choice of three different types of residuals – deviance
residuals (type="deviance"), Pearson residuals (type="pearson"), and working
residuals (type="working"). For most diagnostic uses, the deviance residuals, which
are the default, seem preferable. Deletion residuals, which McCullagh and Nelder (1989)
suggest are the preferred residuals to use in checking for outliers, are not, as of version
2.2.0 of R, among the alternatives that are on offer. However, the working residuals may
often be a reasonable approximation.

Plots of residuals can be hard to interpret. This is an especially serious problem for
models that have a binary (0/1) response, where it is essential to use a suitable form of
smooth curve as an aid to visual interpretation.

Other choices of link function for binomial models

Perhaps the most important alternative to the logit is the complementary log–log link; this
has f (x) = log(− log(1 − x)). For an argument from extreme value theory that motivates
the use of the complementary log–log link, see Maindonald et al. (2001). Also used is the
probit, which is the normal quantile function, i.e., the inverse of the cumulative normal



8.5 Additional notes on generalized linear models 267

distribution. This is hard to distinguish from the logit – extensive data are required, and
differences are likely to be evident only in the extreme tails.

Quasi-binomial and quasi-Poisson models

In quasibinomial and quasipoisson models, a further issue is the estimation of
the dispersion. Note that for data with a 0/1 response, no estimate of dispersion is possible,
unless there is some form of replication that allows this. The discussion that follows is thus
not relevant. See McCullagh and Nelder (1989, Section 4.5.1).

The default is to divide the sum of squares of the Pearson residuals by the degrees of
freedom of the residual, and use this as the estimate. This estimate, which appears in the
output from summary(), has a bias that in most cases is small enough to be ignored, and
is in this respect much preferable to the residual mean deviance as an estimate of dispersion.
See McCullagh and Nelder (1989, Section 4.5.2).

Note the assumption that the dispersion is constant, independent of the fitted proportion
or Poisson rate. This may be inappropriate, especially if the range of fitted values is wide.

In lm models, which are equivalent to GLMs with identity link and normal errors, the
dispersion and the residual mean deviance both equal the mean residual sum of squares, and
have a chi-squared distribution with degrees of freedom equal to the degrees of freedom of
the residual. This works quite well as an approximation for quasi-Poisson models whose
fitted values are of a reasonable magnitude (e.g., at least 2), and for some binomial models.
In other cases, it can be highly unsatisfactory. For models with a binary (0/1) outcome,
the residual deviance is a function of the fitted parameters and gives no information on the
dispersion.

The difference in deviance between two nested models has a distribution that is often
well approximated by a chi-squared distribution. Where there are two such models, with
nesting such that the mean difference in deviance (i.e., difference in deviance divided by
degrees of freedom) gives a plausible estimate of the source of variation that is relevant
to the intended inferences, this may be used to estimate the dispersion. For example, see
McCullagh and Nelder (1989, Section 4.5.2). A better alternative may be use of thelmer()
function in lme4, specifying a binomial link and specifying the random part of the model
appropriately.

See McCullagh and Nelder (1989, Chapter 9) for a discussion of theoretical issues in the
use of ideas of quasi-likelihood.

8.5.2 Standard errors and z- or t-statistics for binomial models

The z- or t-statistics are sometimes known as the Wald statistics. They are based on an
asymptotic approximation to the standard error. For binomial models, this approximation
can be seriously inaccurate when the fitted proportions are close to 0 or 1, to the extent
that an increased difference in an estimated proportion can be associated with a smaller
t-statistic. Where it is important to have a reasonably accurate p-value, this is suitably
obtained from an analysis of deviance table that compares models with and without the
term.



268 Generalized linear models and survival analysis

Fitted proportion

Le
ve

ra
ge

0.01 0.2 0.8 0.99

0.05 0.5 0.95

0
00

0
01

0
02

0
03

logit link
probit link
cloglog link

Figure 8.12 Leverage versus fitted proportion, for the three common link functions. Points that all
have the same binomial totals were symmetrically placed, on the scale of the response, about a fitted
proportion of 0.5. The number and location of points will affect the magnitudes, but for the symmetric
links any symmetric configuration of points will give the same pattern of change.

The following demonstrates the effect:

> fac <- factor(LETTERS[1:4])

> p <- c(103, 30, 11, 3)/500

> n <- rep(500,4)

> summary(glm(p ˜ fac, family=binomial, weights=n))$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.35 0.111 -12.20 3.06e-34

facB -1.40 0.218 -6.42 1.35e-10

facC -2.45 0.324 -7.54 4.71e-14

facD -3.76 0.590 -6.38 1.78e-10

Notice that the z value for level D is smaller than the z value for level C, even though
the difference from level A (the reference) is greater.

The phenomenon is discussed in Hauck and Donner (1977).

8.5.3 Leverage for binomial models

In an lm model with a single predictor and with homogeneous errors, the points that
are furthest away from the mean inevitably have the largest leverages. For models with
binomial errors, this is not the case. The leverages are functions of the fitted values. Figure
8.12 shows the pattern of change of the leverage, for the three common link functions, when
points are symmetrically placed, on the scale of the response, about a fitted proportion of
0.5. The optimal placement of points for a probit link is slightly further apart than for a
logit link.

8.6 Models with an ordered categorical or categorical response

This section draws attention to an important class of models that further extend the general-
ized linear model framework. Ordinal regression models will be discussed in modest detail.



8.6 Models with an ordered categorical or categorical response 269

Table 8.2 Data from a randomized trial –
assessments of the clarity of the instructions provided
to the inhaler.

Easy Needed rereading Not clear
(category 1) (category 2) (category 3)

Inhaler 1 99 41 2
Inhaler 2 76 55 13

Table 8.3 Odds ratios, and logarithms of odds ratios, for two alternative choices of
cutpoint in Table 8.2.

Easy versus some Clear after study versus
degree of difficulty not clear

Odds Log odds Odds Log odds

Inhaler 1 99/43 log(99/43) = 0.83 140/2 log(140/2) = 4.25
Inhaler 2 76/68 log(76/68) = 0.11 131/13 log(131/13) = 2.31

Loglinear models, which may be appropriate when there is a qualitative (i.e., unordered)
categorical response, will get brief mention.

8.6.1 Ordinal regression models

We will demonstrate how logistic and related generalized linear models that assume bino-
mial errors can be used for an initial analysis. The particular form of logistic regression
that we will demonstrate is proportional odds logistic regression.

Ordinal logistic regression is relevant when there are three or more ordered outcome
categories that might, e.g., be (1) complete recovery, (2) continuing illness, (3) death. Here,
in Table 8.2, we give an example where patients who were randomly assigned to two
different inhalers were asked to compare the clarity of leaflet instructions for their inhaler
(data, initially published with the permission of 3M Health Care Ltd, are adapted from
Ezzet and Whitehead, 1991).

Exploratory analysis

There are two ways to split the outcomes into two categories: we can contrast “easy” with
the remaining two responses (some degree of difficulty), or we can contrast the first two
categories (clear, perhaps after study) with “not clear”. Table 8.3 presents, side by side in
parallel columns, odds based on these two splits. Values for log(odds) are given alongside.

Wherever we make the cut, the comparison favors the instructions for inhaler 1. The
picture is not as simple as we might have liked. The log(odds ratio), i.e., the difference on
the log(odds) scale, may depend on which cutpoint we choose.



270 Generalized linear models and survival analysis

∗Proportional odds logistic regression

The function polr() in the MASS package allows the fitting of a formal model. We begin
by fitting a separate model for the two rows of data:

library(MASS)

inhaler <- data.frame(freq=c(99,76,41,55,2,13),

choice=rep(c("inh1","inh2"), 3),

ease=ordered(rep(c("easy","re-read",

"unclear"), rep(2,3))))

inhaler1.polr <- polr(ease ˜ 1, weights=freq, data=inhaler,

Hess=TRUE, subset=inhaler$choice=="inh1")

# Setting Hess=TRUE at this point averts possible numerical

# problems if this calculation is deferred until later.

inhaler2.polr <- polr(ease ˜ 1, weights=freq, data=inhaler,

Hess=TRUE, subset=inhaler$choice=="inh2")

Notice that the dependent variable specifies the categories, while frequencies are specified
as weights. The output is:

> summary(inhaler1.polr) # inhaler$choice == "inh1"

. . . .

Intercepts:

Value Std. Error t value

easy|re-read 0.834 0.183 4.566

re-read|unclear 4.248 0.712 5.966

Residual Deviance: 190.34

AIC: 194.34

> summary(inhaler2.polr) # inhaler$choice == "inh2"

. . . .

Intercepts:

Value Std. Error t value

easy|re-read 0.111 0.167 0.666

re-read|unclear 2.310 0.291 7.945

Residual Deviance: 265.54

AIC: 269.54

For interpreting the output, observe that the intercepts for the model fitted to the first row
are 0.834 = log(99/43) and 4.248 = log(140/2). For the model fitted to the second row,
they are 0.111 = log(76/68) and 2.310 = log(131/13).

We now fit the combined model:

> summary(inhaler.polr <- polr(ease ˜ choice, weights=freq,

+ Hess=TRUE, data=inhaler))

. . . .

Coefficients:

Value Std. Error t value

choiceinh2 0.79 0.245 3.23



8.6 Models with an ordered categorical or categorical response 271

Intercepts:

Value Std. Error t value

easy|re-read 0.863 0.181 4.764

re-read|unclear 3.353 0.307 10.920

Residual Deviance: 459.29

AIC: 465.29

The difference in deviance between the combined model and the two separate models is:

> deviance(inhaler.polr) - (deviance(inhaler1.polr)

+ + deviance(inhaler2.polr))

[1] 3.42

We compare this with the 5% critical value for a chi-squared deviate on 1 degree of
freedom – there are 2 parameters for each of the separate models, making a total of 4,
compared with 3 degrees of freedom for the combined model. The difference in deviance
is just short of significance at the 5% level.

The parameters for the combined model are:

> summary(inhaler.polr)

Call:

polr(formula = ease ˜ choice, data = inhaler, weights = freq,

Hess = T)

Coefficients:

Value Std. Error t value

choiceinh2 0.79 0.245 3.23

Intercepts:

Value Std. Error t value

easy|re-read 0.863 0.181 4.764

re-read|unclear 3.353 0.307 10.920

Residual Deviance: 459.29

AIC: 465.29

The value that appears under the heading “Coefficients” is an estimate of the reduction
in log(odds) between the first and second rows. Table 8.4 gives the estimates for the
combined model.

The fitted probabilities for each row can be derived from the fitted log(odds). Thus for
inhaler 1, the fitted probability for the easy category is exp(0.863)/(1 + exp(0.863)) =
0.703, while the cumulative fitted probability for easy and re-read is exp(3.353)/(1 +
exp(3.353)) = 0.966.



272 Generalized linear models and survival analysis

Table 8.4 The entries are log(odds) and odds estimates
for the proportional odds logistic regression model that
was fitted to the combined data.

log(odds). Odds in parentheses

Easy versus some Clear after study versus
degree of difficulty not clear

Inhaler 1 0.863 3.353
(exp(0.863) = 2.37) (28.6)

Inhaler 2 0.863 − 0.790 3.353 − 0.790
(1.08) (13.0)

8.6.2 ∗ Loglinear models

Loglinear models specify expected values for the frequencies in a multi-way table. For the
model-fitting process, all margins of the table have the same status. However, one of the
margins has a special role for interpretative purposes; it is known as the dependent margin.
For the UCBAdmissions data that we discussed in Section 8.3, the interest was in the
variation of admission rate with Dept and with Gender. A loglinear model, with Admit
as the dependent margin, offers an alternative way to handle the analysis. Loglinear models
are however generally reserved for use when the dependent margin has more than two
levels, so that logistic regression is not an alternative.

Examples of the fitting of loglinear models are included with the help page forloglm(),
in the MASS package. To run them, type in

library(MASS)

example(loglm)

8.7 Survival analysis

Survival (or failure) analysis introduces features different from any of those encountered in
the regression methods discussed in earlier chapters. It has been widely used for comparing
the times of survival of patients suffering a potentially fatal disease who have been subject
to different treatments. The computations that follow will use the survival package, written
for S-PLUS by Terry Therneau, and ported to R by Thomas Lumley.

Other names, mostly used in non-medical contexts, are Failure Time Analysis and Reli-
ability. Yet another term is Event History Analysis. The focus is on time to any event of
interest, not necessarily failure. It is an elegant methodology that is too little known outside
of medicine and industrial reliability testing.

Applications include:

� The failure time distributions of industrial machine components, electronic equipment,
automobile components, kitchen toasters, light bulbs, businesses, etc. (failure time anal-
ysis, or reliability).

� The time to germination of seeds, to marriage, to pregnancy, or to getting a first job.
� The time to recurrence of an illness or other medical condition.



8.7 Survival analysis 273

S
ub

je
ct

 n
um

be
r

Days from beginning of study

8

7

6

5

4

3

2

1

End of recruitment End of study

0 300 600 900 1200 1500 1800 2100 2400

●

●

●

●

●

●

●

●

30

150

30

60

420

300

360

1380

1740

2550

2010

510

2550

540

● Entry Dead Censored

570 1260

Figure 8.13 Outline of the process of collection of data that will be used in a survival analysis.

The outcomes are survival times, but with a twist. The methodology is able to handle
data where failure (or another event of interest) has, for a proportion of the subjects, not
occurred at the time of termination of the study. It is not necessary to wait until all subjects
have died, or all items have failed, before undertaking the analysis! Censoring implies that
information about the outcome is incomplete in some respect, but not completely missing.
For example, while the exact point of failure of a component may not be known, it may be
known that it did not survive more than 720 hours (= 30 days). In a clinical trial, there may
for some subjects be a final time up to which they survived, but no subsequent information.
Such observations are said to be right-censored.

Thus, for each observation there are two pieces of information: a time, and censoring
information. Commonly the censoring information indicates either right-censoring denoted
by a 0, or failure denoted by a 1.

Many of the same issues arise as in more classical forms of regression analysis. One
important set of issues has to do with the diagnostics used to check on assumptions. Here
there have been large advances in recent years. A related set of issues has to do with
model choice and variable selection. There are close connections with variable selection
in classical regression. Yet another set of issues has to do with the incomplete information
that is available when there is censoring.

Figure 8.13 shows a common pattern for the collection of survival analysis data.

8.7.1 Analysis of the Aids2 data

We first examine the data frame Aids2 (MASS package). In the study that provided these
data, recruitment continued until the day prior to the end of the study. Once recruited,



274 Generalized linear models and survival analysis

subjects were followed until either they were “censored”, i.e., were not available for further
study, or until they died from an AIDS-related cause. The time from recruitment to death
or censoring will be used for analysis.

Observe the variety of different types of right-censoring. Subjects may be removed
because they died from some cause that is not AIDS-related, or because they can no longer
be traced. Additionally, subjects who are still alive at the end of the study cannot at that
point be studied further, and are also said to be censored.

Details of the different columns are:

> library(MASS)

> str(Aids2, vec.len=2)

‘data.frame’: 2843 obs. of 7 variables:

$ state : Factor w/ 4 levels "NSW","Other",..: 1 1 1 1 1 ...

$ sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 ...

$ diag : int 10905 11029 9551 9577 10015 ...

$ death : int 11081 11096 9983 9654 10290 ...

$ status : Factor w/ 2 levels "A","D": 2 2 2 2 2 ...

$ T.categ: Factor w/ 8 levels "hs","hsid","id",..: 1 1 1 5 1 ...

$ age : int 35 53 42 44 39 ...

Note that death really means “final point in time at which status was known”.
The analyses that will be presented will use two different subsets of the data –

individuals who contracted AIDS from contaminated blood, and male homosexuals. The
extensive data in the second of these data sets makes it suitable for explaining the notion of
hazard.

A good starting point for any investigation of survival data is the survival curve or (if
there are several groups within the data) survival curves. The survival curve estimates the
proportion who have survived at any time. The analysis will work with “number of days
from diagnosis to death or removal from the study”, and this number needs to be calculated.

bloodAids <- subset(Aids2, T.categ=="blood")

bloodAids$days <- bloodAids$death-bloodAids$diag

bloodAids$dead <- as.integer(bloodAids$status=="D")

For this subset of the data, all subjects were followed right through until the end of the
study, and the only patients that were censored were those that were still alive at the end
of the study. Thus, Figure 8.14 compares females with males who contracted AIDS from
contaminated blood.

The survival package uses theSurv() function to package together the time information
and the censoring (alive = 0, dead = 1) information. The survfit() function then
estimates the survival curve. The code is:

library(survival)

plot(survfit(Surv(days, dead) ˜ sex, data=bloodAids),

col=c(2,4), conf.int=TRUE)



8.7 Survival analysis 275

0 500 1500 2500
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Days from diagnosis

S
ur

v
va

 p
ro

ba
b

ty
0 500 1500 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F M

Figure 8.14 Survival curves that compare females with males who contracted AIDS from contami-
nated blood.

Pointwise 95% confidence intervals have been placed around the estimated survival curves.
These assume independence between the individuals in the study group.

8.7.2 Right-censoring prior to the termination of the study

This might happen in (at least) two ways:

� The subject may have died from a cause that is thought unlikely to be AIDS-related,
e.g., a traffic accident.

� The subject may have disappeared from the study, with efforts to trace them unsuccessful.

A common assumption is that, subject to any predictor effects, the pattern of risk subse-
quent to time when the subject was last known to be alive remained the same as for individ-
uals who were not censored. In technical language, the censoring was “non-informative”.
Censoring would be informative if it gave information on the risk of that patient. For
example, some patients may, because of direct or indirect effects of their illness or of the
associated medication, be at increased risk of such accidents. Such possibilities make it
unlikely that the assumption will be strictly true that censoring was non-informative, though
it may be a reasonable working approximation, especially if a relatively small proportion
of subjects was censored in this way.

In order to illustrate the point, we will examine the pattern of censoring for males where
the mode of transmission (T.categ) was homosexual activity. (These data will be used
in the later discussion to illustrate the notion of hazard.)

> hsaids <- subset(Aids2, sex=="M" & T.categ=="hs")

> hsaids$days <- hsaids$death-hsaids$diag

> hsaids$dead <- as.integer(hsaids$status=="D")

> table(hsaids$status,hsaids$death==11504)

FALSE TRUE

A 16 916

D 1531 1



276 Generalized linear models and survival analysis

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days from diagnosis

E
st

im
at

ed
 s

ur
vi

va
l p

ro
ba

bi
lit

y

0.75

0.33
500

0.
42

7

Figure 8.15 Survival curve for males for whom the mode of transmission was homosexual activity.
There are two sets of arrows that show how the estimated survival probability decreased over a
400-day period.

Recall that death really means “final point in time at which status was known”. The
interpretation of this output is:

Alive at some time prior to end of study Alive at end of study
(16 censored at time < 11 504) (916 censored on day 11 504)

Dead at some time prior to end of study Dead at end of study
(1531 not censored) (1 not censored)

Just 16 individuals were censored prior to the end of the study, probably not enough to
cause a serious bias, even if their censoring was to an extent informative.

8.7.3 The survival curve for male homosexuals

Figure 8.15 shows the survival curve for these data, with 95% pointwise confidence limits.
Annotation has been added that will be used to help illustrate the notion of hazard. The
triangle on the upper left shows the change between 200 days and 700 days, from a survival
of 0.75 at day 200 to a survival of 0.33 at day 700. The difference in survival is 0.42, or
more precisely 0.427, which is a reduction of 0.000854 per day. The code is:

## Survival curve for male homosexuals

hsaids.surv <- survfit(Surv(days, dead) ˜ 1, data=hsaids)

plot(hsaids.surv)

8.7.4 Hazard rates

The hazard rate is obtained by dividing the mortality per day by the survival to that point.
Over a short time interval, multiplication of the hazard by the time interval gives the
probability of death over that interval, given survival up to that time. In Figure 8.15, hazard
rates at days 200 and 700 are, approximately:

Day 200 0.00854/0.752 � 0.11
Day 700 0.00854/0.326 � 0.026



8.7 Survival analysis 277

More generally, the hazard rate can be determined at any point by fitting a smooth
function to the survival curve, and dividing the slope of the tangent by the survival at that
point. The above calculations of hazard are rough. More refined estimates can be obtained
by using the function muhaz() from the muhaz package. In order to get precise estimates
of the hazard, large sample sizes are needed.

8.7.5 The Cox proportional hazards model

Even where sample sizes are relatively small, and estimates of the individual hazards for
two groups that are of interest highly inaccurate, the assumption that the ratio is constant
between the two groups may be a reasonable working approximation. For example, it might
be assumed that the hazard for males who contracted AIDS from contaminated blood,
relative to females, is a constant, i.e., that the hazard for males is directly proportional to
the hazard for females. There are two points to keep in mind:

� The assumption can be checked, as will be demonstrated below. Where data are suffi-
ciently extensive to make such a check effective, it often turns out that the ratio is not
constant over the whole time period.

� Even if it is suspected that the ratio is not truly constant over the whole time period, the
estimated ratio can be treated as an average.

With these points in mind, and using females as the baseline, we now examine the hazard
ratios for males who contracted AIDS from contaminated blood. The code is:

bloodAids.coxph <- coxph(Surv(days, dead) ˜ sex, data=bloodAids)

Output is:

> summary(bloodAids.coxph)

Call:

coxph(formula = Surv(days, dead) ˜ sex, data = bloodAids)

n= 94

coef exp(coef) se(coef) z p

sexM -0.276 0.759 0.233 -1.18 0.24

exp(coef) exp(-coef) lower .95 upper .95

sexM 0.759 1.32 0.481 1.20

Rsquare= 0.015 (max possible= 0.998 )

Likelihood ratio test= 1.38 on 1 df, p=0.239

Wald test = 1.4 on 1 df, p=0.236

Score (logrank) test = 1.41 on 1 df, p=0.235

Let h0(x) be the hazard function for females. Then the model assumes that the hazard
function hm(x) for males can be written:

hm(x) = h0(x) exp(β).



278 Generalized linear models and survival analysis

Time

B
et

a(
t)

 fo
r 

se
xM

0.85 42 210 450

−
3

−
2

−
1

0
1

2

●●●●●

●

●

●

●

●

●

●●

●●●●●

●

●●●

●

●

●●●●●●

●

●●

●

●

●●

●

●●●●

●●●●

●

●

●

●●●

●●●●
●●●

●

●

●●

●●

●

●
●
●●●

●
●●

●
●

Figure 8.16 Plot of martingale residuals from the Cox proportional hazards model.

In the above output, coef is what, in this formula, is β. There are several ways to examine
the comparison of males with females:

� The confidence interval for β includes 0. Equivalently, the t-test for the test β = 0 has
a p-value equal to 0.24.

� The confidence interval for exp(β) includes 1.
� A likelihood ratio test has p = 0.239.
� A Wald test has p = 0.236.
� A log-rank test has p = 0.235.

In general, β may be a linear function of predictors, and there may be several groups.
Confidence intervals will then be given for the separate coefficients in this model. The
likelihood ratio test, the Wald test, and the log-rank test are all then tests for the null
hypothesis that the groups have the same hazard function.

The following tests whether the hazard ratio is constant:

> cox.zph(bloodAids.coxph)

rho chisq p

sexM -0.127 1.21 0.272

A plot of Schoenfeld residuals, with smooth curves fitted as in Figure 8.16, may however
be more informative. The code is:

plot(cox.zph(bloodAids.coxph))

The Schoenfeld residuals (one for each event, here death) are computed for each predictor
in a model and are used to determine whether the coefficients in the model are constant
or time-varying. They are essentially differences between the predictor value for each
individual and an appropriately weighted average of the corresponding coefficient over all
other individuals still at risk at the individual’s event time.

The graph suggests that the hazard ratio may have been greater for males for the first
40 days or so after diagnosis. However, the difference from a constant β cannot be distin-
guished from statistical error. In samples of this size, the difference from a constant ratio
must be large to allow much chance of detection.



8.8 Transformations for count data 279

Also available are the martingale residuals. These can be calculated and plotted thus:

plot(bloodAids$days, resid(bloodAids.coxph))

lines(lowess(bloodAids$days, resid(bloodAids.coxph)))

The martingale residuals are given by either 1− the log of the survival function estimate
or the negative log of the survival function estimate, according to whether the observation
has been censored or not. These residuals should be approximately exponentially distributed
if the model is correct. One way to check this is to plot the residuals against time (or another
suitable predictor) and to pass a loess curve through the plotted points. If the result differs
substantially from a horizontal line, then the model has not been specified correctly.

8.8 Transformations for count data

Transformations were at one time commonly used to make count data amenable to analysis
using normal theory methods. Generalized linear models have largely removed the need
for such approaches. They are, however, still sometimes a useful recourse. Here are some
of the possibilities:

� The square root transformation: y = √
n. This may be useful for counts. If counts

follow a Poisson distribution, this gives values that have constant variance 0.25.
� The angular transformation: y = arcsin(

√
p), where p is a proportion. If proportions

have been generated by a binomial distribution, the angular transformation will “stabilize
the variance”.

For handling this calculation in R, define arcsin ← function (p) asin
(sqrt(p)). The values that asin() returns are in radians. To obtain values that run
from 0 to 90, multiply by 180/π = 57.3.

� The probit or normal equivalent deviate. Again, this is for use with proportions. For
this, take a table of areas under the normal curve. We transform back from the area under
the curve to the distance from the mean. It is commonly used in bioassay work. This
transformation has a severe effect when p is close to 0 or 1. It moves 0 down to −∞
and 1 up to ∞, i.e., these points cannot be shown on the graph. Some authors add 5 on
to the normal deviates to get “probits”.

� The logit. This function is defined by logit(p) = log(p/(1 − p)) – this is a little more
severe than the probit transformation. Unless there are enormous amounts of data, it is
impossible to distinguish data that require a logit transformation from data that require
a probit transformation. Logistic regression uses this transformation on the expected
values in the model.

� The complementary log–log transformation. This function is defined by cloglog(p) =
log(− log(1 − p)). For p close to 0, this behaves like the logit transformation. For large
values of p, it is a much milder transformation than the probit or logit. It is often the
appropriate transformation to use when p is a mortality that increases with time.

Proportions usually require transformation unless the range of values is quite small, between
about 0.3 and 0.7.

Note that generalized linear models transform, not the observed proportion, but its
expected value as estimated by the model.



280 Generalized linear models and survival analysis

8.9 Further reading

Dobson (2001) is an elementary introduction to generalized linear models. See also Faraway
(2006). Harrell (2001) gives a comprehensive account of both generalized linear models
and survival analysis that includes extensive practical advice. Venables and Ripley (2002)
give a summary overview of the S-PLUS and R abilities, again covering survival analysis
as well as generalized linear models. Chapter 2 of Wood (2006) is a succinct, insightful, and
practically oriented summary of the theory of generalized linear models. A classic reference
on generalized linear models is McCullagh and Nelder (1989). For quasi-binomial and
quasi-Poisson models, see pp. 200–208.

Collett (2003) is a basic introduction to elementary uses of survival analysis. Therneau
and Grambsch (2001) describe extensions to the Cox model, with extensive examples that
use the abilities of the survival package. Bland and Altman (2005) is an interesting example
of the application of survival methods.

There are many ways to extend the models that we have discussed. We have
not demonstrated models with links other than the logit. Particularly important, for
data with binomial or quasi-binomial errors, is the complementary log–log link;
for this specify family = binomial(link=cloglog), replacing binomial with
quasibinomial if that is more appropriate. Another type of extension, not currently
handled in R, arises when there is a natural mortality that must be estimated. See,
e.g., Finney (1978). Multiple levels of variation, such as we will discuss in Chapter 10, are
a further potential complication. Maindonald et al. (2001) present an analysis where all of
these issues arose. In that instance, the binomial totals (n) were large enough that it was
possible to work with the normal approximation to the binomial.

References for further reading

Bland, M. and Altman, D. 2005. Do the left-handed die young? Significance 2: 166–
70.

Collett, D. 2003. Modelling Survival Data in Medical Research, 2nd edn.
Dobson, A. J. 2001. An Introduction to Generalized Linear Models, 2nd edn.
Faraway, J. J. 2006. Extending the Linear Model with R. Generalized Linear, Mixed Effects

and Nonparametric Regression Models.
Finney, D. J. 1978. Statistical Methods in Bioassay, 3rd edn.
Harrell, F. E. 2001. Regression Modelling Strategies, with Applications to Linear Models,

Logistic Regression and Survival Analysis.
Maindonald, J. H., Waddell, B. C. and Petry, R. J. 2001. Apple cultivar effects on codling

moth (Lepidoptera: Tortricidae) egg mortality following fumigation with methyl bro-
mide. Postharvest Biology and Technology 22: 99–110.

McCullagh, P. and Nelder, J. A. 1989. Generalized Linear Models, 2nd edn.
Therneau, T. M. and Grambsch, P. M. 2001. Modeling Survival Data: Extending the Cox

Model.
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.
Wood, S. N. 2006. Generalized Additive Models. An Introduction with R.



8.10 Exercises 281

8.10 Exercises

1. The following table shows numbers of occasions when inhibition (i.e., no flow of current across
a membrane) occurred within 120 s, for different concentrations of the protein peptide-C (data
are used with the permission of Claudia Haarmann, who obtained these data in the course of her
PhD research). The outcome yes implies that inhibition has occurred.
conc 0.1 0.5 1 10 20 30 50 70 80 100 150

no 7 1 10 9 2 9 13 1 1 4 3

yes 0 0 3 4 0 6 7 0 0 1 7

Use logistic regression to model the probability of inhibition as a function of protein concentration.

2. In the data set (an artificial one of 3121 patients, that is similar to a subset of the data ana-
lyzed in Stiell et al., 2001) minor.head.injury, obtain a logistic regression model relating
clinically.important.brain.injury to other variables. Patients whose risk is suffi-
ciently high will be sent for CT (computed tomography). Using a risk threshold of 0.025 (2.5%),
turn the result into a decision rule for use of CT.

3. Consider again the moths data set of Section 8.4.

(a) What happens to the standard error estimates when the poisson family is used in glm()
instead of the quasipoisson family?

(b) Analyze the Pmoths, in the same way as the Amoths were analyzed. Comment on the effect
of transect length.

4.∗ The factor dead in the data set mifem (DAAG package) gives the mortality outcomes (live
or dead), for 1295 female subjects who suffered a myocardial infarction. (See Section 11.5 for
further details.) Determine ranges for age and yronset (year of onset), and determine tables
of counts for each separate factor. Decide how to handle cases for which the outome, for one or
more factors, is not known. Fit a logistic regression model, beginning by comparing the model
that includes all two-factor interactions with the model that has main effects only.

5. Use the function logisticsim() (in the DAAG package) to simulate data from a logistic
regression model to study the glm() function. For example, you might try experiments such as
the following:

(a) Simulate 100 observations from the model

logit(x) = 2 − 4x

for x = 0, 0.01, 0.02, . . . , 1.0. [This is the default setting for logisticsim().]
(b) Plot the responses (y) against the “dose” (x). Note how the pattern of 0s and 1s changes as

x increases.
(c) Fit the logistic regression model to the simulated data, using the binomial family. Com-

pare the estimated coefficients with the true coefficients. Are the estimated coefficients
within about 2 standard errors of the truth?

(d) Compare the estimated logit function with the true logit function. How well do you think
the fitted logistic model would predict future observations? For a concrete indication of the
difference, simulate a new set of 100 observations at the same x values, using a specified
pseudorandom number generator seed and the true model. Then simulate some predicted
observations using the estimated model and the same seed.



282 Generalized linear models and survival analysis

6. As in the previous exercise, the function poissonsim() allows for experimentation with
Poisson regression. In particular, poissonsim() can be used to simulate Poisson responses
with log-rates equal to a + bx, where a and b are fixed values by default.

(a) Simulate 100 Poisson responses using the model

log λ = 2 − 4x

for x = 0, 0.01, 0.02 . . . , 1.0. Fit a Poisson regression model to these data, and compare the
estimated coefficients with the true coefficients. How well does the estimated model predict
future observations?

(b) Simulate 100 Poisson responses using the model

log λ = 2 − bx

where b is normally distributed with mean 4 and standard deviation 5. [Use the argument
slope.sd=5 in the poissonsim() function.] How do the results using the poisson
and quasipoisson families differ?

7. The data set cricketer (DAAG) holds information on British first-class cricketers with year
of birth 1840–1960. The function gam() in the mgcv package can be used to fit GLM models
that include smoothing terms, with automatic choice of smoothing parameter. Use the following
to model changes with year of birth, in the proportion of left-handers in the cricketer data:

library(mgcv)

hand <- with(cricketer, unclass(left)-1) # 0 for left; 1 for right

hand.gam <- gam(hand ˜ s(year), data=cricketer)

plot(hand.gam)

(a) Is the assumption of independence between cricketers, for these data, reasonable?
(b) What might explain the clear dip in the proportion of left-handers with birth years in the

decade or so leading up to 1934?
(c) Use the following to get estimates on the scale of the response, and plot the results:

ndf <- data.frame(year=seq(from=1840, to=1960, by=2))

fit <- predict(hand.gam, newdata=ndf, type="response", se.fit=TRUE)

plot(fit$fit ˜ newdat$year, ylim=range(fit), type="1")

Add confidence bounds to the plot.

8. Fit Cox regressions that compare the hazard rate between right- and left-handers. Experiment
with using as a covariate both (i) a quartic polynomial in year and (ii) a smooth function of year
(e.g., pspline(year, df=4)):

(a) Ignore cause of death; i.e., all still alive in 1992 are censored.
(b) Censor all accidental deaths; this compares the risk for those who did not die by accident

(NB: all still alive in 1992 are in any case “censored”).
(c) Censor all deaths except accidental deaths that were not “killed in action”. (NB: “killed in

action” is a subset of “accidental death”.)
(d) Censor observations for all deaths other than “killed in action”.

Use code such as the following:

library(survival)

coxph(Surv(life, dead) ˜ left + poly(year, 4), data = cricketer)

Interpret the results. Aside from accidental deaths (including “killed in action”), are left-handers
at greater hazard than right-handers?



9

Time series models

A time series is a sequence of observations that have been recorded over time. Almost
invariably, observations that are close together in time are more strongly correlated than
observations that are widely separated. The independence assumption of previous chapters
is, in general, no longer valid. Variation in a single spatial dimension may have characteris-
tics akin to those of time series, and the same types of models may find application there also.

Many techniques have been developed to deal with the special nature of the dependence
that is commonly found in such series. The present treatment will be introductory and
restricted in scope, focusing on autoregressive integrated moving average (ARIMA) models.

In the section that follows, annual depth measurements at a specific site on Lake Huron
will be modeled directly as an ARIMA process. Section 9.2 will model a regression where
the error term has a time series structure. The chapter will close with a brief discussion of
“non-linear” time series, such as have been widely used in modeling financial time series.

The analyses will use functions in the stats package, which is a recommended package,
included with binary distributions. Additionally, there will be use of the forecast package.
In order to make this available, install the forecasting bundle of packages.

The brief discussion of non-linear time series (ARCH and GARCH models) will require
access to the tseries package, which must be installed.

The interested reader is directed to any of several excellent books listed in the references.

9.1 Time series – some basic ideas

The time series object LakeHuron (datasets) has annual depth measurements at a specific
site on Lake Huron. The discussion of sequential dependence, and of the use of ARIMA-
type models of this dependence, will use these data for illustrative purposes.

9.1.1 Preliminary graphical explorations

Figure 9.1 is a trace plot, i.e., an unsmoothed plot of the data against time. The code is:

## Plot depth measurements: ts object LakeHuron (datasets)

plot(LakeHuron, ylab="depth (in feet)", xlab = "Time (in years)")

There is a slight downward trend for at least the first half of the series. Observe also
that depth measurements that are close together in time are often close in value. Occa-
sional exceptions are consistent with this general pattern. Consistently with the sequential



284 Time series models

Time (in years)

D
ep

th
 (

in
 fe

et
)

1880 1900 1920 1940 1960

57
6

57
8

58
0

58
2

Figure 9.1 A trace plot of annual depth measurements of Lake Huron versus time.

dependence that is typical in time series, these are not independent observations. A key
challenge is to find good ways to model this dependence.

Lag plots may give a useful visual impression of the dependence. Suppose that our
observations are x1, x2, . . . , xn. Then the lag 1 plot plots xi against xi−1 (i = 2, . . . , n),
thus:

y-value x2 x3 . . . xn

lag 1 (x-axis) x1 x2 . . . xn−1

For a lag 2 plot, xi is plotted against xi−2 (i = 3, . . . ,n), and so on for higher lags. Notice
that the number of points that are plotted is reduced by the number of lags.

Figure 9.2A shows the first four lag plots for the Lake Huron data. The code is:

lag.plot(LakeHuron, lags=3, do.lines=FALSE)

The scatter of points about a straight line in the first lag plot suggests that the dependence
between consecutive observations is linear. The second, third, and fourth lag plots show
increasing scatter. As might be expected, points separated by two or three lags are succes-
sively less dependent. Note that the slopes, and therefore the correlations, are all positive.

9.1.2 The autocorrelation and partial autocorrelation function

Informally, the correlation that is evident in each of the lag plots in Figure 9.2A is an auto-
correlation (literally, self-correlation). The autocorrelation function (ACF), which gives the
autocorrelations at all possible lags, often gives useful insight. Figure 9.2B plots the first
19 autocorrelations. The code is:

acf(LakeHuron)

## pacf(LakeHuron) gives the plot of partial autocorelations

The autocorrelation at lag 0 is included by default; this always takes the value 1, since it
is the correlation between the data and themselves. Interest is in the autocorrelations at
lag 1 and later lags. As inferred from the lag plots, the largest autocorrelation is at lag 1
(sometimes called the serial correlation), with successively smaller autocorrelations at lags
2, 3, . . . . There is no obvious linear association among observations separated by lags of
more than about 10.

Autocorrelations at lags greater than 1 are in part a flow-on from autocorrelations
at earlier lags. The partial autocorrelation at a particular lag measures the strength of



9.1 Time series – some basic ideas 285

●

●

●
●

●

● ●

●

●●●
●

●

●

●●

●

●●

●
●

●●
●

●

●
● ●

●●●
●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

● ●

●

●

●

●

●

●●

●

●● ●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

lag 1

La
ke

H
ur

on
57

6
57

8
58

0
58

2

576 578 580 582

●

●

●
●

●

● ●

●

●●●
●

●

●

●●

●●

●●

●
●

●●
●

●

●
●●

●●●
●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

● ●

●

●

●

●

●

● ●

●

● ● ●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

lag 2

La
ke

H
ur

on

576 578 580 582

●

●

●
●

●

●●

●

●●●
●

●

●

● ●

●●

● ●

●
●

● ●
●

●

●
●●

●●●
●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

lag 3

La
ke

H
ur

on

576 578 580 582

●

●

●
●

●

●●

●

●●●
●

●

●

●●

●●

●●

●
●

●●
●

●

●
●●

●●●
● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

lag 4

La
ke

H
ur

on

576 578 580 582

A: Lag plots

B: LakeHuron series

Lag

A
ut

oc
or

re
la

tio
n

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

C: Theoretical AR1 process

Lag

A
ut

oc
or

re
la

tio
n

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

Autocorrelation Partial autocorrelation

Figure 9.2 The top four panels (A) show the first four lag plots of the annual depth measurements of
Lake Huron. Panel B shows the estimated autocorrelations, with the partial autocorrelations shown in
gray. The dashed horizontal lines are approximate pointwise 5% critical values for the autocorrelations
for a pure noise process, i.e., independent normal data with mean 0. Panel C shows the theoretical
autocorrelations for an AR(1) process with α = 0.8. Again the partial autocorrelations, with a single
spike at lag 1, are shown in gray.

linear correlation between observations separated by that lag, after adjusting for correla-
tions between observations separated by fewer lags. Figure 9.2B indicates partial autocor-
relations that may be greater than statistical error at lags 1, 2 and 10. Other autocorrelations
are mostly a flow-on effect from the large autocorrelations at lag 1. Figure 9.2C shows the
autocorrelation function and partial autocorrelation function for a very simple theoretical
model that accounts for most of the correlation structure in Figure 9.2B. Notice how-
ever the very clear differences, especially evident in the comparison between the partial
autocorrelation plots in Figures 9.2B and C.

As discussed in the next subsection, autocorrelation in a time series complicates the
estimation of such quantities as the standard error of the mean. There must be appropriate
modeling of the dependence structure. If there are extensive data, it helps to group the data
into sets of k successive values, and take averages. The serial correlation then reduces to
ρ1/k approximately. See Miller (1986) for further comment.

9.1.3 Autoregressive models

We have indicated earlier that, whenever possible, the rich regression framework provides
additional insights, beyond those available from the study of correlation structure. This is



286 Time series models

true also for time series. Autoregressive (AR) models move beyond attention to correlation
structure to the modeling of regressions relating successive observations.

The AR(1) model

Figure 9.2C showed the theoretical autocorrelation and partial autocorrelation plots for an
AR(1) process. The autoregressive model of order 1 (AR(1)) for a time series X1, X2, . . .

has the recursive formula

Xt = µ + α(Xt−1 − µ) + εt , t = 1, 2, . . . ,

where µ and α are parameters. Figure 9.2C had α = 0.8.
Usually, α takes values in the interval (−1, 1); this is the so-called stationary case. Non-

stationarity, in the sense used here, implies that the properties of the series are changing
with time. The mean may be changing with time, and/or the variances and covariances may
depend on the time lag. Any such nonstationarity must be removed or modeled.

For series of positive values, a logarithmic transformation will sometimes bring the series
closer to stationarity and/or make it simpler to model any trend. Discussion of standard
ways to handle trends will be deferred to Subsection 9.1.4.

The error term εt is the familiar independent noise term with constant variance σ 2. The
distribution of X0 is assumed fixed and will not be of immediate concern.

For the AR(1) model, the ACF at lag i is αi , for i = 1, 2, . . .. If α = 0.8, then the
observed autocorrelations should be 0.8, 0.64, 0.512, 0.410, 0.328, . . . , a geometrically
decaying pattern, as in Figure 9.2C and not too unlike that in Figure 9.2B.

To gain some appreciation for the importance of models like the AR(1) model, we
consider estimation of the standard error for the estimate of the mean µ. Under the AR(1)
model, a large-sample approximation to the standard error for the mean is:

σ√
n

1

(1 − α)
.

For a sample of size 100 from an AR(1) model with σ = 1 and α = 0.5, the standard error
of the mean is 0.2. This is exactly twice the value that results from the use of the usual
σ/

√
n formula. Use of the usual standard error formula will result in misleading and biased

confidence intervals for time series where there is substantial autocorrelation.
There are several alternative methods for estimating for the parameter α. The method of

moments estimator uses the autocorrelation at lag 1, here equal to 0.8319. The maximum
likelihood estimator, equal to 0.8376, is an alternative.1

1 ## Yule-Walker autocorrelation estimate
LH.yw <- ar(x = LakeHuron, order.max = 1, method = "yw")

# autocorrelation estimate
# order.max = 1 for the AR(1) model

LH.yw$ar # autocorrelation estimate of alpha
## Maximum likelihood estimate
LH.mle <- ar(x = LakeHuron, order.max = 1, method = "mle")
LH.mle$ar # maximum likelihood estimate of alpha
LH.mle$x.mean # estimated series mean
LH.mle$var.pred # estimated innovation variance



9.1 Time series – some basic ideas 287

The general AR(p) model

It is possible to include regression terms for Xt against observations at greater lags
than one. The autoregressive model of order p (the AR(p) model) regresses Xt against
Xt−1, Xt−2, . . . , Xt−p:

Xt = µ + α1(Xt−1 − µ) + · · · + αp(Xt−p − µ) + εt , t = 1, 2, . . . ,

where α1, α2, . . . , αp are additional parameters that would need to be estimated. The
parameter αi is the partial autocorrelation at lag i.

Assuming an AR process, how large should p be, i.e., how many AR parameters are
required? The function ar(), in the stats package, can be used to estimate the AR order.
This uses the Akaike Information Criterion (AIC), which was introduced in Subsection
6.3.2. Use of this criterion, with models fitted using maximum likelihood, gives:

> ar(LakeHuron, method="mle")

. . . .

Coefficients:

1 2

1.0437 -0.2496

Order selected 2 sigmaˆ2 estimated as 0.4788

ar(LakeHuron, method="mle") # AIC is used by default if

# order.max is not specified

While the plot of partial autocorrelations in Figure 9.2B suggested that an AR process
might be a good first approximation, there is a lag 2 spike that is not consistent with a
pure low-order AR process. Moving average models, which will be discussed next, give
the needed additional flexibility.

9.1.4∗ Autoregressive moving average models – theory

In a moving average (MA) process of order q, the error term is the sum of an innovation εt

that is specific to that term, and a linear combination of earlier innovations εt−1, εt−2, . . . ,

εt−q . The equation is

Xt = µt + εt + b1εt−1 + · · · + bqεt−q (9.1)

where ε1, ε2, . . . , εq are independent random normal variables, all with mean 0. The
autocorrelation between terms that are more than q time units apart is zero. Moving average
terms can be helpful for modeling autocorrelation functions that are spiky, or that have a
sharp cutoff.

An autoregressive moving average (ARMA) model is an extension of an autoregres-
sive model to include “moving average” terms. Autoregressive integrated moving average
(ARIMA) models allow even greater flexibility. (The model (AR or MA or ARMA) is
applied, not to the series itself, but to a differenced series, where the differencing process
may be repeated more than once.) There are three parameters: the order p of the autore-
gressive component, the order d of differencing (in our example 0), and the order q of the
moving average component.



288 Time series models

Lag

A
ut

oc
or

re
la

tio
n 0.0

0.5

1.0
ma = 0.5 ma = c(0, 0, 0.5)

0.0

0.5

1.0

0 2 4 6 8 10

ma = c(0, 0, 0.5, 0, 0.5)

0 2 4 6 8 10

ma = c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

Autocorrelation Partial autocorrelation

Figure 9.3 Theoretical autocorrelations for a moving average process, with the parameters shown.
The thick gray lines are the partial autocorrelations.

Differencing of order 1 removes a linear trend. Differencing of order 2 removes a
quadratic trend. The downside of differencing is that it complicates the correlation structure.
Thus, it turns an uncorrelated series into an MA series of order 1. Differencing can be done
explicitly prior to analysis.2 However it is easiest to let the R time series modeling functions
do any differencing that is required internally, then reversing the process following the fitting
of an ARMA model to the differenced series.

Figure 9.3 shows the autocorrelation functions for simulations of several different moving
average models. Notice that:

� with b1 = 0.5 (q = 1), there is a spike at lag 1;
� with b1 = b2 = 0, b3 = 0.5 (q = 3), there is a spike at lag 3;
� with b1 = b2 = 0, b3 = 0.5, b4 = 0, b5 = 0.5 (q = 5), there are spikes at lags 2, 3 and

5;
� with bi = 0.5 (i = 1, . . . , 5), there are spikes at the first five lags.

9.1.5 Automatic model selection?

The functionauto.arima() from the forecast package uses the AIC in a model selection
process that can proceed pretty much automatically. This takes some of the inevitable
arbitrariness from the selection process. Fortunately, in applications such as forecasting or
the regression example in the next section, what is important is to account for the major
part of the correlation structure. A search for finesse in the detail may be pointless, with
scant practical consequence.

The algorithm looks for the optimum AR order p, the optimum order of differencing,
and the optimum MA order q. Additionally, there is provision for seasonal terms and for

2 ## series.diff <- diff(series)



9.1 Time series – some basic ideas 289

“drift”. Drift implies that there is a constant term in a model that has d > 0. Seasonal terms,
which are important in some applications, will not be discussed further here.

An exhaustive (non-stepwise) search can be very slow. The auto.arima() default
is a stepwise search. At each iteration, the search is limited to a parameter space that is
“close” to the parameter space of the current model. Values of AR and MA parameters are
allowed to change by at most one from their current values. There are similar restrictions
on the search space for seasonal and other parameters.

Depending on previous experience with comparable series, there may be a case for
checking the partial autocorrelation plot for clear “spikes” that may indicate high-order
MA terms, before proceeding to a stepwise search. Note however that, in a plot that shows
lags 1 to 20 of a pure noise process, one can expect, on average, one spike that extends
beyond the 95% pointwise limits. For the LakeHuron data, there is no cogent reason to
change from the default choice of starting values of AR and MA parameters.

Application of auto.arima() to the LakeHuron data gives the following:

> library(forecast)

## Use auto.arima() to select model

> auto.arima(LakeHuron)

Series: LakeHuron

ARIMA(1,1,2)

Call: auto.arima(x = LakeHuron)

Coefficients:

ar1 ma1 ma2

0.648 -0.584 -0.328

s.e. 0.129 0.139 0.108

sigmaˆ2 estimated as 0.482: log likelihood = -102.6

AIC = 213.1 AICc = 213.6 BIC = 223.4

Now try

## Check that model removes most of the correlation structure

acf(resid(arima(LakeHuron, order=c(p=1, d=1, q=2))))

## The following achieves the same effect, for these data

acf(resid(auto.arima(LakeHuron)))

The function auto.arima() chose an ARIMA(1,1,2) model; i.e., the order of the autore-
gressive terms is p = 1, the order of the differencing is d = 1, and the order of the moving
average terms is q = 2.

9.1.6 A time series forecast

The function forecast() in the forecast package makes it easy to obtain forecasts, as
in Figure 9.4. The code is:



290 Time series models

Forecasts from ARIMA(1,1,2)                   

1880 1900 1920 1940 1960 1980

57
6

57
8

58
0

58
2

Figure 9.4 Forecast levels for Lake Huron, based on the LakeHuron data. The intervals shown
are 80% and 95% prediction intervals.

Lag

A
ut

oc
or

re
la

tio
n 0.0

0.5

1.0
ma = c(0, 0, 0.125) ma = c(0, 0, 0.25)

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8

ma = c(0, 0, 0.375)

0 1 2 3 4 5 6 7 8

ma = c(0, 0, 0.5)

Theoretical Simulation

Figure 9.5 Results of two simulation runs (in gray) for an MA process of order 3, with b3 set in turn
to 0.125, 0.25, 0.375 and 0.5. In each case, coefficients other than b3 were set to zero. The theoretical
autocorrelation is shown, in each case, in black.

LH.arima <- auto.arima(LakeHuron)

fcast <- forecast(LH.arima)

plot(fcast)

Use of simulation as a check

Simulation can be used to assess what magnitude of MA or other coefficients may be
detectable. To simplify the discussion, we limit attention to a moving average process of
order 3, with b1 = 0, b2 = 0, and b3 taking one of the values 0.125, 0.25, 0.374 and 0.5.
Below we will tabulate, for each of these values, the level of MA process detected by
auto.arima() over 20 simulation runs.

As an indication of the variation between different simulation runs, Figure 9.5 shows the
autocorrelations and partial autocorrelations from two runs. Code that plots results from a
single set of simulation runs is:



9.2∗ Regression modeling with ARIMA errors 291

oldpar <- par(mfrow=c(3,2), mar=c(3.1,4.6,2.6, 1.1))

for(i in 1:4){

ma3 <- 0.125*i

simts <- arima.sim(model=list(order=c(0,0,3), ma=c(0,0,ma3)), n=98)

acf(simts, main="", xlab="")

mtext(side=3, line=0.5, paste("ma3 =", ma3), adj=0)

}

par(oldpar)

Now do 20 simulation runs for each of the four values of b3, recording in each case the
order of MA process that is detected:

set.seed(29) # Ensure that results are reproducible

estMAord <- matrix(0, nrow=4, ncol=20)

for(i in 1:4){

ma3 <- 0.125*i

for(j in 1:20){

simts <- arima.sim(n=98, model=list(ma=c(0,0,ma3)))

estMAord[i,j] <- auto.arima(simts, start.q=3)$arma[2]

}

}

detectedAs <- table(row(estMAord), estMAord)

dimnames(detectedAs) <- list(ma3=paste(0.125*(1:4)),

Order=paste(0:(dim(detectedAs)[2]-1)))

The following table summarizes the result of this calculation:

> print(detectedAs)

Order

ma3 0 1 2 3 4

0.125 12 4 3 1 0

0.25 7 3 2 8 0

0.375 3 1 2 11 3

0.5 1 1 0 15 3

Even with b3 = 0.375, the chances are only around 50% that an MA component of order 3
will be detected as of order 3.

9.2∗ Regression modeling with ARIMA errors

The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level
between the Pacific island of Tahiti and Darwin, close to the northernmost tip of Australia.
Annual SOI and rainfall data for various parts of Australia, for the years 1900–2005, are in
the data framebomregions (DAAG package). (See Nicholls et al. (1996) for background.)
To what extent is the SOI useful for predicting rainfall in one or other region of Australia?

This section will examine the relationship between rainfall in the Murray–Darling
basin (mdbRain) and SOI, with a look also at the relationship in northern Australia
(northRain). The Murray–Darling basin takes its name from its two major rivers, the



292 Time series models

●
●

●

●

●●

●

●●
●
●●

●
●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●

●

●

●

●●●
●

●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●●

●

●●●

●

●

●
●
●

●

●
●

6.
5

7.
5

8.
5

m
db

3r
tR

ai
n

●

●●

●●

●

●
●●●

●

●
●
●
●

●

●

●

●

●

●
●
●

●

●

●
●

●●●

●
●

●

●●●●●

●

●

●●

●
●

●

●

●

●
●●

●

●●

●

●

●●

●●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●●
●

●

●●

●

●●●●

●

●

●

●

●●

●

●
●
●●

●
●

●
−

20
0

10

1900 1920 1940 1960 1980 2000

S
O

I

Year

Figure 9.6 Plots of mdbRain (Australia’s Murray–Darling basin) and SOI (Southern Oscillation
Index) against year.

Murray and the Darling. Over 70% of Australia’s irrigation resources are concentrated
there. It is Australia’s most significant agricultural area.3

Figure 9.6 plots the two series. The code is:

library(DAAG)

## Plot time series mdbRain and SOI: ts object bomregions (DAAG)

plot(ts(bomregions[, c("mdbRain","SOI")], start=1900),

panel=function(y,...)panel.smooth(bomregions$Year, y,...))

Trends that are evident in the separate curves are small relative to the variation of the data
about the trend curves.

Note also that a cube root transformation has been used to reduce or remove the skewness
in the data. Use of a square root or cube root transformation (Stidd, 1953) is common for
such data. The following code creates a new data frame xbomsoi that has the cube
root transformed rainfall data, together with trend estimates (over time) for SOI and
mdb3rtRain.

xbomsoi <-

with(bomregions, data.frame(SOI=SOI, mdbRain=mdbRain,

mdb3rtRain=mdbRainˆ{0.33}))

xbomsoi$trendSOI <- lowess(xbomsoi$SOI, f=0.1)$y

xbomsoi$trendRain <- lowess(xbomsoi$mdb3rtRain, f=0.1)$y

For understanding the relationship between mdb3rtRain and SOI, it can be helpful
to distinguish effects that seem independent of time from effects that result from a steady
pattern of change over time. Detrended series, for mdb3rtRain and for SOI, can be
obtained thus:

xbomsoi$detrendRain <-

with(xbomsoi, mdb3rtRain - trendRain + mean(trendRain))

3 The help page for bomregions gives a link to a map that identifies these regions.



9.2∗ Regression modeling with ARIMA errors 293

●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

● ●●

●

●

●
●
●

●

●
●

−20 −10 0 10 20

SOI

R
ai

nf
al

l (
cu

be
 r

oo
t s

ca
le

)

30
0

50
0

70
0

A

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●●

●

●

●

●
●

●

●
●

−20 −10 0 10 20

Detrended SOI

D
et

re
nd

ed
 r

ai
nf

al
l

30
0

50
0

70
0

B

Figure 9.7 Plot of (A) rainfall (cube root scale) against SOI and (B) detrended rainfall against
detrended SOI.

xbomsoi$detrendSOI <-

with(xbomsoi, SOI - trendSOI + mean(trendSOI))

Figure 9.7A plots mdb3rtRain against SOI, while Figure 9.7B gives the equivalent
plot for the detrended series.4 Both relationships seem acceptably close to linear. Here,
we model the relationship without the detrending. A linear relationship will be assumed.
Figures 9.6 and 9.7 might suggest that the relationship for the detrended series will not be
much different. We can check this directly. A further matter to check is the suggestion, in
Figure 9.7A, of a quadratic relationship.

The time series structure of the data will almost inevitably lead to correlated errors that
should be modeled or at least investigated, in order to obtain realistic standard errors for
model parameters and to make accurate inferences.

A first step may be to fit a line as for uncorrelated errors; then using the residuals to get
an initial estimate of the error structure. Figure 9.8 shows the autocorrelation structure and
partial autocorrelation structure of the residuals. The code is:

par(mfrow=c(1,2))

acf(resid(lm(mdb3rtRain ˜ SOI, data = xbomsoi)), main="")

pacf(resid(lm(mdb3rtRain ˜ SOI, data = xbomsoi)), main="")

par(mfrow=c(1,1))

Here now is the model fit:

> ## Use auto.arima() to fit model

> (mdb.arima <- with(xbomsoi, auto.arima(mdb3rtRain, xreg=SOI)))

Series: mdb3rtRain

4 ## Plot cube root of Murray-Darling basin rainfall vs SOI
oldpar <- par(mfrow=c(1,2), pty="s")
plot(mdb3rtRain ˜ SOI, data = xbomsoi, ylab = "Rainfall (cube root scale)", yaxt="n")
rainpos <- pretty(xbomsoi$mdbRain, 6)
axis(2, at = rainposˆ0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(mdb3rtRain ˜ SOI, f=0.1)))
plot(detrendRain ˜ detrendSOI, data = xbomsoi,

xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n")
axis(2, at = rainposˆ0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(detrendRain ˜ detrendSOI, f=0.1)))
par(oldpar)



294 Time series models

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

A

5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

P
ar

tia
l A

C
F

B

Figure 9.8 Panel A shows the autocorrelation function for the residuals from the regression of
mdb3rtRain (= mdbRainˆ(1/3)) on SOI. Panel B shows the partial autocorrelation function.

ARIMA(0,1,1)

. . . .

Coefficients:

ma1 SOI

-0.934 0.041

s.e. 0.046 0.007

sigmaˆ2 estimated as 0.274: log likelihood = -84.37

AIC = 174.7 AICc = 175.0 BIC = 182.8

The default search strategy uses starting values of p = 2 and q = 2. It tests the result of
changing p, d and q in turn by 1 at each step. It tests also the inclusion of a drift term. Note
that the model selection process had other restrictions; see help(auto.arima).

Now refer back to Figure 9.8. Any suggestion of non-stationarity seems very weak. We
therefore fit, for comparison, a model that has d=0, thus:

> ## Fit undifferenced model

> (mdb0.arima <- with(xbomsoi,

+ auto.arima(mdb3rtRain, xreg=SOI, d=0)))

Series: mdb3rtRain

ARIMA(0,0,0) with non-zero mean

. . . .

Coefficients:

intercept SOI

7.603 0.040

s.e. 0.050 0.007

sigmaˆ2 estimated as 0.275: log likelihood = -84.26

AIC = 174.5 AICc = 174.7 BIC = 182.6

Series: mdb3rtRain

The AIC statistic is slightly smaller. The two models give very similar regression coeffi-
cients (0.041, 0.040), with very similar standard errors. Rainfall increases by about 0.04, in
units of mdbRain0.33, for each unit increase in SOI. At the low end of the scale (a rainfall



9.2∗ Regression modeling with ARIMA errors 295

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−20 −10 0 10 20

−
1.

0
0.

0
1.

0

SOI

R
es

id
ua

ls

A: Residuals

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

B: Autocorrelation plot; residuals

Figure 9.9 Panel A plots residuals from the ARIMA model for mdbRain against SOI. Panel B
shows the autocorrelation plot for the residuals.

of about 256 mm), a unit increase in SOI increases the rainfall by about 4.9 mm. At the
high end of the scale (821 mm), the estimated increase is about 10.6 mm.5

Figure 9.9 plots the residuals from this model against SOI, and shows also the autocor-
relation plot of the residuals. These plots seem unexceptional.

∗The northRain series

The plot of NA3rtRain (= northRainˆ(1/3)) against Year, shown in Figure 9.10A,
is flat until about 1950, after which it trends upwards. Figure 9.10B shows a clear relation-
ship between NA3rtRain and SOI.

Is there any evidence, additionally, for an effect from levels of atmospheric carbon dioxide
that have increased over time? Figure 9.10C takes residuals from a resistant regression of
NA3rtRain against SOI, and plots them against residuals from a resistant regression of
CO2 against SOI. Figure 9.10C is the appropriate graph for checking whether CO2 levels
explain some further part of the changes in rainfall.

Use of resistant regression avoids potential problems with apparent outliers; these are
more likely because the error structure has not at this point been properly modeled. The
analyst is in a bind, from which there is no easy escape. Until fixed effects have been
accounted for, it is hazardous to try to estimate the error structure. Until the error structure
has been accounted for, there is no sound inferential basis for deciding what fixed effects
should be included.

Code for Figures 9.10 A, B and C is:

par(mfrow=c(2,2))

## Panel A

NA3rtRain <- bomregions$northRainˆ(1/3)

with(bomregions, plot(NA3rtRain ˜ Year, yaxt="n",

xlab="", ylab="northRain (mm)"))

with(bomregions, lines(lowess(NA3rtRain ˜ Year, f=0.75)))

5

> ## Increase in mdbRain, given a unit increase in SOI
> with(xbomsoi, (range(mdbRain)ˆ(1/3) + 0.0427)ˆ3 - range(mdbRain))
[1] 4.9 10.6



296 Time series models

●

●

●

●●

●

●●
●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

1900 1920 1940 1960 1980 2000

no
rt

hR
ai

n 
(m

m
)

30
0

40
0

60
0

80
0

A: N. Aust. rainfall vs Year

●

●

●

●●

●

●●
●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

−20 −10 0 10 20

7.
0

8.
0

9.
0

SOI

N
A

3r
tR

ai
n

B: NA3rtRain vs SOI

●

●

●

●●

●

●●
●

●

●●

●

●
●

●

●

●

●
●

●●

●●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

−
1.

0
0.

0
0.

5
1.

0
1.

5

CO2SOI.res

N
A

3r
tR

ai
nS

O
I.r

es

C: Partial residual plot; include CO2?

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

1900 1920 1940 1960 1980 2000

−
1.

0
0.

0
0.

5
1.

0

R
es

id
s,

 A
R

IM
A

(0
,0

,1
)

D: ARIMA(0,0,1), xreg=cbind(SOI, CO2))

Figure 9.10 The x-ordinate in all four panels is Year. Panel A plots northern Australian rainfall
on a cube root scale. Panel B plots NA3rtRain (= northRainˆ(1/3)) against SOI. Panel C
is a partial residual plot, suitable for checking whether CO2 should be included in the regression.
Both sets of residuals are from a resistant regression. Panel D plots residuals, from an ARIMA(0,0,1)
model for NA3rtRain, with SOI and CO2 as regressors.

yloc <- pretty(bomregions$northRain)

axis(2, at=ylocˆ(1/3), labels=paste(yloc))

## Panel B

plot(NA3rtRain ˜ SOI, data=bomregions)

lines(lowess(NA3rtRain ˜ bomregions$SOI, f=0.75))

## Panel C

NA3rtRainSOI.res <- resid(lm(NA3rtRain ˜ SOI, data=bomregions))

CO2SOI.res <- resid(lm(CO2 ˜ SOI, data=bomregions))

plot(NA3rtRainSOI.res ˜ CO2SOI.res)

lines(lowess(NA3rtRainSOI.res ˜ CO2SOI.res, f=0.75))

Code for fitting the ARIMA model that includes both SOI and CO2 as explanatory
variables, with output, is:

(north.arima <- with(bomregions,

+ auto.arima(NA3rtRain, xreg=cbind(SOI, CO2))))

Series: NA3rtRain

ARIMA(0,0,1) with non-zero mean

. . . .

Coefficients:



9.2∗ Regression modeling with ARIMA errors 297

ma1 intercept SOI CO2

0.204 5.400 0.035 0.008

s.e. 0.102 0.694 0.007 0.002

sigmaˆ2 estimated as 0.206: log likelihood = -68.46

AIC = 146.9 AICc = 147.5 BIC = 160.4

> ## Now plot the residuals, as in Panel D

> plot(unclass(resid(north.arima)) ˜ Year, type="p",

+ data= bomregions)

(Note that the result given in the intercept column is really an estimate of the series
mean and not an intercept in the usual sense.)

Any measure that remained pretty much constant until around 1950, thereafter trending
upwards, would do just as well as CO2. An obvious such measure is northern Australian
annual average temperature (northAVt). If it is accepted that changes in CO2 level are
the reason for the temperature increase, then northAVt is a proxy for CO2 concentration.

The variable SOI explains around 20% of the variation in NA3rtRain, additional to
that explained by CO2. This is found by taking the estimate σ 2 = 0.206 from the model
that was fitted above, and comparing it with sigmaˆ2 from the model where CO2 is the
only explanatory variable:

> ## Fit a constant mean model with the same correlation structure

> with(bomregions, arima(x = NA3rtRain, order = c(0, 0, 1), xreg=CO2))

. . . .

sigmaˆ2 estimated as 0.258: log likelihood = -80.8

. . . .

## Now calculate proportion of variance explained

> (.258-.206)/.258

[1] 0.202

Other checks and computations

Other checks include: checking for correlations among the residuals, checking an uncorre-
lated version of the residuals (the “innovations”) for departures from normality (including
outliers), and checking for possible non-linearity in covariate effects. Thus, consider again
the models north.arima and (for the non-linearity check) mdb.arima.

TheBox.test() function provides a so-called portmanteau test of whiteness (i.e., lack
of autocorrelation) of the residuals. That is, it checks whether there is overall, evidence of
correlation at one or more lags up to and including the specified lag m. Here, it will be used
to check whether our use of the default arguments for auto.arima(), and the search
strategy used by that function, may have unduly limited the range of models considered.

The test statistic (we use the Ljung–Box version where the default is Box–Pierce) is
a weighted sum of squares of the first m sample autocorrelation estimates. It has an
approximate chi-squared distribution on m degrees of freedom, provided there really is no
autocorrelation among the residuals. For use of this test, be sure to specify the maximum
lag m (the default is 1, not usually what is wanted). The output is:

> north.arima <- with(bomregions,

+ auto.arima(NA3rtRain, xreg=cbind(SOI, CO2)))



298 Time series models

> Box.test(resid(north.arima), lag=20, type="Ljung")

Box-Ljung test

data: resid(north.arima)

X-squared = 31.5, df = 20, p-value = 0.04866

There may be some further autocorrelation structure for which the model chosen by
auto.arima() has not accounted. The autocorrelation and partial autocorrelation plots
of residuals from north.arima both show a substantial negative correlation at a lag of
12. See Exercise 10 at the end of the chapter for further development.

Departures from normality (including outliers) have the potential to complicate estima-
tion of the ARIMA modeling structure. A check on normality is therefore very desirable:

## Examine normality of estimates of "residuals" ("innovations")

qqnorm(resid(north.arima, type="normalized"))

Figure 9.7 suggested that a straight line regression model was adequate for the Murray–
Darling basin rainfall data. We may however wish to carry out a formal check: on whether
a squared (SOIˆ2) term is justified. The code is:

> (mdb2.arima <- with(xbomsoi, auto.arima(mdb3rtRain,

+ xreg=poly(SOI,2))))

Series: mdb3rtRain

ARIMA(0,1,3)

. . . .

Coefficients:

ma1 ma2 ma3 1 2

-0.972 -0.035 0.074 2.991 0.96

s.e. 0.109 0.168 0.115 0.518 0.55

sigmaˆ2 estimated as 0.264: log likelihood = -81.63

AIC = 175.3 AICc = 176.1 BIC = 191.3

The AIC statistic is slightly larger than for the model that had only the linear term. Addi-
tionally, a different ARIMA structure has been chosen.

9.3∗ Non-linear time series

In the ARMA models so far considered, the error structures have been constructed from
linear combinations of the innovations, and the innovations have been i.i.d. normal random
variables. Such models are unable to capture the behavior of series where the variance
fluctuates widely with time, as happens for many financial and economic time series.

ARCH (autoregressive conditionally heteroscedastic) and GARCH (generalized ARCH)
models have been developed to meet these requirements. The principal idea behind a
GARCH model is that there is an underlying (or hidden) process which governs the
variance of the noise term (i.e., εt ) while ensuring that these noise terms at different
times remain uncorrelated. Market participants will, it is argued, quickly identify and



9.3∗ Non-linear time series 299

take advantage of any correlation patterns that seem more than transient, hence negating
them.

Perhaps the simplest example is a model with normal ARCH(1) errors. In such a model,
the error term at the current time step is normally distributed with mean 0 and with a
variance linearly related to the square of the error at the previous time step. In other words,
squares of noise terms form an autoregressive process of order 1. Thus, an AR(1) process
with ARCH(1) errors is given by

Xt = µ + α(Xt−1 − µ) + εt

where εt is normal with mean 0 and variance σ 2
t = α0 + αε2

t−1. The error terms εt are
uncorrelated, while their squares have serial correlations with the squares of historical
values of the error term.

GARCH models are an extension of ARCH models. In a GARCH model of order (p, q),
σ 2

t is the sum of two terms: (1) a linear function both of the previous p squares of earlier
errors, as for an ARCH model of order p and (2) a linear function of the variances of the
previous q error terms.

The functiongarch() (in the tseries package; Trapletti, A. and Hornik, K., 2008) allows
for estimation of the mean and the underlying process parameters for a given time series by
maximum likelihood, assuming normality. Note also the function white.test() which
can be used to test for non-linearity, either in the dependence of the error term on earlier
errors, or in residuals from a regression that includes a time series term. We caution that the
results of such tests should be interpreted with care; such non-linearity can manifest itself
in innumerable ways, and such tests will not necessarily be sensitive to the particular type
of non-linearity present in a particular data set.

The following code may be used to simulate an ARCH(1) process with α0 = 0.25 and
α1 = 0.95:

x <- numeric(999) # x will contain the ARCH(1) errors

x0 <- rnorm(1)

for (i in 1:999){

x0 <- rnorm(1, sd=sqrt(.25 + .95*x0ˆ2))

x[i] <- x0

}

[Note that because the initial value is not quite set correctly, a “burn-in” period is required
for this to settle down to a close approximation to an ARCH series.]

We can use the garch() function to estimate the parameters from the simulated data.
Note that the order argument specifies the number of MA and AR terms, respectively.
With a longer time series, we would expect the respective estimates to converge towards
0.25 and 0.95.

> library(tseries)

> garch(x, order = c(0, 1), trace=FALSE)

Coefficient(s):

a0 a1

0.2412 0.8523



300 Time series models

The fSeries package, which is part of the Rmetrics suite (Würtz, 2004), substantially
extends the abilities in tseries.

9.4 Further reading

Chatfield (2003a) is a relatively elementary introduction to time series. Brockwell and
Davis (2002) is an excellent and practically oriented introduction, with more mathematical
detail than Chatfield. Diggle (1990) offers a more advanced practically oriented approach.
See also Shumway and Stoffer (2006), which uses R for its examples.

As our discussion has indicated, ARIMA processes provide an integrated framework
that include AR and ARMA processes as special cases. Their use in time series modeling
and forecasting was popularized by Box and Jenkins in the late 1960s; hence they are often
called Box–Jenkins models.

State space modeling approaches are an important alternative. They provide a theoret-
ical basis for the widely popular exponential forecasting methodology, and for various
extensions of exponential forecasting. Methods of this type are implemented in the forecast
package. See Ord et al. (1997), Hyndman et al. (2002, 2008), and Hyndman and Khandakar
(2008). These approaches are intuitively appealing because they discount information from
the remote past. Hyndman et al. (2008) give an interesting and insightful comparison of a
number of different forecasting approaches, in which methods of this type do well. Related
methods are implemented in the StructTS() and HoltWinters() functions in the
stats package.

On ARCH and GARCH models, see Gourieroux (1997), the brief introduction in
Venables and Ripley (2002, pp. 414–418), and references listed there. See also the ref-
erences given on the help page for the garch() function.

Spatial statistics

We have noted that time series ideas can be applied without modification to spatial series
in one dimension. In fact, it is also possible to handle higher-dimensional spatial data.
Geostatistics, and spatial modeling in general, is concerned with notions of spatial auto-
correlation. Kriging is a widely used multi-dimensional smoothing method. This gives best
linear unbiased estimates in a spatial context. We direct the interested reader to the spatial
library and the references given there.

Other time series models and packages

Consult the CRAN Task View for time series analysis for summary details of the extensive
range of time series packages that are available. The abilities extend far beyond what has
been described in this chapter.

The following is a very limited selection: pear, for periodic autoregressive models,
including methods for plotting periodic time series; zoo, for irregular time series; fracdiff, for
fractionally differenced ARIMA “long memory” processes, where the correlation between
time points decays very slowly as the points move apart in time; strucchange, for estimating
and testing for change points; and the bundle of packages dse, for multivariate ARMA,
state space modeling, and associated forecasting.



9.5 Exercises 301

References for further reading

Brockwell, P. and Davis, R. A. 2002. Time Series: Theory and Methods, 2nd edn.
Chatfield, C. 2003a. The Analysis of Time Series: an Introduction, 2nd edn.
Diggle, P. 1990. Time Series: a Biostatistical Introduction.
Gourieroux, C. 1997. ARCH Models and Financial Applications.
Hyndman, R. J. and Khandakar, Y. 2008. Automatic time series forecasting: the forecast

package for R. Journal of Statistical Software 27(3): 1– 22.
Hyndman, R. J., Koehler, A. B., Snyder, R. D. and Grose, S. 2002. A state space framework

for automatic forecasting using exponential smoothing methods. International Journal
of Forecasting 18: 439–54.

Hyndman, R. J., Koehler, A. B., Ord, J. K. and Snyder, R. D. 2008. Forecasting with
Exponential Smoothing: The State Space Approach.

Ord, J. K., Koehler, A. B. and Snyder, R. D. 1997. Estimation and prediction for a class
of dynamic nonlinear statistical models. Journal of the American Statistical Association
92: 1621–9.

Shumway, R. and Stoffer, D. 2006. Time Series Analysis and Its Applications: With R
Examples.

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.

9.5 Exercises

1. A time series of length 100 is obtained from an AR(1) model with σ = 1 and α = −0.5. What is
the standard error of the mean? If the usual σ/

√
n formula were used in constructing a confidence

interval for the mean, with σ defined as in Subsection 9.1.3, would it be too narrow or too wide?

2. Use the ar function to fit the second-order autoregressive model to the Lake Huron time series.

3. Repeat the analysis of Section 9.2, replacing avrain by: (i) southRain, i.e., annual average
rainfall in southern Australia; (ii) northRain, i.e., annual average rainfall in northern Australia.

4. In the calculation
Box.test(resid(lm(detrendRain ˜ detrendSOI, data = xbomsoi)),

type="Ljung-Box", lag=20)

try the test with lag set to values of 1 (the default), 5, 20, 25 and 30. Comment on the different
results.

5.∗ Use the arima.sim function in the ts library to simulate 100 000 values from an AR(1)
process with α = −0.5. Now break this up into 1000 series of length 100. If x is the series, a
straightforward way to do this is to set
xx <- matrix(x, ncol=1000)

Now use the function apply() (Subsection 14.9.5) to find the means for each of these series of
length 100. Compare ∑

(Xt − X̄)2

n − 1

with var[X̄] estimated from the formula σ 2

n(1−α) .

For comparison, check the effect of using var[X]
n

to estimate the variance. First calculate the
ordinary sample variance for each of our 1000 series. Then compute the average of these variance



302 Time series models

estimates and divide by the sample size, 100. (This gives a value that is also close to that
predicted by the theory, roughly three times larger than the value that was obtained using the
correct formula.)

6. Sugar content in cereal is monitored in two ways: a lengthy lab analysis and by using quick,
inexpensive high performance liquid chromatography. The data in frostedflakes (DAAG)
come from 101 daily samples of measurements taken using the two methods.

(a) Obtain a vector of differences between the pairs of measurements.
(b) Plot the sample autocorrelation function of the vector of differences. Would an MA(1) model

be more realistic than independence?
(c) Compute a confidence interval for the mean difference under the independence assumption

and under the MA(1) assumption.

7.∗ Take first differences of the logarithms of the first component of the time series objectice.river
(tseries package), i.e.,
library(tseries)

data(ice.river)

river1 <- diff(log(ice.river[, 1]))

Using arima(), fit an ARMA(1,2) model to river1. Plot the residuals. Do they appear to
have a constant variance? Test the residuals for non-linearity.

8. Repeat, for each of the remaining regional rainfall series in the data frame bomregions, an
analysis of the type presented in Section 9.2.

9. Repeat, for each of the regional temperature series in Section 9.2, an analysis of the type presented
in Section 9.2. Is there a comparable dependence on SOI?
[NB: It will be necessary to omit the first 10 rows of the data frame, where the temperature data
are absent.]



10

Multi-level models and repeated measures

This chapter further extends the discussion of models that are a marked departure from the
independent errors models of Chapters 5 to 8. In the models that will be discussed in this
chapter, there is a hierarchy of variation that corresponds to groupings within the data. The
groups are nested. For example, students might be sampled from different classes, that in
turn are sampled from different schools. Or, crop yields might be measured on multiple
parcels of land at each of a number of different sites.

After fitting such models, predictions can be made at any of the given levels. For example,
crop yield could be predicted at new sites, or at new parcels. Prediction for a new parcel
at one of the existing sites is likely to be more accurate than a prediction for a totally new
site. Multi-level models, i.e., models which have multiple error (or noise) terms, are able
to account for such differences in predictive accuracy.

Repeated measures models are multi-level models where measurements consist of mul-
tiple profiles in time or space; each profile can be viewed as a time series. Such data may
arise in a clinical trial, and animal or plant growth curves are common examples; each
“individual” is measured at several different times. Typically, the data exhibit some form
of time dependence that the model should accommodate.

By contrast with the data that typically appear in a time series model, repeated measures
data consist of multiple profiles through time. Relative to the length of time series that is
required for a realistic analysis, each individual repeated measures profile can and often
will have values for a small number of time points only. Repeated measures data have,
typically, multiple time series that are of short duration.

This chapter will make a foray into the types of models that were discussed above, starting
with multi-level models. An introduction to repeated measures modeling then follows. Ideas
that will be central to the discussion are:

� fixed and random effects,
� variance components, and their connection, in special cases, with expected values of

mean squares,
� the specification of mixed models with a simple error structure,
� sequential correlation in repeated measures profiles.

Multi-level model and repeated measures analyses will use the package lme4, which
must be installed. The package lme4 is a partial replacement for the older nlme package.
The function lmer(), from lme4, is a more flexible and powerful replacement for lme(),



304 Multi-level models and repeated measures

Harvest weight of corn

NSAN

WLAN

TEAN

LFAN

OVAN

DBAN

WEAN

ORAN

2 3 4 5 6 7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 10.1 Corn yields for four parcels of land in each of eight sites on the Caribbean island of
Antigua. Data are in Table 10.1. They are a summarized version (parcel measurements are block
means) of a subset of data given in Andrews and Herzberg (1985, pp. 339–353). Sites have been
reordered according to the magnitude of the site means.

from nlme. The data set Orthodont that is used for the analyses of Subsection 10.6.2,
and several data sets that appear in the exercises, are in the MEMSS package.

10.1 A one-way random effects model

An especially simple multi-level model is the random effects model for the one-way layout.
Thus, consider the data frame ant111b in the DAAG package, based on an agricultural
experiment on the Caribbean island of Antigua. Corn yield measurements were taken on
four parcels of land within each of eight sites. Figure 10.1 is a visual summary.

Code for Figure 10.1 is:

library(lattice); library(DAAG)

Site <- with(ant111b, reorder(site, harvwt, FUN=mean))

stripplot(Site ˜ harvwt, data=ant111b, scales=list(tck=0.5),

xlab="Harvest weight of corn")

Figure 10.1 suggests that, as might be expected, parcels on the same site will be relatively
similar, while parcels on different sites will be relatively less similar. A farmer whose farm
was close to one of the experimental sites might take data from that site as indicative of
what he/she might expect. In other cases it may be more appropriate for a farmer to regard
his/her farm as a new site, distinct from the experimental sites, so that the issue is one of
generalizing to a new site. Prediction for a new parcel at one of the existing sites is more
accurate than prediction for a totally new site.

There are two levels of random variation. They are site, and parcel within site. Variation
between sites may be due, for example, to differences in elevation or proximity to bodies
of water. Within a site, one might expect different parcels to be somewhat similar in terms
of elevation and climatic conditions; however, differences in soil fertility and drainage may
still have a noticeable effect on yield. (Use of information on such effects, not available as
part of the present data, might allow more accurate modeling.)



10.1 A one-way random effects model 305

The model will need: (a) a random term that accounts for variation within sites, and
(b) a second superimposed random term that allows variability between parcels that are
on different sites to be greater than variation between parcels within sites. The different
random terms are known as random effects.

The model can be expressed as:

yield = overall mean + site effect
(random) + parcel effect (within site).

(random) (10.1)

Because of the balance (there are four parcels per site), analysis of variance using
aov() is entirely satisfactory for these data. It will be instructive, in Subsection 10.1.3
below, to set results from use of aov() alongside results from the function lmer() in the
package lme4 (Bates, 2005). The comparison is between a traditional analysis of variance
approach, which is fine for data from a balanced experimental design, and a general multi-
level modeling approach that can in principle handle both balanced and unbalanced designs.

10.1.1 Analysis with aov()

In the above model, the overall mean is assumed to be a fixed constant, while the site and
parcel effects are both assumed to be random. In order to account for the two levels of
variation, the model formula must include an Error(site) term, thus:

library(DAAG)

ant111b.aov <- aov(harvwt ˜ 1 + Error(site), data=ant111b)

Explicit mention of the “within-site” level of variation is unnecessary. (Use of the error
term Error(site/parcel), which explicitly identifies parcels within sites, is however
allowed.) Output is:

> summary(ant111b.aov)

Error: site

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 7 70.34 10.05

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 24 13.861 0.578

The analysis of variance (anova) table breaks the total sum of squares about the mean
into two parts – variation within sites, and variation between site means. Since there are
eight sites, the variation between sites is estimated from seven degrees of freedom, after
estimating the overall mean. Within each site, estimation of the site mean leaves three
degrees of freedom for estimating the variance for that site. Three degrees of freedom at
each of eight sites yields 24 degrees of freedom for estimating within-site variation.



306 Multi-level models and repeated measures

Table 10.1 The leftmost column has harvest weights (harvwt), for the parcels in each
site, for the Antiguan corn data. Each of these harvest weights can be expressed as the
sum of the overall mean (= 4.29), site effect (fourth column), and residual from the site
effect (final column). The information in the fourth and final columns can be used to
generate the sums of squares and mean squares for the analysis of variance table.

Site

Site Parcel measurements means effects Residuals from site mean

DBAN 5.16, 4.8, 5.07, 4.51 4.88 +0.59 0.28, −0.08, 0.18, −0.38
LFAN 2.93, 4.77, 4.33, 4.8 4.21 −0.08 −1.28, 0.56, 0.12, 0.59
NSAN 1.73, 3.17, 1.49, 1.97 2.09 −2.2 −0.36, 1.08, −0.6, −0.12
ORAN 6.79, 7.37, 6.44, 7.07 6.91 +2.62 −0.13, 0.45, −0.48, 0.15
OVAN 3.25, 4.28, 5.56, 6.24 4.83 +0.54 −1.58, −0.56, 0.73, 1.4
TEAN 2.65, 3.19, 2.79, 3.51 3.03 −1.26 −0.39, 0.15, −0.25, 0.48
WEAN 5.04, 4.6, 6.34, 6.12 5.52 +1.23 −0.49, −0.93, 0.81, 0.6
WLAN 2.02, 2.66, 3.16, 3.52 2.84 −1.45 −0.82, −0.18, 0.32, 0.68

Interpreting the mean squares

The division of the sum of squares into two parts mirrors the two different types of prediction
that can be based on these data.

First, suppose that measurements are taken on four new parcels at one of the existing
sites. How much might the mean of the four measurements be expected to vary, between
one such set of measurements and another. For this, the only source of uncertainty is parcel-
to-parcel variation within the existing site. Recall that standard errors of averages can be
estimated by dividing the (within) residual mean square by the sample size (in this case,
four), and taking the square root. Thus the relevant standard error is

√
0.578/4 = 0.38.

(Note that this is another form of the pooled variance estimate discussed in Chapter 4.)
Second, for prediction of an average of four parcels at some different site, distinct from

the original eight, the relevant standard error can be calculated in the same way, but using
the between-site mean square; it is

√
10.05/4 = 1.6.

Details of the calculations

This subsection may be omitted by readers who already understand the mean square
calculations. Table 10.1 contains the data and gives an indication of the mean square
calculations used to produce the anova table.

First, the overall mean is calculated. It is 4.29 for this example. Then site means are
calculated using the parcel measurements. Site effects are calculated by subtracting the
overall mean from the site means. The parcel effects are the residuals after subtracting the
site means from the individual parcel measurements.

The between-site sum of squares is obtained by squaring the site effects, summing, and
multiplying by four. This last step reflects the number of parcels per site. Dividing by the
degrees of freedom (8 − 1 = 7) gives the mean square.



10.1 A one-way random effects model 307

The within-site sum of squares is obtained by squaring the residuals (parcel effects),
summing, and dividing by the degrees of freedom (8 × (4 − 1) = 24).

Practical use of the analysis of variance results

Treating site as random when we do the analysis does not at all commit us to treating it as
random for purposes of predicting results from a new site. Rather, it allows us this option,
if this seems appropriate. Consider how a person who has newly come to the island, and
intends to purchase a farming property, might assess the prospects of a farming property
that is available for purchase. Two extremes in the range of possibilities are:

1. The property is similar to one of the sites for which data are available, so similar in
fact that yields would be akin to those from adding new parcels that together comprise
the same area on that site.

2. It is impossible to say with any assurance where the new property should be placed
within the range of results from experimental sites. The best that can be done is to treat
it as a random sample from the population of all possible sites on the island.

Given adequate local knowledge (and ignoring changes that have taken place since these
data were collected!) it might be possible to classify most properties on the island as likely
to give yields that are relatively close to those from one or more of the experimental sites.
Given such knowledge, it is then possible to give a would-be purchaser advice that is more
finely tuned. The standard error (for the mean of four parcels) is likely to be much less than
1.6, and may for some properties be closer to 0.38. In order to interpret analysis results with
confidence, and give the would-be purchaser high-quality advice, a fact-finding mission to
the island of Antigua may be expedient!

Random effects versus fixed effects

The random effects model bears some resemblance to the one-way model considered in
Section 4.4. The important difference is that in Section 4.4 the interest was in differences
between the fixed levels of the nutrient treatment that were used in the experiment. Gener-
alization to other possible nutrient treatments was not of interest, and would not have made
sense. The only predictions that were possible were for nutrient treatments considered in
the study.

The random effects model allows for predictions at two levels: (1) for agricultural yield
at a new location within an existing site, or (2) for locations in sites that were different from
any of the sites that were included in the original study.

Nested factors – a variety of applications

Random effects models apply in any situation where there is more than one level of random
variability. In many situations, one source of variability is nested within the other – thus
parcels are nested within sites.

Other examples include: variation between houses in the same suburb, as against variation
between suburbs; variation between different clinical assessments of the same patients, as



308 Multi-level models and repeated measures

against variation between patients; variation within different branches of the same business,
as against variation between different branches; variations in the bacterial count between
subsamples of a sample taken from a lake, as opposed to variation between different samples;
variation between the drug prescribing practices of clinicians in a particular specialty in the
same hospital, as against variation between different clinicians in different hospitals; and
so on. In all these cases, the accuracy with which predictions are possible will depend on
which of the two levels of variability is involved. These examples can all be extended in
fairly obvious ways to include more than two levels of variability.

Sources of variation can also be crossed. For example, different years may be crossed
with different sites. Years are not nested in sites, nor are sites nested in years. In agricultural
yield trials these two sources of variation may be comparable; see for example Talbot
(1984).

10.1.2 A more formal approach

Consider now a formal mathematical description of the model. The model is:

yij = µ + αi

(site, random) + βij

(parcel, random) (i = 1, . . . , 8; j = 1, . . . , 4) (10.2)

with var[αi] = σ 2
L , var[βij] = σ 2

W . The quantities σ 2
L (L = location, another term for site)

and σ 2
W (W = within) are referred to as variance components.

Variance components allow inferences that are not immediately available from the infor-
mation in the analysis of variance table. Importantly, the variance components provide
information that can help design another experiment.

Relations between variance components and mean squares

The expected values of the mean squares are, in suitably balanced designs such as this, linear
combinations of the variance components. The discussion that now follows demonstrates
how to obtain the variance components from the analysis of variance calculations. In an
unbalanced design, this is not usually possible.

Consider, again, prediction of the average of four parcels within the ith existing site.
This average can be written as

ȳi = µ + αi + β̄i

where β̄i denotes the average of the four parcel effects within the ith site. Since µ and
αi are constant for the ith site (in technical terms, we condition on the site being the ith),
var[ȳi] is the square root of var[β̄i], which equals σW/

√
4.

In the aov() output, the expected mean square for Error: Within, i.e., at the
within-site (between packages) level, is σ 2

W . Thus σ̂ 2
W = 0.578 and SE[ȳi] is estimated as

σ̂W /
√

4 = √
0.578/4 = 0.38.

Next, consider prediction of the average yield at four parcels within a new site. The
expected mean square at the site level is 4σ 2

L + σ 2
W , i.e., the between-site mean square,

which in the aov() output is 10.05, estimates 4σ 2
L + σ 2

W . The standard error for the



10.1 A one-way random effects model 309

prediction of the average yield at four parcels within a new site is√
σ 2

L + σ 2
W/4 =

√
(4σ 2

L + σ 2
W )/4.

The estimate for this is
√

10.05/4 = 1.59.
Finally note how, in this balanced case, σ 2

L can be estimated from the analysis of variance
output. Equating the expected between-site mean square to the observed mean square:

4σ̂ 2
L + σ̂ 2

W = 10.05,

i.e.,

4σ̂ 2
L + 0.578 = 10.05,

so that σ̂ 2
L = (10.05 − 0.578)/4 = 2.37.

Interpretation of variance components

In summary, here is how the variance components can be interpreted, for the Antiguan data.
Plugging in numerical values (σ̂ 2

W = 0.578 and σ̂ 2
L = 2.37), take-home messages from this

analysis are:

� For prediction for a new parcel at one of the existing sites, the standard error is σ̂W =√
0.578 = 0.76.

� For prediction for a new parcel at a new site, the standard error is
√

σ 2
L + σ 2

W =√
2.37 + 0.578 = 1.72.

� For prediction of the mean of n parcels at a new site, the standard error is
√

σ 2
L + σ 2

W/n =√
2.37 + 0.578/n.

[Notice that while σ 2
W is divided by n, σ 2

L is not. This is because the site effect is the
same for all n parcels.]

� For prediction of the total of n parcels at a new site, the standard error is
√

σ 2
Ln + σ 2

W =√
2.37n + 0.578.

Additionally:

� The variance of the difference between two such parcels at the same site is 2σ 2
W .

[Both parcels have the same site effect αi, so that var(αi) does not contribute to the
variance of the difference.]

� The variance of the difference between two parcels that are in different sites is 2(σ 2
L +

σ 2
W ):

Thus, where there are multiple levels of variation, the predictive accuracy can be dra-
matically different, depending on what is to be predicted. Similar issues arise in repeated
measures contexts, and in time series.



310 Multi-level models and repeated measures

Intra-class correlation

According to the model, two observations at different sites are uncorrelated. Two observa-
tions at the same site are correlated, by an amount that has the name intra-class correlation.
Here, it equals σ 2

L/(σ 2
L + σ 2

W ). This is the proportion of residual variance explained by
differences between sites.

Plugging in the variance component estimates, the intra-class correlation for the corn
yield data is 2.37/(2.37 + 0.578) = 0.804. Roughly 80% of the yield variation is due to
differences between sites.

10.1.3 Analysis using lmer()

In output from the function lmer(), the assumption of two nested random effects, i.e., a
hierarchy of three levels of variation, is explicit. Variation between sites (this appeared first
in the anova table in Subsection 10.1.1) is the “lower” of the two levels. Here, the nlme
convention will be followed, and this will be called level 1. Variation between parcels in
the same site (this appeared second in the anova table, under “Residuals”) is at the “higher”
of the two levels, conveniently called level 2.

The modeling command takes the form:

library(lme4)

ant111b.lmer <- lmer(harvwt ˜ 1 + (1 | site), data=ant111b)

The only fixed effect is the overall mean. The (1 | site) term fits random variation
between sites. Variation between the individual units that are nested within sites, i.e.,
between parcels, are by default treated as random. Here is the default output:

> ## Output is from version 0.999375-28 of lmer

> ## Note that there is no degrees of freedom information.

> ant111b.lmer

Linear mixed model fit by REML

Formula: harvwt ˜ 1 + (1 | site)

Data: ant111b

AIC BIC logLik deviance REMLdev

100 105 -47.2 95 94.4

Random effects:

Groups Name Variance Std.Dev.

site (Intercept) 2.368 1.54

Residual 0.578 0.76

Number of obs: 32, groups: site, 8

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.29 0.56 7.66

Observe that, according to lmer(), σ̂ 2
W = 0.578 and σ̂ 2

L = 2.368. Observe also that

σ̂ 2
W = 0.578 is the mean square from the analysis of variance table. The mean square at

level 1 does not appear in the output from the lmer() analysis, not even in this balanced
case.



10.1 A one-way random effects model 311

Fitted values and residuals in lmer()

In hierarchical multi-level models, fitted values can be calculated at each level of variation
that the model allows. Corresponding to each level of fitted values, there is a set of residuals
that is obtained by subtracting the fitted values from the observed values.

The default, and at the time of writing the only option, is to calculate fitted values and
residuals that adjust for all random effects except the residual. Here, these are estimates of
the site expected values. They differ slightly from the site means, as will be seen below.
Such fitted values are known as BLUPs (Best Linear Unbiased Predictors). Among linear
unbiased predictors of the site means, the BLUPs are designed to have the smallest expected
error mean square.

Relative to the site means ȳi., the BLUPs are pulled in toward the overall mean ȳ... The
most extreme site means will on average, because of random variation, be more extreme
than the corresponding “true” means for those sites. For the simple model considered here,
the fitted value α̂i for the ith site is given by

ŷi . = ȳ.. + nσ̂ 2
L

nσ̂ 2
L + σ̂ 2

W

(ȳi. − ȳ..).

Shrinkage is substantial, i.e., a shrinkage factor much less than 1.0, when n−1σ̂ 2
W is large

relative to σ̂ 2
L. (For the notation, refer back to equation (10.2).)

As a check, compare the BLUPs given by the above formula with the values from
fitted(ant111b.lmer):

> s2W <- 0.578; s2L <- 2.37; n <- 4

> sitemeans <- with(ant111b, sapply(split(harvwt, site), mean))

> grandmean <- mean(sitemeans)

> shrinkage <- (n*s2L)/(n*s2L+s2W)

> grandmean + shrinkage*(sitemeans - grandmean)

DBAN LFAN NSAN ORAN OVAN TEAN WEAN WLAN

4.851 4.212 2.217 6.764 4.801 3.108 5.455 2.925

> ##

> ## More directly, use fitted() with the lmer object

> unique(fitted(ant111b.lmer))

[1] 4.851 4.212 2.217 6.764 4.801 3.108 5.455 2.925

> ##

> ## Compare with site means

> sitemeans

DBAN LFAN NSAN ORAN OVAN TEAN WEAN WLAN

4.885 4.207 2.090 6.915 4.832 3.036 5.526 2.841

Observe that the fitted values differ slightly from the site means. For site means below
the overall mean (4.29), the fitted values are larger (closer to the overall mean), and for site
means above the overall mean, the fitted values are smaller.

Notice that fitted() has given the fitted values at level 1, i.e., it adjusts for
the single random effect. The fitted value at level 0 is the overall mean, given by
fixef(ant111b.lmer). Residuals can also be defined on several levels. At level 0, they
are the differences between the observed responses and the overall mean. At level 1, they



312 Multi-level models and repeated measures

are the differences between the observed responses and the fitted values at level 1 (which
are the BLUPs for the sites).

∗Uncertainty in the parameter estimates

The limits of acceptance of a likelihood ratio test for the null hypothesis of no change in
a parameter value can be used as approximate 95% confidence limits for that parameter.
The calculations require evaluation of what is termed the profile likelihood, here using the
profile() method for objects created by lmer():

> ## lme4a_0.999375-44 (Development branch); details may change

> CI95 <- confint(profile(ant111b.lmer), level=0.95)

> rbind("sigmaLˆ2"=CI95[1,]ˆ2, "sigmaˆ2"=exp(CI95[2,])ˆ2,

+ "(Intercept)"=CI95[3,])

2.5 % 97.5 %

sigmaLˆ2 0.796 6.94

sigmaˆ2 0.344 1.08

(Intercept) 3.128 5.46

The version of the confint() method used here returned confidence intervals for
σL (row label .sig01), for log(σ ) (row label .lsig), and for (Intercept). The
(Intercept) is the intercept in the fitted model, which estimates the overall mean.

An alternative, once it can be made to work reliably, is a Markov Chain Monte Carlo
(MCMC) approach, as implemented in the lme4 function mcmcsamp(). The posterior
distribution of the parameters is simulated, using a non-informative prior distribution.
Credible intervals can be calculated; these are analogous to confidence intervals, but have
an easier interpretation. They are, conditional on the Bayesian assumptions, probability
statements. See help(mcmcsamp) for more details. Subsection 10.2.1 has an example
where the current (at the time of writing) implementation of this methodology delivers
acceptable results.

Handling more than two levels of random variation

There can be variation at each of several nested levels. Suppose, for example, that house
prices (price) were available at samples of three-bedroom bungalows within samples of
suburbs (suburb) located within a number of different American cities (city). Prices
differ between cities, between suburbs within cities, and between houses within suburbs.

Using the terminology of the lme() function in the nlme package, there are three levels
of variation: level 3 is house, level 2 is suburb, and level 1 is city. (The lmer() function
is not limited to the hierarchical models to which this terminology applies, and does not
make formal use of the “levels” terminology.)

Since level 1 and 2 variation must be identified in the lmer() function call, we would
analyze such data using

## house.lmer <- lmer(price ˜ 1 + (1|city) + (1|city:suburb))

Additionally, it may be necessary to replace the intercept term by one or more linear
model terms that take account of such explanatory variables (these are “fixed effects”) as
floor area. In the examples in the next three sections, much of the interest will be on the
implications of the random effects for the accuracy of fixed-effect estimates.



10.2 Survey data, with clustering 313

●

●

private

public

2 3 4 5 6

Class average of score

Figure 10.2 Average scores for class, compared between public and private schools.

10.2 Survey data, with clustering

The data that will now be explored are from the data frame science (DAAG). They
are measurements of attitudes to science, from a survey where there were results from
20 classes in 12 private schools and 46 classes in 29 public (i.e., state) schools, all in and
around Canberra, Australia. Results are from a total of 1385 year 7 students. The variable
like is a summary score based on two of the questions. It is on a scale from 1 (dislike)
to 12 (like). The number in each class from whom scores were available ranged from 3 to
50, with a median of 21.5. Figure 10.2 compares results for public schools with those for
private schools.1

10.2.1 Alternative models

Within any one school, we might have

y = class effect + pupil effect

where y represents the attitude measure.
Within any one school, we might use a one-way analysis of variance to estimate and

compare class effects. However, this study has the aim of generalizing beyond the classes
in the study to all of some wider population of classes, not just in the one school, but in a
wider population of schools from which the schools in the study were drawn. In order to be
able to generalize in this way, we treat school (school), and class (class) within school,
as random effects. We are interested in possible differences between the sexes (sex), and
between private and public schools (PrivPub). The two sexes are not a sample from some
larger population of possible sexes (!), nor are the two types of school (for this study at
least) a sample from some large population of types of school. Thus they are fixed effects.

1 ## Means of like (data frame science: DAAG), by class
classmeans <- with(science,

aggregate(like, by=list(PrivPub, Class), mean) )
# NB: Class identifies classes independently of schools
# class identifies classes within schools

names(classmeans) <- c("PrivPub", "Class", "avlike")
attach(classmeans)
## Boxplots: class means by Private or Public school
boxplot(split(avlike, PrivPub), horizontal=TRUE, las=2,
xlab = "Class average of score", boxwex = 0.4)

rug(avlike[PrivPub == "private"], side = 1)
rug(avlike[PrivPub == "public"], side = 3)
detach(classmeans)



314 Multi-level models and repeated measures

The interest is in the specific fixed differences between males and females, and between
private and public schools.

The preferred approach is a multi-level model analysis. While it is sometimes possible
to treat such data using an approximation to the analysis of variance as for a balanced
experimental design, it may be hard to know how good the approximation is. We specify
sex (sex) and school type (PrivPub) as fixed effects, while school (school) and class
(class) are specified as random effects. Class is nested within school; within each school
there are several classes. The model is:

y = + sex effect
(fixed) + type (private or public)

(fixed) + school effect
(random) + class effect

(random). + pupil effect
(random).

Questions we might ask are:

� Are there differences between private and public schools?
� Are there differences between females and males?
� Clearly there are differences among pupils. Are there differences between classes within

schools, and between schools, greater than pupil-to-pupil variation within classes would
lead us to expect?

The table of estimates and standard errors for the coefficients of the fixed component is
similar to that from an lm() (single-level) analysis.

> science.lmer <- lmer(like ˜ sex + PrivPub + (1 | school) +

+ (1 | school:class), data = science,

+ na.action=na.exclude)

> summary(science.lmer)

Linear mixed-effects model fit by REML

Formula: like ˜ sex + PrivPub + (1 | school) + (1 | school:class)

Data: science

AIC BIC logLik MLdeviance REMLdeviance

5556.55 5582.71 -2773.27 5539.14 5546.55

Random effects:

Groups Name Variance Std.Dev.

school:class (Intercept) 3.206e-01 5.662e-01

school (Intercept) 1.526e-09 3.907e-05

Residual 3.052e+00 1.747e+00

number of obs: 1383, groups: school:class, 66; school, 41

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.7218 0.1624 29.072

sexm 0.1823 0.0982 1.857

PrivPubpublic 0.4117 0.1857 2.217

Correlation of Fixed Effects:

(Intr) sexm

sexm -0.309

PrivPubpblc -0.795 0.012



10.2 Survey data, with clustering 315

Degrees of freedom are as follows:

� Between types of school: 41 (number of schools) −2 = 39.
� Between sexes: 1383 − 1 (overall mean) − 1 (differences between males and females) −

65 (differences between the 66 school:class combinations) = 1316.

The comparison between types of schools compares 12 private schools with 29 public
schools, comprising 41 algebraically independent items of information. However because
the numbers of classes and class sizes differ between schools, the three components of
variance contribute differently to these different accuracies, and the 39 degrees of freedom
are for a statistic that has only an approximate t-distribution. On the other hand, schools are
made up of mixed male and female classes. The between-pupils level of variation, where
the only component of variance is that for the Residual in the output above, is thus the
relevant level for the comparison between males and females. The t-test for this comparison
is, under model assumptions, an exact test with 1316 degrees of freedom.

There are three variance components:2

Between schools (school) 0.00000000153

Between classes (school:class) 0.321

Between students (Residual) 3.052

It is important to note that these variances form a nested hierarchy. Variation between stu-
dents contributes to variation between classes. Variation between students and between
classes both contribute to variation between schools. The modest-sized between-class
component of variance tells us that differences between classes are greater than would
be expected from differences between students alone. This will be discussed further
shortly.

The between-schools component of variance is close to zero. There is, moreover, suf-
ficient information on school-to-school variation (20 private schools, 46 public schools)
that failure to account for the between-schools component of variation will not much affect
inferences that may be drawn. Hence the following simpler analysis that does not account
for the schools component of variance. Notice that the variance component estimates are,
to two significant digits, the same as before:

> science1.lmer <- lmer(like ˜ sex + PrivPub + (1 | school:class),

+ data = science, na.action=na.exclude)

> summary(science1.lmer)

....

Random effects:

Groups Name Variance Std.Dev.

school:class (Intercept) 0.321 0.566

Residual 3.052 1.747

number of obs: 1383, groups: school:class, 66

2 ## The variances are included in the output from VarCorr()
VarCorr(science.lmer) # Displayed output differs slightly
# The between students (Residual) component of variance is
# attr(VarCorr(science.lmer),"sc")ˆ2



316 Multi-level models and repeated measures

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.7218 0.1624 29.07

sexm 0.1823 0.0982 1.86

PrivPubpublic 0.4117 0.1857 2.22

....

Now use the function mcmcsamp() to get approximate 95% confidence intervals
(technically, credible intervals) for the random effects:

> set.seed(41)

> science1.mcmc <- mcmcsamp(science1.lmer, n=1000)

> samps <- VarCorr(science1.mcmc, type="varcov")

> colnames(samps) <- c("sigma_Classˆ2", "sigmaˆ2")

> signif(HPDinterval(samps, prob=0.95), 3)

lower upper

sigma_Classˆ2 0.148 0.43

sigmaˆ2 2.840 3.28

attr(,"Probability")

[1] 0.95

To what extent do differences between classes affect the attitude to science? A measure of
the effect is the intra-class correlation, which is the proportion of variance that is explained
by differences between classes. Here, it equals 0.321/(0.321 + 3.05) = 0.095. The main
influence comes from outside the class that the pupil attends, e.g., from home, television,
friends, inborn tendencies, etc.

Do not be tempted to think that, because 0.321 is small relative to the within-class
component variance of 3.05, it is of little consequence. The variance for the mean of a
class that is chosen at random is 0.321 + 3.05/n. Thus, with a class size of 20, the between-
class component makes a bigger contribution than the within-class component. If all classes
were the same size, then the standard error of the difference between class means for public
schools and those for private schools would, as there were 20 private schools and 46 public
schools, be √

(0.321 + 3.05/n)

(
1

20
+ 1

46

)
.

From the output table of coefficients and standard errors, we note that the standard error of
difference between public and private schools is 0.1857. For this to equal the expression just
given, we require n = 19.1. Thus the sampling design is roughly equivalent to a balanced
design with 19.1 pupils per class.

Figure 10.3 displays information that may be helpful in the assessment of the model. A
simplified version of the code is:

science1.lmer <- lmer(like ˜ sex + PrivPub + (1 | school:class),

data = science, na.action=na.omit)

ranf <- ranef(obj = science1.lmer, drop=TRUE)[["school:class"]]

flist <- science1.lmer@flist[["school:class"]]



10.2 Survey data, with clustering 317

●

●

●

●

●●

●

●●

●

●

●●
●

●
●

●●
●

●
−

1.
0

0.
0

1.
0

# in class (square root scale)

E
st

im
at

e 
of

 c
la

ss
 e

ffe
ct

10 20 30 50

A

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

2
3

4
5

6

# in class (square root scale)

W
ith

in
-c

la
ss

 v
ar

ia
nc

e

10 20 30 50

B

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●●
●

●
●

●●
●

●

−2 −1 0 1 2

−
1.

0
0.

0
1.

0

Theoretical quantiles

O
rd

er
ed

 s
ite

 e
ffe

ct
s

C

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●●●●
●●●●●●

●

●

●●

●●

●

●●

●

●●
●●

●

●●

●●

●●●

●●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●●

●

●●●●

●●

●

●●●●●

●

●

●●

●●

●
●●

●

●●●●

●

●●

●

●

●

●

●

●●
●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

−3 −1 1 2 3

−
4

0
2

4

Theoretical quantiles

O
rd

er
ed

 w
/i-

cl
as

s 
re

si
du

al
s D

● Private Public

Figure 10.3 Panel A plots class effects against number in the class. Panel B plots within-class
variance against number in the class. Panels C and D show normal probability plots, for the class
effect and for the level 1 residuals (adjusting for the class effect), respectively.

privpub <- science[match(names(ranf), flist), "PrivPub"]

num <- unclass(table(flist)); numlabs <- pretty(num)

par(mfrow=c(2,2))

## Plot effect estimates vs numbers

plot(sqrt(num), ranf, xaxt="n", pch=c(1,3)[unclass(privpub)],

xlab="# in class (square root scale)",

ylab="Estimate of class effect")

lines(lowess(sqrt(num[privpub=="private"]),

ranf[privpub=="private"], f=1.1), lty=2)

lines(lowess(sqrt(num[privpub=="public"]),

ranf[privpub=="public"], f=1.1), lty=3)

axis(1, at=sqrt(numlabs), labels=paste(numlabs))

res <- residuals(science1.lmer)

vars <- tapply(res, INDEX=list(flist), FUN=var)*(num-1)/(num-2)

## Within plot variance estimates vs numbers

plot(sqrt(num), vars, pch=c(1,3)[unclass(privpub)])

lines(lowess(sqrt(num[privpub=="private"]),

as.vector(vars)[privpub=="private"], f=1.1), lty=2)

lines(lowess(sqrt(num[privpub=="public"]),

as.vector(vars)[privpub=="public"], f=1.1), lty=3)

## Normal probability plot of site effects

qqnorm(ranf, ylab="Ordered site effects", main="")

## Normal probability plot of residuals

qqnorm(res, ylab="Ordered w/i class residuals", main="")

par(mfrow=c(1,1))



318 Multi-level models and repeated measures

Panel A shows no clear evidence of a trend. Panel B perhaps suggests that variances may be
larger for the small number of classes that had more than about 30 students. Panels C and
D show distributions that seem acceptably close to normal. The interpretation of panel C is
complicated by the fact that the different effects are estimated with different accuracies.

10.2.2 Instructive, though faulty, analyses

Ignoring class as the random effect

It is important that the specification of random effects be correct. It is enlightening to do an
analysis that is not quite correct, and investigate the scope that it offers for misinterpretation.
We fitschool, ignoringclass, as a random effect. The estimates of the fixed effects change
little.

> science2.lmer <- lmer(like ˜ sex + PrivPub + (1 | school),

+ data = science, na.action=na.exclude)

> science2.lmer

. . . .

Fixed effects:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.738 0.163 29.00 <2e-16

sexm 0.197 0.101 1.96 0.051

PrivPubpublic 0.417 0.185 2.25 0.030

This analysis suggests, wrongly, that the between-schools component of variance is
substantial. The estimated variance components are:3

Between schools 0.166

Between students 3.219

This is misleading. From our earlier investigation, it is clear that the difference is between
classes, not between schools!

Ignoring the random structure in the data

Here is the result from a standard regression (linear model) analysis, with sex and PrivPub
as fixed effects:

> ## Faulty analysis, using lm

> science.lm <- lm(like ˜ sex + PrivPub, data=science)

> summary(science.lm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.740 0.0996 47.62 0.000000

sexm 0.151 0.0986 1.53 0.126064

PrivPubpublic 0.395 0.1051 3.76 0.000178

3 ## The numerical values can be extracted from
VarCorr(science2.lmer) # The within schools (Residual) component of variance

# is the square of the scale parameter



10.3 A multi-level experimental design 319

Do not believe this analysis! The SEs are too small, and the number of degrees of freedom
for the comparison between public and private schools is much too large. The contrast is
more borderline than this analysis suggests.

10.2.3 Predictive accuracy

The variance of a prediction of the average for a new class of n pupils, sampled in the same
way as existing classes, is 0.32 + 3.05/n. If classes were of equal size, we could derive an
equivalent empirical estimate of predictive accuracy by using a resampling method with
the class means. With unequal class sizes, use of the class means in this way will be a rough
approximation. There were 60 classes. If the training/test set methodology is used, the 60
class means would be divided between a training set and a test set.

An empirical estimate of the within-class variation can be derived by applying a resam-
pling method (cross-validation, or the bootstrap) to data for each individual class. The
variance estimates from the different classes would then be pooled.

The issues here are important. Data do commonly have a hierarchical variance structure
comparable with that for the attitudes to science data. As with the Antiguan corn yield
data, the population to which results are to be generalized determines what estimate of
predictive accuracy is needed. There are some generalizations, e.g., to another state, that
the data cannot support.

10.3 A multi-level experimental design

The data in kiwishade are from a designed experiment that compared different kiwifruit
shading treatments. [These data relate to Snelgar et al. (1992). Maindonald (1992) gives the
data in Table 10.2, together with a diagram of the field layout that is similar to Figure 10.4.
The two papers have different shorthands (e.g., Sept–Nov versus Aug–Dec) for describing
the time periods for which the shading was applied.] Figure 10.4 shows the layout. In
summary, note also:

� This is a balanced design with four vines per plot, four plots per block, and three blocks.
� There are three levels of variation that will be assumed random – between vines within

plots, between plots within blocks, and between blocks.
� The experimental unit is a plot; this is the level at which the treatment was applied. We

have four results (vine yields) per plot.
� Within blocks, treatments were randomly allocated to the four plots.

The northernmost plots were grouped together because they were similarly affected by
shading from the sun in the north. For the remaining two blocks, shelter effects, whether
from the west or from the east, were thought more important. Table 10.2 displays the data.

The aov() function allows calculation of an analysis of variance table that accounts
for the multiple levels of variation, and allows the use of variation at the plot level to
compare treatments. Variance components can be derived, should they be required, from
the information in the analysis of variance table. The section will conclude by demonstrating
the use of lmer() to calculate the variance components directly, and provide information
equivalent to that from the use of aov().



320 Multi-level models and repeated measures

Table 10.2 Data from the kiwifruit shading trial. The level names for
the factor shade are mnemonics for the time during which shading
was applied. Thus (none) implies no shading, Aug2Dec means
“August to December”, and similarly for Dec2Feb and Feb2May.
The final four columns give yield measurements in kilograms.

Block Shade Vine1 Vine2 Vine3 Vine4

east none 100.74 98.05 97.00 100.31
east Aug2Dec 101.89 108.32 103.14 108.87
east Dec2Feb 94.91 93.94 81.43 85.40
east Feb2May 96.35 97.15 97.57 92.45
north none 100.30 106.67 108.02 101.11
north Aug2Dec 104.74 104.02 102.52 103.10
north Dec2Feb 94.05 94.76 93.81 92.17
north Feb2May 91.82 90.29 93.45 92.58
west none 93.42 100.68 103.49 92.64
west Aug2Dec 97.42 97.60 101.41 105.77
west Dec2Feb 84.12 87.06 90.75 86.65
west Feb2May 90.31 89.06 94.99 87.27

3

1

0

2

2

1

0

3

3 2

10

6 
m

et
er

s 
he

ig
ht

 a
rt

ifi
ci

al
 s

he
lte

r 
be

lt

9 meters height shelter belt

19 meters height shelter belt

W
ill

ow
 s

he
lte

r 
be

lt

0 Unshaded
1 Shaded Aug−Dec
2 Dec−Feb
3 Feb−May

16
 m

et
er

s 
he

ig
ht

 w
ill

ow
 s

he
lte

r 
be

lt

N

Figure 10.4 The field layout for the kiwifruit shading trial.



10.3 A multi-level experimental design 321

The model is:

yield = overall mean + block effect
(random) + shade effect

(fixed) + plot effect
(random) + vine effect.

(random)

We characterize the design thus:

Fixed effect: shade (treatment).
Random effect: vine (nested) in plot in block, or block/plot/vine.

Although block is included as a random effect, the estimate of the block component of
variance has limited usefulness. On the one hand, the common location of the three blocks
has exposed them to similar soil and general climate effects. On the other hand, their
different orientations (N, W and E) to sun and prevailing wind will lead to systematic
differences. At best, the estimate of the block component of variance will give only the
vaguest of hints on the likely accuracy of predictions for other blocks.

There is some limited ability to generalize to other plots and other vines. When horticul-
turalists apply these treatments in their own orchards, there will be different vines, plots, and
blocks. Thus, vines and plots are treated as random effects. A horticulturalist will however
reproduce, as far as possible, the same shade treatments as were used in the scientific trial,
and these are taken as fixed effects. There is however a caveat. In the different climate, soil,
and other conditions of a different site, these effects may well be different.

10.3.1 The anova table

The model formula that is applied to aov() is an extension of an lm() style of
model formula that includes an Error() term. Observe that each different plot within
a block has a different shading treatment, so that the block:shade combination can
be used to identify plots. Thus the two error terms that need to be specified can be
written block and block:shade. There is a shorthand way to specify both of these
together. Write block/shade, which expands into block+block:shade. Suitable
code for the calculation is:

## Analysis of variance: data frame kiwishade (DAAG)

kiwishade.aov <- aov(yield ˜ shade + Error(block/shade),

data=kiwishade)

The output is:

> summary(kiwishade.aov)

Error: block

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 2 172.348 86.174

Error: block:shade

Df Sum Sq Mean Sq F value Pr(>F)

shade 3 1394.51 464.84 22.211 0.001194

Residuals 6 125.57 20.93



322 Multi-level models and repeated measures

Table 10.3 Mean squares in the analysis of variance table. The final column gives
expected values of mean squares, as functions of the variance components.

Df Sum of sq Mean sq E[Mean sq]

block level 2 172.35 86.17 16σ 2
B + 4σ 2

P + σ 2
V

block.plt level
shade 3 1394.51 464.84 4σ 2

P + σ 2
V + treatment component

residual 6 125.57 20.93 4σ 2
P + σ 2

V

block.plt.vines level 36 438.58 12.18 σ 2
V

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 36 438.58 12.18

Notice the use of summary() to give the information that is required. The function
anova() is, in this context, unhelpful.

Table 10.3 structures the output, with a view to making it easier to follow. The final
column will be discussed later, in Subsection 10.3.2.

10.3.2 Expected values of mean squares

The final column of Table 10.3 shows how the variance components combine to give
the expected values of mean squares in the analysis of variance table. In this example,
calculation of variance components is not necessary for purposes of assessing the effects
of treatments. We compare the shade mean square with the residual mean square for
the block.plt level. The ratio is:

F -ratio = 464.84

20.93
= 22.2, on 3 and 6 d.f. (p = 0.0024).

As this is a balanced design, the treatment estimates can be obtained using
model.tables():

> model.tables(kiwishade.aov, type="means")

Tables of means

Grand mean

96.53

shade

shade

none Aug2Dec Dec2Feb Feb2May

100.20 103.23 89.92 92.77

The footnote gives an alternative way to calculate these means.4

4 ## Calculate treatment means
with(kiwishade, sapply(split(yield, shade), mean))



10.3 A multi-level experimental design 323

Table 10.4 Plot means, and differences of yields for individual vines from the plot mean.

block shade Mean vine1 vine2 vine3 vine4

east none 99.03 1.285 −2.025 −0.975 1.715
east Aug2Dec 105.55 3.315 −2.415 2.765 −3.665
east Dec2Feb 88.92 −3.520 −7.490 5.020 5.990
east Feb2May 95.88 −3.430 1.690 1.270 0.470
north none 104.03 −2.915 3.995 2.645 −3.725
north Aug2Dec 103.59 −0.495 −1.075 0.425 1.145
north Dec2Feb 93.70 −1.528 0.112 1.062 0.352
north Feb2May 92.03 0.545 1.415 −1.745 −0.215
west none 97.56 −4.918 5.932 3.123 −4.138
west Aug2Dec 100.55 5.220 0.860 −2.950 −3.130
west Dec2Feb 87.15 −0.495 3.605 −0.085 −3.025
west Feb2May 90.41 −3.138 4.582 −1.347 −0.097

Grand mean = 96.53

Treatment differences are estimated within blocks, so that σ 2
B does not contribute to the

standard error of the differences (SED) between means. The SED is, accordingly,
√

2 × the
square root of the residual mean square divided by the sample size:

√
2 × √

(20.93/12) =
1.87. The sample size is 12, since each treatment comparison is based on differences
between two different sets of 12 vines.

The next subsection will demonstrate calculation of the sums of squares in the analysis of
variance table, based on a breakdown of the observed yields into components that closely
reflect the different terms in the model. Readers who do not at this point wish to study
Subsection 10.3.3 in detail may nevertheless find it helpful to examine Figures 10.5, taking
on trust the scalings used for the effects that they present.

10.3.3∗ The analysis of variance sums of squares breakdown

This subsection shows how to calculate the sums of squares and mean squares. These details
are not essential to what follows, but do give useful insight. The breakdown extends the
approach used in the simpler example of Subsection 10.1.1.

For each plot, we calculate a mean, and differences from the mean. See Table 10.4.5

Note that whereas we started with 48 observations we have only 12 means. Now we break
the means down into overall mean, plus block effect (the average of differences, for that
block, from the overall mean), plus treatment effect (the average of the difference, for that
treatment, from the overall mean), plus residual.

5 ## For each plot, calculate mean, and differences from the mean
vine <- paste("vine", rep(1:4, 12), sep="")
vine1rows <- seq(from=1, to=45, by=4)
kiwivines <- unstack(kiwishade, yield ˜ vine)
kiwimeans <- apply(kiwivines, 1, mean)
kiwivines <- cbind(kiwishade[vine1rows, c("block","shade")],

Mean=kiwimeans, kiwivines-kiwimeans)
kiwivines <- with(kiwivines, kiwivines[order(block, shade), ])
mean(kiwimeans) # the grand mean



324 Multi-level models and repeated measures

Table 10.5 Each plot mean is expressed as the sum of overall mean (= 96.53), block
effect, shade effect, and residual for the block:shade combination (or plt).

block:shade

block shade Mean Block effect Shade effect residual

east none 99.02 0.812 3.670 −1.990
east Aug2Dec 105.56 0.812 6.701 1.509
east Dec2Feb 88.92 0.812 −6.612 −1.813
east Feb2May 95.88 0.812 −3.759 2.294
north none 104.02 1.805 3.670 2.017
north Aug2Dec 103.60 1.805 6.701 −1.444
north Dec2Feb 93.70 1.805 −6.612 1.971
north Feb2May 92.04 1.805 −3.759 −2.545
west none 97.56 −2.618 3.670 −0.027
west Aug2Dec 100.55 −2.618 6.701 −0.066
west Dec2Feb 87.15 −2.618 −6.612 −0.158
west Feb2May 90.41 −2.618 −3.759 0.251

square, add, square, add, square, add,
multiply by 4, multiply by 4, multiply by 4,
divide by d.f. = 2, divide by d.f. = 3, divide by d.f. = 6,
to give ms to give ms to give ms

−10 −5 0 5 10

| || || ||

| ||| ||

| ||| || || |

||| || || |||| |||| |||| |||

Variation in yield (kg)
(Add to grand mean of yield = 96.53)

vine
(12.2)

plot
(20.9)

shade
(464.8)

block effect
(ms=86.2)

Figure 10.5 Variation at the different levels, for the kiwifruit shading data. The individual data
values are given, together with one standard deviation limits either side of zero.

Table 10.5 uses the information from Table 10.4 to express each plot mean as the sum of
a block effect, a shade effect, and a residual for the block:shade combination. The notes
in the last row of each column show how to determine the mean squares that were given in
Table 10.3. Moreover, we can scale the values in the various columns so that their standard
deviation is the square root of the error mean square, and plot them. Figure 10.5 plots all
this information. It shows the individual values, together with one standard deviation limits
either side of zero. The chief purpose of these plots is to show the much greater variation
at these levels than at the plt and vine level.



10.3 A multi-level experimental design 325

The estimate of between-plot variance in Table 10.3 was 20.93. While larger than
the between-vine mean square of 12.18, it is not so much larger that the evidence from
Figure 10.5 can be more than suggestive. Variation between treatments does appear much
greater than can be explained from variation between plots, and the same is true for variation
between blocks.

We now explain the scaling of effects in Figure 10.5. Consider first the 48 residuals at
the vine level. Because 12 degrees of freedom were expended when the 12 plot means
were subtracted, the 48 residuals share 36 degrees of freedom and are positively correlated.
To enable the residuals to present the appearance of uncorrelated values with the correct
variance, we scale the 48 residuals so that the average of their squares is the between-vine
estimate of variance σ 2

V ; this requires multiplication of each residual by
√

(48/36).
At the level of plot means, we have 6 degrees of freedom to share between 12 plot effects.

In addition, we need to undo the increase in precision that results from taking means of
four values. Thus, we multiply each plot effect by

√
(12/6) × √

4. If the between-plot
component of variance is zero, the expected value of the average of the square of these
scaled effects will be σ 2

V . If the between-plot component of variance is greater than zero,
the expected value of the average of these squared effects will be greater than σ 2

V .
In moving from plot effects to treatment effects, we have a factor of

√
(4/3) that arises

from the sharing of 3 degrees of freedom between 4 effects, further multiplied by
√

12
because each treatment mean is an average of 12 vines. For block effects, we have a
multiplier of

√
(3/2) that arises from the sharing of 2 degrees of freedom between 3 effects,

further multiplied by
√

16 because each block mean is an average of 16 vines. Effects that
are scaled in this way allow visual comparison, as in Figure 10.5.

10.3.4 The variance components

The mean squares in an analysis of variance table for data from a balanced multi-level
model can be broken down further, into variance components. The variance components
analysis gives more detail about model parameters. Importantly, it provides information
that will help design another experiment. Here is the breakdown for the kiwifruit shading
data:

� Variation between vines in a plot is made up of one source of variation only. Denote this
variance by σ 2

V .
� Variation between vines in different plots is partly a result of variation between vines,

and partly a result of additional variation between plots. In fact, if σ 2
P is the (additional)

component of the variation that is due to variation between plots, the expected mean
square equals

4σ 2
P + σ 2

V .

(NB: the 4 comes from 4 vines per plot.)
� Variation between treatments is

4σ 2
P + σ 2

V + T

where T (> 0) is due to variation between treatments.



326 Multi-level models and repeated measures

� Variation between vines in different blocks is partly a result of variation between vines,
partly a result of additional variation between plots, and partly a result of additional
variation between blocks. If σ 2

B is the (additional) component of variation that is due to
differences between blocks, the expected value of the mean square is

16σ 2
B + 4σ 2

P + σ 2
V

(16 vines per block, 4 vines per plot).

We do not need estimates of the variance components in order to do the analysis of
variance. The variance components are helpful for designing another experiment. We
calculate the estimates thus:

σ̂ 2
V = 12.18,

4σ̂ 2
P + σ̂ 2

V = 20.93, i.e., 4σ̂ 2
P + 12.18 = 20.93.

This gives the estimate σ̂ 2
P = 2.19. We can also estimate σ̂ 2

B = 4.08.

We are now in a position to work out how much the precision would change if we had 8
(or, say, 10) vines per plot. With n vines per plot, the variance of the plot mean is

(nσ̂ 2
P + σ̂ 2

V )/n = σ̂ 2
P + σ̂ 2

V /n = 2.19 + 12.18/n.

We could also ask how much of the variance, for an individual vine, is explained by vine-
to-vine differences. This depends on how much we stretch the other sources of variation.
If the comparison is with vines that may be in different plots, the proportion is 12.18/

(12.18 + 2.19). If we are talking about different blocks, the proportion is 12.18/(12.18 +
2.19 + 4.08).

10.3.5 The mixed model analysis

For a mixed model analysis, we specify that treatment (shade) is a fixed effect, that block
and plot are random effects, and that plot is nested in block. The software works out for
itself that the remaining part of the variation is associated with differences between vines.

For using lmer(), the command is:

kiwishade.lmer <- lmer(yield ˜ shade + (1|block) + (1|block:plot),

data=kiwishade)

# block:shade is an alternative to block:plot

For comparison purposes with the results from the preceding section, consider:

> kiwishade.lmer

. . . .

Random effects:

Groups Name Variance Std.Dev.

block:plot (Intercept) 2.19 1.48

block (Intercept) 4.08 2.02

Residual 12.18 3.49

# of obs: 48, groups: block:plot, 12; block, 3

These agree with the estimates that were obtained above.



10.3 A multi-level experimental design 327

Figure 10.6 Panel A shows standardized residuals after fitting block and plot effects, plotted against
fitted values. There are 12 distinct fitted values, one for each plot. Panel B is a normal probability plot
that shows the plot effects. The names in the top left-hand corner identify the plots with the largest
residuals. Panel C shows overlaid normal probability plots of plot effects from two simulations.

Residuals and estimated effects

In this hierarchical model there are three levels of variation: level 1 is between blocks, level
2 is between plots, and level 3 is between vines. The function fitted() adjusts for all
levels of random variation except between individual vines, i.e., fitted values are at level 2.
Unfortunately, lmer(), which was designed for use with crossed as well as hierarchical
designs, does not recognize the notion of levels. The function ranef() can however be
used to extract the relevant random effect estimates.

Figure 10.6A plots residuals after accounting for plot and block effects.6 Figure 10.6B
is a normal probability plot that shows the plot effects. The locations of the four plots
that suggest departure from normality are printed in the top left of the panel.7 The plot

6 ## Simplified version of plot
xyplot(residuals(kiwishade.lmer) ˜ fitted(kiwishade.lmer)|block, data=kiwishade,

groups=shade, layout=c(3,1), par.strip.text=list(cex=1.0),
xlab="Fitted values (Treatment + block + plot effects)",
ylab="Residuals", pch=1:4, grid=TRUE,
scales=list(x=list(alternating=FALSE), tck=0.5),
key=list(space="top", points=list(pch=1:4),

text=list(labels=levels(kiwishade$shade)),columns=4))
7 ## Simplified version of graph that shows the plot effects
ploteff <- ranef(kiwishade.lmer, drop=TRUE)[[1]]
qqmath(ploteff, xlab="Normal quantiles", ylab="Plot effect estimates",

scales=list(tck=0.5))



328 Multi-level models and repeated measures

effects are however estimates from a calculation that involves the estimation of a number
of parameters. Before deciding that normality assumptions are in doubt, it is necessary
to examine normal probability plots from data that have been simulated according to the
normality and other model assumptions. Figure 10.6C shows overlaid normal probability
plots from two such simulations. As the present interest is in the normality of the effects,
not in variation in standard deviation (this would lead, in Figure 10.6C, to wide varia-
tion in aspect ratio), the effects are in each case standardized.8 It is the plot effects that
are immediately relevant to assessing the validity of assumptions that underly statistical
comparisons between treatment means, not the residuals. The plot effect estimates seem
clearly inconsistent with the assumption of normal plot effects. Remember however that
each treatment mean is an averaging over three plots. This averaging will take the sampling
distribution of the treatment means closer to normality.

It may be relevant to Figure 10.6B to note that the treatment means are, in order,

Dec2Feb Feb2May none Aug2Dec

89.92 92.77 100.20 103.23

Notice that the plot-specific effects go in opposite directions, relative to the overall treatment
means, in the east and north blocks.

10.3.6 Predictive accuracy

We have data for one location on one site only. We thus cannot estimate a between-location
component of variance for different locations on the current site, let alone a between-site
component of variance. Use of resampling methods will not help; the limitation is inherent
in the experimental design.

Where data are available from multiple sites, the site-to-site component of variance will
almost inevitably be greater than zero. Given adequate data, the estimate of this component
of variance will then also be greater than zero, even in the presence of explanatory variable
adjustments that attempt to adjust for differences in rainfall, temperature, soil type, etc.
(Treatment differences are often, but by no means inevitably, more nearly consistent across
sites than are the treatment means themselves.)

Where two (or more) experimenters use different sites, differences in results are to be
expected. Such different results have sometimes led to acriminious exchanges, with each
convinced that there are flaws in the other’s experimental work. Rather, assuming that both
experiments were conducted with proper care, the implication is that both sets of results
should be incorporated into an analysis that accounts for site-to-site variation. Better still,
plan the experiment from the beginning as a multi-site experiment!

8 ## Overlaid normal probability plots of 2 sets of simulated effects
## To do more simulations, change nsim as required, and re-execute
simvals <- simulate(kiwishade.lmer, nsim=2)
simeff <- apply(simvals, 2, function(y) scale(ranef(refit(kiwishade.lmer, y),

drop=TRUE)[[1]]))
simeff <- data.frame(v1=simeff[,1], v2=simeff[,2])
qqmath(˜ v1+v2, data=simeff, xlab="Normal quantiles",

ylab="Simulated plot effects\n(2 sets, standardized)",
scales=list(tck=0.5), aspect=1)



● ●

● ● ● ● ●

0 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25

par(fig=c(0, 1, 0.415, 1))
A: Plot symbols and text; specify colors and/or character expansion; draw rectangle

plot(0, 0, xlim=c(0, 13), ylim=c(0, 19), type="n")
xpos <− rep((0:12)+0.5, 2);  ypos <− rep(c(14.5,12.75), c(13,13))
points(xpos, ypos, cex=2.5, col=1:26, pch=0:25)
text(xpos, ypos, labels=paste(0:25), cex=0.75)

## Plot characters, vary cex (expansion)
text((0:4)+0.5, rep(9*ht, 5), letters[1:5], cex=c(2.5,2,1,1.5,2))

a b c d e
## Position label with respect to point

a b c d e

●

●

●

●

below (pos=1)

left (2)

above (3)

right (4)
xmid <− 10.5; xoff <− c(0, −0.5, 0, 0.5)
ymid <− 5.8; yoff <− c(−1,0,1,0)
col4 <− colors()[c(52, 116, 547, 610)]
points(xmid+xoff, ymid+yoff, pch=16, cex=1.5, col=col4)
posText <− c("below (pos=1)", "left (2)", "above (3)", "right (4)")
text(xmid+xoff, ymid+yoff, posText, pos=1:4)
rect(xmid−2.3, ymid−2.3, xmid+2.3, ymid+2.3, border="red")

r

Area = πr2

par(fig=c(0, 1, 0.01, 0.40), new=TRUE)
B: Triangles or polygons, circles, and mathematical text

plot(0, 0, xlim=c(0, 13), ylim=c(0, 12), type="n")
polygon(x=c(10.7,12.8,12), y=c(7.5,8,11), col="gray", border="red")

## Draw a circle, overlay 2−headed arrow (code=3)
xcenter <− 11.7; ycenter <− 4; r=1.1
symbols(x=xcenter, y=ycenter, circles=r,
        bg="gray", add=TRUE, inches=FALSE)
arrows(x0=xcenter−r, y0=ycenter, x1=xcenter, y1=ycenter,
       length=.05, code=3)

## Use expression() to add labeling information
charht <− strheight("R")
text(x=xcenter−r/2, y=ycenter−charht, expression(italic(r)))
text(xcenter, ycenter+3.5*charht, expression("Area" == pi*italic(r)^2))

Plate 1 This figure, intended to accompany Section 1.5, demonstrates the use of parameter settings
to control various graphical features. (Note that the function paste() turns the vector of numer-
ical values 0:12 into a vector of character strings with elements "0", "1", ..., "12". An
alternative to paste(0:12) is as.character(0:12).) See also Section 15.2.

.



1 1A (dyeswap of 1)

2 2A (dyeswap of 2)

3 3A (dyeswap of 3)

Plate 2 This false color image shows the intensity of the post-signal (red), relative to the pre-signal
(green), for each of six half-slides in a two-channel microarray gene-expression experiment. (See
Subsection 4.4.1.)



0–
0.

05

0.
05

–0
.1

0.
1–

0.
15

0.
15

–0
.2

0.
2–

0.
25

0.
25

–0
.3

0.
3–

0.
35

0.
35

–0
.4

0.
4–

0.
45

0.
45

–0
.5

0.
5–

0.
55

0.
55

–0
.6

0.
6–

0.
65

0.
65

–0
.7

0.
7–

0.
75

0.
75

–0
.8

0.
8–

0.
85

0.
85

–0
.9

0.
9–

0.
95

0.
95

–1

M
et

er
s 

ea
st

 o
f 

re
fe

re
nc

e 
po

in
t

Meters north

10
0

20
0

30
0

70
0

80
0

90
0

10
00

11
00

12
00

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●●

●

●
●

●

●● ●
●

●●
●

●

● ●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●
● ●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●● ●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

● ● ●

●

Pl
at

e
3

Fi
tte

d
va

lu
es

(m
od

el
pr

ed
ic

tio
ns

of
th

e
pr

ob
ab

ili
ty

of
fin

di
ng

a
fr

og
)

ar
e

sh
ow

n
on

th
e
b
l
u
e
2
r
e
d

co
lo

r
de

ns
ity

sc
al

e
fr

om
th

e
co

lo
rR

am
ps

pa
ck

ag
e.

Si
te

s
ar

e
la

be
le

d
“◦

”
or

“+
”

ac
co

rd
in

g
to

w
he

th
er

fr
og

s
w

er
e

no
tf

ou
nd

or
w

er
e

fo
un

d.
Fo

r
de

ta
ils

of
th

e
m

od
el

,s
ee

Su
bs

ec
tio

n
8.

2.
1.



A
B

S
ca

tte
r 

P
lo

t M
at

rix

ta
il

le
ng

th
384042

38
40

42 323436

32
34

36

●

●
●

●
●

●
●

●

●

●●

● ●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

● ●●
●

●

●

●

●●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

fo
ot

le
ng

th
7075

70
75 6065

60
65

●
●

●

●● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

● ●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●● ●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

ea
r 

co
nc

h
le

ng
th

5055
50

55 4045

40
45

●

●
C

am
ba

rv
ill

e
B

el
lb

ird
W

hi
an

 W
hi

an

B
yr

an
ge

ry
C

on
on

da
le

A
lly

n 
R

iv
er

B
ul

bu
rin

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

ta
ill

fo
ot

lg
th

earconch

C
am

ba
rv

ill
e

B
el

lb
ird

W
hi

an
 W

hi
an

B
yr

an
ge

ry
C

on
on

da
le

A
lly

n 
R

iv
er

B
ul

bu
rin

●

●

Pl
at

e
4

Pa
ne

lA
sh

ow
s

th
e

sc
at

te
rp

lo
tm

at
ri

x
fo

r
th

re
e

m
or

ph
om

et
ri

c
m

ea
su

re
m

en
ts

on
th

e
m

ou
nt

ai
n

br
us

ht
ai

lp
os

su
m

.F
em

al
es

ar
e

in
re

d;
m

al
es

in
bl

ue
.P

an
el

B
sh

ow
s

a
th

re
e-

di
m

en
si

on
al

pe
rs

pe
ct

iv
e

pl
ot

(c
lo

ud
pl

ot
)

fo
r

th
e

sa
m

e
th

re
e

va
ri

ab
le

s.
(S

ee
Fi

gu
re

12
.1

.)



1st Principal Component

2n
d 

P
ri

nc
ip

al
 C

om
po

ne
nt

−10

−5

0

5

10

−15 −10 −5 0 5 10 15

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●Cambarville
Bellbird

Whian Whian
Byrangery

Conondale
Allyn River

Bulburin

Plate 5 Second principal component versus first principal component, for variables in columns 6–14
of the possum data frame. Females are in red; males in blue. (See Figure 12.2.)

−6 −4 −2 0 2

−
4

−
2

0
2

4

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n 
2

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

A: B−cell subset − 3 features
● BM:f BM:m PB:m

0 5 10 15 20 25

−
10

−
5

0
5

10
15

Discriminant function 1

●

●

●

●
●

●
●

●
●

●●

●

●
●●●●●

●

●●

●

●

●●●
●

●
●●

●
●●

● ●

● ●

●

●
●●● ●●●

●●

●
●

●
●●●
●

●
●

●

●
●
●
●

●

●
●

●

B: BM samples − 11 features
● allB allT aml

●
●

BM:f
BM:m

Plate 6 These plots of projections of linear discriminant scores are designed to fairly reflect the
performance of a linear discriminant in distinguishing between known groups in the data. The two
panels relate to different subsets of the Golub data, with different groupings in the two cases. In
panel B, for the classification of the 62 bone marrow (BM) samples into allB, allT, and aml, points
where the sex is known are identified as male or female. (See Figure 12.10.)



lo
g(

re
75

+
30

)

Density

0.
51

1.
5

4
6

8
10

12

cp
s1

cp
s2

cp
s3

lo
g(

re
75

+
30

)

4
6

8
10

12

ps
id

1
ps

id
2

ps
id

3

lo
g(

re
78

+
30

)

4
6

8
10

12

cp
s1

cp
s2

cp
s3

lo
g(

re
78

+
30

)

4
6

8
10

12

ps
id

1
ps

id
2

ps
id

3

ag
e

Density

.0
2

.0
4

.0
6

.0
8

20
30

40
50

60

cp
s1

cp
s2

cp
s3

ag
e

20
30

40
50

60
70

ps
id

1
ps

id
2

ps
id

3

ed
uc

0.
1

0.
2

0.
3

0.
4

0
5

10
15

ps
id

1
ps

id
2

ps
id

3

ed
uc

0
5

10
15

20

cp
s1

cp
s2

cp
s3

ns
w

−
ct

l
ns

w
−

tr
t

Pl
at

e
7

O
ve

rl
ai

d
de

ns
ity

pl
ot

s,
co

m
pa

ri
ng

tr
ea

tm
en

tg
ro

up
sw

ith
th

e
va

ri
ou

sa
lte

rn
at

iv
e

ch
oi

ce
so

fc
on

tr
ol

gr
ou

ps
,f

or
th

e
va

ri
ab

le
sa
g
e

,e
d
u
c

,l
o
g
(
r
e
7
5
+
1
0
0
)

,
an

d
l
o
g
(
r
e
7
8
+
1
0
0
)

.(
Se

e
Fi

gu
re

13
.2

.)



Scatter Plot Matrix

educ
10

15 10 15

0

5

0 5

age
40

50 40 50

20

30

20 30

log

 re75 + 30
8

10

12

8 10 12

4

6

8

4 6 8

log

 re78 + 30
8

10

12

8 10 12

4

6

8

4 6 8

Control (psid1) Treatment

Plate 8 Scatterplot matrix, for non-binary explanatory variables, for the data set that is formed
by combining the psid1 data (non-experimental) with the observations for experimental treatment
data in nswdemo. For further details, see Section 13.2. Thus, an experimental treatment group is
compared with a non-experimental control group. Separate smooth curves have been fitted for the
control and treatment groups.



● psid1 controls experimental treatment

A: Random forest scores (filtered data)

ag
e 

+
 e

du
c 

+
 lo

g(
re

75
 +

 1
00

)

20
30

40
50

−5 0 5

age

−5 0 5
5

10
15

educ

6
8

10

−5 0 5

log(re75 + 100)

B: Linear discriminant analysis scores (filtered data)

Score

ag
e 

+
 e

du
c 

+
 lo

g(
re

75
 +

 1
00

)

20
30

40
50

−5 0 5

age

−5 0 5

5
10

15

educ

6
8

10
12

−5 0 5

log(re75 + 100)

Plate 9 Panel A shows the distribution, for control and treatment data, of randomForest scores
obtained by refitting the model to data for which the scores, obtained from the total data, were at least
−1.5. Panel B is for the lda scores, after refitting the model to data for which the scores, obtained
from the total data, were at least −4. (See Figure 13.4.)



Default palette

heat.colors(12)

terrain.colors(12)

topo.colors(12)

rainbow(12)

Color schemes generated by hcl(h=seq(from=0, to=360, by=30), c, l)

c = 55, l = 75

c = 35, l = 85

RColorBrewer package, e.g. brewer.pal(12, "Set3")

Qualitative scales

Set3 (n=12)

Paired (n=12)

Spectral (n=11)

Set1 (n=9)

Pastel1 (n=9)

Pastel2 (n=8)

Dark2 (n=8)

Accent (n=8)

Divided scales (examples only)

RdGy (n=11)

BrBG (n=11)

Quantitative scales (examples only)

PuBuGn (n=9)

OrRd (n=9)

Plate 10 The default palette has the eight colors that are shown. Functions in the default pack-
age grDevices that can be used to generate color sequences include heat.colors(), ter-
rain.colors(), topo.colors(), rainbow(), and hcl(). Also shown are a selection of
palettes from the RColorBrewer package. See Chapter 15 for further details.



Selected schemes from the dichromat package, e.g. colorshemes$GreentoMagenta.16

GreentoMagenta.16

BluetoGreen.14

BluetoOrangeRed.14

DarkRedtoBlue.12

BluetoOrange.12

DarkRedtoBlue.12

BluetoDarkOrange.12

BrowntoBlue.12

BluetoGray.8

BluetoOrange.8

LightBluetoDarkBlue.7

SteppedSequential.5

Simulation of Effects of Two Common types of Red Green Color Blindness

Default palette + green

Default palette + green: D

Default palette + green: P

Categorical.12 (dichromat)

Categorical.12: D

Categorical.12: P

Plate 11 Palettes in the dichromat package use colors that can be distinguished by individuals with
either of two common forms of red–green color blindness. Also shown are simulations of the effects
of these two common forms of red–green color blindness, first for the default palette plus "green",
and then for the Categorical.12 palette from dichromat. Simulations for deuteranomia are
identified with a D, while simulations for proteranomia are identified with a P. See Chapter 15 for
further comment.



Plate 12 This playwith GUI window was generated by wrapping the call to xyplot() in the
function playwith(), then clicking on Identify. Click near to a point to see its label. A second
click adds the label to the graph.



Redcellcount(1012.L−−1)

B
lo

od
ce

llt
op

la
sm

ar
at

io
(%

)

40

45

50

4.0 4.5 5.0 5.5

●
●

●

●

●

●

● ●

●
● ●

●

●

Female

4.0 4.5 5.0 5.5

●

●

●
●

●

●

●

●

●

●
●

●

Male

B_Ball Swim Tennis●

Plate 13 Blood cell to plasma ratio (hc) versus red cell count (rcc), by sex (different panels) and
sport (distinguished within each panel). A panel function was supplied, as described in Subsection
15.5.5, that fits and draws parallel lines.

Years Before Present

C
O

2 
(p

pm
)

−8e+05 −6e+05 −4e+05 −2e+05 0e+00

180

200

220

240

260

280

45

50

55

Tem
perature (°°C

)

Plate 14 This graph overlays EPICA Dome C ice core 800KYr temperature and CO2 estimates,
showing the strong correlation. Both sets of data have been locally smoothed.



10.4 Within- and between-subject effects 329

10.4 Within- and between-subject effects

The data frame tinting is from an experiment that aimed to model the effects of the
tinting of car windows on visual performance. (For more information, see Burns et al.,
1999.) Interest is focused on effects on side window vision, and hence on visual recognition
tasks that would be performed when looking through side windows.

The variables are csoa (critical stimulus onset asynchrony, i.e., the time in milliseconds
required to recognize an alphanumeric target), it (inspection time, i.e., the time required
for a simple discrimination task) and age, while tint (three levels) and target (two
levels) are ordered factors. The variable sex is coded f for females and m for males, while
the variable agegp is coded Younger for young people (all in their 20s) and Older for
older participants (all in their 70s).

Data were collected in two sessions, with half the individuals undertaking the csoa task
in the first session and the it task in the second session, and the other half doing these two
types of task in the reverse order. Within each session, the order of presentation of the two
levels of target contrast was balanced over participants. For each level of target contrast the
levels of tint were in the order no (100% VLT = visible light transmittance), lo (81.3%
VLT = visible light transmittance), and hi (35% VLT = visible light transmittance). Each
participant repeated the combination of high contrast with no tinting (100% VLT) at the
end of the session. Comparison with the same task from earlier in the session thus allows
a check on any change in performance through the session.

We have two levels of variation – within individuals (who were each tested on each
combination of tint and target), and between individuals. Thus we need to specify id

(identifying the individual) as a random effect. Plots of the data make it clear that, to have
variances that are approximately homogeneous, we need to work with log(csoa) and
log(it). Here, we describe the analysis for log(it).

Model fitting criteria

The function lmer() allows use of one of two criteria: restricted (or residual) maximum
likelihood (REML), which is the default, and maximum likelihood (ML). The parameter
estimates from the REML method are generally preferred to those from ML, as more nearly
unbiased. Comparison of models using anova() relies on maximum likelihood theory,
and the models should be fitted using ML.

10.4.1 Model selection

A good principle is to limit initial comparisons between models to several alternative
models within a hierarchy of increasing complexity. For example, consider main effects
only, main effects plus all first-order interactions, main effects plus all first- and second-
order interactions, as far on up this hierarchy as seems reasonable. This makes for conceptual
clarity, and simplifies inference. (Where a model has been selected from a large number of
candidate models, extreme value effects may come into play, and inference must account
for this.)



330 Multi-level models and repeated measures

Here, three models will be considered:

1. All possible interactions (this is likely to be more complex than is needed):
## Change initial letters of levels of tinting$agegp to upper case

levels(tinting$agegp) <- toupper.initial(levels(tinting$agegp))

## Fit all interactions: data frame tinting (DAAG)

it3.lmer <- lmer(log(it) ˜ tint*target*agegp*sex + (1 | id),

data=tinting, method="ML")

2. All two-factor interactions (this is a reasonable guess; two-factor interactions may be
all we need):
it2.lmer <- lmer(log(it) ˜ (tint+target+agegp+sex)ˆ2 + (1 | id),

data=tinting, method="ML")

3. Main effects only (this is a very simple model):
it1.lmer <- lmer(log(it)˜(tint+target+agegp+sex) + (1 | id),

data=tinting, method= "ML")

Note the use of method="ML"; this then allows the equivalent of an analysis of variance
comparison:

> anova(it1.lmer, it2.lmer, it3.lmer)

Data: tinting

Models:

it1.lmer: log(it) ˜ (tint + target + agegp + sex) + (1 | id)

it2.lmer: log(it) ˜ (tint + target + agegp + sex)ˆ2 + (1 | id)

it3.lmer: log(it) ˜ tint * target * agegp * sex + (1 | id)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

it1.lmer 7 -0.9 21.6 7.4

it2.lmer 16 -5.7 45.5 18.9 22.88 9 0.0065

it3.lmer 25 6.1 86.2 21.9 6.11 9 0.7288

Notice that Df is now used for degrees of freedom, where DF was used in connection with
summary.aov(). earlier.

The p-value for comparing model 1 with model 2 is 0.73, while that for comparing model
2 with model 3 is 0.0065. This suggests that the model that limits attention to two-factor
interactions is adequate. (Note also that the AIC statistic favors model 2. The BIC statistic,
which is an alternative to AIC, favors the model that has main effects only.)

Hastie et al. (2009, p. 235) suggest, albeit in reference to models with i.i.d. errors, that
BIC’s penalty for model complexity can be unduly severe when the number of residual
degrees of freedom is small. (Note also that the different standard errors are based on
variance component information at different levels of the design, so that the critique in
Vaida and Blanchard (2005) perhaps makes the use of either of these statistics problematic.
See Spiegelhalter et al. (2002) for various alternatives to AIC and BIC that may be better
suited to use with models with “complex” error structures. Our advice is to use all such
statistics with caution, and to consider carefully implications that may arise from the
intended use of model results.)

The analysis of variance table indicated that main effects together with two-factor interac-
tions were enough to explain the outcome. Interaction plots, looking at the effects of factors
two at a time, are therefore an effective visual summary of the analysis results. In the table



10.4 Within- and between-subject effects 331

of coefficients that appears below, the highest t-statistics for interaction terms are associated
with tint.L:agegpOlder, targethicon:agegpOlder, tint.L:targethicon, and
tint.L:sexm. It makes sense to look first at those plots where the interaction effects are
clearest, i.e., where the t-statistics are largest. The plots may be based on either observed
data or fitted values, at the analyst’s discretion.9

10.4.2 Estimates of model parameters

For exploration of parameter estimates in the model that includes all two-factor interactions,
we refit the model used for it2.lmer, but now using method="REML" (restricted max-
imum likelihood estimation), and examine the estimated effects. The parameter estimates
that come from the REML analysis are in general preferable, because they avoid or reduce
the biases of maximum likelihood estimates. (See, e.g., Diggle et al. (2002). The difference
from likelihood can however be of little consequence.)

> it2.reml <- update(it2.lmer, method="REML")

> summary(it2.reml)

. . . .

Fixed effects:

Estimate Std. Error t value Pr(>|t|) DF

(Intercept) 3.61907 0.13010 27.82 < 2e-16 145

tint.L 0.16095 0.04424 3.64 0.00037 145

tint.Q 0.02096 0.04522 0.46 0.64352 145

targethicon -0.11807 0.04233 -2.79 0.00590 145

agegpolder 0.47121 0.23294 2.02 0.04469 22

sexm 0.08213 0.23294 0.35 0.72486 22

tint.L:targethicon -0.09193 0.04607 -2.00 0.04760 145

tint.Q:targethicon -0.00722 0.04821 -0.15 0.88107 145

tint.L:agegpolder 0.13075 0.04919 2.66 0.00862 145

tint.Q:agegpolder 0.06972 0.05200 1.34 0.18179 145

tint.L:sexm -0.09794 0.04919 -1.99 0.04810 145

tint.Q:sexm 0.00542 0.05200 0.10 0.91705 145

targethicon:agegpolder -0.13887 0.05844 -2.38 0.01862 145

targethicon:sexm 0.07785 0.05844 1.33 0.18464 145

agegpolder:sexm 0.33164 0.32612 1.02 0.31066 22

. . . .

> # NB: The final column, giving degrees of freedom, is not in the

> # summary output for version 0.995-2 of lme4. It is our addition.

Because tint is an ordered factor with three levels, its effect is split up into two parts.
The first, which always carries a .L (linear) label, checks if there is a linear change across
levels. The second part is labeled .Q (quadratic), and as tint has only three levels, accounts
for all the remaining sum of squares that is due to tint. A comparable partitioning of the
effect of tint carries across to interaction terms also.

9 ## Code that gives the first four such plots, for the observed data
interaction.plot(tinting$tint, tinting$agegp, log(tinting$it))
interaction.plot(tinting$target, tinting$sex, log(tinting$it))
interaction.plot(tinting$tint, tinting$target, log(tinting$it))
interaction.plot(tinting$tint, tinting$sex, log(tinting$it))



332 Multi-level models and repeated measures

The t-statistics are all substantially less than 2.0 in terms that include a tint.Q compo-
nent, suggesting that we could simplify the output by restricting attention to tint.L and
its interactions.

None of the main effects and interactions involving agegp and sex are significant at
the conventional 5% level, though agegp comes close. This may seem inconsistent with
Figures 2.12A and B, where it is the older males who seem to have the longer times. On the
other hand, the interaction terms (tint.L:agegpOlder, targethicon:agegpOlder,
tint.L:targethicon, and tint.L:sexm) that are statistically significant stand out
much less clearly in Figures 2.12A and B.

To resolve this apparent inconsistency, consider the relative amounts of evidence for
the two different sets of comparisons, and the consequences for the standard errors in the
computer output.

� Numbers of individuals
> uid <- unique(tinting$id)

> subs <- match(uid, tinting$id)

> with(tinting, table(sex[subs], agegp[subs]))

Younger Older

f 9 4

m 4 9

Standard errors in the computer output given above, for comparisons made at the level
of individuals and thus with 22 d.f., are in the range 0.23–0.32.

� Numbers of comparisons between levels of tint or target. Each of these com-
parisons is made at least as many times as there are individuals, i.e., at least 26 times.
Standard errors in the computer output on p. 241, for comparisons made at this level,
are in the range 0.042–0.058.

Statistical variation cannot be convincingly ruled out as the explanation for the effects that
stand out most strongly in the graphs.

10.5 A generalized linear mixed model

Consider again the moths data of Subsection 8.4.2. The analysis in Subsection 8.4.2
assumed a quasi-Poisson error, which uses a constant multiplier for the Poisson variance.
It may be better to assume a random between-transects error that is additive on the scale of
the linear predictor. For this, a random term is associated with each transect. The code is:

> moths$transect <- 1:41 # Each row is from a different transect

> moths$habitat <- relevel(moths$habitat, ref="Lowerside")

> (A.glmer <- glmer(A˜habitat+log(meters)+(1|transect),

+ family=poisson, data=moths))

Generalized linear mixed model fit by the Laplace approximation

Formula: A ˜ habitat + log(meters) + (1 | transect)

Data: moths

AIC BIC logLik deviance

95 112 -37.5 75



10.5 A generalized linear mixed model 333

Random effects:

Groups Name Variance Std.Dev.

transect (Intercept) 0.234 0.483

Number of obs: 41, groups: transect, 41

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0201 0.4020 2.54 0.0112

habitatBank -16.9057 2225.4575 -0.01 0.9939

habitatDisturbed -1.2625 0.4820 -2.62 0.0088

habitatNEsoak -0.8431 0.4479 -1.88 0.0598

habitatNWsoak 1.5517 0.3956 3.92 8.8e-05

habitatSEsoak 0.0532 0.3549 0.15 0.8808

habitatSWsoak 0.2506 0.4593 0.55 0.5853

habitatUpperside -0.1707 0.5433 -0.31 0.7534

log(meters) 0.1544 0.1393 1.11 0.2677

The variance that is due to the Poisson error is increased, on the scale of the linear predictor,
by 0.234. More extreme estimates of treatment differences (but not for Bank) are pulled
in towards the overall mean. The habitat Disturbed now appears clearly different from
the reference, which is Lowerside.

The reason is that on the scale of the linear predictor, the Poisson variance is largest when
the linear predictor is smallest, that is when the expected count is, as for Disturbed,
close to zero. Addition of an amount that is constant across the range has a relatively smaller
effect when the contribution from the Poisson variance is, on this scale, largest.

Residuals should be plotted, both against log(transect length) and against the logarithm
of the predicted number of moths:

A.glm <- glm(A˜habitat+log(meters), data=moths, family=quasipoisson)

fitglm <- fitted(A.glm)

fitglm[fitglm<1e-6] <- NA # Bank, where no moths were found

fitglmer <- fitted(A.glmer)

fitglmer[fitglmer<1e-6] <- NA

## Plots from quasipoisson analysis

plot(resid(A.glm) ˜ moths$meters, log="x")

plot(resid(A.glm) ˜ fitglm, log="x")

##

## Plots from glmer mixed model analysis

plot(resid(A.glmer) ˜ moths$meters, log="x")

plot(resid(A.glmer) ˜ fitglmer, log="x")

The residuals do not give any obvious reason to prefer one analysis to the other.
A similar analysis can be obtained using the function glmmPQL in the MASS package.

Mixed models with a binomial error and logit link

On a logit scale, the binomial contribution to the error increases as the expected value moves
away from 0.5. (On the scale of the response, however, error decreases as the expected value



334 Multi-level models and repeated measures

moves away from 0.5.) Thus, relative to a quasi-binomial model, the SED will be reduced
for more extreme comparisons, and increased for less extreme comparisons.

10.6 Repeated measures in time

Whenever we make repeated measurements on a treatment unit we are, technically, working
with repeated measures. In this sense, both the kiwifruit shading data and the window tinting
data sets were examples of repeated measures data sets. Here, our interest is in generalizing
the multi-level modeling approach to handle models for longitudinal data, i.e., data where
the measurements were repeated at different times. We comment on the principles involved.

In the kiwifruit shading experiment, we gathered data from all vines in a plot at the one
time. In principle, we might have taken data from different vines at different points in time.
For each plot, there would be data at each of four time points.

There is a close link between a wide class of repeated measures models and time series
models. In the time series context, there is usually just one realization of the series, which
may however be observed at a large number of time points. In the repeated measures
context, there may be a large number of realizations of a series that is typically quite short.

Perhaps the simplest case is where there is no apparent trend with time. Thus consider
data from a clinical trial of a drug (progabide) used to control epileptic fits. (For an
analysis of data from the study to which this example refers, see Thall and Vail, 1990.)
The analysis assumes that patients were randomly assigned to the two treatments – placebo
and progabide. After an eight-week run-in period, data were collected, both for the placebo
group and for the progabide group, in each of four successive two-week periods. The
outcome variable was the number of epileptic fits over that time.

One way to do the analysis is to work with the total number of fits over the four weeks,
perhaps adjusted by subtracting the baseline value. It is possible that we might obtain extra
sensitivity by taking account of the correlation structure between the four sets of fortnightly
results, taking a weighted sum rather than a mean.

Where there is a trend with time, working with a mean over all times will not usually
make sense. Any or all of the following can occur, both for the overall pattern of change
and for the pattern of difference between one profile and another.

1. There is no trend with time.
2. The pattern with time may follow a simple form, e.g., a line or a quadratic curve.
3. A general form of smooth curve, e.g., a curve fitted using splines, may be required to

account for the pattern of change with time.

The theory of repeated measures modeling

For the moment, profiles (or subjects) are assumed independent. The analysis must allow
for dependencies between the results of any one subject at different times. For a balanced
design, we will assume n subjects (i = 1, 2, . . . , n) and p times (j = 1, 2, . . . , p), though
perhaps with missing responses (gaps) for some subjects at some times. The plot of response
versus time for any one subject is that subject’s profile.

A key idea is that there are (at least) two levels of variability – between subjects and
within subjects. In addition, there is measurement error.



10.6 Repeated measures in time 335

Repeating the same measurement on the same subject at the same time will not give
exactly the same result. The between-subjects component of variation is never observable
separately from sources of variation that operate “within subjects”. In any data that we col-
lect, measurements are always affected by “within-subjects” variability, plus measurement
error. Thus the simplest model that is commonly used has a between-subjects variance
component denoted by ν2, while there is a within-subjects variance at any individual time
point that is denoted by σ 2. The measurement error may be bundled in as part of σ 2. The
variance of the response for one subject at a particular time point is ν2 + σ 2.

In the special case just considered, the variance of the difference between two time points
for one subject is 2σ 2. Comparisons “within subjects” are more accurate than comparisons
“between subjects”.

∗Correlation structure

The time dependence of the data has implications for the correlation structure. The simple
model just described takes no account of this structure. Points that are close together
in time are in some sense more closely connected than points that are widely separated
in time. Often, this is reflected in a correlation between time points that decreases as the
time separation increases. The variance for differences between times typically increases
as points move further apart in time.

We have seen that correlation structure is also a key issue in time series analysis. A
limitation, relative to repeated measures, is that in time series analysis the structure must
typically be estimated from just one series, by assuming that the series is in some sense
part of a repeating pattern. In repeated measures there may be many realizations, allowing
a relatively accurate estimate of the correlation structure. By contrast with time series, the
shortness of the series has no effect on our ability to estimate the correlation structure.
Multiple realizations are preferable to a single long series.

While we are typically better placed than in time series analysis to estimate the correlation
structure there is, for most of the inferences that we commonly wish to make, less need
to know the correlation structure. Typically our interest is in the consistency of patterns
between individuals. For example, we may want to know: “Do patients on treatment A
improve at a greater rate than patients on treatment B?”

There is a broad distinction between approaches that model the profiles, and approaches
that focus more directly on modeling the correlation structure. Direct modeling of the
profiles leads to random coefficient models, which allow each individual to follow their
own profile. Variation between profiles may largely account for the sequential correlation
structure. Direct modeling of the correlation is most effective when there are no evident
systematic differences between profiles.

For further discussion of repeated measures modeling, see Diggle et al. (2002), Pinheiro
and Bates (2000). The Pinheiro and Bates book is based around the S-PLUS version of the
nlme package.

Different approaches to repeated measures analysis

Traditionally, repeated measures models have been analyzed in many different ways. Here
is a summary of methods that have been used:



336 Multi-level models and repeated measures

� A simple way to analyze repeated measures data is to form one or more sum-
mary statistics for each subject, and then use these summary statistics for further
analysis.

� When the variance is the same at all times and the correlation between results is the
same for all pairs of times, data can in principle be analyzed using an analysis of
variance model. This allows for two components of variance: (1) between subjects
and (2) between times. An implication of this model is that the variance of the dif-
ference is the same for all pairs of time points, an assumption that is, in general,
unrealistic.

� Various adjustments adapt the analysis of variance approach to allow for the possibility
that the variances of time differences are not all equal. These should be avoided now
that there are good alternatives to the analysis of variance approach.

� Multivariate comparisons accommodate all possible patterns of correlations between
time points. This approach accommodates the time series structure, but does not take
advantage of it to find an economical parameterization of the correlation structure.

� Repeated measures models aim to reflect the sequential structure, in the fixed effects,
in the random effects, and in the correlation structure. They do this in two ways: by
modeling the overall pattern of difference between different profiles, and by direct
modeling of the correlation structure. This modeling approach often allows insights that
are hard to gain from approaches that ignore or do not take advantage of the sequential
structure.

10.6.1 Example – random variation between profiles

The data frame humanpower1 has data from investigations (Bussolari, 1987, Nadel and
Bussolari, 1988) designed to assess the feasibility of a proposed 119-km human-powered
flight from the island of Crete – in the initial phase of the Daedalus project. After an initial
5-minute warm-up period and 5-minute recovery period, the power requirements from the
athletes were increased, at 2-minute intervals, in steps of around 30 Watts. Figure 10.7
gives a visual summary of the data.10

We leave it as an exercise to verify, using a fixed effects analysis such as was described
in Section 7.3, that separate lines are required for the different athletes, and that there
is no case for anything more complicated than straight lines. The separate lines fan out
at the upper extreme of power output, consistent with predictions from a random slopes
model.

10 ## Plot points and fitted lines (panel A)
library(lattice)
xyplot(o2 ˜ wattsPerKg, groups=id, data=humanpower1,

panel=function(x,y,subscripts,groups,...){
yhat <- fitted(lm(y ˜ groups*x))
panel.superpose(x, y, subscripts, groups, pch=1:5

)
panel.superpose(x, yhat, subscripts, groups, type="l")

},
xlab="Watts per kilogram",
ylab=expression("Oxygen intake ("*ml.minˆ{-1}*.kgˆ{-1}*")"))



10.6 Repeated measures in time 337

●

●

● ●

●

●
●

●

2.0 2.5 3.0 3.5

30
40

50
60

Watts per kilogram

O
xy

ge
n 

in
ta

ke
 (

m
l.m

in
−−1

.k
g−−1

)

A

−10 0 5 10

12
14

16
18

−10 0 5 10

12
14

16
18

●

B

Intercept
S

lo
pe

Figure 10.7 Panel A shows oxygen intake, plotted against power output, for each of five athletes
who participated in investigations designed to assess the feasibility of a proposed Daedalus 119-km
human-powered flight. Panel B plots the slopes of these separate lines against the intercepts. A fitted
line, with a slope of 2.77, has been added.

Separate lines for different athletes

The model is:

yij = α + βxij + a + bxij + eij

where i refers to individual, and j to observation j for that individual, α and β are fixed,
a and b have a joint bivariate normal distribution, each with mean 0, independently of the
eij which are i.i.d. normal. Each point in Figure 10.7B is a realization of an (α + a, β + b)
pair.

The following is the code that handles the calculations:

## Calculate intercepts and slopes; plot Slopes vs Intercepts

## Uses the function lmList() from the lme4 package

library(lme4)

hp.lmList <- lmList(o2 ˜ wattsPerKg | id, data=humanpower1)

coefs <- coef(hp.lmList)

names(coefs) <- c("Intercept", "Slope")

plot(Slope ˜ Intercept, data=coefs)

abline(lm(Slope˜Intercept, data=coefs))

Note the formula o2 ˜ wattsPerKg | id that is given as argument to the function
lmList(). For each different level of the factor id, there is a regression of o2
on wattsPerKg. Summary information from the calculations is stored in the object
hp.lmList.



338 Multi-level models and repeated measures

A random coefficients model

Two possible reasons for modeling the variation between slopes as a random effect are:

� There may be an interest in generalizing to further athletes, selected in a similar way –
what range of responses is it reasonable to expect?

� The fitted lines from the random slopes model may be a better guide to performance than
the fitted “fixed” lines for individual athletes. The range of the slopes for the fixed lines
will on average exaggerate somewhat the difference between the smallest and largest
slope, an effect which the random effects analysis corrects.

Here, the major reason for working with these data is that they demonstrate a relatively
simple application of a random effects model. Depending on how results will be used a
random coefficients analysis may well, for these data, be overkill!

The model that will now be fitted allows, for each different athlete, a random slope (for
wattsPerKg) and random intercept. We expect the correlation between the realizations
of the random intercept and the random slope to be close to 1. As it will turn out, this will
not create any undue difficulty. Calculations proceed thus:

> hp.lmer <- lmer(o2 ˜ wattsPerKg + (wattsPerKg | id),

+ data=humanpower1)

> summary(hp.lmer)

Linear mixed-effects model fit by REML

Formula: o2 ˜ wattsPerKg + (wattsPerKg | id)

Data: humanpower1

AIC BIC logLik MLdeviance REMLdeviance

134.2 140.9 -62.1 126.9 124.2

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 50.73 7.12

wattsPerKg 7.15 2.67 -1.000

Residual 4.13 2.03

# of obs: 28, groups: id, 5

Fixed effects:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.09 3.78 0.55 0.58

wattsPerKg 13.91 1.36 10.23 1.3e-10

Correlation of Fixed Effects:

(Intr)

wattsPerKg -0.992

The predicted lines from this random lines model are shown as dashed lines in
Figure 10.8A. These are the BLUPs that were discussed earlier in this chapter.

hat<-fitted(hp.lmer)

lmhat<-with(humanpower1, fitted(lm(o2 ˜ id*wattsPerKg)))

panelfun <-

function(x, y, subscripts, groups, ...){



10.6 Repeated measures in time 339

Watts per kilogram

O
xy

ge
n 

in
ta

ke
 (

m
l.m

in
−−1

.k
g−−1

)

30

40

50

60

2.0 2.5 3.0 3.5 4.0 4.5

A

Watts per kilogram

R
es

id
ua

ls
 fr

om
 r

an
do

m
 li

ne
s

−4

−2

0

2

4

2.0 2.5 3.0 3.5 4.0 4.5

B

Figure 10.8 In panel A lines have been fitted for each individual athlete, as in Figure 10.7. Also
shown, as dashed lines, are the fitted lines from the random lines model. Panel B shows the profiles
of residuals from the random lines.

panel.superpose(x, hat, subscripts, groups, type="l",lty=2)

panel.superpose(x, lmhat, subscripts, groups, type="l",lty=1)

}

xyplot(o2 ˜ wattsPerKg, groups=id, data=humanpower1, panel=panelfun,

xlab="Watts",

ylab=expression("Oxygen intake ("*ml.minˆ{-1}*"."*kgˆ{-1}*")"))

Figure 10.8B is a plot of residuals, with the points for each individual athlete connected
with broken lines.11 There is nothing in these residual profiles that obviously calls for
attention. For example, none of the athletes shows exceptionally large departures, at one or
more points, from the linear trend.

The standard errors relate to the accuracy of prediction of the mean response line for the
population from which the athletes were sampled. The slopes are drawn from a distribution
with estimated mean 13.9 and standard error

√
1.362 + 2.672 = 3.0. This standard deviation

may be compared with the standard deviation (= 3.28) of the five slopes that were fitted
to the initial fixed effects model.12 Standard errors for between-athletes components of
variation relate to the particular population from which the five athletes were sampled.
Almost certainly, the pattern of variation would be different for five people who were
drawn at random from a population of recreational sportspeople.

In this example, the mean response pattern was assumed linear, with random changes,
for each individual athlete, in the slope. More generally, the mean response pattern will be
non-linear, and random departures from this pattern may be non-linear.

11 ## Plot of residuals
xyplot(resid(hp.lmer) ˜ wattsPerKg, groups=id, type="b", data=humanpower1)

12 ## Derive the sd from the data frame coefs that was calculated above
sd(coefs$Slope)



340 Multi-level models and repeated measures

Age

D
is

ta
nc

e

2^4.2

2^4.4

2^4.6

2^4.8

2^5.0

2^3.0 2^3.6

● ●

●
●

M16

●

●
●

●

M05

2^3.0 2^3.6

●
● ●

●

M02

● ● ●
●

M11

2^3.0 2^3.6

● ●

●

●

M07

●

●

●
●

M08

2^3.0 2^3.6

● ●
●

●

M03

●

● ●

●

M12

2^3.0 2^3.6

●

●
●

●

M13

●

● ● ●

M14

2^3.0 2^3.6

●

●

●

●

M09

●
●

●

●

M15

●
●

●
●

M06

●

●
● ●

M04

●
●

●
●

M01

● ●

● ●

M10 F10 F09 F06 F01 F05

2^4.2

2^4.4

2^4.6

2^4.8

2^5.0
F07

2^4.2

2^4.4

2^4.6

2^4.8

2^5.0
F02

2^3.0 2^3.6

F08 F03

2^3.0 2^3.6

F04 F11

Figure 10.9 Distance between two positions on the skull on a scale of log2, plotted against age, for
each of 27 children.

10.6.2 Orthodontic measurements on children

TheOrthodont data frame (MEMSS package) has measurements on the distance between
two positions on the skull, taken every two years from age 8 until age 14, on 16 males and
11 females. Is there a difference in the pattern of growth between males and females?

Preliminary data exploration

Figure 10.9 shows the pattern of change for each of the 25 individuals. Lines have been
added; overall the pattern of growth seems close to linear.13

A good summary of these data are the intercepts and slopes, as in Figure 10.10. We calcu-
late these both with untransformed distances (panel A) and with distances on a logarithmic
scale (panel B). Here is the code:

## Use lmList() to find the slopes

ab <- coef(lmList(distance ˜ age | Subject, Orthodont))

names(ab) <- c("a", "b")

## Obtain the intercept at x=mean(x)

## (For each subject, this is independent of the slope)

ab$ybar <- ab$a + ab$b*11 # mean age is 11, for each subject.

sex <- substring(rownames(ab), 1 ,1)

plot(ab[, 3], ab[, 2], col=c(F="gray40", M="black")[sex],

pch=c(F=1, M=3)[sex], xlab="Intercept", ylab="Slope")

13 ## Plot showing pattern of change for each of the 25 individuals
library(MEMSS)
xyplot(distance ˜ age | Subject, groups=Sex, data=Orthodont,

scale=list(y=list(log=2)), type=c("p","r"), layout=c(11,3))



10.6 Repeated measures in time 341

●

●
●●

●

●

●

●

●

●

●

18 20 22 24 26 28 30 32

0.
5

1.
0

1.
5

2.
0

Intercept

S
op

e
M13

M04

M10

F10

F08

●

●
●●

●

●

●

●

●

●

●

2.9 3.0 3.1 3.2 3.3 3.4

0.
02

0.
04

0.
06

0.
08

Intercept

S
op

e

M13

M04

M10F10

F08

Figure 10.10 Slopes of profiles, plotted against intercepts at age = 11. The females are shown
with open circles, and the males with +’s. Panel A is for distances, and panel B is for logarithms of
distances.

extremes <- ab$ybar %in% range(ab$ybar) |

ab$b %in% range(ab$b[sex=="M"]) |

ab$b %in% range(ab$b[sex=="F"])

text(ab[extremes, 3], ab[extremes, 2], rownames(ab)[extremes], pos=4, xpd=TRUE)

## The following makes clear M13’s difference from other points

qqnorm(ab$b)

Orthodont$logdist <- log(Orthodont$distance)

## Now repeat, with logdist replacing distance

The intercepts for the males are clearly different from the intercepts for the females, as
can be verified by a t-test. One slope appears an outlier from the main body of the data.
Hence, we omit the largest (M13) and (to make the comparison fair) the smallest (M04)
values from the sample of male slopes, before doing a t-test. On the argument that the
interest is in relative changes, we will work with logarithms of distances.14 The output is:

Two Sample t-test

data: b[sex == "F"] and b[sex == "M" & !extreme.males]

t = -2.32, df = 23, p-value = 0.02957

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.016053 -0.000919

14 ## Compare males slopes with female slopes
Orthodont$logdist <- log(Orthodont$distance)
ablog <- coef(lmList(logdist ˜ age | Subject, Orthodont))
names(ablog) <- c("a", "b")
## Obtain the intercept at mean age (= 11), for each subject
## (For each subject, this is independent of the slope)
ablog$ybar <- with(ablog, a + b*11)
extreme.males <- rownames(ablog) %in% c("M04","M13")
sex <- substring(rownames(ab), 1, 1)
with(ablog,
t.test(b[sex=="F"], b[sex=="M" & !extreme.males], var.equal=TRUE))
# Specify var.equal=TRUE, to allow comparison with anova output



342 Multi-level models and repeated measures

sample estimates:

mean of x mean of y

0.0211 0.0296

The higher average slope for males is greater than can comfortably be attributed to statistical
error.

A random coefficients model

Now consider a random coefficients model. The model will allow different slopes for males
and females, with the slope for individual children varying randomly about the slope for
their sex. We will omit the same two males as before:

> keep <- !(Orthodont$Subject%in%c("M04","M13"))

> orthdiff.lmer <- lmer(logdist ˜ Sex * I(age-11) + (I(age-11) | Subject),

+ data=Orthodont, subset=keep, method="ML")

> orthdiff.lmer

Linear mixed-effects model fit by maximum likelihood

Formula: logdist ˜ Sex * I(age - 11) + (I(age - 11) | Subject)

Data: Orthodont

Subset: keep

AIC BIC logLik MLdeviance REMLdeviance

-248.9 -230.7 131.5 -262.9 -232.0

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 6.03e-03 7.77e-02

I(age - 11) 1.21e-12 1.10e-06 0.000

Residual 2.42e-03 4.92e-02

# of obs: 100, groups: Subject, 25

Fixed effects:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.11451 0.02407 129.39 < 2e-16

SexMale 0.09443 0.03217 2.94 0.0042

I(age - 11) 0.02115 0.00325 6.51 3.4e-09

SexMale:I(age - 11) 0.00849 0.00434 1.96 0.0534

Next, we make the fixed slope effect the same for both sexes, and compare the two
models:

> orthsame.lmer <-

+ lmer(logdist ˜ Sex + I(age - 11) + (I(age - 11) | Subject),

+ data=Orthodont, method="ML", subset=keep)

> anova(orthsame.lmer, orthdiff.lmer)

Data: Orthodont

Subset: keep

Models:

orthsame.lmer: logdist ˜ Sex + I(age - 11) + (I(age - 11) | Subject)

orthdiff.lmer: logdist ˜ Sex * I(age - 11) + (I(age - 11) | Subject)



10.6 Repeated measures in time 343

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

orthsame.lmer 6 -247.2 -231.6 129.6

orthdiff.lmer 7 -248.9 -230.7 131.5 3.73 1 0.0534

Note that this compared the two models, while the t-test that was carried out above compared
the slopes for the males with the slopes for the females.

The estimates of fixed effects from the REML model are in general preferable to those
from the full maximum likelihood (ML) model.

> orthdiffr.lmer <- update(orthdiff.lmer, method="REML")

> summary(orthdiffr.lmer)

Linear mixed-effects model fit by REML

Formula: logdist ˜ Sex * I(age - 11) + (I(age - 11) | Subject)

Data: Orthodont

Subset: keep

AIC BIC logLik MLdeviance REMLdeviance

-218.1 -199.8 116.0 -262.9 -232.1

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 6.33e-03 7.96e-02

I(age - 11) 1.19e-12 1.09e-06 0.000

Residual 2.38e-03 4.88e-02

number of obs: 100, groups: Subject, 25

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.11451 0.02510 124.1

SexMale 0.09443 0.03354 2.8

I(age - 11) 0.02115 0.00329 6.4

SexMale:I(age - 11) 0.00849 0.00440 1.9

Correlation of Fixed Effects:

(Intr) SexMal I(-11)

SexMale -0.748

I(age - 11) 0.000 0.000

SxMl:I(-11) 0.000 0.000 -0.748

The estimate 1.19e-12 of the slope component of variance is for all practical purposes
zero. The variation in the slope of lines is entirely explained by variation of individual
points about lines, within and between subjects of the same sex. The output suggests that
slopes differ between males and females.

The function mcmcsamp() can in principle be used for yet another check on the
Sex:age term, thus:

## At the time of writing, this is not possible

## orth.mcmc <- mcmcsamp(orthdiffr.lmer, n=1000)

## HPDinterval(orth.mcmc)



344 Multi-level models and repeated measures

Correlation between successive times

We can calculate the autocorrelations across each subject separately, and check the distri-
bution. The interest is in whether any autocorrelation is consistent across subjects.

> res <- resid(orthdiffr.lmer)

> Subject <- factor(Orthodont$Subject[keep])

> orth.acf <- t(sapply(split(res, Subject),

+ function(x)acf(x, lag=4, plot=FALSE)$acf))

> ## Calculate respective proportions of Subjects for which

> ## autocorrelations at lags 1, 2 and 3 are greater than zero.

> apply(orth.acf[,-1], 2, function(x)sum(x>0)/length(x))

[1] 0.20 0.24 0.40

Thus a test for a zero lag 1 autocorrelation has p = 0.20. The suggestion of non-zero
autocorrelation is very weakly supported.

∗The variance for the difference in slopes

This can be calculated from the components of variance information. The sum of squares
about the mean, for one line, is

∑
(x − x̄)2 = 20. The sum of the two components of

variance for an individual line is then: 1.19 × 10−12 + 0.002383/20 = 0.00011915. The
standard error of the difference in slopes is then:√

0.00011915(1/14 + 1/11) = 0.00440.

Compare this with the value given against the fixed effect SexMale:I(age - 11) in
the output above. The numbers are, to within rounding error, the same. Degrees of freedom
for the comparison are 23 as for the t-test.

10.7 Further notes on multi-level and other models with correlated errors

10.7.1 Different sources of variance – complication or focus of interest?

In the discussion of multi-level models, the main interest was in the parameter estimates.
The different sources of variance were a complication. In other applications, the variances
may be the focus of interest. Many animal and plant breeding trials are of this type. The
aim may be to design a breeding program that will lead to an improved variety or breed.
Where there is substantial genetic variability, breeding experiments have a good chance of
creating improved varieties.

Investigations into the genetic component of human intelligence have generated fierce
debate. Most such studies have used data from identical twins who have been adopted out
to different homes, comparing them with non-identical twins and with sibs who have been
similarly adopted out. The adopting homes rarely span a large part of a range from extreme
social deprivation to social privilege, so that results from such studies may have little or
no relevance to investigation of the effects of extreme social deprivation. The discussion in
Leavitt and Dubner (2005, Chapter 5) sheds interesting light on these effects.



10.7 Further notes on multi-level and other models with correlated errors 345

There has not been, until recently, proper allowance for the substantial effects that arise
from simultaneous or sequential occupancy of the maternal womb (Bartholemew, 2004,
Daniels et al., 1997). Simple forms of components of variance model are unable to account
for the Flynn effect (Bartholemew, 2004, pp. 138–140), by which measured IQs in many
parts of the world have in recent times increased by about 15 IQ points per generation. The
simple model, on which assessments of proportion of variance that is genetic have been
based, seems too simplistic to give useful insight.

We have used an analysis of data from a field experimental design to demonstrate the
calculation and use of components of variance. Other contexts for multi-level models are
the analysis of data from designed surveys, and general regression models in which the
“error” term is made up of several components. In all these cases, errors are no longer
independently and identically distributed.

10.7.2 Predictions from models with a complex error structure

Here, “complex” refers to models that assume something other than an i.i.d. error structure.
Most of the models considered in this chapter can be used for different predictive purposes,
and give standard errors for predicted values that differ according to the intended purpose.
Accurate modeling of the structure of variation allows, as for the Antiguan corn yield data
in Section 10.1, these different inferential uses.

As has been noted, shortcuts are sometimes possible. Thus for using the kiwifruit shading
data to predict yields at any level other than the individual vine, there is no loss of information
from basing the analysis on plot means.

Consequences from assuming an overly simplistic error structure

In at least some statistical application areas, analyses that assume an overly simplistic
error structure (usually, an i.i.d. model) are relatively common in the literature. Inferences
may be misleading, or not, depending on how results are used. Where there are multiple
levels of variation, all variation that contributes to the sampling error of fixed effects must
be modeled correctly. Otherwise, the standard errors of model parameters that appear in
computer output will almost inevitably be wrong, and should be ignored.

In data that have appropriate balance, predicted values will ordinarily be unbiased, even
if the error structure is not modeled appropriately. The standard errors will almost certainly
be wrong, usually optimistic. A good understanding of the structure of variation is typically
required in order to make such limited inferences as are available when an overly simplistic
error structure is assumed!

10.7.3 An historical perspective on multi-level models

Multi-level models are not new. The inventor of the analysis of variance was R. A. Fisher.
Although he would not have described it that way, many of the analysis of variance
calculations that he demonstrated were analyses of specific forms of multi-level model. Data
have a structure that is imposed by the experimental design. The particular characteristic
of the experimental design models that Fisher used was that the analysis could be handled



346 Multi-level models and repeated measures

using analysis of variance methods. The variance estimates that are needed for different
comparisons may be taken from different lines of the analysis of variance table. This
circumvents the need to estimate the variances of the random effects that appear in a fully
general analysis.

Until the modern computing era, multi-level data whose structure did not follow one of
the standard designs and thus did not fit the analysis of variance framework required some
form of approximate analysis. Such approximate analyses, if they were possible at all, often
demanded a high level of skill.

Statistical analysts who used Fisher’s experimental designs and methods of analysis
followed Fisher’s rules, and those of his successors, for the calculations. Each different
design had its own recipe. After working through a few such analyses, some of those who
followed Fisher’s methods began to feel that they understood the rationale fairly well at an
intuitive level. Books appeared that gave instructions on how to do the analyses. The most
comprehensive of these is Cochran and Cox (1957).

The Genstat system (Payne et al., 1997) was the first of the major systems to implement
general methods for the analysis of multi-level models that had a suitable “balance”. Its
coherent and highly structured approach to the analysis of data from suitably balanced
designs takes advantage of the balance to simplify and structure the output.

General-purpose software for use with unbalanced data, in the style of the lme4 package,
made its appearance relatively recently. The analyses that resulted from earlier ad hoc
approaches were in general less insightful and informative than the more adequate analyses
that are available within a multi-level modeling framework.

Regression models are another starting point for consideration of multi-level models.
Both the fixed effects parts of the model have a structure, thus moving beyond the mod-
els with a single random (or “error”) term that have been the stock in trade of courses
on regression modeling. Even now, most regression texts give scant recognition of the
implications of structure in the random part of the model. Yet data commonly do have
structure – students within classes within institutions, nursing staff within hospitals
within regions, managers within local organizations within regional groupings, and
so on.

As has been noted, models have not always been written down. Once theoretical statis-
ticians did start to write down models, there was a preoccupation with models that had a
single error term. Theoretical development, where the discussion centered around models,
was disconnected from the practical analysis of experimental designs, where most analysts
were content to follow Cochran and Cox and avoid formal mathematical description of the
models that underpinned their analyses.

Observational data that have a multi-level structure, which is typically unbalanced, can
nowadays be analyzed just as easily as experimental data. It is no longer necessary to look
up Cochran and Cox to find how to do an analysis. There are often acceptable alternatives
to Cochran and Cox-style experimental designs.

Problems of interpretation and meaningfulness remain, for observational data, as difficult
as ever. The power of modern software can become a trap. There may be inadequate care
in the design of data collection, in the expectation that computer software will take care
of any problems. The result may be data whose results are hard to interpret or cannot be
interpreted at all, or that make poor use of resources.



10.8 Recap 347

10.7.4 Meta-analysis

Meta-analysis is a name for analyses that bring together into a single analysis framework
data from, for example, multiple agricultural trials, or from multiple clinical trials, or from
multiple psychological laboratories. Multi-level modeling, and extensions of multi-level
modeling such as repeated measures analysis, make it possible to do analyses that take
proper account of site-to-site or center-to-center or study-to-study variation. If treatment or
other effects are consistent relative to all identifiable major sources of variation, the result
can be compelling for practical application.

Meta-analysis is uncontroversial when data are from a carefully planned multi-location
trial. More controversial is the bringing together into one analysis of data from quite separate
investigations. There may however be little choice; the alternative may be an informal and
perhaps unconvincing qualitative evaluation of the total body of evidence. Clearly such
analyses challenge the critical acumen of the analyst. A wide range of methodologies have
been developed to handle the problems that may arise. Gaver et al. (1992) is a useful
summary. Turner et al. (2009) is an interesting and comprehensive state-of-the-art account.

10.7.5 Functional data analysis

Much of the art of repeated measures modeling lies in finding suitable representations,
requiring a small number of parameters, both of the individual profiles and of variation
between those profiles. Spline curves are widely used in this context. Chapter 12 will discuss
the use of principal components to give a low-dimensional representation of multivariate
data. A similar methodology can be used to find representations of curves in terms of a
small number of basis functions. Further details are in Ramsay and Silverman (2002).

10.7.6 Error structure in explanatory variables

This chapter has discussed error structure in response variables. There may also be a struc-
ture to error in explanatory variables. Studies of the health effects of dietary components,
such as were described in Section 6.7, provide an interesting and important example, with
major implications for the design of such studies.

10.8 Recap

Multi-level models account for multiple levels of random variation. The random part of the
model possesses structure; it is a sum of distinct random components.

In making predictions based on multi-level models, it is necessary to identify precisely
the population to which the predictions will apply.

The art in setting up an analysis for these models is in getting the description of the
model correct. Specifically it is necessary to

� identify which are fixed and which random effects,
� correctly specify the nesting of the random effects.



348 Multi-level models and repeated measures

In repeated measures designs, it is necessary to specify or otherwise model the pattern
of correlation within profiles.

A further generalization is to the modeling of random coefficients, for example, regression
lines that vary between different subsets of the data.

Skill and care may be needed to get output into a form that directly addresses the questions
that are of interest. Finally, output must be interpreted. Multi-level analyses often require
high levels of professional skill.

10.9 Further reading

Fisher (1935) is a non-mathematical account that takes the reader step by step through the
analysis of important types of experimental design. It is useful background for reading more
modern accounts. Williams et al. (2002) is similarly example-based, with an emphasis on
tree breeding. See also Cox (1958), Cox and Reid (2000). Cox and Reid is an authoritative
up-to-date account of the area, with a more practical focus than its title might seem to
imply.

On multi-level and repeated measures models see Gelman and Hill (2007), Snijders and
Bosker (1999), Diggle et al. (2002), Goldstein (1995), Pinheiro and Bates (2000), Venables
and Ripley (2002).

Talbot (1984) is an interesting example of the use of multi-level modeling, with important
agricultural and economic implications. It summarizes a large amount of information that
is of importance to farmers, on yields for many different crops in the UK, including
assessments both of center-to-center and of year-to-year variation.

The relevant chapters in Payne et al. (1997), while directed to users of the Genstat system,
have helpful commentary on the use of the methodology and on the interpretation of results.
Pinheiro and Bates (2000) describes the use of the nlme package for handling multi-level
analyses.

On meta-analysis see Chalmers and Altman (1995), Gaver et al. (1992), Turner et al.
(2009).

References for further reading

Analysis of variance with multiple error terms

Cox, D. R. 1958. Planning of Experiments.
Cox, D. R. and Reid, N. 2000. Theory of the Design of Experiments.
Fisher, R. A. 1935 (7th edn, 1960). The Design of Experiments.
Payne, R. W., Lane, P. W., Digby, P. G. N., Harding, S. A., Leech, P. K., Morgan, G. W.,

Todd, A. D., Thompson, R., Tunnicliffe Wilson, G., Welham, S. J. and White, R. P. 1997.
Genstat 5 Release 3 Reference Manual.

Williams, E. R., Matheson, A. C. and Harwood, C. E. 2002. Experimental Design and
Analysis for Use in Tree Improvement, revised edn.

Multi-level models and repeated measures

Diggle, P. J., Heagerty, P. J., Liang, K.-Y. and Zeger, S. L. 2002. Analysis of Longitudinal
Data, 2nd edn.



10.10 Exercises 349

Gelman, A. and Hill, J. 2007. Data Analysis Using Regression and Multilevel/Hierarchical
Models.

Goldstein, H. 1995. Multi-level Statistical Models.
Payne, R. W., Lane, P. W., Digby, P. G. N., Harding, S. A., Leech, P. K., Morgan, G. W.,

Todd, A. D., Thompson, R., Tunnicliffe Wilson, G., Welham, S. J. and White, R. P. 1997.
Genstat 5 Release 3 Reference Manual.

Pinheiro, J. C. and Bates, D. M. 2000. Mixed Effects Models in S and S-PLUS.
Snijders, T. A. B. and Bosker, R. J. 1999. Multilevel Analysis. An Introduction to Basic and

Advanced Multilevel Modelling.
Talbot, M. 1984. Yield variability of crop varieties in the UK. Journal of the Agricultural

Society of Cambridge 102: 315–321. JRSS A 172: 21–47.
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.

Meta-analysis

Chalmers, I. and Altman, D. G. 1995. Systematic Reviews.
Gaver, D. P., Draper, D. P., Goel, K. P., Greenhouse, J. B., Hedges, L. V., Morris, C. N.

and Waternaux, C. 1992. Combining Information: Statistical Issues and Opportunities
for Research.

Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S and Thompson, S. G. 2009. Bias modelling
in evidence synthesis. Journal of the Royal Statistical Society, Series A 172(1): 21–47.

10.10 Exercises

1. Repeat the calculations of Subsection 10.3.5, but omitting results from two vines at random. Here
is code that will handle the calculation:
n.omit <- 2

take <- rep(TRUE, 48)

take[sample(1:48,2)] <- FALSE

kiwishade.lmer <- lmer(yield ˜ shade + (1|block) + (1|block:plot),

data = kiwishade,subset=take)

vcov <- VarCorr(kiwishade.lmer)

vars <- c("(block:plot)ˆ2"=as.vector(vcov[["block:plot"]]),

"sigmaˆ2"=as.vector(attributes(vcov, "sigmaREML")$scˆ2))

print(vars)

Repeat this calculation five times, for each of n.omit= 2, 4, 6, 8, 10, 12 and 14. Plot (i) the plot
component of variance and (ii) the vine component of variance, against number of points omitted.
Based on these results, for what value of n.omit does the loss of vines begin to compromise
results? Which of the two components of variance estimates is more damaged by the loss of
observations? Comment on why this is to be expected.

2. Repeat the previous exercise, but now omitting 1, 2, 3, 4 complete plots at random.

3. The data set Gun (MEMSS package) reports on the numbers of rounds fired per minute, by each
of nine teams of gunners, each tested twice using each of two methods. In the nine teams, three
were made of men with slight build, three with average, and three with heavy build. Is there a
detectable difference, in number of rounds fired, between build type or between firing methods?



350 Multi-level models and repeated measures

For improving the precision of results, which would be better – to double the number of teams,
or to double the number of occasions (from 2 to 4) on which each team tests each method?

4.∗ The data set ergoStool (MEMSS package) has data on the amount of effort needed to get up
from a stool, for each of nine individuals who each tried four different types of stool. Analyze
the data both using aov() and using lme(), and reconcile the two sets of output. Was there
any clear winner among the types of stool, if the aim is to keep effort to a minimum?

5.∗ In the data set MathAchieve (MEMSS package), the factors Minority (levels yes and no)
and sex, and the variable SES (socio-economic status) are clearly fixed effects. Discuss how the
decision whether to treat School as a fixed or as a random effect might depend on the purpose of
the study? Carry out an analysis that treats School as a random effect. Are differences between
schools greater than can be explained by within-school variation?

6.∗ The data frame sorption (DAAG) includes columnsct (concentration–time sum), Cultivar
(apple cultivar), Dose (injected dose of methyl bromide), and rep (replicate number, within
Cultivar and year). Fit a model that allows the slope of the regression of ct on Dose to be
different for different cultivars and years, and to vary randomly with replicate. Consider the two
models:
cult.lmer <- lmer(ct ˜ Cultivar + Dose + factor(year) +

(-1 + Dose | gp), data = sorption,

REML=TRUE)

cultdose.lmer <- lmer(ct ˜ Cultivar/Dose + factor(year) +

(-1 + Dose | gp), data = sorption,

REML=TRUE)

Explain (i) the role of each of the terms in these models, and (ii) how the two models differ. Which
model seems preferable? Write a brief commentary on the output from the preferred model.
[NB: The factor gp, which has a different level for each different combination of Cultivar,
year and replicate, associates a different random effect with each such combination.]



11

Tree-based classification and regression

Tree-based methods, or decision tree methods, may be used for two broad types of problem –
classification and regression. These methods may be appropriate when there are extensive
data, and there is uncertainty about the form in which explanatory variables ought to enter
into the model. They may be useful for initial data exploration. Tree-based methods have
been especially popular in the data mining community.

Tree-structured classification has a long history in biology, where informal methods of
dendrogram construction have been in use for centuries. Social scientists began automating
tree-based procedures for classification in the 1940s and 1950s, using methods which are
similar to some of the current partitioning methods; see Belson (1959). Venables and Ripley
(2002, Chapter 9) give a short survey of the more recent history.

The tree-based regression and classification methodology is radically different from the
methods discussed thus far in this book. The theory that underlies the methods of earlier
chapters has limited relevance to tree-based methods. The methodology is relatively easy
to use and can be applied to a wide class of problems. It is at the same time insensitive to
the nuances of particular problems to which it may be applied.

The methodology makes limited use of the ordering of values of continuous or ordinal
explanatory variables. In small data sets, it is unlikely to reveal data structure. Its strength
is that, in large data sets, it has the potential to reflect relatively complex forms of structure,
of a kind that may be hard to detect with conventional regression modeling.

There are various refinements on tree-based methods that, by building multiple trees,
improve on the performance of the single-tree methods that will occupy the first part of
this chapter. The chapter will end with a discussion of randomForest() and related
functions in the randomForest package. This takes multiple bootstrap random samples
(the default is 500), generating a separate tree for each such sample. The prediction is
determined by a simple majority vote across the multiple trees.

There are other refinements on tree-based models that build in less structure than classical
regression modeling, but more structure than classification and regression trees. Note also
that the inferences that we describe assume that the random part of the model is independent
between observations.

Note

This chapter will use both the rpart package and (in Section 11.7) the randomForest
package. The rpart package (Therneau and Atkinson, 1997) is one of the recommended



352 Tree-based classification and regression

packages, included with all binary distributions of R. It will be necessary to download and
install randomForest (Liaw and Wiener, 2002).

11.1 The uses of tree-based methods

11.1.1 Problems for which tree-based regression may be used

We will consider four types of problem:

� regression with a continuous outcome variable,
� regression with a binary outcome variable,
� classification with responses which can have one of several possible ordered outcomes,
� classification with responses which can have one of several possible (unordered) out-

comes.

There are other possibilities, including tree-based survival analysis, which the rpart package
implements.

We will use a data set on email spam to motivate the discussion, showing how a classifi-
cation tree can help distinguish legitimate messages from spam. For simplicity, this initial
exploration of these data will limit attention to 6 of the 57 available explanatory variables.
The choice is the first author’s intuition, educated by his exposure to email spam.

We will next demonstrate and explain the tree-based regression methodology as it applies
to data with a continuous outcome variable. Several simple toy data sets, i.e., data sets
that have been constructed for demonstration purposes, will be used to help explain the
methodology. Also used mainly for illustrating the methodology is a data set that has
mileage versus weight, for cars described in US April 1990 Consumer Reports.

The main focus of the central part of this chapter will be on classification with two
outcomes, i.e., problems that can be treated as binary regression problems. Our primary
example, with 11 explanatory variables, examines the mortality of hospitalized female heart
attack patients. For such binary outcomes, the use of a classification tree is a competitor
for a logistic or related regression. Unordered classification with multiple outcomes is a
straightforward extension for which however this chapter has not found room.

When are tree-based methods appropriate?

In small data sets, it may be necessary to use parametric models that build in quite strong
assumptions, e.g., no interactions, and the assumption of linear effects for the main explana-
tory variables, in order to gain adequate predictive power. Results are, as a consequence,
likely to contain some bias, but this is often a price worth paying. In larger data sets, weaker
assumptions are possible, e.g., allow simple forms of curve rather than lines and include
interactions. Tree-based methods may be helpful for data sets that are large enough that
very limited assumptions will allow useful inference. Even for such data sets, however,
interesting structure may be missed because assumptions have been too weak. There is,
additionally, an optimality issue. While each local split is optimal, the overall tree may be
far from optimal.

Exploration of a new data set with tree-based regression or classification can sometimes
gain a quick handle on which variables have major effects on the outcome. Note also, as



11.2 Detecting email spam – an example 353

●

●
●

●

●

●
●
●
●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0
20

00
40

00
60

00
80

00

n y

Total runs
of capitals

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

n y

$

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

0
2

4
6

n y

bang

●

●

●

●

●

●●
●
●

●

0
2

4
6

8
10

12

n y

money

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

n y

000

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

0
1

2
3

4

n y

make

●

1
5

20
50

20
0

10
00

n y

(L
og

ar
ith

m
ic

 s
ca

le
s)

of capitals
Total runs

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

0.
1

0.
2

0.
5

1

n y

$

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

0.
1

0.
5

1
2

5

n y

bang

●

●

●

●

●

●
●

●

●

0.
1

0.
5

1
2

5
10

n y

money

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

0.
1

0.
5

1
2

n y

000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

0.
1

0.
5

1
2

n y

make

Figure 11.1 Boxplots for the 6 selected explanatory variables, in a random sample of 500 out of
4601 rows (email messages) in the SPAM database. (Presenting data for a subsample makes it easier
to see the pattern of outliers.) The upper series of panels are for untransformed data, while in the
lower series of panels 0.5 was added to each variable prior to logarithmic transformation.

will be discussed in Section 11.8, that tree-based approaches can sometimes be used in
tandem with more classical approaches, in ways that combine the strengths of the different
approaches.

11.2 Detecting email spam – an example

The originator of these data, George Forman, of Hewlett–Packard Laboratories, collected
4601 email items, of which 1813 items were identified as spam; these data are available
from the web site for the reference Blake and Merz (1998).

Here, for simplicity, we will work with 6 of the 57 explanatory variables on which
Forman collected information. In Figure 11.1 (untransformed data in the upper series of
panels; log transformed data in the lower series of panels) we show boxplots for 6 of the
variables, based in each instance on 500-row samples. In the lower series of panels, we
added 0.5 before taking logarithms.1

1 ## Obtain 500-row sample; repeat the first plot (of crl.tot)
spam.sample <- spam7[sample(seq(1,4601), 500, replace=FALSE), ]
boxplot(split(spam.sample$crl.tot, spam.sample$yesno))



354 Tree-based classification and regression

|
dollar< 0.0555

bang< 0.0915

crl.tot< 85.5

bang< 0.7735
crl.tot< 17

n

n n y

y

y

Figure 11.2 Output from the function rpart(), with method="class", for classification with
the email spam data set, using the 6 explanatory variables noted in the text. At each split, observations
for which the condition is satisfied take the branch to the left.

The explanatory variables are:

� crl.tot, total length of words that are in capitals;
� dollar, the frequency of the $ symbol, as a percentage of all characters;
� bang, the frequency of the ! symbol, as a percentage of all characters;
� money, frequency of the word “money”, as a percentage of all words;
� n000, frequency of the character string “000”, as a percentage of all words;
� make, frequency of the word “make”, as a percentage of all words.

The outcome is the factor yesno, which is n for non-spam and y for spam.
For use of logistic regression or another parametric technique with these data, use of

transformations, for the final five variables, more severe than the logarithmic transformation
used in the lower series of panels, seems required. For tree-based regression, this is not
necessary. This is fortunate, because it is not straightforward to find transformations that
work well with these data.

Now consider a tree-based classification, using the same 6 variables as predictors. Except
for the setting method="class" that is anyway the default when the outcome is a factor,
we use default settings of control parameters. The code is:

library(rpart)

spam.rpart <- rpart(formula = yesno ˜ crl.tot + dollar + bang +

money + n000 + make, method="class", data=spam7)

plot(spam.rpart) # Draw tree

text(spam.rpart) # Add labeling

Figure 11.2 shows the tree.



11.2 Detecting email spam – an example 355

Table 11.1 The final row gives information on the performance of the
decision tree in Figure 11.2. Earlier rows show the performances of trees
with fewer splits.

> printcp(spam.rpart)

Classification tree:

rpart(formula = yesno ˜ crl.tot + dollar + bang + money +

n000 + make, method="class", data = spam7)

Variables actually used in tree construction:

[1] bang crl.tot dollar

Root node error: 1813/4601 = 0.394

n= 4601

CP nsplit rel error xerror xstd

1 0.4766 0 1.000 1.000 0.0183

2 0.0756 1 0.523 0.557 0.0155

3 0.0116 3 0.372 0.386 0.0134

4 0.0105 4 0.361 0.378 0.0133

5 0.0100 5 0.350 0.377 0.0133

Reading the tree is done as follows. If the condition that is specified at a node is satisfied,
then we take the branch to the left. Thus, dollar ($) < 0.0555 and bang (!) < 0.0915 leads
to the prediction that the email is not spam.

Table 11.1, obtained using printcp(spam.rpart), displays information on the
predictive accuracy of the tree. It gives two types of error rate, both expressed as multiples
of the root node error rate, here equal to 0.394:

(1) The final row of the column headed rel error gives the relative error rate for
predictions for the data that generated the tree: 35%. Multiplication by the root node
error gives an absolute error rate of 0.394 × 0.35 = 0.138, or 13.8%. This is often
called the resubstitution error rate. It can never increase as tree size increases, gives an
optimistic assessment of relative error in a new sample, and is of no use in deciding
tree size.

(2) The column headed xerror presents the more useful measure of performance. The
x in xerror is an abbreviation for cross-validated. The absolute cross-validated error
rate is 0.394 × 0.377 = 0.149, or 14.9%.

The cross-validated error rate estimates the expected error rate for use of the prediction
tree with new data that are sampled in the same way as the data used to derive Figure 11.2.
Examination of the cross-validated error rate suggests that five splits may be marginally
better than four splits. The use of six or more splits will be investigated later, in
Section 11.6.



356 Tree-based classification and regression

|Criterion=ab

Criterion=a Criterion=c

Criter on=d
1 2 3

4 5

Figure 11.3 Tree labeling. For this illustrative tree, the only term used to determine the splitting is
a factor with the name “Criterion”. The split labels give the factor levels (always coded a, b, ...)
that lead to choosing the left branch. More generally, different variable or factor names may appear
at different nodes. Terminal nodes (leaves) are numbered 1, . . . , 5.

11.2.1 Choosing the number of splits

In classical regression, the inclusion of too many explanatory variables may lead to a loss
of predictive power, relative to a more parsimonious model. With tree-based methods,
the more immediate issue is the number of splits, rather than the number of explanatory
variables. Choice of a tree whose cross-validation error is close to the minimum protects
against choosing too many splits. The email spam example will be the basis for a later,
more extended, investigation.

The next section will explain the terminology and the methodology for forming trees.
From there, the discussion will move to showing the use of cross-validation for assessing
predictive accuracy and for choosing the optimal size of tree. Calculations are structured
to determine a sequence of splits, to get unbiased assessments of predictive accuracy for a
range of sizes of tree, and to allow an assessment of optimal tree size.

11.3 Terminology and methodology

The simple tree in Figure 11.3 illustrates basic nomenclature and labeling conventions.2

In Figure 11.3, there is a single factor (called Criterion) with five levels. By default,
the function text.rpart() labels the levels a, b, . . . , in order. Each split carries a label
that gives the decision rule that was used in making the split, e.g., Criterion=ac, etc.
The label gives the factor levels, or more generally the range of variable values, that lead
to choosing the left branch. We have arranged, for this trivial example, that the outcome
value is 1 for the level a, 2 for level b, etc.

2 ## Code to plot tree
Criterion <- factor(paste("Leaf", 1:5))
Node <- c(1,2,3,4,5)
demo.df <- data.frame(Criterion = Criterion, Node = Node)
demo.rpart <- rpart(Node ˜ Criterion, data = demo.df,

control = list(minsplit = 2, minbucket = 1))
plot(demo.rpart, uniform=TRUE)
text(demo.rpart)



11.3 Terminology and methodology 357

There are nine nodes in total, made up of four splits and five terminal nodes or leaves.
In this example, the leaves are labeled 1, 2, . . . , 5. The number of splits is always one less
than the number of leaves. Output from the rpart package uses the number of splits as a
measure of the size of the tree.

11.3.1 Choosing the split – regression trees

The use of method="anova" is the default when the outcome variable is a continuous
or ordinal variable. The anova splitting rule minimizes the residual sum of squares, called
deviance in the output from rpart(). It is calculated in the manner that will now be
described.

Let µ[j ] be the mean for the cell to which yj is currently assigned. Then the residual sum
of squares is

D =
∑

j

(yj − µ[j ])
2.

Calculations proceed as in forward stepwise regression. At each step, the split is chosen
so as to give the maximum reduction in D. Observe that D is the sum of the “within-cells”
sums of squares.

Prior to the first split, the deviance is

D =
∑

j

(yj − ȳ)2.

The split will partition the set of subscripts j into two subsets – a set of j1s (write {j1})
and a set of j2s (write {j2}). For any such partition,

D =
∑

j

(yj − ȳ)2 =
∑
j1

(yj1 − ȳ1)2 +
∑
j2

(yj2 − ȳ2)2 + n1(ȳ1 − ȳ)2 + n2(ȳ2 − ȳ)2

where the first two terms comprise the new “within-group” sum of squares, and the final
two terms make up the “between-group” sum of squares. If the values yj are ordered,
then the partition between {j1} and {j2} must respect this ordering, i.e., the partition-
ing is defined by a cutpoint. If the outcome variable is an unordered factor, i.e., if the
values are unordered, then every possible split into {j1} and {j2} must in principle be
considered.

The split is chosen to make the sum of the first two terms as small as possible, and the
sum of the final two terms as large as possible. The approach is equivalent to maximizing
the between-groups sum of squares, as in a one-way analysis of variance.

For later splits, each of the current cells is considered as a candidate for splitting, and
the split is chosen that gives the maximum reduction in the residual sum of squares.

11.3.2 Within and between sums of squares

Typically there will be several explanatory variables and/or factors. In the toy example
of Figure 11.4 there is one explanatory factor (with levels “left” and “right”) and one



358 Tree-based classification and regression

Table 11.2 Comparison of candidate splits at the root, i.e., at the first split.

Overall Cell “Within” sum “Between” sum of
mean means of squares squares

fac=="a" (y==1,3,5) versus
fac=="b" (y==2,4,6)

3.5 3, 4 8 + 8 = 16 3 × (3 − 3.5)2 + 3
× (4 − 3.5)2 = 1.5

x==1 (y==1,2) versus x==2 or 3
(y==3,4,5,6)

3.5 1.5, 4.5 0.5 + 5.0 = 5.5 2 × (1.5 − 3.5)2 + 4
× (4.5 − 3.5)2 = 12

x==1 or 2 (y=1,2,3,4)
versus x==3 (y==5, 6)

3.5 2.5, 5.5 5.0 + 0.5 = 5.5 4 × (2.5 − 3.5)2 + 2
× (5.5 − 3.5)2 = 12

|x< 1.5

fac=a x< 2.5

fac=a fac=a
1 2

3 4 5 6

fac x y

left 1 1
right 1 2
left 2 3
right 2 4
left 3 5
right 3 6

Figure 11.4 This illustrative tree is generated from one explanatory factor (fac) and one explanatory
variable (x). The toy data used to generate the tree are shown to the right of the tree. For factors, the
levels that lead to a branch to the left are given. The levels are labeled a, b, . . . , rather than with the
actual level names. For variables, the range of values is given that leads to taking the left branch.

explanatory variable x. The dependent variable is y. Observe that, here, yj = j (j = 1,
2, . . . , 6). Table 11.2 shows the sums of squares calculations for the candidate splits at the
root.

The split between fac=="a" and fac=="b" gives a between sum of squares = 1.5,
and a “within” sum of squares = 16. Either of the splits on x (between x= 1 and x > 1, or
between x < 3 and x= 3) give a within sum of squares equal to 5.5. As the split on x leads
to the smaller “within” sum of squares, it is the first of the splits on x that is chosen. (The
second of the splits on x might equally well be taken. The tie must be resolved somehow!)

The algorithm then looks at each of the subcells in turn, and looks at options for splits
within each subcell. The split chosen is the one that gives the largest “between” sum of
squares, for the two new subcells that are formed.

11.3.3 Choosing the split – classification trees

To request a classification tree, include the argument method="class" in the rpart()
call. This setting is the default when the outcome is a factor, but it is best to state it explicitly.

The classes (indexed by k) are the categories of the classification. Then nik is the number
of observations at the ith leaf that are assigned to class k. The nik are used to estimate the
proportions pik . Each leaf becomes, in turn, a candidate to be the node for a new split.



11.3 Terminology and methodology 359

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●●

●●

●

●

● ●

●●

●

●

● ●●

●

●●

●

2000 2500 3000 3500

20
25

30
35

Weight

M
ile

s 
pe

r 
ga

llo
n

Figure 11.5 Mileage versus Weight, for cars described in US April 1990 Consumer Reports. A
loess curve is overlaid.

For classification trees, several different splitting criteria may be used, with different
software programs offering different selections of criteria. In rpart, the default is gini,
which uses a modified version of the Gini index∑

j 	=k

pijpik = 1 −
∑

k

p2
ik

as its default measure of “error”, or “impurity”. An alternative is information, or
deviance. The rpart documentation and output use the generic term error for whatever
criterion is used.

The information criterion, or deviance, is

Di =
∑

classes k

nik log(pik).

This differs only by a constant from the entropy measure that is used elsewhere, and thus
would give the same tree if the same stopping rule were used. For the two-class problem (a
binary classification), the Gini index and the deviance will almost always choose the same
split as the deviance or entropy.

The splitting rule, if specified, is set by specifying, e.g., parms=list(split=gini)
or parms=list(split=information).

11.3.4 Tree-based regression versus loess regression smoothing

The scatterplot of gas mileage versus vehicle weight in Figure 11.5 suggests a nonlinear
relationship. Useful insights may be gained from the comparison of predictions from tree-
based regression with predictions from the more conventional and (for these data) more
appropriate use of a loess() or similar regression smoothing approach.



360 Tree-based classification and regression

|
Wt>=2568

Wt>=3088

Wt>=3638

Wt< 3322

Wt>=2748

Wt< 2882

Wt>=2280

18.7
n=6

20.5
n=10

22
n=6

23.3
n=6

24.1
n=9

25.6
n=8

28.9
n=9

34
n=6

A
|

Wt>=2568

Wt>=3088

Wt>=2748

20.4
n=22

23.8
n=15

25.6
n=8

30.9
n=15

B

Figure 11.6 Tree-based model for predicting Mileage given Weight, for cars described in US
April 1990 Consumer Reports. In panel A, split criteria have for illustrative purposes been changed
from the rpart defaults, to increase the number of splits. This plot has used uniform vertical spacing
between levels of the tree. Panel B used the rpart default split criteria, and vertical spacing was set
to reflect the change in residual sum of squares. In panel A, such non-uniform spacing would have
given splits that were bunched up at the lower nodes.

The code for Figure 11.5 is:

## loess fit to Mileage vs Weight: data frame car.test.frame (rpart)

with(car.test.frame, scatter.smooth(Mileage ˜ Weight))

To fit a regression tree to the car mileage data shown in Figure 11.5, the model formula
is Mileage ˜ Weight, i.e., predict Mileage given Weight, just as for the use of
lm() or loess(). The code is:

car.tree <- rpart(Mileage ˜ Weight, data=car.test.frame,

control = list(minsplit = 10, minbucket = 5,

cp = 0.0001), method="anova")

plot(car.tree, uniform = TRUE)

text(car.tree, digits = 3, use.n = TRUE)

Setting minsplit=10 (the default is 20) allows splitting at any node that has at least ten
observations, while minbucket=5 has reduced to 5 the minimum number of observations
at a terminal node. See help(rpart.control) for further details.

Figure 11.6A shows the fitted regression decision tree. Table 11.3 compares the predic-
tions of Figure 11.6 with predicted values from the use of loess in Figure 11.5. Notice
how the tree-based regression has given several anomalous predictions. Later splits have
relied on information that is too local to improve predictive ability.

Figure 11.6B is the plot that results when the split criteria are left at their defaults. It
used the simpler code:

car.tree <- rpart(Mileage ˜ Weight, data = car.test.frame)

plot(car.tree, uniform = FALSE)

text(car.tree, digits = 3, use.n = TRUE)

Prediction is much coarser. Table 11.4 compares the predictions for this less ambitious tree
with the predictions from the loess regression. Beyond a certain point, adding additional
leaves reduces genuine predictive power, even though the fit to the data used to develop the
predictive model must continue to improve.



11.4 Predictive accuracy and the cost–complexity trade-off 361

Table 11.3 Predictions from the regression tree of Figure
11.6. For comparison, we give the range of predictions from
the loess curve that we fitted in Figure 11.5.

Range of predictions
Range of Weight Predicted Mileage (Figure 11.5)

1845.0 – 2280 34 36.4 – > 30.3
> 2280.0 – 2567.5 28.9 30.3 – > 26.9
> 2567.5 – 2747.5 25.6 26.9 – > 24.9
> 2747.5 – 2882.5 23.3 24.9 – > 23.9
> 2882.5 – 3087.5 24.1 23.9 – > 22.1
> 3087.5 – 3322.5 20.5 22.1 – > 20.7
> 3322.5 – 3637.5 22 20.7 – > 19.7
> 3637.5 – 3855 18.7 19.7 – > 18.9

Table 11.4 Predictions from the regression tree of Figure 11.6B.

Range of loess predictions
Range of weights Predicted mileage (Figure 11.5)

– 2567.5 30.9 36.4 – > 26.9
> 2567.5 – 2747.5 25.6 26.9 – > 24.9
> 2747.5 – 3087.5 23.8 24.9 – > 22.1
> 3087.5 20.4 22.1 – > 18.9

11.4 Predictive accuracy and the cost–complexity trade-off

Realistic estimates of the predictive power of a model must take account of the extent to
which the model has been selected from a wide range of candidate models. Two main
approaches have been used for determining unbiased assessments of predictive accuracy.
These are cross-validation, and the use of training and test sets.

The cross-validation error is relevant to predictions for the population from which the
data were sampled. Testing performance under conditions of actual use, which may be
different from those that generated the initial data, may require a validation set that is
separate from any of the data used to generate the model. See also the further comments,
under Models with a complex error structure, in Section 11.8.

11.4.1 Cross-validation

As explained in the earlier discussion in Subsection 5.4.1, cross-validation requires the
splitting of the data into k subsets, where in rpart the default choice is k = 10. Each of
the k subsets of the data is left out in turn, the model is fitted to the remaining data, and
the results used to predict the outcome for the subset that has been left out. There is one
such division of the data, known as a fold, for each of the k subsets. At the kth fold the kth
subset has the role of test data, with the remaining data having the role of training data.
The data that are for the time being used as the test data might alternatively be called the



362 Tree-based classification and regression

“out-of-bag” data, a name that is more directly appropriate in the context of the bootstrap
aggregation approach that will be discussed in Section 11.7.

In a regression model, prediction error is usually taken as the sum of differences between
observed and predicted, i.e., the criterion is the same as that used for the splitting rule.
In a classification model, prediction error is usually determined by counting 1 for a mis-
classification and 0 for a correct classification. The crucial feature of cross-validation is
that each prediction is independent of the data to which it is applied. As a consequence,
cross-validation gives an unbiased estimate of predictive power, albeit for a model that
uses, on average, a fraction (k − 1)/k of the data. An estimate of average “error” is found
by summing up the measure of “error” over all observations and dividing by the number of
observations. Once predictions are available in this way for each of the subsets, the average
error is taken as (total error)/(total number of observations).

Cross-validation is built into the rpart calculations, giving an assessment of the change
in prediction error with changing tree size. The usual approach is to build a tree that has
more splits than is optimal, i.e., it is over-fitted, and then to prune back to a tree that has
close to the minimum cross-validated prediction error.

11.4.2 The cost–complexity parameter

Rather than controlling the number of splits directly, this is controlled indirectly, via a
quantity cp (complexity parameter, cp in the rpart() output) that puts a cost on each
additional split. The increase in “cost” as the tree becomes more complex is traded off
against the reduction in the lack-of-fit criterion, so that splitting ceases when the increase in
cost outweighs reduction in lack-of-fit. A large value for cp leads to a small tree (additional
cost quickly offsets decrease in lack-of-fit), while a small value leads to a complex tree.
The choice of cp is thus a proxy for the number of splits.

Previous experience in use of tree-based methods with similar problems may suggest a
suitable setting for cp for an initial run of the calculations. Otherwise, the rpart default
can be used. If the cross-validation error has not obviously reached a minimum, this will
indicate that the tree is too small, and calculations need to be rerun with a smaller cp.

Having fitted a tree that is more complex than is optimal, we then plot the cross-validated
relative error against cp (or equivalently, against number of splits), and determine the value
of cp for which the tree seems optimal.

It can be shown that there is a sequence of prunings from the constructed tree back to
the root, such that

� at each pruning the complexity reduces,
� each tree has the smallest number of nodes possible for that complexity, given the

previous tree.

See for example Ripley (1996). This is true even if the lack-of-fit measure used for pruning
is different from that used in the formation of the tree. For classification trees, it is common
to use fraction or per cent misclassified when trees are pruned.

For the final choice of tree, an alternative to use of the cross-validation estimate of error
is to examine the error rate for a new set of data.



11.5 Data for female heart attack patients 363

●

●

●

●
●

0 1 2 3 4

0.
3

0.
5

0.
7

0.
9

No. of splits

R
el

at
iv

e 
er

ro
r

Inf 0.261 0.048

Complexity parameter
A

●

●

●

●
●

0 1 2 3 4

0.
6

0.
7

0.
8

0.
9

1.
0

No. of splits

X
va

l r
el

at
iv

e 
er

ro
r

●

●

●
● ●

●

●

●
● ●

●

●

● ● ●

Inf 0.261 0.048

Complexity parameter
B

Figure 11.7 While the relative error (panel A) must inevitably decrease as the number of splits
increases, the cross-validation relative error (X-val relative error, shown in panel B) is likely, once
the number of splits is large enough, to increase. Results from three cross-validation runs are shown.
Plots are for the car mileage data of Figure 11.5 and Table 11.4.

In summary:

� The parameter cp is a proxy for the number of splits. For the initial rpart model, it
should be set small enough that the cross-validation error rate achieves a minimum.

� Having identified the optimal tree (with the minimum cross-validation error rate), later
splits are then pruned off.

11.4.3 Prediction error versus tree size

In Figure 11.7, we return to the car mileage data of Figure 11.5 and Table 11.4.
Figures 11.7A and B plot, against tree size, different assessments of the relative error.
As we have a continuous outcome variable (Mileage), the relative error is the sum of
squares of residual divided by the total sum of squares.

Figure 11.7A plots the resubstitution assessment of relative error, which shows the
performance of the tree-based prediction on the data used to form the tree. Figure 11.7B
shows estimates from three cross-validation runs, with the data split into k = 10 subsets
(or folds) at each run. The plot gives an indication of the variability that can be expected,
for these data, from one cross-validation run to another.

The optimal tree, in Figure 11.7, is the smallest tree that has near minimum cross-validated
relative error. In Figure 11.7, the three runs suggest different choices for the optimal tree
size. The defaults for the arguments minsplit and minbucket (see help(rpart.
control)) have limited the number of splits to 4. Between 2 and 4 splits may be optimal.
Note the importance of doing several cross-validation runs.

11.5 Data for female heart attack patients

This and the next section will proceed to look in detail at trees from substantial data sets.
This section will examine data on the outcome (live or dead) for female heart attack



364 Tree-based classification and regression

patients, in the data frame mifem (DAAG). The data are for the mortality of 1295 female
heart attack patients. A summary of the data follows.

> summary(mifem) # data frame mifem (DAAG)

outcome age yronset premi smstat

live:974 Min. :35.0 Min. :85.0 y :311 c :390

dead:321 1st Qu.:57.0 1st Qu.:87.0 n :928 x :280

Median :63.0 Median :89.0 nk: 56 n :522

Mean :60.9 Mean :88.8 nk:103

3rd Qu.:66.0 3rd Qu.:91.0

Max. :69.0 Max. :93.0

diabetes highbp hichol angina stroke

y :248 y :813 y :452 y :472 y : 153

n :978 n :406 n :655 n :724 n :1063

nk: 69 nk: 76 nk:188 nk: 99 nk: 79

Notes:

premi = previous myocardial infarction event

For smstat, c = current x = ex-smoker n = non-smoker

nk = not known

(Technically, these are patients who have suffered a myocardial infarction. Data are from
the Newcastle (Australia) center of the Monica project; see the web site given under
help(monica).)

In order to fit the tree, we specify

mifem.rpart <- rpart(outcome ˜ ., method="class",

data = mifem, cp = 0.0025)

The dot (.) on the right-hand side of the formula has the effect of including all available
explanatory variables. A choice of cp = 0.0025 continues splitting to the point where
the cross-validated relative error has started to increase. Figure 11.8 shows the change in
cross-validated error rate as a function of tree size, while the same information is shown
alongside in printed form. The code is:

plotcp(mifem.rpart) # Cross-validated error vs cp

printcp(mifem.rpart) # Tabular version of the same information

Notice the increase in the cross-validated error rate when there are more than two splits.
For this tree, the optimum is a single split, i.e., two leaves. In order to prune the tree back

to this size, specify:

mifemb.rpart <- prune(mifem.rpart, cp=0.03)

The cross-validated error rate is 0.248 × 0.832 = 0.21.
For these data, the optimum tree is very simple indeed, with a single split. Figure 11.9

shows the tree, obtained using:



11.5 Data for female heart attack patients 365

●

●

● ●
●

cp

X
-v

al
 r

el
at

iv
e 

er
ro

r

0.
7

0.
8

0.
9

1.
0

1.
1

Inf 0.034 0.0038

1 2 14 18 19 > # Tabular equivalent of graph

> printcp(mifem.rpart)

. . . .

Root node error: 321/1295 = 0.248

n= 1295

CP nsplit xerror xstd

1 0.20249 0 1.000 0.0484

2 0.00561 1 0.832 0.0454

3 0.00467 13 0.844 0.0456

4 0.00312 17 0.838 0.0455

5 0.00250 18 0.850 0.0457

Figure 11.8 Cross-validated error versus cp, for the female heart attack data. The top side of the
bounding box is labeled with the size of tree. The tabular equivalent of the graph is shown alongside.
The column that has the (potentially misleading) relative errors has been omitted.

|
angina=ab

live
957/239

dead
17/82

Figure 11.9 Decision tree of size 2, for the data on female myocardial infarction patients.

plot(mifemb.rpart)

par(xpd=TRUE) # May be needed so that labels appear

text(mifemb.rpart, use.n=T, digits=3)

par(xpd=FALSE)

Note that the levels of angina are y (labelled a in the graph), n (labeled b in the graph),
and nk. It is the patients whose angina status was unknown that were most likely to be
dead, perhaps because it was not possible to ask them for the information. Use of use.n
has had the effect of labeling each node with information on outcomes for patients that
the decision tree has assigned to that node. For the left node (labeled live), 957 patients
survive, while 239 die. For the right node, 17 survive, while 82 die.

11.5.1 The one-standard-deviation rule

The functionrpart() calculates, for each tree, both the cross-validated estimate of “error”
and a standard deviation for that error. Where the interest is in which splits are likely to be
meaningful, users are advised to choose the smallest tree whose error is less than

minimum error + 1 standard deviation.

Figure 11.8 has a dotted horizontal line, at a height of xerror = 0.877 (= 0.832 +
0.054), that shows where this error level is attained. Here the one standard error rule leads
to the same choice of tree size as the choice of the absolute minimum. The rule is in general



366 Tree-based classification and regression

conservative if the interest is in choosing the optimal predictive tree, i.e., the predictive
power will on average be slightly less than optimal.

11.5.2 Printed information on each split

We will now examine output that is available from printing the rpart object for the very
simple tree that is shown in Figure 11.9:

> print(mifemb.rpart)

n= 1295

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 1295 321 live ( 0.75 0.25 )

2) angina:y, n 1196 239 live ( 0.80 0.20 ) *

3) angina:nk 99 17 dead ( 0.17 0.83 ) *

Predictions are:

� At the first split (the root) the prediction is live (probability 0.752), with the 321 who
are dead misclassified. Here the loss (number misclassified) is 321.

� Take the left branch from node 1 if the person’s angina status is y or n, i.e., if it is
known (1196 persons). The prediction is live (probability 0.800), with the 239 who
die misclassified.

� Take the right branch from node 1 if the angina status is unknown (99 persons). The
prediction is dead (probability 0.828), with the 17 who are live misclassified.

The function summary.rpart() gives information on alternative splits.

11.6 Detecting email spam – the optimal tree

In Figure 11.2, wherecp had its default value of 0.01, splitting did not continue long enough
for the cross-validated relative error to reach a minimum. In order to find the minimum, we
now repeat the calculation, this time with cp = 0.001.

spam7a.rpart <- rpart(formula = yesno ˜ crl.tot + dollar +

bang + money + n000 + make,

method="class", data = spam7, cp = 0.001)

The choice of cp = 0.001 in place of cp = 0.01 was, for this initial calculation, a guess. It
turns out to carry the splitting just far enough that the cross-validated relative error starts
to increase.

In this instance, the output from plotcp(spam7a.rpart) is not very useful. The
changes are so small that it is hard to determine, from the graph, where the minimum falls.
Instead, the printed output will be used:

> printcp(spam7a.rpart)

. . . .

Root node error: 1813/4601 = 0.394



11.6 Detecting email spam – the optimal tree 367

n= 4601

CP nsplit rel error xerror xstd

1 0.47656 0 1.000 1.000 0.0183

2 0.07557 1 0.523 0.559 0.0155

3 0.01158 3 0.372 0.386 0.0134

4 0.01048 4 0.361 0.384 0.0134

5 0.00634 5 0.350 0.368 0.0132

6 0.00552 10 0.317 0.352 0.0129

7 0.00441 11 0.311 0.350 0.0129

8 0.00386 12 0.307 0.335 0.0127

9 0.00276 16 0.291 0.330 0.0126

10 0.00221 17 0.288 0.326 0.0125

11 0.00193 18 0.286 0.331 0.0126

12 0.00165 20 0.282 0.330 0.0126

13 0.00100 25 0.274 0.329 0.0126

Choice of the tree that minimizes the cross-validated error leads to nsplit=17 with
xerror=0.33. Again, note that different runs of the cross-validation routine will give
slightly different results.

Use of the one-standard-deviation rule suggests taking nsplit=16. (From the table,
minimum + standard error = 0.330 + 0.013 = 0.343. The smallest tree whose xerror is
less than or equal to this has nsplit=16.) Figure 11.10 plots this tree.3

The absolute error rate is estimated as 0.336 × 0.394 = 0.132 if the one-standard-error
rule is used, or 0.330 × 0.394 = 0.130 if the tree is chosen that gives the minimum
error.

How does the one-standard-error rule affect accuracy estimates?

The function compareTreecalcs() (DAAG) can be used to assess how accu-
racies are affected, on average, by use of the one-standard-error rule. See help
(compareTreecalcs) for further information. An example of its use is:

acctree.mat <- matrix(0, nrow=100, ncol=6)

for(i in 1:100)acctree.mat[i,] <- compareTreecalcs(data=spam7,

fun="rpart")

For each of 100 random splits of the data into two nearly equal subsets I and II, the following
accuracies are calculated:

1. The estimated cross-validation error rate when rpart() is run on the training data
(I), and the one-standard-error rule is used;

2. The estimated cross-validation error rate when rpart() is run on subset I, and the
model used that gives the minimum cross-validated error rate;

3 ## Use prune.rpart() with cp = 0.03 (0.00276 < 0.03 < 0.00386),
## to prune back to nsplit=16.
spam7b.rpart <- prune(spam7a.rpart, cp=0.003)
plot(spam7b.rpart, uniform=TRUE)
text(spam7b.rpart, cex=0.75)



368 Tree-based classification and regression

|
dollar< 0.0555

bang< 0.0915

n000< 0.26 crl.tot< 85.5

bang< 0.7735

money< 0.835

crl.tot< 51.5

bang< 0.4065

crl.tot< 17

bang< 0.1955

money< 0.04

dollar< 0.0085

bang< 0.0495

money< 0.025

n000< 0.465

dollar< 0.1665

n y

n

n y

y n y

n y

y

y

n y

y

y

y

Figure 11.10 Decision tree for a tree size of 16.

3. The error rate when the model fitted in item 1 is used to make predictions for subset II;
4. The error rate when the model fitted in item 2 is used to make predictions for subset II.

In a run of the code given above (results will of course differ from run to run), we
obtained the following results. The prediction accuracy for subset II was indeed similar to
the cross-validated accuracy when the model was fit to subset I. There was, on average,
a small loss of accuracy (0.45%, SE = 0.07%) from use of the one-standard-error rule.
Details are in the “Additional Notes” document that can be downloaded from the web page
for this book.

How is the standard error calculated?

For classification trees, using number misclassified, the standard deviation is, assuming
independent errors, approximately equal to the square root of the number misclassified.

When are tree-based methods appropriate?

Exploration of a new data set with tree-based regression or classification can sometimes
yield a quick handle on which variables have large effects on the outcome variable. Such
methods may be appropriate when data sets are very large, and very limited assumptions
are needed to make useful inferences.

However, there is a risk of missing interesting structure because assumptions have been
too weak. Parametric models have a better chance of capturing such structure; they are



11.7 The randomForest package 369

almost always more appropriate for small data sets. There is also the issue of optimality;
while the local splits are optimal, the overall tree may be far from optimal.

11.7 The randomForest package

The function randomForest() in the randomForest package is an attractive alternative
to rpart() that, for relatively complex trees, often gives an improved predictive accuracy.
For each of a large number of bootstrap samples (by default, 500) trees are independently
grown. In addition, a new random sample of variables is chosen for use with each new
tree. The “out-of-bag” (OOB) prediction for each observation is determined by a simple
majority vote across trees whose bootstrap sample did not include that observation.

Trees are grown to their maximum extent, limited however by nodesize (minimum
number of trees at a node). Additionally, maxnodes can be used to limit the number of
nodes. There is no equivalent to the parameter cp. The main tuning parameter is the number
mtry of variables that are randomly sampled at each split. The default is the square root
of the total number of variables; this is often satisfactory.

It may seem surprising that it is (usually) beneficial to take a random sample of
variables. Essentially, mtry controls the trade-off between the amount of information
in each individual tree, and the correlation between trees. A very high correlation limits the
ability of an individual tree to convey information that is specific to that tree.

The following uses randomForest() with the data frame spam7:

library(randomForest)

spam7.rf <- randomForest(yesno ˜ ., data=spam7, importance=TRUE)

The output summary (though obtained using print()) is:

> print(spam7.rf)

Call:

randomForest(x = yesno ˜ ., data = spam7, importance = T)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 11.95%

Confusion matrix:

n y class.error

n 2588 200 0.07173601

y 350 1463 0.19305019

Use of the OOB error rate is crucial for calculating realistic error rates, unless separate test
data are available. Notice that the error rate that was achieved here is slightly better than
the 13.0% error rate achieved by rpart().

There is limited scope for tuning, based on performance of “out-of-bag” data. The most
important parameter is mtry, which controls the number of variables that are sampled for
use at each split. Finding and using the optimal value of mtry is acceptable because its



370 Tree-based classification and regression

only effect is on the way that models are sampled from the class of models that are in
contention. The function tuneRF() makes it straightforward to find the optimum, thus:

> tuneRF(x=spam7[, -7], y=spam7$yesno, trace=FALSE)

-0.08633 0.05

-0.005396 0.05

mtry OOBError

1 1 0.1313

2 2 0.1208

4 4 0.1215

The value of OOBerror is smallest for mtry=2. The result will vary somewhat from one
run of tuneRF() to another. For 6 variables, mtry=2 is in fact the default, obtained by
choosing the largest integer whose square is less than or equal to 6.

Two “importance” measures are calculated for each variable. The first is a “leave-one-
out” type assessment of its contribution to prediction accuracy, although it is calculated by
the average decrease in prediction accuracies in the “out-of-bag” portions of the data from
permuting values of the variable. The second is the average decrease in lack-of-fit from
splitting on the variable, averaged over all trees. Specifying importance=TRUE causes
the calculation of both measures of importance, whereas the default is to calculate only the
second measure. For the present data, the result values are:

> importance(spam7.rf)

n y MeanDecreaseAccuracy MeanDecreaseGini

crl.tot 0.631 0.807 0.519 290.1

dollar 0.660 0.798 0.523 411.4

bang 0.683 0.848 0.536 647.1

money 0.562 0.782 0.492 182.2

n000 0.649 0.465 0.510 96.9

make 0.339 0.609 0.418 44.8

Note that the first measure gives roughly equal importance to the first three and fifth
variables, while the second measure rates bang as easily the most “important”. Is a
variable important? It depends on what is meant by importance.

Comparison between rpart() and randomForest()

In the following, the spam7 will be repeatedly split at random into two nearly equal
subsets: subset I has 2300 observations, and subset II has 2301 observations. Models will
be fit (1) using rpart() and (2) using randomForest(). The calculations are again
handled using the function compareTreecalcs().4

4 ## Accuracy comparisons
acctree.mat <- matrix(0, nrow=100, ncol=8)
colnames(acctree.mat) <- c("rpSEcvI", "rpcvI", "rpSEtest", "rptest",

"n.SErule", "nre.min.12", "rfcvI", "rftest")
for(i in 1:100)acctree.mat[i,] <-

compareTreecalcs(data=spam7, fun=c("rpart", "randomForest"))
acctree.df <- data.frame(acctree.mat)
lims <- range(acctree.mat[, c(4,7,8)], na.rm=TRUE)
plot(rfcvI ˜ rftest, data=acctree.df); abline(0,1) # Panel A
plot(rptest ˜ rftest, data=acctree.df); abline(0,1) # Panel B



11.7 The randomForest package 371

●

●

●

●

●

● ●

●

●
●

●
●
●

●

●
●

● ●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

0.11 0.13 0.15

0.
11

0.
13

0.
15

Error rate − subset II

O
O

B
 E

rr
or

 −
 fi

t t
o 

su
bs

et
 I

A

●

●

●

●

●

●

●

●
●

●

● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

0.11 0.13 0.15

0.
11

0.
13

0.
15

Error rate − subset II

rp
ar

t E
rr

or
 r

at
e,

 s
ub

se
t I

I

B

Figure 11.11 For each of 100 random splits of spam7 into two nearly equal subsets I and II,
random forest models were fitted to subset I, keeping a record both of the OOB error rate on subset I
and the error rate on predictions for subset II. Panel A compares the two error rates. Panel B compares
the error rate from use of rpart() with the second of the error rates for the random forest model.

Figure 11.11A is designed to check that randomForest() did not over-fit.
Figure 11.11B shows that the model fitted using randomForest() has given an average
reduction in the error rate, relative to rpart(), of 0.9% [SE = 0.1%].

The difference between rpart() and randomForest() is much larger if the full
spam database, with 57 explanatory variables, is used. In that case, in three runs, rpart()
gave error rates of 8.45%, 8.34%, and 8.24%, whereas randomForest() gave error
rates of 4.56%, 4.41%, and 4.54%.

Efficient computation

Calculations that use randomForest() may take a long time when there are extensive
data. The following times are for the full spam database, which has dimension 4601 × 58,
on a 2.16GHz MacBook Pro with 2GB of memory. Elapsed times with the full spam
database were:

rpart() with cp=0.00025: 6.4 sec (here there is no alternative to use of a model
formula, typically with variables taken from the columns of a data frame)
randomForest(): 27.3 sec when a model formula and data frame were specified,
as against 27.0 sec when the arguments were a matrix x whose columns were the
explanatory variables and a response y.

Differences between rpart() and randomForest()

Some of the more important differences are:

� randomForest() does not give a unique tree.
� Use of randomForest() is largely automatic, with limited need or opportunity for

tuning.
� For randomForest(), there is no direct equivalent of rpart’s cp parameter, and

no possibility or necessity to prune trees.



372 Tree-based classification and regression

� rpart() requires a model formula, whereasrandomForest() allows, alternatively,
specification of a matrix whose columns are used as predictors.

� randomForest() does not have a direct equivalent of rpart’s method argument,
that can be used to distinguish between regression, classification, and other models.
Instead, randomForest assumes a classification model if the response is a factor, and
otherwise assumes a regression model.

� Accuracy is, for some data sets, markedly better for randomForest() than for
rpart().

The proportion of trees in which both members of a pair of observations appear in
the same terminal node gives a measure of proximity, or nearness. Methods that will be
described in Subsection 12.1.3 can then be used to derive a low-dimensional representation
of the points. See Figure 13.5, and the accompanying discussion, for an example.

11.8 Additional notes on tree-based methods

The combining of tree-based methods with other approaches

Tree-based approaches can sometimes be used in tandem with parametric approaches, in
ways that combine the strengths of the different approaches. Thus, tree-based regression
may suggest interaction terms that ought to appear in a parametric model. We might also
apply tree-based regression analysis to residuals from conventional parametric modeling,
in order to check whether there is residual structure that the parametric model has not
captured. Another variation is to apply tree-based regression to fitted values of a parametric
model, in order to cast predictions in the form of a decision tree.

Models with a complex error structure

Tree-based models, as implemented in current software, are less than ideal for use with
data where there is corrrelation in time or space (as in Chapters 9 and 10), or where there
is more than one level of variation (as in Chapter 10). If tree-based models are nevertheless
used with such data, accuracy should be assessed at the level of variation that is relevant for
any use of model predictions. If there is clustering in the data, and the size of the clusters
varies widely, predictions may be strongly biased.

Pruning as variable selection

Venables and Ripley (2002) suggest that pruning might be regarded as a method of variable
selection. This suggests using an AIC-like criterion as the criterion for optimality. We refer
the reader to their discussion for details.

Other types of tree

The rpart package allows two other types of tree. The poisson splitting method adapts
rpart models to event rate data. See Therneau and Atkinson (1997, pp. 35–41). The
survival splitting method is intended for use with survival data, where each subject
has either 0 or 1 events. (The underlying model is a special case of the Poisson event rate
model.) See again Therneau and Atkinson (1997, pp. 41–46).



11.9 Further reading and extensions 373

Summary of pluses and minuses of tree-based methods

Here is a more detailed comparison that matches tree-based methods against the use of linear
models, generalized additive models, and parametric discriminant methods. Strengths of
tree-based regression include:

� Results are invariant to a monotone re-expression of explanatory variables.
� The methodology is readily adapted to handle missing values, without omission of

complete observations.
� Tree-based methods are adept at capturing non-additive behavior. Interactions are auto-

matically included.
� It handles regression, and in addition unordered and ordered classification.
� Results are in an immediately useful form for classification or diagnosis.

Weaknesses of methods that yield a single tree include:

� The overall tree may not be optimal.
� Large trees make poor intuitive sense; their predictions must be used as black boxes.
� Continuous predictor variables are treated, inefficiently, as discrete categories.
� Assumptions of monotonicity or continuity across category boundaries are lost.
� Low-order interaction effects do not take precedence over higher-order interactions,

which may be an issue for ease of interpretation.
� Limited notions of what to look for may result in failure to find useful structure.
� It may obscure insights that are obvious from parametric modeling, e.g., a steadily

increasing risk of cancer with increasing exposure to a carcinogen.

Ensemble methods, including random forests, yield more optimal trees. They are rather
more open than single trees to the complaint that their predictions must be treated as black
boxes. Within the limitations imposed by strongly non-parametric assumptions, they often
do better than individual trees. They are equally affected by the final three weaknesses.

11.9 Further reading and extensions

Venables and Ripley (2002) is a good brief overview. Ripley (1996), Berk (2008), Hastie
et al. (2009) are more comprehensive. Berk (2008) has extensive insightful comments on
the properties, practical use, and usefulness of these and related technologies.

Random forests builds on the bagging methodology, where multiple bootstrap samples
are taken. Boosting is a rather different extension of tree-based methodology. In the boosting
methodology, as applied to trees, successive trees give extra weight to points that were
incorrectly predicted by earlier trees, with a weighted vote finally taken to get a consensus
prediction. Unlike random forests, the statistical properties of boosting methods are not
well understood, and they can over-fit. The function adaboost.M1() in the adabag
package implements the Adaboost.M1 algorithm. Note also the gbm Generalized Boosted
Regression Models package.

Therneau and Atkinson (1997, pp. 50–52) give comparisons between rpart methodology
and other software. Lim and Loh (2000) investigated 10 decision tree implementations,



374 Tree-based classification and regression

not however including rpart. Several of these implementations offer a choice of
algorithms.

For a biostatistical perspective, including a discussion of survival modeling and analysis
of longitudinal data, see Zhang and Singer (1999).

References for further reading

Berk, R. A. 2008. Statistical Learning from a Regression Perspective.
Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learning. Data

Mining, Inference and Prediction, 2nd edn.
Lim, T.-S. and Loh, W.-Y. 2000. A comparison of prediction accuracy, complexity, and

training time of thirty-three old and new classification algorithms. Machine Learning 40:
203–28.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks.
Therneau, T. M. and Atkinson, E. J. 1997. An Introduction to Recursive Partitioning Using

the RPART Routines.
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.
Zhang, H. and Singer, B. 1999. Recursive Partitioning in the Health Sciences.

11.10 Exercises

1. Refer to the head.injury data frame.

(a) Use the default setting in rpart() to obtain a tree-based model for predicting occurrence
of clinically important brain injury, given the other variables.

(b) How many splits gives the minimum cross-validation error?
(c) Prune the tree using the one-standard-error rule.

2. The data set mifem is part of the larger data set in the data frame monica that we have
included in our DAAG package. Use tree-based regression to predict mortality in this larger
data set. What is the most immediately striking feature of the analysis output? Should this be a
surprise?

3. Use tree-based regression to predict re78 in the data frame nswpsid1 that is in the DAAG
package. Compare the predictions with the multiple regression predictions in Chapter 6.

4. Copy down the email spam data set from the web site given at the start of Section 11.2. Carry
out a tree-based regression using all 57 available explanatory variables. Determine the change in
the cross-validation estimate of predictive accuracy.

5. This exercise will compare alternative measures of accuracy from randomForest() runs.
First, 16 rows where data (on V6) is missing will be omitted:
> library(MASS)

sapply(biopsy, function(x)sum(is.na(x)))

biops <- na.omit(biopsy[,-1]) ## Column 1 is ID

## Examine list element names in randomForest object

names(randomForest(class ˜ ., data=biops))

library(MASS)



11.10 Exercises 375

> sapply(biopsy, function(x)sum(is.na(x)))

ID V1 V2 V3 V4 V5 V6 V7 V8 V9 class

0 0 0 0 0 0 16 0 0 0 0

> biops <- na.omit(biopsy[,-1]) ## Column 1 is ID

> ## Examine list element names in randomForest object

> names(randomForest(class ˜ ., data=biops))

[1] "call" "type" "predicted" "err.rate"

[5] "confusion" "votes" "oob.times" "classes"

[9] "importance" "importanceSD" "localImportance" "proximity"

[13] "ntree" "mtry" "forest" "y"

[17] "test" "inbag" "terms"

(a) Compare repeated randomForest() runs:
## Repeated runs, note variation in OOB accuracy.

for(i in 1:10) {

biops.rf <- randomForest(class ˜ ., data=biops)

OOBerr <- mean(biops.rf$err.rate[,"OOB"])

print(paste(i, ": ", round(OOBerr, 4), sep=""))

print(round(biops.rf$confusion,4))

}

(b) Compare OOB accuracies with test set accuracies:
## Repeated train/test splits: OOB accuracy vs test set accuracy.

for(i in 1:10){

trRows <- sample(1:dim(biops)[1], size=round(dim(biops)[1]/2))

biops.rf <- randomForest(class ˜ ., data=biops[trRows, ],

xtest=biops[-trRows,-10],

ytest=biops[-trRows,10])

oobErr <- mean(biops.rf$err.rate[,"OOB"])

testErr <- mean(biops.rf$test$err.rate[,"Test"])

print(round(c(oobErr,testErr),4))

}

Plot test set accuracies against OOB accuracies. Add the line y = x to the plot. Is there
any consistent difference in the accuracies? Given a random training/test split, is there any
reason to expect a consistent difference between OOB accuracy and test accuracy?

(c) Calculate the error rate for the training data:
randomForest(class ˜ ., data=biops, xtest=biops[,-10],

ytest=biops[,10])

Explain why use of the training data for testing leads to an error rate that is zero.

6. Starting in turn with samples of sizes n = 25, 50, 100, 200, 400, 800, take a bootstrap sample of
the relevant size n. In each case, determine the number of observations that are repeated.

7. The expected number of repeats is (1 − n−1)n, with limiting value exp(−1) for infinite n.5 Plot
the observed number of repeats against the expected number of repeats.

8. Plot, against log(n), the difference exp(−1) − (1 − n−1)n.

5 The probability that any particular point (observation) will be excluded is (1 − n−1)n, where n is the sample size.
Summing over all points, the expected number excluded is n(1 − n−1)n, i.e., a fraction (1 − n−1)n of the number of
points n.



376 Tree-based classification and regression

9. Apply randomForest() to the data set Pima.tr (MASS package), then comparing the error
rate with that from use of randomForest() with a bootstrap sample of rows of Pima.tr:
## Run model on total data

randomForest(as.factor(type) ˜ ., data=Pima.tr)

rowsamp <- sample(dim(Pima.tr)[1], replace=TRUE)

randomForest(as.factor(type) ˜ ., data=Pima.tr[rowsamp, ])

Compare the two error rates. Why is the error rate from the fit to the bootstrap sample of rows so
(spuriously) low?



12

Multivariate data exploration and discrimination

Earlier chapters have made extensive use of exploratory graphs that have examined vari-
ables and their pairwise relationships, as a preliminary to regression modeling. Scatterplot
matrices have been an important tool, and will be used in this chapter also. The focus will
move from regression to methods that seek insight into the pattern presented by multiple
variables. While the methodology has applications in a regression context, this is not a
primary focus.

There are a number of methods that project the data on to a low-dimensional space,
commonly two dimensions, suggesting “views” of the data that may be insightful. In the
absence of other sources of guidance, it is reasonable to begin with views that have been
thus suggested. One of the most widely used methods for projecting onto a low-dimensional
space is principal components analysis (PCA).

The PCA form of mathematical representation has applications in many contexts beyond
those discussed here. As used here, PCA is a special case of a much wider class of multi-
dimensional scaling (MDS) methods. Subsection 12.1.3 is a brief introduction to this wider
class of methods.

Principal components analysis replaces the input variables by new derived variables,
called principal components. The analysis orders the principal components according to
the amounts that they contribute to the total of the variances of the original variables. The
most insightful plots are often, but by no means inevitably, those that involve the first few
principal components.

In the analysis of morphometric data that have not been logarithmically transformed, the
first component is often an overall measure of size. This may be of less interest than later
principal components, which will often capture differences in relative body dimensions.
There is no necessary sense in which the first principal component, explaining the largest
proportion of the variance, is the most “important”.

As noted, the methods have application in regression and related analyses. A large
number of candidate explanatory variables may be replaced by the first few principal
components, hoping that they will adequately summarize the information in the candidate
explanatory variables. If we are fortunate, simple modifications of the components will
give new variables that are readily interpretable.

Discriminant analysis methods are another major focus of this chapter. In discrimination,
observations belong to one of several classes or groups. The aim is to find a rule, based
on values of explanatory variables, that will, as far as possible, assign observations to
their correct classes. This rule may then be used to classify new observations whose class



378 Multivariate data exploration and discrimination

may be unknown or unclear. An obvious way to evaluate classification rules is to examine
their predictive accuracy, i.e., the accuracy with which they can be expected to assign new
observations.

Discriminant analysis methodology is clearly important in its own right. In addition it may
be used, somewhat like PCA, as a data reduction technique. A small number of “discriminant
components”, i.e., linear combinations of the candidate variables that for discrimination
purposes sum up the information in those variables, may replace explanatory variables.
Plots of these components can be useful for data exploration. In some applications, the
components may become predictors in a regression analysis.

12.1 Multivariate exploratory data analysis

Preliminary exploration of the data is as important for multivariate analysis as for classical
regression. Faced with a new set of data, what helpful forms of preliminary graphical
exploration are available? Here we illustrate a few of the possibilities.

The data set possum was described in Chapter 2. The interest is in finding the morpho-
metric characteristics, if any, that distinguish possums at the different sites. For simplicity,
we will limit attention to a subset of the morphometric variables.

12.1.1 Scatterplot matrices

It is good practice to begin by examining relevant scatterplot matrices. This may draw
attention to gross errors in the data. A plot in which the sites and/or the sexes are identified
will draw attention to any very strong structure in the data. For example, one site may be
quite different from the others, for some or all of the variables.

In order to provide a plot in which the features of interest are clear, the scatterplot matrix
and cloud plot in Figure 12.1 show three only of the nine variables. The choice of this
particular set of three variables anticipates results of a later analysis, designed to identify
the variables that discriminate the populations most effectively. Observe that there are two
clusters of values, with each of six sites pretty much restricted to one or other of the clusters.
We invite readers to create for themselves a scatterplot matrix that has all nine variables.
Code for Figure 12.1A is:

## Scatterplot matrix, columns 9-11 of possum (DAAG).

## Colors distinguish sexes; symbols distinguish sites

library(lattice)

pchr <- c(3,4,0,8,2,10,1)

colr <- c("red", "blue")

ss <- expand.grid(site=1:7, sex=1:2) # Site varies fastest

parset <- with(ss, simpleTheme(pch=pchr[site], col=colr[sex]))

sitenames <- c("Cambarville","Bellbird","Whian Whian", "Byrangery",

"Conondale ","Allyn River", "Bulburin")

## Add column sexsite to possum; will be used again below

possum$sexsite <- paste(possum$sex, possum$site, sep="-")

splom(possum[, c(9:11)], groups = possum$sexsite,

col = colr[ss$sex], par.settings=parset,

varnames=c("tail\nlength","foot\nlength","ear conch\nlength"),

key = list(text=list(sitenames), points=list(pch=pchr), columns=3))



12.1 Multivariate exploratory data analysis 379

A B

Scatter Plot Matrix

tail
length

38

40

42 38 40 42

32

34

36

32 34 36

●

●
●

● ●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●● ●

●

●

● ●

●

foot
length

70

75 70 75

60

65
60 65

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●● ●●

● ●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●● ●●

●
●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

ear conch
length

50

55
50 55

40

45
40 45

●

●Cambarville
Bellbird
Whian Whian

Byrangery
Conondale
Allyn River

Bulburin

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

taill
footlgth

ea
rc

on
ch

Cambarville
Bellbird
Whian Whian

Byrangery
Conondale
Allyn River

Bulburin

●

●

Figure 12.1 Panel A shows the scatterplot matrix for three morphometric measurements on the
mountain brushtail possum. In the color version in Plate 4, females are in red (here, gray), males are
in blue (here, black). Panel B shows a three-dimensional perspective plot (cloud plot) for the same
three variables.

Figure 12.1B gives a three-dimensional representation of the variables shown in Figure
12.1A. The code is:

## Cloud plot of earconch, taill and footlgth

cloud(earconch˜taill+footlgth, data=possum, pch=pchr, groups=site,

par.settings=simpleTheme(pch=c(3,4,0,8,2,10,1)),

auto.key = list(space="top", columns=3, between=1,

text=sitenames, between.columns=2))

# auto.key takes its symbols(pch) from par.settings

12.1.2 Principal components analysis

As noted in the comments at the beginning of the chapter, the idea is to replace the original
variables by a small number of “principal components” – linear combinations of the initial
variables, that together may explain most of the variation in the data.

A useful starting point for thinking about principal components analysis is to imagine a
two-dimensional scatterplot of data that has, roughly, the shape of an ellipse. Then the first
principal component coincides with the longer axis of the ellipse. For example, if we had
just the two variables footlgth (foot length) and earconch (ear conch length) from
the possum data set, then the first principal component would have the direction of a line
from the bottom left to the top right of the scatterplot in the first row and second column of
Figure 12.1A. (We might equally well examine the plot in the second row and third column,
where the x- and y-axes are interchanged.)



380 Multivariate data exploration and discrimination

In three dimensions the scatter of data has the shape of an ellipsoidal object, e.g., the
shape of a mango or marrow or other similarly shaped fruit or vegetable, but perhaps
flattened on one side. The first principal component is the longest axis. If the first principal
component accounts for most of the variation, then the object will be long and thin.

Figure 12.1B gave a three-dimensional representation of the variables shown in Figure
12.1A. Notice that the data form into two clusters – the marrow has separated into two parts!
One use for principal components and associated plots is to give a visual identification of
such clusters.

The scaling of variables is important. If the variables are measured on comparable
scales, then unstandardized data may be appropriate. If the scales are not comparable,
and especially if the ranges of variables are very different, then standardization may be
appropriate. For morphometric (shape and size) data such as in the possum data frame,
use of the logarithms of variables places all variables on a scale on which equal distances
correspond to equal relative changes. Use of the logarithms of measurements is usually for
this reason desirable.

Principal components will be formed using the morphometric data in columns 6 to 14
in the possum data frame. Interest will be in how principal components differ between
sites and sexes. In principle, changes with age should also be investigated. That will not be
pursued here, except to compare the distributions of ages between sites.

Preliminary data scrutiny

These morphometric measurements are all essentially linearly related. For these data, taking
logarithms makes very little difference to the appearance of the plots. Thus, for simplicity,
the present discussion will not use logarithmically transformed variables, instead leaving
the analysis of logarithmic transformed data as an exercise.

The reason that taking logarithms makes little difference to the appearance of the plots
is that the ratio of largest to smallest value is relatively small, never more than 1.6:

## Ratios of largest to smallest values: possum[, 6:14] (DAAG)

sapply(na.omit(possum[, 6:14]), function(x)max(x)/min(x))

hdlngth skullw totlngth taill footlgth earconch eye

1.25 1.37 1.29 1.34 1.29 1.36 1.39

chest belly

1.45 1.60

In order to make the coefficients in the linear combinations unique, there must be a
constraint on their magnitudes. The princomp() function makes the squares of the
coefficients sum to one. The first principal component is the component that explains the
greatest part of the variation. The second principal component is the component that, among
linear combinations of the variables that are uncorrelated with the first principal component,
explains the greatest part of the remaining variation, and so on.

Different pairs of principal components allow different two-dimensional views of the
data. A usual first step is to plot the second principal component against the first principal
component. Or, a scatterplot matrix form of presentation can be used to examine all the
pairwise plots for the first three or four principal components.



12.1 Multivariate exploratory data analysis 381

1st Principal Component

2n
d 

P
rin

ci
pa

l C
om

po
ne

nt

−10

−5

0

5

10

−15 −10 −5 0 5 10 15

●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●Cambarville
Bellbird

Whian Whian
Byrangery

Conondale
Allyn River

Bulburin

Figure 12.2 Second principal component versus first principal component, for variables in columns
6–14 of the possum data frame. In the color version in Plate 5, females are in red (here, gray), males
are in blue (here, black).

The commands used for the analysis were:

## Principal components calculations: possum[, 6:14] (DAAG)

possum.prc <- princomp(na.omit(possum[, 6:14]))

Notice the use of the na.omit() function to remove rows that contain missing values,
prior to the principal components analysis. Note again that, for present tutorial purposes,
we have chosen to work with the variables as they stand. Figure 12.2 plots the second
principal component against the first, for variables 6 to 14 in the possum data.1

Here are further details of the principal components output. We have edited the output
so that the “importance of components” information is printed to two decimal places only.
By default, blanks appear whenever coefficients are less than 0.1 in absolute value:

> summary(possum.prc, loadings=TRUE, digits=2)

Importance of components:

Comp.1 2 3 4 5 6 7 8 9

Standard deviation 6.80 5.03 2.67 2.16 1.74 1.60 1.29 1.11 0.92

1 ## Plot of principal components: possum[, 6:14]
here<- complete.cases(possum[, 6:14])
colr <- c("red", "blue")
pchr <- c(3,4,0,8,2,10,1)
ss <- expand.grid(site=1:7, sex=1:2) # Site varies fastest
xyplot(possum.prc$scores[, 2] ˜ possum.prc$scores[, 1],

groups = possum$sexsite[here], col = colr[ss$sex], pch = pchr[ss$site],
xlab="1st Principal Component", ylab="2nd Principal Component",
key=list(points = list(pch=pchr),

text=list(c("Cambarville", "Bellbird", "Whian Whian",
"Byrangery", "Conondale", "Allyn River",
"Bulburin" )), columns=4))



382 Multivariate data exploration and discrimination

Proportion of Variance 0.50 0.27 0.08 0.05 0.03 0.03 0.02 0.01 0.01

Cumulative Proportion 0.50 0.77 0.85 0.90 0.93 0.96 0.98 0.99 1.00

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

hdlngth -0.41 0.28 0.34 -0.19 0.70 -0.28 -0.18

skullw -0.30 0.27 0.54 -0.34 -0.52 0.28 0.26 0.11

totlngth -0.52 0.31 -0.65 -0.16 0.23 -0.15 0.34

taill 0.25 -0.35 -0.19 0.44 -0.75 0.11

footlgth -0.51 -0.47 -0.34 -0.63

earconch -0.31 -0.65 0.25 0.58 0.21 -0.17

eye 0.19 0.24 0.94

chest -0.22 0.17 0.17 -0.18 0.19 -0.76 -0.40 0.27

belly -0.25 0.18 0.13 0.89 0.10 0.24 0.14

Most of the variation is in the first three or four principal components. Notice that
components 5 and 6 each explain only 3% of the variance. Later components explain,
individually, even less. The variation in these later components is so small that it may well
mostly represent noise in the data.

The loadings are the multiples of the original variables that are used in forming the
principal components. To a close approximation, the first three components are:

Comp.1: -0.42×ldlngth-0.3×skullw-0.52×totlngth-0.51×footgth
-0.31×earconch-0.22×chest-0.25×belly

Comp.2: 0.28×ldlngth+0.27×skullw+0.31×totlngth+0.25×tailll
-0.47×footgth-0.65×earconch+0.18×belly

Comp.3: 0.34×ldlngth+0.54×skullw-0.65×totlngth-0.35×tailll
+0.17×chest+0.13×belly

Notice that the first component is pretty much a size component; the magnitudes of all
coefficients are comparable. The negative signs are an artefact of the computations; the
signs could all just as well have been switched.

The stability of the principal components plot

Figure 12.2 showed a rather clear separation into two groups, distinguishing Bellbird and
Cambarville from the other sites. How stable, relative to statistical variation, are the clusters
that were apparent? One way to check this is to use the bootstrap approach.

The population from which the data were taken should not be too unlike data in which
each of the sample observations is repeated an infinite number of times. A new sample from
this infinite population is obtained by sampling with replacement from the original sample,
choosing a bootstrap sample that has the same size as the original sample. This is done for
each of the seven sites, thus giving a bootstrap sample data frame bsample1.possum
that replaces the original data. The process is repeated several times, giving further such
data frames bsample2.possum, bsample3.possum, . . . .

The steps that led to Figure 12.2 are then repeated for each of these bootstrap sample data
frames, and plots obtained that reproduce Figure 12.2 for each of these bootstrap sample



12.1 Multivariate exploratory data analysis 383

First principal component

S
ec

on
d 

pr
in

ci
pa

l c
om

po
ne

nt

−10

−5

0

5

1

●

●
●●

●

●●
●

●

●

● ●
●

●●

●●

●

●
●

●●

●

●●

● ●●●

●

●

●

●●

●

●
●

●
●

●

● ●

−15 −10 −5 0 5 10

2

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●
●●●

●

●

●
●

●●

●
● ●

●
●

●
●

●

−15 −10 −5 0 5 10

3

●●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●
●

●

−15 −10 −5 0 5 10

Pop

● Vic

other

sex

● f

● m

Figure 12.3 Second principal component versus first principal component, for variables in columns
6–14 of the three bootstrap versions of the possum data frame.

data frames. Figure 12.3 presents three such plots. The graphs are simplified so that they
distinguish the two Victorian sites (Cambarville and Bellbird) from the other five sites.
Use of the quickplot() function from the ggplot2 package (see Section 15.6) makes it
straightforward to distinguish sex as well as Pop within the individual panels.

All three panels show a similar distinction between the two sets of sites. The view
given by the principal components may thus be reasonably stable with respect to sampling
variation.

The following code was used to give Figure 12.3:

## Bootstrap principal components calculations: possum (DAAG)

library(ggplot2)

## Sample from all rows where there are no missing values

rowsfrom <- (1:dim(possum)[1])[complete.cases(possum[, 6:14])]

n <- length(rowsfrom); ntimes <- 3

bootscores <- data.frame(matrix(0, nrow=ntimes*n, ncol=2))

names(bootscores) <- c("scores1","scores2")

allsamp <- numeric(ntimes*n)

for (i in 1:ntimes){

samprows <- sample(rowsfrom, n, replace=TRUE)

bootscores[n*(i-1)+(1:n), 1:2] <-

princomp(possum[samprows, 6:14])$scores[, 1:2]

allsamp[n*(i-1)+(1:n)] <- samprows

}

bootscores[, c("sex","Pop")] <- possum[allsamp, c("sex","Pop")]

bootscores$sampleID <- factor(rep(1:ntimes, rep(n,ntimes)))

quickplot(x=scores1, y=scores2, colour=sex,

shape=Pop, facets=.˜sampleID, data=bootscores) +

scale_colour_manual(value=c("m"="black","f"="gray45")) +

xlab("First Principal Component") +

ylab("Second Principal Component")

12.1.3 Multi-dimensional scaling

We noted above that PCA, in the use made of it here, is a special case of a much wider class
of multi-dimensional scaling (MDS) methods. MDS starts with a matrix of “distances”



384 Multivariate data exploration and discrimination

between points. Classical MDS with Euclidean distance (in three-dimensional space this is
just the usual “distance”) is equivalent to a principal components representation, working
with the unscaled variables. MDS thus allows a choice of a distance measure that can in
principle more closely match the scientific requirements. Computational demands can be
severe, relative to principal components approaches.

Distance measures

In the best case, a distance measure may arise naturally from the way that the data are
believed to have been generated. Thus, for gene sequences, the function dist.dna() in
the ape package has several different measures of distance that arise from different models
for the evolutionary process.

For some commonly used non-Euclidean distances, see help(dist), or, for a more
extensive range of possibilities, the help page for the function daisy() in the cluster
package. The function cmdscale() implements classical MDS.

A particularly simple non-Euclidean distance (or “metric”) is the"manhattan". In two
dimensions this is the smallest walking distance between street corners, taking a succession
of left and/or right turns along streets that are laid out in a two-dimensional grid.

Ordination

In classical (“metric”) MDS the distances, however derived, are treated as Euclidean. The
function cmdscale() (MASS) implements this methodology, seeking a configuration of
points in a low-dimensional space such that the distances are as far as possible preserved.
Other (“non-metric”) methods typically use classical MDS to derive a starting configuration.

There are several reasons for moving away from the rigidity of treating the “distances”
as distances in a Euclidean space. “Distances” that are restricted to lie between 0 and 1, as
in Subsection 13.2.2 (see Figure 13.5), can at best be regarded as relative distances. Small
distances may be more accurate than large distances. Or it may be important to reproduce
smaller distances more accurately.

The Sammon method (Sammon, 1969) minimizes a weighted sum of squared differ-
ences between the supplied and the fitted distance, with weights inversely proportional to
the distance. This can be a good compromise between classical MDS and methods such
as Kruskal’s non-metric MDS. The function sammon() (MASS) implements Sammon’s
method, while isoMDS() (also MASS) implements Kruskal’s non-metric MDS. Kruskal’s
non-metric MDS is a challenge for optimization algorithms, and calculations may take a
long time.

The following code demonstrates the use of (1) sammon() and (2) isoMDS(), using
Euclidean distance:

library(MASS)

d.possum <- dist(possum[,6:14]) # Euclidean distance matrix

possum.sammon <- sammon(d.possum, k=2)

plot(possum.sammon$points) # Plot 2nd vs 1st ordinates

possum.isoMDS <- isoMDS(d.possum, k=2)

plot(possum.isoMDS$points)



12.2 Discriminant analysis 385

A rotation and/or a reflection may be required to align these plots with each other and with
Figure 12.2. After such alignment, the plots are, for these data, remarkably similar.

For further details, see Venables and Ripley (2002), Gordon (1999), Cox and Cox (2001),
Izenman (2008).

Binary data

Binary data raises special issues, both for the choice of distance measure and for the choice
of MDS methodology. For the “binary” measure, the number of bits where only one is
“on” (i.e., equal to one) is divided by the number where at least one is on. If it turns
out that distances of 1.0 are a substantial proportion of the total data, they may then not
be very informative. Points that are at distances of 1.0 from each other and from most
other points cannot, if there is a substantial number of them, be accurately located in the
low-dimensional space.

It is then undesirable to give much weight to distances close to or equal to 1.0. Use of
sammon() or isoMDS() is then much preferable to use of cmdscale(). The plots
may have a striking visual appearance, with points for which distances from most other
points are close to 1.0 lying on a circle around the boundary of the total configuration of
points.

12.2 Discriminant analysis

Discriminant analysis seeks a rule that will allow prediction of the class to which a new
observation may belong. Using language that comes originally from the engineering pattern
recognition literature, the interest is in supervised learning. For example, the aim may
be to predict, based on prognostic measurements and outcome information for previous
patients, which future patients will remain free of disease symptoms for 12 months or more.
Two methods will be demonstrated here – logistic discrimination and linear discriminant
analysis using the function lda() in MASS. The tree-based methods that were discussed
in Chapter 11 are among other methods that are available.

Cross-validation and the training/test set methodology, introduced in earlier chapters as
approaches for assessing predictive accuracy, will have key roles in work with discriminant
methods. Note again that resubstitution or training set accuracy, that is, prediction accuracy
on the data used to derive the model, must inevitably improve as the prediction model
becomes more complex. The cross-validation estimate of predictive accuracy will in general,
at some point as model complexity increases, begin to decrease. The same is true for
predictive accuracy on test data that are separate from the data used to train the model.

Cross-validation assessments of accuracy, or assessments that are based on test data
derived from splitting the sample data into two parts, do however have limitations. Cross-
validation gives an estimate of predictive accuracy for the population from which the data
have been sampled. It is convenient to call this the “source” population. With observational
data, the target to which results will be applied is almost inevitably different, commonly in
time and/or space, from the “source”. Accuracy estimates that are based on cross-validation,
or on a training/test split of the sample data, must then be treated as provisional, until and
unless test data become available from the population that is the true target.



386 Multivariate data exploration and discrimination

5 10 15 20

10
20

30
40

Leaf width (mm)

Le
af

 e
ng

th
 (

m
m

)

●●●●
●●●●●●●●●●●● ●●●●●●●
●● ●● ●●●● ●

●●●

●

●

●

A

●● ●
●●

●●●
● ●●● ●●●● ●● ●● ●● ●●

●●●● ●● ●
●●● ●

●● ●

●

●

●

Leaf width (mm)

Le
af

 e
ng

th
 (

m
m

)

5 10 20

0.70 1.00 1.30

1.
00

1.
30

1.
60

10
20

30

B

og
10

(L
ea

f 
en

gt
h)

log10(Leaf width)

Figure 12.4 Leaf length versus leaf width (A) with untransformed scales; and (B) using logarithmic
scales. The symbols are o = plagiotropic, + = orthotropic. Data, in the data frame leafshape17,
are from a North Queensland site.

12.2.1 Example – plant architecture

Our first example is from data on plant architecture (data relate to (King and Maindonald,
1999). There is a discussion of plant architectures, with diagrams that help make clear
the differences between the different architectures, in King (1998). Orthotropic species
have steeply angled branches, with leaves coming off on all sides. Plagiotropic species
have spreading branches (a few intermediates and a third uncommon branching pattern
are excluded). The interest was in comparing the leaf dimensions of species with the
two different architectures. Is leaf shape a good discriminator? The interest is not in
prediction per se, but in the extent to which leaf shape discriminates between the two
architectures.

We examine data from a North Queensland site, one of the six sites that provided data.
Figure 12.4 is a plot of the data. A logarithmic scale is clearly preferable, as in Figure
12.4B.

With two explanatory variables, there is not much point in a plot of principal components
scores. A plot of the second versus first principal components scores from the log trans-
formed data would look like Figure 12.4B, but rotated so that the major axis of variation
(running from the lower left to the upper right of Figure 12.4B) is horizontal. We could
draw a line by hand through these data at right angles to this major axis, from the lower right
to the upper left, that would discriminate orthotropic from plagiotropic species. However,
we need a more objective way to discriminate the two classes.

The function glm(), and the predict method for glm objects, reflect a classical approach
to statistical inference and make no explicit assumptions about the prior frequencies of the
classes. For making predictions, however, the expected proportions in the two (or more)
classes are important in finding a rule that will optimally assign a new sample to a cancer
type, with as high a probability of correct classification as possible.

More generally, different types of misclassification (orthotropic for a plagiotropic species,
as against plagiotropic for an orthotropic species) may have different costs that should be
taken into account. Costs are often important in a medical context. In a screening test for a



12.2 Discriminant analysis 387

disease, some false positives are acceptable, while any false negative (failing to detect an
instance of the disease) may have very serious consequences.

Notation

Let π0 and π1 be the respective prior probabilities of orthotropic and plagiotropic architec-
tures. For predictions from the logistic regression, π0 and π1 are each implicitly assumed
equal to 0.5. In the call to lda(), π0 and π1 can be supplied, using the argument prior.
They can also be changed, again using an argument prior, in a call to the predict method
for an lda object. By default, lda() takes π0 and π1 to be the frequencies in the data.

Then the discriminant analysis yields a linear function f (x, y) of x = log(leaf width)
and y = log(leaf length) such that when

f (x, y) < − log

(
π1

π0

)
,

the prediction is that the plant will be plagiotropic, while otherwise the plant is predicted
to be orthotropic. The function f (x, y) has the form a(x − x̄) + b(y − ȳ) and is called
the discriminant function. There is one value for each observation. The values of the
discriminant function are known as scores. The constants a and b must be estimated from
the data. Predictions for glm objects assume, in effect, that log

(
π1
π0

)
= 0, but results

from the output from glm() can readily be adapted to accommodate π1 	= π0 and hence

log
(

π1
π0

)
	= 0.

12.2.2 Logistic discriminant analysis

Binary logistic discrimination works with a model for the probability, e.g., that a
plant will be orthotropic. To fix attention on this specific example, the model specifies
log(odds orthotropic) as a linear function of the explanatory variables for the classification.
We get the function from

> leaf17.glm <- glm(arch ˜ logwid + loglen, family=binomial,

+ data=leafshape17)

> options(digits=3)

> summary(leaf17.glm)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -15.286 4.09 -3.735 0.000188

logwid 0.185 1.57 0.118 0.905911

loglen 5.268 1.95 2.704 0.006856

Thus we have

log(odds orthotropic) = −15.3 + 0.185 log(width) + 5.628 log(length).

Predictive accuracy

The cross-validation estimate is a reasonable assessment of the accuracy that can be expected
for a new set of data, sampled in the same way as the existing training data and from the



388 Multivariate data exploration and discrimination

same source population. Our function CVbinary() can conveniently be used to do the
cross-validation calculations. It returns the class that is predicted from the cross-validation
in the list element cv.

## Confusion matrix: cross-validation estimate

> leaf17.cv <- CVbinary(leaf17.glm)

> tCV <- table(leafshape17$arch, round(leaf17.cv$cv)) # CV

> cbind(tCV, c(tCV[1,1], class.acc=tCV[2,2])/(tCV[,1]+tCV[,2]))

0 1

0 36 5 0.878

1 7 13 0.650

In the above table, 36/(36 + 5) is calculated as 0.878, while 13/(7 + 13) is calculated as
0.65. The overall predictive accuracy is (36 + 13)/(36 + 13 + 5 + 7) = 80.3%. We can
find this as follows:

> sum(tCV[row(tCV)==col(tCV)])/sum(tCV) # Overall accuracy

[1] 0.803

The results will vary slightly from one run of CVbinary() to the next.
Accuracies for the data that were used to train the model, here referred to as the internal

or resubstitution accuracy rate, are in general optimistic, and should not be quoted. They are
given here for comparative purposes. The function CVbinary() returns the resubstitution
estimate in the list element resub.

## Confusion matrix: resubstitution estimate

## This can be grossly optimistic, and should be ignored

> tR <- table(leafshape17$arch, round(leaf17.cv$internal))

> cbind(tR, c(tR[1,1], class.acc=tR[2,2])/(tR[,1]+tR[,2]))

0 1

0 37 4 0.902

1 7 13 0.650

> sum(tR[row(tR)==col(tR)])/sum(tR) # Overall accuracy

[1] 0.82

The leave-one-out cross-validation accuracy was, for the cross-validation run that is reported
here, slightly lower than the resubstitution assessment.

12.2.3 Linear discriminant analysis

The function lda(), from the Venables and Ripley MASS package, is set in an explicit
Bayesian framework, as described in Ripley (1996, p. 36). For two classes it is a logistic
regression, but the assumptions (notably, multivariate normal within-group distributions
with a variance–covariance matrix that is common across groups) are different from those
for glm(). It yields posterior probabilities of membership of the several groups. The
allocation which makes the smallest expected number of errors chooses, following the
Bayes rule, the class with the largest posterior probability. Where there are g > 2 groups,
there are g − 1 discriminant axes.



12.2 Discriminant analysis 389

The function qda() is an alternative to lda() that allows for different variance–
covariance matrices in different groups. A restriction is that for use of p features, each
group must have at least p + 1 observations. Unlike lda(), it does not lead to discriminant
axes that are common across all groups.

We first extract predictions, and then examine the discriminant function. The code is:

library(MASS)

## Discriminant analysis; data frame leafshape17 (DAAG)

leaf17.lda <- lda(arch ˜ logwid+loglen, data=leafshape17)

Output from the analysis is:

> leaf17.lda

Call:

lda.formula(arch ˜ logwid + loglen, data = leafshape17)

Prior probabilities of groups:

0 1

0.672 0.328

Group means:

logwid loglen

0 1.43 2.46

1 1.87 2.99

Coefficients of linear discriminants:

LD1

logwid 0.156

loglen 3.066

The coefficient estimates are a = 0.156 and b = 3.066.
The prior probabilities should reflect the expected proportions in the population to

which the discriminant function will be applied, which may be different from the relative
frequencies in the data that were used to make predictions. Both lda() and the predict
method for lda objects take the argument prior, allowing predictions to use prior
probabilities that may be different from those that were assumed in the call to lda().

Assessments of predictive accuracy

Predictions for the data used to train the model can be obtained using pre-
dict(leaf17.lda). Such predictions will, here, be ignored. Instead, we will rerun
the calculation with the argument CV=TRUE. Predictions are then based on leave-one-out
cross-validation, i.e., observations are left out one at a time, the model is fitted to the
remaining data, and a prediction is made for the omitted observation. Here then are the
calculations:

> leaf17cv.lda <- lda(arch ˜ logwid+loglen, data=leafshape17,

+ CV=TRUE)

> ## the list element ’class’ gives the predicted class

> ## The list element ’posterior’ holds posterior probabilities



390 Multivariate data exploration and discrimination

> tab <- table(leafshape17$arch, leaf17cv.lda$class)

> cbind(tab, c(tab[1,1], class.acc=tab[2,2])/(tab[,1]+tab[,2]))

0 1

0 37 4 0.902

1 8 12 0.600

> sum(tab[row(tab)==col(tab)])/sum(tab)

[1] 0.803

The function multinom(), in the nnet package that is supplied as part of the recom-
mended Venables and Ripley VR bundle of packages, offers another approach which is
however less well adapted for use in prediction.

12.2.4 An example with more than two groups

We present discriminant analysis calculations for the possum data frame. The methods
followed here are similar to those used in Lindenmayer et al. (1995), with these same data,
in making a case for the identification of a new possum species. (The species is named
Trichodurus cunninghami for the statistician whose analysis led to this identification. See
Hall (2003).)

We will use the same nine variables as before.2 The output is:

> possum.lda

Call:

lda(site ˜ hdlngth + skullw + totlngth + taill + footlgth +

earconch + eye + chest + belly, data = na.omit(possum))

Prior probabilities of groups:

1 2 3 4 5 6 7

0.3267 0.0990 0.0693 0.0693 0.1287 0.1287 0.1782

Group means:

hdlngth skullw totlngth taill footlgth earconch eye chest belly

1 93.7 57.2 89.7 36.4 73.0 52.6 15.0 27.9 33.3

2 90.2 55.6 82.0 34.5 70.6 52.1 14.4 26.8 31.2

3 94.6 58.9 88.1 37.2 66.6 45.3 16.1 27.6 34.9

4 97.6 61.7 92.2 39.7 68.9 45.8 15.5 29.6 34.6

5 92.2 56.2 86.9 37.7 64.7 43.9 15.4 26.7 32.0

6 89.2 54.2 84.5 37.7 63.1 44.0 15.3 25.2 31.5

7 92.6 57.2 85.7 37.7 65.7 45.9 14.5 26.1 31.9

Coefficients of linear discriminants:

LD1 LD2 LD3 LD4 LD5 LD6

2 ## Linear discriminant calculations for possum data
possum.lda <- lda(site ˜ hdlngth + skullw + totlngth + taill + footlgth +

earconch + eye + chest + belly, data=na.omit(possum))
# na.omit() omits any rows that have one or more missing values

options(digits=4)
possum.lda$svd # Examine the singular values
plot(possum.lda, dimen=3)
# Scatterplot matrix - scores on 1st 3 canonical variates (Figure 12.5)



12.2 Discriminant analysis 391

Scatter Plot Matrix

LD1
0

2

4

6
0 2 4 6

−6

−4

−2

0

−6 −4 −2 0
●

●

●

●

●
●

●●
● ●

●

●

●

●●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●●●
●●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

LD2
0

2
0 2

−4

−2

−4 −2

●

●
●

●

● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

LD30

1

2

3

0 1 2 3

−3

−2

−1

0

−3 −2 −1 0

●

●Cambarville
Bellbird

Whian Whian
Byrangery

Conondale
Allyn River

Bulburin

Figure 12.5 Scatterplot matrix for the first three canonical variates based on the linear discriminant
analysis of the possum data.

hdlngth -0.1494 0.0848 -0.2427 -0.0272 -0.0842 -0.1867

skullw -0.0256 0.0624 -0.2422 0.1056 -0.1492 0.1412

totlngth 0.1165 0.2546 0.3257 -0.1795 -0.0816 -0.1164

taill -0.4577 -0.0690 -0.4532 -0.1835 0.3013 0.5122

footlgth 0.2926 -0.0251 -0.0312 0.0457 0.0619 -0.1047

earconch 0.5809 -0.0626 -0.0876 -0.0783 -0.0311 0.2692

eye -0.0548 0.0284 0.7763 0.4522 0.2196 0.3348

chest 0.1021 0.0724 0.0216 0.2642 0.6714 -0.0472

belly 0.0073 -0.0333 0.1080 0.1075 -0.3376 0.1813

Proportion of trace:

LD1 LD2 LD3 LD4 LD5 LD6

0.8953 0.0511 0.0371 0.0087 0.0056 0.0023

The “proportion of trace” figures are the proportions of the between-class variance that are
explained by the successive linear combinations. For these data, the first linear discriminant
does most of the discriminating. The variables that seem important are hdlngth, and
taill, contrasted with totlngth and footlgth. Figure 12.5 shows the scatterplot
matrix for the first three discriminant scores, which together account for 98.4% of the
between-class variance.



392 Multivariate data exploration and discrimination

We invite the reader to repeat the analysis with the argument CV=TRUE in the call to
lda(), in order to obtain a realistic predictive accuracy estimate.

12.3∗ High-dimensional data, classification, and plots

Data sets that have many more variables than observations are now common in a number
of application areas. Here, attention will be limited to data where the observations fall into
known previously identified groups.

The data used here were the basis for Golub et al. (1999). The hddplot package has a
processed version of these data, in the matrix Golub. These are expression array data,
i.e., each of the 7129 variables (or “features”) is a measure of the biological activity of
a gene. Technically, the values are “gene expression indices”. The data are derived from
the golubEsets package, available on the Bioconductor web site. The hddplot version has
been subjected to some further preprocessing, beyond the processing that preceded their
incorporation into golubEsets.

Following a terminology that is common for such data, the variables will be called
features. Each of the 72 observations (columns of Golub) is from a tissue sample from a
cancer patient. The 72 observations are classified into one of the three cancer types ALL
B-type (coded allB), ALL T-type (coded allT), and AML (coded aml). ALL is Acute
Lymphoblastic Leukemia (lymphoblastic = producing lymph tissue), while AML is Acute
Myoblastic Leukemia (myoblastic = producing muscle tissue). Differences in the cancer
types are not however the only differences between the samples, which is a complication
for analysis.

One use for such data is to find a discrimination rule that, using a small subset of the
features, will allow discrimination between the different cancer types. Such a rule might
allow the design of a diagnostic device (a “probe”) that, given a new sample, could determine
the cancer type. (Note however that any classification of cancers is likely to conceal large
individual differences that, in many cancers, arise from random differences in the timing
and outcome of trigger points in a cascade of genomic damage and disruption.)

As already noted, use of these data for discrimination between cancer types is complicated
by the potential effects of other factors. As well as different sexes, there are two different
body tissues (bone marrow and peripheral blood). There may also be variation because the
tissues came from four different hospitals; this will not be pursued here.

The presence of these other factors makes graphical exploration especially important.
Finding suitable views of the data, inevitably low-dimensional, is however a challenge.
Views are required that may help reveal subgroups in the data, or points that may have been
misclassified, or between-group differences in the variance–covariance structure. Graphs
should be revealing, without serious potential to mislead.

The papers Maindonald and Burden (2005), Ambroise and McLachlan (2002), and Zhu
et al. (2006) are useful background reading for the discussion of this section.

What groups are of interest?

The data frame golubInfo has information on the tissue samples, which are the obser-
vations. The two classifications that will be investigated are (1) according to tissue type



12.3∗ High-dimensional data, classification, and plots 393

and sex, given by the factor tissue.mf, and (2) according to cancer type (ALL B-type,
ALL T-type, AML), given by the factor cancer.

The frequencies in the two-way classification by cancer and tissue.mf are:

> library(hddplot)

> data(golubInfo)

> with(golubInfo, table(cancer, tissue.mf))

tissue.mf

cancer BM:NA BM:f BM:m PB:NA PB:f PB:m

allB 4 19 10 2 1 2

allT 0 0 8 0 0 1

aml 16 2 3 1 1 2

For the classification (1) above, according to tissue type and sex (tissue.mf), restric-
tion to the allB leukemia type and to patients whose sex is known gives a relatively
homogeneous set of data. Below, we will define a factor tissue.mfB that classifies the
allB subset of the data for which the sex of the patient is known, and for which at least
two samples are available. (The single allB observation that is PB:f will be omitted.)
The levels of tissue.mfB will be a subset of those of tissue.mf. Restriction to this
subset, at least for preliminary investigation, is desirable because the different tissue/sex
combinations may bias the attempt to compare cancer types.

(Observe thatallB is predominantlyBM:f, whileaml is predominantlyBM of unknown
sex. If we compare allB with aml and ignore other factors, will any differences be due
to cancer type, or to the sex of the patient, or to the tissue type?)

For the classification (2) above, according to cancer type (cancer), some limited
homogeneity will be imposed by restricting attention to bone marrow (BM) samples.
A classifying factor cancer.BM will be defined that relates to this reduced subset.
Consideration of results for these data should bear in mind that they may be affected
by sex differences as well as, possibly, by other unidentified factors (e.g., different
types of chromosome damage) where the numbers may differ between the different
subgroups.

The following preliminary calculations separate out the allB subset (GolubB) of the
data that will be used (classification 1 above), and derive the factor tissue.mfB whose
levels are BM:f, BM:m and PB:m:

attach(golubInfo)

## Identify allB samples for that are BM:f or BM:m or PB:m

subsetB <- cancer=="allB" & tissue.mf%in%c("BM:f","BM:m","PB:m")

## Form vector that identifies these as BM:f or BM:m or PB:m

tissue.mfB <- tissue.mf[subsetB, drop=TRUE]

## Separate off the relevant columns of the matrix Golub

data(Golub) # NB: variables(rows) by cases(columns)

GolubB <- Golub[, subsetB]

detach(golubInfo)

The argument drop=TRUE in tissue.mf[subsetB, drop=TRUE) causes the
return of a factor that has only the levels that are present in the data subset.



394 Multivariate data exploration and discrimination

12.3.1 Classifications and associated graphs

In the discussion that now follows, interest will be on the graphical view that can be asso-
ciated with one or other discriminant rule, rather than in the discriminant rules themselves.
The objective is to give a visual representation that shows one or other classification that
is of interest. Different classifications will lead to different graphical views – what is seen
depends, inevitably, on which clues are pursued. Overly complex classifications may force
unsatisfactory compromises in the view that is presented. As noted above, care is required
to ensure that graphs present a fair view of the data, not showing spurious differences
between groups or exaggerating such differences as may exist.

Discrimination will use the relatively simple and readily understood linear discriminant
function methodology that was introduced and used earlier, in Subsection 12.2.3. Analyses
will, again, use the lda() function (MASS). Linear discriminant functions may be as
complicated as is sensible, given the substantial noise in current expression array data sets.
In any case, the emphasis will be on insight rather than on the use of methods that are
arguably optimal.

The statistical information given in the output from the function lda() assumes that
the variance–covariance matrix is the same in all groups. Even where this is not plausible,
a useful graphical is still possible, perhaps showing pronounced between group differences
in the variance–covariance structure.

The methodology that will be described is not readily adaptable for use with qda().

Preliminary data manipulation

An observation on a tissue sample comes from a single “chip”, possibly leading to systematic
differences between observations. Preprocessing is needed to align the feature values for
the different observations. For the data set Golub in hddplot, data have been processed
so that, among other things, the median and standard deviation are the same across the
different slides. Full details will be included in a Sweave file that will be included with a
future version of hddplot.

As is standard practice with expression array data, the rows of Golub are features
(variables), while the columns are observations. Transposition to an observations by features
layout will be required for use of lda() or other modeling functions. Before proceeding
further, the distribution for individual observations across features, and the distribution
for a selection of features across observations, should be checked.3 Both distributions are
positively skewed.

12.3.2 Flawed graphs

Figure 12.6A is a flawed attempt at a graph that shows the separation of the 31 observations
into the three specified groups. It uses discriminant axes that were determined using 15
features that individually gave the “best” separation into the three groups (see below). It is
flawed because no account is taken of the effect of selecting the 15 “best” features, out of
7129. Figure 12.6B, which was obtained by applying the same procedure to random normal

3 ## Display distributions for the first 20 observations
boxplot(data.frame(GolubB[, 1:20])) # First 20 columns (observations)
## Random selection of 20 rows (features)
boxplot(data.frame(GolubB[sample(1:7129, 20), ]))



12.3∗ High-dimensional data, classification, and plots 395

0 5 10 15

−
10

−
5

0
5

1st discriminant function

2n
d 

di
sc

rim
in

an
t f

un
ct

io
n

● ●

●

●
●

●
●

●
●●

●●

●

●

●

●

●

●

●

A: ALL B−cell: 15 features
● BM:f BM:m PB:m PB:f( )

0 5 10

−
5

0
5

1st discriminant function

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

B: Random data: 15 features
● Gp 1 Gp 2 Gp 3 Gp 4( )

Figure 12.6 The left panel used the subset of ALL B-cell observations for which Gender was
known. The one PB:f observation was excluded for purposes of analysis. An anova F -statistic
calculation identified the 15 features that, individually, “best” separated the data into three groups.
These 15 features were then used in a linear discriminant analysis. Scores were then determined for
each of the two available discriminant axes. Additionally, a predicted score was determined for the
PB:f observation. For the right panel, the same procedure was followed, but now using a matrix
where the “expression values” were random normal data.

data, from 7129 independent normal variables that all had the same mean and variance,
shows the potential for getting an entirely spurious separation into groups. In spite of its
evident flaws, it is important to understand the procedure that was followed, as the later
discussion will extend and adapt it to give graphs that are not similarly flawed.

In summary, Figure 12.6 was obtained as follows:

� The 15 features (from 7129) were selected that, as measured by an analysis of variance
F -statistic, gave the best separation of the 31 observations into the three groups BM:f,
BM:m, PB:f.4

� The two discriminant functions, and their associated discriminant scores, were calculated
and the scores plotted.

� Predicted scores were determined for the one PB:f sample, allowing its inclusion in
the plot.5

4 ## Uses orderFeatures() (hddplot); see below
ord15 <- orderFeatures(GolubB, cl=tissue.mfB)[1:15]

5 ## Panel A
dfB.ord <- data.frame(t(GolubB[ord15, ]))
## Calculations for the left panel
## Transpose to observations by features
dfB15 <- data.frame(t(GolubB[ord15, ]))
library(MASS)
dfB15.lda <- lda(dfB15, grouping=tissue.mfB)
scores <- predict(dfB15.lda, dimen=2)$x
## Scores for the single PB:f observation
with(golubInfo, {

df.PBf <- data.frame(t(Golub[ord15, tissue.mf=="PB:f"
& cancer=="allB", drop=FALSE]))

scores.PBf <- predict(dfB15.lda, newdata=df.PBf, dimen=2)$x
}
## Warning! The plot that now follows may be misleading!
## Use scoreplot(), from the hddplot package
scoreplot(list(scores=scores, cl=tissue.mfB, other=scores.PBf, cl.other="PB:f"))



396 Multivariate data exploration and discrimination

Figure 12.6B used the same two steps, but with the input expression values replaced by
random normal values.6

The function simulateScores() makes it easy, using different numbers of features,
and different numbers of observations and groupings of those observations, to examine the
use of the procedure just described with different configurations of random data. Readers
are encouraged to experiment, using the code in footnote 6 as a model.

The selection of 15 features from a total of 7129, selected to have the largest F -statistics,
makes it unwise to give much credence to the clear separation achieved with expression
array data in Figure 12.6A. The extent of separation in Figure 12.6B from use of random
normal data indicates the potential severity of the selection effect, for the data used for
Figure 12.6A. The 15 most extreme F -statistics out of 7129, from a null distribution in
which there is no separation between groups, will all individually show some separation.
Choice of the “best” two discriminant axes that use these 15 features will achieve even
clearer separation than is possible with any of the features individually. Clearer apparent
separation, both for random data and for the Golub data, can be achieved by choosing more
than 15 features.

Distributional extremes

There can be a small number of F -statistics that are so large that they are unlikely to be
extremes from the null distribution. Plots such as Figure 12.6A can then be based on these
features, with no concern about possible effects of selection bias. Correlations between
features vitiates use of a theory that assumes that genes are independent. Additionally, the
distributions for individual features may not be normal, in a context where the interest is in
the distributional extremes of F -statistics and normality is likely to matter.

Permutation methods, implemented in the package multtest (Pollard, K. S., Ge, Y. and
Dudoit, S., 2005), can however be used to determine a relevant reference distribution. The
stand-alone version of this package, available from CRAN, is adequate for present purposes.
(For installation of the BioConductor version, a minimal BioConductor installation must
first be in place.)

The function mt.maxT() determines the needed empirical distribution, as part of its
implementation of a multiple testing procedure – the “step-down” method. Our interest here
is not in the multiple testing procedure, but in the empirical distribution of the F -statistics,
which can be obtained as qf(1-GolubB.maxT$rawp, 2, 28). The F -statistics for
the assignment of labels as in the actual sample are stored in GolubB.maxT$teststat,
i.e., the values are the same as those obtained from aovFbyrow(GolubB, tis-
sue.mfB).

The code used for the calculation is:

## The calculation may take tens of minutes, even with adequate

## memory and a fast processor.

## If necessary, use a smaller value of B.

6 ## Panel B: Repeat plot, now with random normal data
simscores <- simulateScores(nrow=7129, cl=rep(1:3, c(19,10,2)),

cl.other=4, nfeatures=15, seed=41)
# Returns list elements: scores, cl, scores.other & cl.other

scoreplot(simscores)



12.3∗ High-dimensional data, classification, and plots 397

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●
●●●●●
●●●
●●●●●●

●
●●

●
●

●
●

●

0 5 10 15

0
10

20
30

40

O
bs

er
ve

d 
F

-s
ta

tis
tic

s

Quantiles of permutation F-values

A

●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●
●●●●●●●

●●●●●
●●●●●●

●
●●

●
●

●
●

●

0 2 4 6 8 10 14

0
10

20
30

40

O
bs

er
ve

d 
F

-s
ta

tis
tic

s

Quantiles of F -theoretical

B

Figure 12.7 These QQ-plots are for the subset of ALL observations for which Genderwas known,
but excluding the one PB:f observation. The left plot compares the ordered F -statistics with the
ordered statistics from the permutation distribution. The right plot compares the ordered F -statistics
with F -distribution quantiles. Also shown, in both plots, is the line y = x.

library(multtest)

GolubB.maxT <- mt.maxT(GolubB, unclass(tissue.mfB)-1, test="f",

B=100000)

## Compare calculated F-statistics with permutation distribution

qqthin(qf(1-GolubB.maxT$rawp, 2, 28), GolubB.maxT$teststat)

## Compare calculated F-statistics with theoretical F-distribution

qqthin(qf(ppoints(7129), 2, 28), GolubB.maxT$teststat)

# The theoretical F-distribution gives estimates of quantiles

# that are too small

## NB also (not included in Figure 12.10) the comparison between

## the permutation distribution and the theoretical F:

qqthin(qf(ppoints(7129), 2, 28), qf(1-GolubB.maxT$rawp, 2, 28))

# qqthin() is a version of qqplot() that thins out points where

# overlap is substantial, thus giving smaller graphics files.

The argument B sets the number of permutations that will be taken. This needs to be
substantially larger than the number of features in order to get estimates of the extreme
upper quantiles of the distribution that are as accurate as possible, Figure 12.7 uses the
function qqthin() (hddplot) to show QQ-plots that compare the relevant distributions.

Panel A, which uses an appropriate reference distribution, suggests that the largest two
features, and others as well, show differential expression. The theoretical F -distribution,
used for the horizontal axis in panel B, shows differences at almost all quantiles, and
is not an appropriate reference distribution.

Use of the permutation distribution as reference (panel A), indicates that it is very unlikely
that the null distribution would generate the largest of the F -statistics, and that these show
genuine evidence of differential expression.

The features that show very clear evidence of differential expression are unlikely to be
affected by selection bias. Selection bias is an issue when a choice is made among features
whose F -statistics are relatively similar, and that collectively are inconsistent with the null.



398 Multivariate data exploration and discrimination

Effective mechanisms for handling such issues are the subject of active research, and will
not be pursued further in this section.

The subsequent discussion will demonstrate adaptations of the procedure used for Figure
12.6A, but which avoid its evident flaws and do not require a limiting of attention to a small
number of features that show uniquely unequivocal evidence of differential expression.

Selection of features that discriminate

The function orderFeatures() will be used extensively in the sequel. It selects fea-
tures that, as measured by an analysis of variance F -statistic, give, individually, the best
separation between groups. The function takes as arguments

� x: the matrix of expression values, in the features by observations layout that is usual in
work with expression arrays.

� cl: a factor that classifies the observations.
� subset: if changed from its default (NULL), this identifies a subset of observations

(columns of dset) that will be used for calculating the statistics.
� FUN: currently the only available function (aovFbyrow()) uses the analysis of vari-

ance F -statistic as a measure of between-group separation.
� values: by default the function returns the order. If set to TRUE the function returns

the ordered F -statistic values as well as the order.

Selection of features that discriminate best individually, in an analysis of variance F -
statistic sense, is not guaranteed to select the features that perform best in combination. It is
akin to using, in a multiple regression, the variables that perform well when used as the only
predictors. It may however be a reasonable strategy for use in an initial exploratory analysis,
in the absence of an obviously better alternative. The development of good variable selection
methods, applicable to the data used in this section, is the subject of ongoing research.

12.3.3 Accuracies and scores for test data

Where there are adequate data, a cautious strategy is to split the data into two sets, here
named I and II. Then set I can be used to train discriminant functions and to determine
discriminant scores for the test observations in set II. The key requirement is that the scores
must relate to observations that are distinct from those used to develop the discriminant
functions, and are therefore free from the selection bias that affects the set I (training) scores.
The set II test data has no role in either the selection of features, or the determination of the
discriminant functions and associated scores.

The process can then be reversed, with set II used for training and scores calculated for
set I. Two plots are then available, the first of which shows scores for set I, and the second
scores for set I. The two plots, conveniently identified as I/II and II/I, will use different
features and different discriminant functions and cannot be simply superposed.

Because there are only three observations in the PB:m category, the data used for Figure
12.6A cannot satisfactorily be split into training and test data. We can however use this
approach to examine the classification of the bone marrow (BM.PB=="BM") samples into
ALL B-cell, ALL T-cell, and AML. This larger data set (62 observations), with larger
numbers (8 or more) in each level of the classification, allows a split into a set I and a



12.3∗ High-dimensional data, classification, and plots 399

set II such that in both cases each level of the classification has at least four
observations.

Two approaches that might be used to determine the optimum number of features, when
developing a discriminant rule from set I, are:

� Use the predicted accuracies for set II.
� Use cross-validation on set I.

Cross-validation will be demonstrated later in this section, albeit working with the total
allB data.

The function divideUp() (hddplot) has a default that (with nset=2) is designed to
make a training/test split, while ensuring similar relative numbers in the three levels of the
classification.

Golub.BM <- with(golubInfo, Golub[, BM.PB=="BM"])

cancer.BM <- with(golubInfo, cancer[BM.PB=="BM"])

## Now split each of the cancer.BM categories between two subsets

## Uses divideUp(), from hddplot

gp.id <- divideUp(cancer.BM, nset=2, seed=29)

# Set seed to allow exact reproduction of the results below

Tabulating the division into two sets, we find:

> table(gp.id, cancer.BM)

cancer.BM

gp.id allB allT aml

1 17 4 10

2 16 4 11

The maximum number of features for calculations using lda() with the set I data
are 28 (= 17 + 4 + 11 − 3 − 1) for set I, and 26 for set II. Hence we will work with a
maximum of 26 features, in each case. Steps in handling the calculations are:

1. Using set I as the training data, find the 26 features that, for a classification of the data
into three groups according to levels of cancer.BM, have the largest F -statistics.

2. For each value of nf = 1, 2, . . . , 26 in turn
– use the best nf features to develop discriminant functions
– apply this function to the data in set II, and calculate the accuracy.

3. The accuracies that result will be called the I/II accuracies.
4. Now make set II the training data and set I the test data, and repeat items 1 and 2. The

accuracies that result will be called the II/I accuracies.

These calculations can be carried out using the function accTrainTest() (from
hddplot).

> accboth <- accTrainTest(x = Golub.BM, cl = cancer.BM,

+ traintest=gp.id)

Training/test split Best accuracy, less 1SD Best accuracy

I(training) / II(test) 0.89 (14 features) 0.94 (20 features)

II(training) / I(test) 0.92 (10 features) 0.97 (17 features)



400 Multivariate data exploration and discrimination

0 20 40 60

−
20

0
20

40

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n 
2

●●●●●
●
●

●

● ●●●

 14 features
● allB allT aml

A: I/II (train with I, scores are for II)

0 10 20 30 40 50

−
30

−
10

0
10

20
30

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n 
2

●●
●

●● ●●●●
●

●● ●

 10 features
● allB allT aml

B: II/I (train with II, scores are for I)

Figure 12.8 Panel A plots scores for the set II data, using set I for training (the I/II split), as described
in the text. Panel B plots the scores for the set I data when the roles of the two sets were reversed,
i.e., the split was II/I.

Notice that, as well as giving the number of features that gives the maximum accuracy, the
output gives the number that achieves the maximum accuracy, less one standard deviation.
This gives a more conservative estimate of the optimum number of features. (The standard
deviation is estimated as p(1 − p)/n, where p is the estimated maximum accuracy, and n

is the number of observations used to estimate p.)
We now calculate both sets of test scores (I/II and II/I) for the more conservative choices

of 14 and 10 features respectively, and use the function plotTrainTest() to plot the
scores. Figure 12.8A shows the test scores for the I/II split, while Figure 12.8B shows the
test scores for the II/I split.7 Readers should construct the plots with other divisions of
the data into training and test sets. To determine each new division, specify:

gp.id <- divideUp(cl=cancer.BM, nset=2, seed=NULL)

The graphs can vary greatly, depending on how the data have been split. The ALL T-cell
points seem more dispersed than points for the other two categories.

It is instructive to compare the choices of features between I/II and II/I. The first 20 in
the two cases are, by row number:

> rbind(accboth$sub1.2[1:20],accboth$sub2.1[1:20])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 6606 4342 6510 3594 4050 6236 1694 1207 1268 4847 5542

[2,] 4050 2794 6510 6696 4342 5542 4357 5543 1207 4584 6236

[,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

[1,] 2061 5543 4055 4375 1144 379 6696 4196 229

[2,] 1429 6575 2833 4750 2335 1704 4882 6225 3544

> match(accboth$sub1.2[1:20],accboth$sub2.1[1:20])

[1] NA 5 3 NA 1 11 NA 9 NA NA 6 NA 8 NA NA NA NA 4 NA NA

7 ## Use function plotTrainTest() from hddplot
plotTrainTest(x=Golub.BM, nfeatures=c(14,10), cl=cancer.BM, traintest=gp.id)



12.3∗ High-dimensional data, classification, and plots 401

Note that the first feature in the first list does not appear at all in the second list, and that
the first feature in the second list is fifth in the first list.

Cross-validation to determine the optimum number of features

We will demonstrate the use of 10-fold cross-validation, repeated for each choice of
number of features in the range that is pertinent, to determine how many features to
choose.

Consider again the classification of a subset of the ALL B-cell Golub data for which
gender is known into BM:f, BM:m, and PB:m, but omitting the one PB:f sample. There
are 31 observations, divided into three groups, so that the maximum number of features
that can be used for discrimination is 23. This is calculated as follows. At each fold, the
training data consists of 9 out of 10 subsets in the 10-fold division of the data, i.e., at least
27 out of the 31 points. (Each subset has three or four observations.) One degree of freedom
is lost for each of the three subgroups, and at least one degree of freedom should be left for
estimating the variance. Thus at most 23 (= 27 − 4) degrees of freedom can be used for
estimating linear discriminant parameters.

In order to choose the optimum number of features, the cross-validation must be repeated
for each choice of g = number of features in the range 1, 2, . . . , gmax = 23, calculating the
cross-validation accuracy for each such choice. The number of features will be chosen to
give an accuracy that is, or is close to, the maximum.

The full procedure is:

For g = 1, 2, . . . , gmax, do the following:
For each fold i = 1, . . . , k in turn (k = number of folds) do the following:

Split: Take the ith set as the test data, and use the remaining data (all except
the ith set) for training.
Select: Choose the g features that have the largest anova between group
F -statistics.
Classify: Determine discriminant functions, using the chosen features and
the current training data.
Predict: Predict the groups to which observations in the current test set
belong.

Record, against the number g of features used, the proportion of correct predictions.
(This is calculated across all folds, and hence for the total data.)

Accuracies are now available for all choices of number of features. Choose the smallest
number of features that gives close to the maximum accuracy.

The 10-fold cross-validation will be repeated for each of four different splits into 10
subsets. Especially in the present context, where at each fold of each repeat of the cross-
validation there is a variable selection step, such use of repeats is desirable for adequate
sampling of the variability.

Computations are greatly reduced by determining the ordering of features, for each fold
of the data, in advance. These orderings are stored in a matrix of character values, with as
many columns as there are folds, and with number of rows equal to the maximum number
of features under consideration. A rigid upper limit is the number of features that can



402 Multivariate data exploration and discrimination

be accommodated on the discriminant analysis, which as noted earlier is 23. When the
preliminary calculations are finished, column i of the matrix will record the features that
give the 23 highest F -statistics for the fold i training data. For selecting the “best” nf

features, one set for each different fold, the first nf rows of this matrix (f ≤ 23) will be
taken.

Calculations will use the function cvdisc() (hddplot). For comparison, results are
obtained both from the resubstitution measure of accuracy and from a defective use of
cross-validation:

> ## Cross-validation to determine the optimum number of features

> ## Accuracy measure will be: tissue.mfB.cv$acc.cv

> tissue.mfB.cv <- cvdisc(GolubB, cl=tissue.mfB, nfeatures=1:23,

+ nfold=c(10,4)) # 10-fold CV (x4)

Accuracy Best accuracy, less 1SD Best accuracy

(Cross-validation) 0.85 (3 features) 0.9 (4 features)

> ## Defective measures will be in acc.resub (resubstitution)

> ## and acc.sel1 (select features prior to cross-validation)

> tissue.mfB.badcv <- defectiveCVdisc(GolubB, cl=tissue.mfB,

+ foldids=tissue.mfB.cv$folds,

+ nfeatures=1:23)

> ## NB: Warning messages have been omitted

> ##

> ## Calculations for random normal data:

> set.seed(43)

> rGolubB <- matrix(rnorm(prod(dim(GolubB))), nrow=dim(GolubB)[1])

> rtissue.mfB.cv <- cvdisc(rGolubB, cl=tissue.mfB, nfeatures=1:23,

+ nfold=c(10,4))

Accuracy Best accuracy, less 1SD Best accuracy

(Cross-validation) 0.39 (1 features) 0.48 (9 features)

> rtissue.mfB.badcv <- defectiveCVdisc(rGolubB, cl=tissue.mfB,

+ nfeatures=1:23,

+ foldids=rtissue.mfB.cv$folds)

The resubstitution and “defective CV” points show biased and therefore inappropri-
ate accuracy measures. The resubstitution points show the proportion of correct predic-
tions when the discrimination rule is applied to the data used to develop the rule. The
“defective CV” points show the proportion of correct predictions when the same features,
selected using all the data, are used at each fold, and do not change from one fold to the
next.

Figure 12.9B applies the same calculations to random data. The bias in the two incorrect
“accuracies” is now obvious. The correct cross-validation estimates are now much worse
than chance for more than three or four features, while the “defective CV” estimates
continue to increase up to about 15 features. At each fold, the rule is tuned to be optimal
for the quirks of the training data. It is therefore sub-optimal for the test data at each fold.



12.3∗ High-dimensional data, classification, and plots 403

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of features selected

P
re

di
ct

iv
e 

ac
cu

ra
cy

●
●

●
●

● ●
●

● ● ●
● ●

● ● ●

● ●
● ● ● ●

●
●

●
●

●

●

Resubstitution accuracy
Defective cross−validation
Cross−validation − select at each fold

A: Golub data (as for Figure 12.9)

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of features selected

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●
● ●

● ●
●

●
●

B: Random data

Figure 12.9 Comparison of different accuracy measures, in the development of a discriminant rule
for the classification, into the categories BM:f, BM:m, and PB:m, of the B-cell ALL data for which
gender is known. The resubstitution measure (�) is a severely biased measure. Cross-validation,
but with features selected using all the data (+), is less severely biased. An acceptable measure of
predictive accuracy (◦) requires reselection of features at each fold of the cross-validation. The right
panel shows the performance of each of these measures when the expression values were replaced
by random data.

Which features?

It is of interest to see what features have been used at the different folds. This information
is available from the list element genelist, in the object tissue.mfB.cv that the
function cvdisc() returned. As the interest is in working with three features, it is the
first three rows that are relevant. The following is a summary:

> genelist <- matrix(tissue.mfB.cv$genelist[1:3, ,], nrow=3)

> tab <- table(genelist, row(genelist))

> ord <- order(tab[,1], tab[,2], decreasing=TRUE)

> tab[ord,]

genelist 1 2 3

M58459_at 32 4 0

S74221_at 4 0 0

U29195_at 4 0 0

X54870_at 0 16 8

U91327_at 0 8 16

L08666_at 0 4 0

U49395_at 0 4 0

X00437_s_at 0 4 0

X53416_at 0 0 4

X62654_rna1_at 0 0 8

X82494_at 0 0 4



404 Multivariate data exploration and discrimination

Observe thatM58459\_at is almost always the first choice. There is much less consistency
in the second and third choices.

Cross-validation: bone marrow (BM) samples only

It turns out to be sufficient to calculate accuracies for 1, 2, . . . , 25 features (the choice of
25 was a guess):

> BMonly.cv <- cvdisc(Golub.BM, cl=cancer.BM, nfeatures=1:25,

> nfold=c(10,4))

Accuracy Best accuracy, less 1SD Best accuracy

(Cross-validation) 0.9 (19 features) 0.94 (23 features)

The maximum is 94%, from use of 23 features. The more conservative assessment, based
on the one-standard-deviation rule, suggests use of 19 features with an accuracy of 90%. If
the interest is in using a small number of features to explain the evident group differences,
this may seem unsatisfactory.

12.3.4 Graphs derived from the cross-validation process

With a methodology available for choosing the number of features, it is now possible to
look for an alternative to Figure 12.6A that does not run the same risk of bias. Figure 12.8
demonstrated an approach that is sometimes available, but it gave two plots, each for half
of the data. The function cvscores() (hddplot) makes it possible to give one plot for all
the data. It can be used with any data where there are enough groups in each subset of the
classification that cvdisc() can be used satisfactorily.

Consider first the creation of a plot for the subset of the allB data that formed classifi-
cation 1. Figure 12.9A suggested that the optimum number of features is, conservatively,
3. The calculations that will be described here will use three features.

Test scores can be calculated for the test data at each of the folds. However the different
pairs of scores (with three groups, there can be at most two sets of scores) relate to different
discriminant functions and to different choices of features, and are thus appropriately called
“local” test scores. Local fold i training scores are similarly available, again with one set
for each value of i.

The local training scores are used to make the connection between the test scores at the
different folds. A vignette that gives details will be included with the package hddplot. The
methodology is a modification of that described in Maindonald and Burden (2005). Code
for Figure 12.10A is:

## Panel A: Uses tissue.mfB.acc from above

tissue.mfB.scores <-

cvscores(cvlist = tissue.mfB.cv, nfeatures = 3, cl.other = NULL)

scoreplot(scorelist = tissue.mfB.scores, cl.circle=NULL,

prefix="B-cell subset -")



12.3∗ High-dimensional data, classification, and plots 405

−6 −4 −2 0 2

−
4

−
2

0
2

4

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n 
2

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

A: B−cell subset − 3 features
● BM:f BM:m PB:m

0 5 10 15 20 25

−
10

−
5

0
5

10
15

Discriminant function 1

●
●

●

●
●

●
●

●

●

●●
●●●●

●

●

●

●●●
●

●
●●

●
●●

● ●

● ●

●

●
●●● ●●●

●●

●
●

●
●●●
●

●
●

●

●
●
●
●

●

●
●

●

B: BM samples − 11 features
● allB allT aml

●
●

BM:f
BM:m

Figure 12.10 These plots of projections of linear discriminant analysis scores are designed to fairly
reflect the performance of a linear discriminant in distinguishing between known groups in the data.
The two panels relate to different subsets of the Golub data, with different groupings in the two
cases. In panel B, for the classification of the 62 bone marrow (BM) samples into allB, allT, and
aml, points where the sex is known are identified as male or female. See Plate 6 for a color version.

There are two clusters of points, with tissues from females mostly in one cluster and tissues
from males in the other cluster.

Figure 12.10B has applied the same methodology to the classification of the bone marrow
samples according to cancer type. Points where Gender is known are identified as male
or female.8

Notice the clear clustering of points from females on the left of the graph. This compli-
cates interpretation; is there a bias from the different gender balances in the three groups?
This limited exploration indicates that heterogeneity of the samples is an important issue
for the analysis of these data, and for the interpretation of any graphs.

The lines of investigation that have been pursued in this section should be taken as sug-
gestions for an initial series of steps that might be followed. Extensive further investigation
would be required for any analysis that claims to be moderately complete.

Further comments

The ideas that have been introduced in this section have far-reaching importance. The choice
of variables, in Subsections 12.3.1 and 12.3.4, can be viewed as a form of model tuning.
By tuning the fitted model to accidental characteristics of the training data, performance on
the test data deteriorates, as seen in Figure 12.9B.

8 ## Panel B; classify bone marrow samples a/c cancer type.
BMonly.scores <- cvscores(cvlist=BMonly.cv, nfeatures=19, cl.other=NULL)
scoreplot(scorelist=BMonly.scores, cl.circle=tissue.mfB,

circle=tissue.mfB%in%c("BM:f","BM:m"),
params=list(circle=list(col=c("cyan","gray"))),
prefix="B: BM samples -")



406 Multivariate data exploration and discrimination

With more complicated models (really, families of models) such as neural nets and Sup-
port Vector Machines (SVMs), there are many more tuning choices and tuning parameters.
Thus, for example, see the details of tuning parameters that are given on the help page
for the function svm() in the package e1071 (Meyer, 2001). Such tuning can interact
in complex ways with feature selection. For valid accuracy assessment, such tuning (in
principle, at least) must be repeated at each cross-validation fold.

The randomForest package seems an attractive alternative, for working with expression
array data, to the methods that have been discussed here. Its function MDSplot() can be
used to obtain a low-dimensional representation of the data, based as above on known prior
groupings.

Better understanding of gene interactions may suggest better alternatives to using large
numbers of features as discriminant variables. Such understanding seems certain to lead
also, in the course of time, to more targeted data collection. There will be a greater use of
studies that gather data on a small number of features of known relevance to the phenomena
under investigation.

12.4 Further reading

There is a large literature on the spectrum of methodologies discussed, and a large and
growing range of methodologies that are available in R and in other software. See Venables
and Ripley (2002) for a summary overview as of 2002, aimed at practical data analysts, and
including the R code needed for examples in the text. Some idea of what is currently avail-
able in R can be gleaned by typing RSiteSearch("multivariate") and glancing
through the long list of hits.

Manly (2005) is a useful brief introduction, though with no reference to methods that
have been popular in the data mining literature, and with no mention of R or S-PLUS.
Krzanowski (2000) is a comprehensive and accessible overview of the methodology of
classical multivariate analysis.

Machine learning and data mining specialists have brought to these problems a research
perspective that has been different from that of academic statisticians. Useful insights have
been mixed with highly exaggerated claims. See the discussion in Maindonald (2006).
Recently, there has been extensive interchange between the two streams of methodological
development. Ripley (1996), Hastie et al. (2009), and Berk (2008) are important contribu-
tions to the ongoing dialogue.

Data visualization systems offer many different tools beyond those that have been
described here. Note especially the R package rggobi, which provides an R interface
to the GGobi system (Cook and Swayne, 2007). Note also the rgl package.

Data where there are many times more variables (“features”) than observations are a huge
challenge for data analysts. There are also new opportunities for gaining information that,
in a classical regression or classification problem, is unlikely to be available. Variables that
have little or no effect on the outcome variable may nevertheless give important clues about
the dependence structure between observations, as described in Leek and storey (2007).
Exaggerated predictive accuracy claims are common; see Ambroise and McLachlan (2002)
for examples.



12.5 Exercises 407

Gentleman et al. (2005) is a wide-ranging overview both of the computational challenges
of processing and analyzing data from genomics and molecular biology, and of the abilities
offered by the Bioconductor suite of packages. See also Ewens and Grant (2005).

See the CRAN Task Views for Machine Learning and Multivariate Analysis.

References for further reading

Ambroise, C. and McLachlan, G. J. 2002. Selection bias in gene extraction on the basis of
microarray gene-expression data. PNAS, 99: 6262–6.

Berk, R.A. 2008. Statistical Learning from a Regression Perspective.
Cook, D. and Swayne, D. F. 2007. Interactive and Dynamic Graphics for Data Analysis.
Ewens, W. J. and Grant, G. R. 2005. Statistical Methods in Bioinformatics: An Introduction,

2nd edn.
Gentleman, R., Carey, V., Huber, W., Irizarry, R. and Dudoit, S. 2005. Bioinformatics and

Computational Biology Solutions using R and Bioconductor.
Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learning. Data

Mining, Inference and Prediction, 2nd edn.
Krzanowski, W. J. 2000. Principles of Multivariate Analysis. A User’s Perspective, 2nd

edn.
Leek, J. T. and Storey, J. D. 2007. Capturing heterogeneity in gene expression studies by

surrogate variable analysis. PLoS Genet 3(9): e161.
Maindonald, J. H. 2006. Data mining methodological weaknesses and suggested fixes.
Manly, B. F. J. 2005. Multivariate Statistical Methods. A Primer, 3rd edn.
Ripley, B. D. 1996. Pattern Recognition and Neural Networks.
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.

12.5 Exercises

1. Carry out the principal components analysis of Subsection 12.1.2, separately for males and
females. For each of the first and second principal components, plot the loadings for females
against the loadings for all data combined, and similarly for males. Are there any striking
differences?

2. In the discriminant analysis for the possum data (Subsection 12.2.4), determine, for each site,
the means of the scores on the first and second discriminant functions. Plot the means for the
second discriminant function against the means for the first discriminant function. Identify the
means with the names of the sites.

3. The data frame possumsites (DAAG) holds latitudes, longitudes, and altitudes, for the seven
sites. The following code, which assumes that the oz package is installed, locates the sites on a
map that shows the eastern Australian coastline and nearby state boundaries.
library(DAAG); library(oz)

oz(sections=c(3:5, 11:16))

with(possumsites, points(latitude, longitude))

posval <- c(2, 4, 2, 2, 4, 2, 2)

with(possumsites,

text(latitude, longitude, row.names(possumsites), pos=posval))



408 Multivariate data exploration and discrimination

Do the site means that were calculated in Exercise 2 relate in any obvious way to geographical
position, or to altitude?

4. Determine two-dimensional representations of the data in the painters data frame (MASS)
using (1) classical metric scaling; (2) Sammon scaling; (3) Kruskal’s non-metric scaling. On each
graph show the school to which the painter belonged.

5. Create a version of Figure 12.4B that shows the discriminant line. In the example of Sub-
section 12.2.1, investigate whether use of logpet, in addition to logwid and loglen,
improves discrimination.

6.∗ The data set leafshape has three leaf measurements – bladelen (blade length), bladewid
(blade width), and petiole (petiole length). These are available for each of two plant architec-
tures, in each of six locations. (The data set leafshape17 that we encountered in Subsection
12.2.1 is a subset of the data set leafshape.) Use logistic regression to develop an equation
for predicting architecture, given leaf dimensions and location. Compare the alternatives: (i) dif-
ferent discriminant functions for different locations; (ii) the same coefficients for the leaf shape
variables, but different intercepts for different locations; (iii) the same coefficients for the leaf
shape variables, with an intercept that is a linear function of latitude; (iv) the same equation for
all locations. Interpret the equation that is finally chosen as discriminant function.

7. The data frame Vehicle (mlbench) has values of 18 features that were extracted from the
images of silhouettes of four different “Corgie” model vehicles.

– Compare the performance of lda(), qda(), and randomForest() in classifying the
vehicle types.
‘confusion‘ <-

function(actual, predicted, digits=4){

tab <- table(actual, predicted)

confuse <- apply(tab, 1, function(x)x/sum(x))

print(round(confuse, digits))

acc <- sum(tab[row(tab)==col(tab)])/sum(tab)

invisible(print(c("Overall accuracy" = round(acc,digits))))

}

library(MASS); library(DAAG); library(randomForest)

library(mlbench)

data(Vehicle)

lhat <- lda(Class ˜ ., data=Vehicle, CV=TRUE)$class

qhat <- lda(Class ˜ ., data=Vehicle, CV=TRUE)$class

confusion(Vehicle$Class, lhat)

confusion(Vehicle$Class, qhat)

randomForest(Class ˜ ., data=Vehicle, CV=TRUE)

– What proportion of the trace do the first two linear discriminants explain? (For this, refit with
CV=FALSE.)

– Plot the first discriminant function against the second discriminant function, adding also
density contours. The function quickplot() from the ggplot2 package is an easy way to
do this:
Vehicle.lda <- lda(Class ˜ ., data=Vehicle)

twoD <- predict(Vehicle.lda)$x

qplot(twoD[,1], twoD[,2], color=Vehicle$Class,

geom=c("point","density2d"))



12.5 Exercises 409

What hints does the plot give that might explain the difference between the lda() andqda()
results?

8. Run the following code (it will require a live internet connection):
library(ape); library(MASS)

webpage <-

"http://evolution.genetics.washington.edu/book/primates.dna"

primates.dna <- read.dna(webpage)

# Alternatively, get primates.dna from the DAAGbio package

primates.dist <- dist.dna(primates.dna, model="F84")

primates.cmd <- cmdscale(primates.dist)

eqscplot(primates.cmd)

rtleft <- c(4,2,4,2)[unclass(cut(primates.cmd[,1], breaks=4))]

text(primates.cmd, labels=row.names(primates.cmd), pos=rtleft)

Do the following calculations and comment on the result:
d <- dist(primates.cmd)

sum((d-primates.dist)ˆ2)/sum(primates.distˆ2)

9. Run the following code:
library(DAAG)

pacific.dist <- dist(x = as.matrix(rockArt[-c(47, 54, 60, 63, 92),

28:641]), method = "binary")

sum(pacific.dist==1)/length(pacific.dist)

plot(density(pacific.dist, to = 1))

## Check that all columns have at least one distance < 1

symmat <- as.matrix(pacific.dist)

table(apply(symmat, 2, function(x) sum(x<1)))

pacific.cmd <- cmdscale(pacific.dist)

pacific.sam <- sammon(pacific.dist)

Why were rows 47, 54, 60, 63 and 92 omitted? Compare the plot from pacific.cmd with that
from pacific.sam$points. Why are they so different?



13

Regression on principal component
or discriminant scores

Dimension reduction techniques reduce the number of candidate explanatory variables.
Perhaps best known is the replacement of a large number of candidate explanatory variables
by the first few principal components. The hope is that they will adequately summarize
the information in the candidate explanatory variables. In favorable circumstances, simple
modifications of the components will give new variables that are readily interpretable, but
this is not always the case.

Propensity scores, often simply called propensities, may be helpful where a response
is compared between two groups – a control and a treatment group – that have not been
assigned randomly. The response may for example, in a medical context, be death rate in
some interval of time. Variables that are not of direct interest, but which may in part explain
any differences between the two groups, are commonly known as explanatory variables.
Results from such analyses are likely to be suggestive rather than definitive, irrespective of
the methodology used to account for explanatory variable effects.

Propensities aim to capture, in a single variable, the explanatory variable effects that
are important in accounting for differences between two groups. The propensity score,
commonly derived from a discriminant analysis, then becomes the only explanatory variable
in the regression calculation.

Other types of ordination scores may be used in place of principal component scores.
There are a variety of other possibilities.

13.1 Principal component scores in regression

The data set socsupport has the following columns:

1. gender: male or female

2. age: 18-20, 21-24, 25-30, 31-40, 40+

3. country: Australia, other

4. marital: married, single, other

5. livewith: alone, friends, parents, partner, residences, other

6. employment: full-time, part-time, govt assistance, parental

support, other

7. firstyr: first year, other

8. enrolment: full-time, part-time, blank

9 10. emotional, emotionalsat: availability of emotional support,

and associated satisfaction (5 questions each)



13.1 Principal component scores in regression 411

11 12. tangible, tangiblesat: availability of tangible support

and associated satisfaction (4 questions each)

13 14. affect, affectsat: availability of affectionate support

sources and associated satisfaction (3 questions each)

15 16. psi: psisat: availability of positive social interaction

and associated satisfaction (3 questions each)

17. esupport: extent of emotional support sources (4 questions)

18. psupport: extent of practical support sources (4 questions)

19. socsupport: extent of social support sources (4 questions)

20. BDI: Score on the Beck depression index (total over

21 questions)

The Beck depression index (BDI) is a standard psychological measure of depression (see
for example Streiner and Norman, 2003). The data are from individuals who were generally
normal and healthy. One interest was in studying how the support measures (columns 9–19
in the data frame) may affect BDI, and in what bearing the information in columns 1–8
may have. Pairwise correlations between the 11 measures range from 0.28 to 0.85. In the
regression of BDI on all of the variables 9–19, nothing appears significant, though the
F -statistic makes it clear that, overall, there is a statistically detectable effect. It is not
possible to disentangle the effects of these various explanatory variables. Attempts to
take account of variables 1–8 will only make matters worse. Variable selection has the
difficulties that we noted in Chapter 6. In addition, any attempt to interpret individual
regression coefficients focuses attention on specific variables, where a careful account will
acknowledge that we observe their combined effect.

Hence the attraction of a methodology that, prior to any use of regression methods, has
the potential to reduce the 11 variables to some smaller number of variables that together
account for the major part of the variation. Here, principal components methodology will
be used. A complication is that the number of questions whose scores were added varied,
ranging from 3 to 5. This makes it more than usually desirable to base the principal
components calculation on the correlation matrix.

Here now is a summary of the steps that have been followed, to obtain the results that
will be described:

1. Following a principal components calculation on variables 9–19, we obtained scores for
the first six principal components.

2. The six sets of scores were then used as six explanatory variables, in a regression analysis
that had BDI as the response variable. The first run of this regression calculation identified
an outlier, which was then omitted and the regression calculation repeated.

3. The regression output suggested that only the first of the variables used for the regression,
i.e., only the principal component scores for the first principal component, contributed
to the explanation of BDI. Compare p = 0.00007 for scores on the first component with
p-values for later sets of scores, all of which have p > 0.05.

4. It was then of interest to examine the coefficients or loadings of the first principal
component, to see which of the initial social support variables was involved.

Code to do the initial analysis, then presenting a scatterplot matrix of the scores on the
first three principal components, is:



412 Regression on principal component or discriminant scores

## Principal components: data frame socsupport (DAAG)

ss.pr1 <- princomp(as.matrix(na.omit(socsupport[, 9:19])), cor=TRUE)

pairs(ss.pr1$scores[, 1:3])

sort(-ss.pr1$scores[,1], decr=TRUE)[1:10] # Note the outlier

## Alternative to pairs(), using the lattice function splom()

splom(˜ss.pr1$scores[, 1:3])

The name given with the point that we have identified as an outlier is “36”, which is the
row name in the initial file. We omit this point and repeat the calculation.

not.na <- complete.cases(socsupport[, 9:19])

not.na[36] <- FALSE

ss.pr <- princomp(as.matrix(socsupport[not.na, 9:19]), cor=TRUE)

The output from summary() is:

> summary(ss.pr) # Examine the contributions of the components

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

Standard deviation 2.394 1.219 1.137 0.8448 0.7545 0.695

Proportion of Variance 0.521 0.135 0.117 0.0649 0.0517 0.044

Cumulative Proportion 0.521 0.656 0.773 0.8383 0.8901 0.934

Comp.7 Comp.8 Comp.9 Comp.10 Comp.11

Standard deviation 0.4973 0.4561 0.3595 0.29555 0.23189

Proportion of Variance 0.0225 0.0189 0.0118 0.00794 0.00489

Cumulative Proportion 0.9565 0.9754 0.9872 0.99511 1.00000

We now regress BDI on the first six principal components. Because the successive
columns of scores are uncorrelated, the coefficients are independent. Extraneous terms that
contribute little except noise will have little effect on residual mean square, and hence to
the standard errors. Thus, there is no reason to restrict the number of terms that we choose
for initial examination. The coefficients in the regression output are:

> ss.lm <- lm(BDI[not.na] ˜ ss.pr$scores[, 1:6], data=socsupport)

> summary(ss.lm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.461 0.893 11.709 3.49e-19

ss.pr$scores[, 1:6]Comp.1 1.311 0.373 3.513 7.23e-04

ss.pr$scores[, 1:6]Comp.2 -0.396 0.733 -0.540 5.91e-01

ss.pr$scores[, 1:6]Comp.3 0.604 0.786 0.768 4.45e-01

ss.pr$scores[, 1:6]Comp.4 1.425 1.058 1.347 1.82e-01

ss.pr$scores[, 1:6]Comp.5 2.146 1.184 1.812 7.36e-02

ss.pr$scores[, 1:6]Comp.6 1.288 1.285 1.003 3.19e-01

Components other than the first do not make an evident contribution to prediction of
BDI. We now examine the loadings for the first component:

> ss.pr$loadings[, 1]

emotional emotionalsat tangible tangiblesat affect



13.1 Principal component scores in regression 413

●
●

●
●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4 6

0
10

20
30

40

First principal component

B
D

I

● female
male

Figure 13.1 Plot of BDI against scores on the first principal component.

-0.320 -0.298 -0.247 -0.289 -0.307

affectsat psi psisat esupport psupport

-0.288 -0.363 -0.332 -0.289 -0.285

socsupport

-0.285

The first component is like an average of the 11 measures.1 A further step is then to
plot BDI against the scores on the first principal component, using different colors and/or
different symbols for females and males. This should be repeated for each of the other
seven factors represented by columns 1–8 of the data frame socsupport. Figure 13.1
does this for the factor gender.2

Two observations seem anomalous, with BDI indices that are high given their scores
on the first principal component. Both are females. We leave it as an exercise for the
reader to recalculate the principal components with these points omitted, and repeat the
regression.

Regression on principal component scores has made it possible to identify a clear effect
from the social support variables. Because we have regressed on the principal components,
it is not possible to ascribe these effects, with any confidence, to individual variables. The
attempt to ascribe effects to individual social support variables, independently of other
support variables, may anyway be misguided. It is unlikely to reflect the reality of the way
that social support variables exercise their effects.

1 The vector of loadings is unique up to multiplication by −1; the presence of negative signs here is due to the nature of the
algorithm.

2 ## Plot first principal componenet score against BDI
attach(socsupport)
plot(BDI[not.na] ˜ ss.pr$scores[ ,1], col=as.numeric(gender[not.na]),

pch=as.numeric(gender[not.na]), xlab ="1st principal component",
ylab="BDI")

topleft <- par()$usr[c(1,4)]
legend(topleft[1], topleft[2], col=1:2, pch=1:2, legend=levels(gender))
detach(socsupport)



414 Regression on principal component or discriminant scores

13.2∗ Propensity scores in regression comparisons – labor training data

A propensity is a measure, determined by explanatory variable values, of the probability
that an observation will fall in the treatment rather than in the control group. Various forms
of discriminant analysis may be used to determine scores. The propensity score is intended
to account for between-group differences that are not due to the effect under investigation.
If there is substantial overlap between propensity scores for the different groups, then
comparison of observations within the approximate region of overlap may be reasonable,
but using the propensity score to adjust for differences that remain. See Rosenbaum and
Rubin (1983) for further comments on the methodology.

We will first describe the data, then investigate more conventional regression approaches
to the analysis of these data, then investigate the use of propensity scores. The results
highlight the difficulty in reaching secure conclusions from the use of observational data.

The labor training data

Data are from an experimental study, conducted under the aegis of the US National
Supported Work (NSW) Demonstration Program, of individuals who had a history of
employment and related difficulties. Over 1975–1977, an experiment randomly assigned
individuals who met the eligibility criteria either to a treatment group that participated in a
6–18 months training program, or to a control group that did not participate.

The results for males, because they highlight methodological problems more sharply,
have been studied more extensively than the corresponding results for females. Participation
in the training gave an increase in male 1978 earnings, relative to those in the control group,
by an average of $886 [SE $472].

Can the same results be obtained from data that matches the NSW training group with a
non-experimental control group that received no such training? Lalonde (1986) and Dehejia
and Wahba (1999) both investigated this question, using two different non-experimental
control groups. These were:

1. The Panel Study of Income Dynamics (PSID: 2490 males, data in psid1, filtered data
in psid2 and psid3).

2. Westat’s Matched Current Population Survey – Social Security Administration file
(CPS: 16 289 males, data in cps1, filtered data in cps2 and cps3).

Variables are:

trt (0 = control 1=treatment)

age (years)

educ (years of education)

black (0=white 1=black)

hisp (0=non-hispanic 1=hispanic)

marr (0 = not married 2=married)

nodeg (0=completed high-school 1=dropout); i.e. educ <= 11

re74 (real earnings in 1974; available for a subset of the

experimental data only)

re75 (real earnings in 1975)

re78 (real earnings in 1978)



13.2∗ Propensity scores in regression comparisons – labor training data 415

Table 13.1 Proportion in the stated category, for each of the data sets indicated.
Proportions for the experimental data are in the final two lines of the table.

Proportion

Black Hispanic Married Dropout re75 > 0 re78 > 0

psid1 0.25 0.03 0.87 0.31 0.90 0.89
psid2 0.39 0.07 0.74 0.49 0.66 0.66
psid3 0.45 0.12 0.70 0.51 0.39 0.49
cps1 0.07 0.07 0.71 0.30 0.89 0.86
cps2 0.11 0.08 0.46 0.45 0.82 0.83
cps3 0.20 0.14 0.51 0.60 0.69 0.77

nsw-ctl 0.80 0.11 0.16 0.81 0.58 0.70
nsw-trt 0.80 0.09 0.17 0.73 0.63 0.77

Observe that trt, black, hisp, marr, and nodeg are all binary variables. Here, they
will be treated as dummy variables. In the language of Section 7.1, observations that have
the value zero are the baseline, while the coefficient for observations that have the value 1
will give differences from this baseline. (For marr, where values are 0 or 2, the coefficient
for observations that have the value 2 will be half the difference from the baseline.)

Note that nodeg is a categorical summary of the data in educ. It will not be used,
additionally to educ, as an explanatory variable in the various analyses.

Summary information on the data

Table 13.1 has summary information on proportions on discrete categories that are of
interest.3 Information on re74 is complete for the non-experimental sets of control data,
but incomplete for the experimental data. We will examine the issue of how to handle re74
below.

Notice the big differences, for black, marr, and nodeg (dropout), between the non-
experimental controls (first six lines) and both sets of experimental data (final two lines).
Even in the filtered data sets (psid2, psid3, cps2, and cps3), the differences are

3 showprop <-
function(dframe=psid1, facCols=4:7, zeroCols=9:10){
info <- numeric(length(facCols)+length(zeroCols))
info[1:length(facCols)] <- sapply(dframe[,facCols], function(x){
z <- table(x); z[2]/sum(z)})

info[-(1:length(facCols))] <- sapply(dframe[,zeroCols], function(x)
sum(x>0)/sum(!is.na(x)))

info
}

## Create matrix to hold resuilt
propmat <- matrix(0, ncol=6, nrow=8)
dimnames(propmat) <-
list(c("psid1", "psid2", "psid3", "cps1", "cps2", "cps3",

"nsw-ctl", "nsw-trt"), names(nswdemo)[c(4:7, 9:10)])
## Run function
for(k in 1:8){
dframe <- switch(k, psid1, psid2, psid3, cps1, cps2, cps3,

subset(nswdemo, trt==0), subset(nswdemo, trt==1))
propmat[k,] <- showprop(dframe)

}



416 Regression on principal component or discriminant scores

log(re75+100)

D
en

si
ty

0.1

0.2

0.3

0.4

0.5

4 6 8 10

log(re78+100)

0.1

0.2

0.3

0.4

0.5

4 6 8 10 12

age

.02

.04

.06

.08

20 30 40 50 60 70

educ

0.1

0.2

5 10 15

nsw−ctl nsw−trt psid3

Figure 13.2 Overlaid density plots, comparing treatment groups with the experimental control data
in nswdemo and with the non-experimental control data in psid3, for the variables age educ,
log(re75+30), and log(re78+30).

substantial. The big changes that the filtering has made to the proportion with non-zero
earnings is worrying. Notice particularly the huge differences between psid3 and psid1,
both for re75 and re78.

For those who did earn an income, how do the distributions compare? The very heavy tails
in the distributions of re75 and re78 make use of a logarithmic transformation desirable.
Figure 13.2 compares the distributions of values, in the control and treatment groups, for the
explanatory variables age, educ, log(re75+30), and log(re78+30). The offset of
30 is around half the minimum non-zero value for each of these variables, in the combined
data. Plate 7 is an extended version of Figure 13.2 that has comparisons with all of the
candidate sets of control data.

Examination of Figure 13.2, and of the additional comparisons in Plate 7, makes it
clear that there are large differences between treatment and controls, whichever set of
non-experimental controls is chosen.

The distributions of non-zero values of log(re78 + 30) are almost identical between
experimental treated and control observations, just as similar as for log(re75 + 30). A
more careful comparison will use QQ-plots. The comparison can be repeated with several
bootstrap samples, as a check that such small differences as are apparent are not maintained
under bootstrap sampling. This is pursued in the exercises at the end of the chapter. We will
later check whether the differences that are apparent between non-experimental controls
and treatment are maintained after a propensity score adjustment.

Plate 8 shows the scatterplot matrix, again for the data set that combines the psid1
control data with the experimental treatment data, for the same variables as shown in
Figure 13.2. Slightly simplified code is:

vnames <- c("trt","educ","age","re75","re78")

nsw <- rbind(psid1, subset(nswdemo, trt==1))

## Check minimum non-zero values of re75 and re78

round(sapply(nsw[,c("re75","re78")], function(x)unique(sort(x))[2]))

nsw[,c("re75","re78")] <- log(nsw[,c("re75","re78")] + 30)

lab <- c(vnames[2:3], paste("log\n", vnames[-(1:3)], "+", 30))

nsw$trt <- factor(nsw$trt, labels=c("Control (psid1)","Treatment"))

splom(˜ nsw[,vnames[-1]], type=c("p","smooth"), groups=nsw$trt,

varnames=lab, auto.key=list(columns=2))



13.2∗ Propensity scores in regression comparisons – labor training data 417

13.2.1 Regression comparisons

One possibility is to use regression methods directly to compare the two groups, with
variables other than re78 used as explanatory variables. The nature of the data does
however raise serious issues, for its use for this purpose.

Issues for the use of regression methods

The following points require consideration:

� Continuous variables almost certainly require some form of non-linear transformation.
Regression splines may be a reasonable way to go.

� Should interaction terms be included?
� The large number of explanatory variables, and interactions if they are included, com-

plicates the use of diagnostic checks.
� A substantial proportion of the values of re78 are zero. The distribution of non-zero

values of re78 is highly skew, in both of the experimental groups (treatment and
non-treatment), and in all of the non-experimental controls. A consequence is that the
regression results will be strongly influenced by a small number of very large values.
A log(re78 + 30) transformation (the choice of offset, in a range of perhaps 20–200,
is not crucial) gives values that may more reasonably be used for regression, however.
(In spite of the evident skewness, both Lalonde (1986) and Dehejia and Wahba (1999)
used re78 as the response variable in their analyses.)

� In the experimental data, almost 40% of values of the explanatory variable re74 are
missing. It is then necessary to ask whether these are “missing at random”, or whether
there is a pattern in the missingness. An indication that values of re74 may not be
missing at random is that its minimum value in the experimental data is 445 (dollars),
which is close to 6 times the minimum of 74 for re75 and almost 10 times the minimum
of 45 for re78. Perhaps information on 1974 income was more readily available for
participants who for most of 1974 held one steady job, or a small number of steady jobs.
In the analysis below, a factor will be created from re74 that has the levels: no income,
some income, and income status unknown.

� Control and training groups can be made more comparable by some initial filtering of the
data, on values of the explanatory variables. Inevitably, the choice of filtering mechanism
and extent of filtering will be somewhat arbitrary, and filtering may introduce its own
biases.

� Explanatory variables must both model within-group relationships acceptably well
and model between-group differences acceptably well. These two demands can be in
conflict.

Taken together, these points raise such serious issues that results from any use of regression
methods have to be treated skeptically.

The complications of any use of regression analyses, and the uncertainties that remain
after analysis, are in stark contrast to the relative simplicity of analysis for the experi-
mental data. Experimental treatment and control distributions can be compared directly



418 Regression on principal component or discriminant scores

and (assuming that the randomization was done properly) with confidence, without the
complications that arise from the attempt to adjust for explanatory variable effects.

Regression calculations

As there may be information on whether or not re74 is known, and on whether known
values are non-zero, it seems useful to distinguish three categories – no income in 1974,
some income in 1974, and details of income not known. Hence an argument for the use of
a factor fac74 that is derived thus:

nsw$fac74 <- with(nsw, factor(re74>0, exclude=NULL))

table(nsw$fac74) # Check the order of the levels

levels(nsw$fac74) <- c("0","gt0","<NA>")

In the following analysis, two degrees of freedom have been allowed for a regression
using a natural spline basis for each of log(re75 + 30), age, and educ. Here is a function
that can be used for the calculations. The function has an argument that controls whether
or not to apply a logarithmic transformation to re78.

nswlm <-

function(control=psid1, df1=2, log78=TRUE, offset=30, printit=TRUE){

nsw0 <- rbind(control, subset(nswdemo, trt==1))

nsw0$fac74 <- factor(nsw0$re74>0, exclude=NULL)

levels(nsw0$fac74) <- c("0","gt0","<NA>")

if(log78) nsw.lm <- lm(log(re78+offset) ˜ trt + ns(age,df1) +

ns(educ,df1) + black + hisp + fac74 +

ns(log(re75+offset),df1), data=nsw0) else

nsw.lm <- lm(re78 ˜ trt + ns(age,df1) + ns(educ,df1) + black +

hisp + fac74 + ns(log(re75+offset),df1),

data=nsw0)

if(printit) print(summary(nsw.lm))

trtvec <- unlist(summary(nsw.lm)$coef["trt", 1:2])

trtEst <- c(trtvec[1], c(trtvec[1]+trtvec[2]*c(-1.96,1.96)))

if(log78) {

trtEst <- c(trtEst[1], exp(trtEst[1]), exp(trtEst[-1]))

names(trtEst)=c("Est.","exp(Est.)","CIlower","CIupper")

} else

names(trtEst)=c("Est.","CIlower","CIupper")

if(printit) print(trtEst)

invisible(list(obj=nsw.lm, est=trtEst))

}

## Try for example

library(splines)

nsw.lm1 <- nswlm(control=psid1)$nsw.lm

nswlm(control=subset(nswdemo, trt=0))

nswlm(control=psid1, log78=FALSE)

for (z in list(psid1,psid2,psid3,cps1,cps2,cps3))

print(nswlm(control=z, printit=FALSE)$est)

Use of termplot() with the arguments partial=TRUE and smooth=panel.
smooth suggests that the default numbers of degrees of freedom are adequate or more



13.2∗ Propensity scores in regression comparisons – labor training data 419

than adequate. The coefficients of other terms in the equation are not highly sensitive to the
number of degrees of freedom allowed.

The following table summarizes results, showing how they depend on the choice of
control group:

Control used Estimate of treatment effect 95% CI

psid1 exp(0.99) = 2.7 (1.9, 3.7)
psid2 exp(0.61) = 1.8 (1.0, 3.4)
psid3 exp(0.92) = 2.5 (1.2, 5.2)
cps1 exp(0.85) = 2.3 (1.7, 3.1)
cps2 exp(0.47) = 1.6 (1.1, 2.4)
cps3 exp(0.49) = 1.6 (0.96, 2.8)

subset(nswdemo, trt=0) exp(0.35) = 1.4 (1.1, 1.9)

These results vary widely, but do all point in the same direction as the experimental compar-
ison in the final row. It is instructive to rerun the above calculations with log78=FALSE.
The different results do not now all point in the same direction. The likely reason is that a
few very large values of re78 now have high leverage and a large influence. (Exercise 5
at the end of the chapter is designed to check this out.)

13.2.2 A strategy that uses propensity scores

A propensity “score” is a single variable whose values characterize the difference between
the control and treatment groups. Importantly, the score is designed to model only between-
group differences; it does not model within-group differences. Use of a single propensity
score in place of many explanatory variables facilitates the use of standard checks to inves-
tigate whether the propensity score effect is plausibly linear. There is just one explanatory
variable to investigate, rather than the complicated and often unfruitful task of carrying out
checks on several explanatory variables.

For the analyses described here, we will start by using control observations from the data
set psid1. Analyses that start by using control observations from one of the other data
sets are left as an exercise for the reader.

Propensity scores will be derived from a discriminant analysis that uses the random-
Forest() function, from the package of the same name. Advantages of this approach are
that prior transformation of variables is unnecessary, assumptions about the form of model
are minimal, and there is automatic allowance for interactions. The extent of prior filtering
of observations should not unduly matter.

We will however check out, for comparison, scores that arise from use of the function
lda() (MASS package). It will turn out that lda() is similarly effective, as measured
by predictive accuracy, in distinguishing the control and treatment groups. The key point
is that it does no better than randomForest(), and thus that there is no reason to prefer
the lda scores.

Either method yields, for each observation, an estimated probability p that the observation
is from the treatment group. A convenient choice of propensity score is then log(p/(1 − p)).



420 Regression on principal component or discriminant scores

The analysis will then replace the explanatory variables by a single propensity score.
This is justifiable on theoretical grounds if the distribution of the explanatory variables is,
conditional on the propensity score, the same for treatment and control observations. Checks
can be performed to determine whether this assumption is plausible. If these checks fail,
the analysis might still give reasonable results, but the theory does not give good grounds
for confidence.

Derivation and investigation of scores

We now derive propensity scores. We convert re74 to a factor with three levels – 0 (no
income in 1974), gt0 (income in 1974), and <NA> (income status in 1974 not known). The
observations for which 1974 income information is available may be a biased selection,
and it seems safest to use information on re74 as a coarse indicator only.

## Use the dataset nsw that combines psid1 with exptl trt obsns

nsw.rf <- randomForest(trt ˜ ., data=nsw[, -c(7:8,10)],

sampsize=c(297,297))

## NB: Use of equal bootstrap sample sizes (= 297 = number of

## treatment observations) gives the two groups equal prior weight.

We can check model accuracy

> nsw.rf

. . .

OOB estimate of error rate: 4.52%

Confusion matrix:

0 1 class.error

0 2381 109 0.0438

1 17 280 0.0572

The random forest calculation should be rerun several times. We have found error rates that
vary, over four runs, between 4.38% and 4.56%. These are the error rates that would be
expected from a separate random sample from the same population.

The following fits a logistic regression model:

> library(MASS)

> library(splines)

> nsw.lda <- lda(trt ˜ ns(age,2) + ns(educ,2) + black + hisp +

+ fac74 + ns(log(re75+30),3),

+ CV=TRUE, prior=c(.5,.5), data=nsw)

> tab <- table(nsw.lda$class, nsw$trt)

> 1 - sum(tab[row(tab)==col(tab)])/sum(tab)

[1] 0.042

The lda() cross-validation error rate is very similar to that for randomForest(). The
simple lda() model that does not allow for interaction effects may be adequate. The
regression spline terms in the lda model seem to account for most of the non-linearity in
the explanatory variables.



13.2∗ Propensity scores in regression comparisons – labor training data 421

0.
00

0.
10

0.
20

0.
30

Score

D
en

si
ty

2 4 6

Control
Treatment

6.909

1:20 50:1

A: Scores from randomForest()

0.
0

0.
4

0.
8

1.
2

Score

2 4 6

Control
Treatment

2.989

1:20 50:1

B: Scores from lda()

Figure 13.3 Panel A shows density plots of scores (log((p + 0.001)/(1 + 0.001 − p)), where p is
predicted value) from the object sc.rf, separately for control and treatment groups. Panel B is for
scores, calculated similarly, from sc.lda. The ranges shown are ranges of relative numbers.

Here is code that calculates the scores and compares the densities between the control
and treatment groups, as shown in Figure 13.3:

logit <- function(p, offset=0.001)log((p+offset)/(1+offset-p))
tnum <- unclass(nsw$trt)
## NB: Derive scores by a logit transform of probabilities
sc.rf <- logit(predict(nsw.rf, type="prob")[,2])
overlapDensity(sc.rf[tnum==1], sc.rf[tnum==2], ratio=c(1/20, 50))
nsw.lda <- lda(trt ˜ ns(age,2) + ns(educ,2) + black + hisp + fac74 +

ns(log(re75+30),3), prior=c(.5,.5), data=nsw)
sc.lda <- logit(nsw.lda$posterior[,2])
overlapDensity(sc.lda[tnum==1], sc.lda[tnum==2], ratio=c(1/20, 50),

compare.numbers=TRUE, plotval="Density")

The bulk of the control observations lie, in each instance, off to the left of the minimum
score for which the ratio of treatment frequency to control frequency reached 1

20 = 0.05.
For use of the randomForest scores, choosing observations with a score of more than
−1.5 will retain approximately equal numbers (307/289, varying from run to run) of control
and treatment scores. Without some such filtering, there may be undue leverage from the
very large proportion of control observations that have large negative scores, where there
are no treatment observations. Even modest filtering of observations with high scores (e.g.,
insist on a ratio of less than 50 treatment to one control observation) will filter out a large
fraction of the treatment observations, and we keep such filtering to a minimum.

Now recalculate the propensity scores, at the same time calculating proximities between
observations. The proximity between any pair of observations is the proportion of trees, out
of the total number of trees (by default, 500), where the two observations appear together
at the same terminal node.

nswa <- nsw[sc.rf>-1.5, ]

nswa.rf <- randomForest(trt ˜ ., data=nswa[, -c(7:8,10)])

proba.rf <- predict(nswa.rf, type="prob")[,2]

sca.rf <- logit(proba.rf)



422 Regression on principal component or discriminant scores

● psid1 controls

age educ log(re75 + offset)

age educ log(re75 + offset)

experimental treatment

A: Random forest scores (filtered data)

ag
e 

+
 e

du
c 

+
 lo

g(
re

75
 +

 o
ffs

et
)

20
30

40
50

0 5

0 5

5
10

15

4
6

8
10

0 5

B: Linear discriminant analysis scores (filtered data)

Score

ag
e 

+
 e

du
c 

+
 lo

g(
re

75
 +

 o
ffs

et
)

20
30

40
50

0 5

0 5

5
10

15

4
6

8
10

0 5

Figure 13.4 These plots are designed as a check whether, in each case, the distribution of the
explanatory variable is, conditional on the score, similar for treated and controls. Panel A shows
scores from randomForest, while panel B shows scores from lda(). Plate 9 is a color version
that shows, also, the distribution of new randomForest scores obtained by refitting the model to
data for which the scores shown in A were at least −1.5.

For lda scores, choosing observations with a score of more than −4 would retain
somewhat more treatment than control scores (329/281).

Checks on the propensity scores

Is the distribution of the explanatory variables, conditional on the propensity score, the same
for treatment and control? This can be checked for each individual explanatory variable. As
interactions have seemed unimportant in determining the propensities, this may be enough.
Figure 13.4 and and Plate 9 provide a visual check. Code that gives a close equivalent of
Figure 13.4A is:

xyplot(age + educ + log(re75+30) ˜ sca.rf, groups=trt, layout=c(3,1),

data=nswa, type=c("p","smooth"), span=0.4, aspect=1,



13.2∗ Propensity scores in regression comparisons – labor training data 423

par.settings=simpleTheme(lwd=c(2,1.5), col=c("gray", "black"),

pch=c(20,3), cex=0.5, lty=c("solid","21")),

scales=list(y=list(relation="free"), tck=0.5),

auto.key=list(columns=2, points=TRUE, lines=TRUE,

text=c("psid1 controls", "experimental treatment")),

xlab="Scores, derived using randomForest()")

For Figure 13.4B, replace sca.rf by sca.lda, obtained by linear discriminant cal-
culations that use the subset of nsw for which nsw.lda is at least −4.

Conditional on the scores, both sets of panels show substantial differences for age
and for log(re75+30). The randomForest scores seem however preferable. In A
(randomForest()), removal of points with very low scores (less than −1.5) has largely
dealt with the most serious differences. In B (lda()) there is, for both of these variables,
a large cluster of control points on the right of the plot. For educ, differences seem minor,
for both sets of scores.

The graphs suggest that the formal requirements of the propensity score theory are in
doubt. There are not good grounds for confidence that propensity scores will work well in
making the necessary adjustment.

Use of proximities to give a two-dimensional representation

A more global graphical comparison is available by using the proximities from a random-
Forest() discriminant analysis as the basis for an ordination, i.e., for a two-dimensional
representation as described in Subsection 12.1.3. Plots are shown for three ranges of scores –
low, medium, and high. The text in the panel is labeled according to the equivalent range
of probabilities.

Figure 13.5 shows the result. The code is:

## Repeat randomForest calculation, now with proximities

nswa.rf <- randomForest(trt ˜ ., data=nswa[, -c(7:8,10)],

proximity=TRUE)

## Subtract proximities from 1.0, add 0.001, and use as "distances"

# NB: Use of isoMDS() will require all "distances" to be +ve

dmat <- 1-nswa.rf$proximity +0.001

proba.rf <- predict(nswa.rf, type="probability")[,2]

## From "distances", derive an ordination.

pts <- cmdscale(dmat)

ordScores <- isoMDS(dmat, pts)$points

cutpts <- c(0, round(quantile(proba.rf, c(1/3,2/3)), 2), 1).

cutp <- cut(proba.rf, breaks=cutpts, include.lowest=TRUE)

xyplot(ordScores[,2] ˜ ordScores[,1]|cutp, groups=nswa$trt,

xlab="Co-ordinate 1", ylab="Co-ordinate 2",

auto.key=list(columns=2), aspect=1, layout=c(3,1),

par.settings=simpleTheme(col=c("black","gray"), pch=c(1,3)))

In the sequel, the randomForest scores will be used. They do at least as well as
the lda scores in accounting for differences between the two groups. Conditional on the
propensity score, the distribution of the explanatory variables may be rather more similar



424 Regression on principal component or discriminant scores

Co-ordinate 1

C
o-

or
di

na
te

 2

0.0

0.5

1.0

0.0 0.5

●

●●

●●

●●

●

●●
●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●●
●

●●

●●

●●●

●
●

●●

●
●

●

●

●●

●

●●

●

●●●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

[0,0.13]

0.0 0.5

●
●

●
●

●

●

●
●
●
●

●

●

●

● ●●●

●

●●●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

(0.13,0.83]

0.0 0.5

●● ●

●

(0.83,1]

Control (psid1) Treated (experimental)●

Figure 13.5 These plots are designed as a check whether, in each case, the distribution of the
explanatory variables is, conditional on the score from randomForest(), similar for treated
and controls. They examine a two-dimensional representation that is derived from the propensities.
The ranges shown are for the probabilities before use of the logit transformation to give scores.
Cutpoints have been chosen so that the three ranges contain an approximately equal number of
observations. Note that results will differ somewhat from one run to the next.

between treatment and control than for the lda scores. They minimize opportunities for
bias such as arise from the assumption, in the lda analysis, of a specific form of additive
model.

Probability of non-zero earnings – analysis using the scores

The following checks whether there is a detectable training effect on the probability of
non-zero earnings:

> sca.rf <- logit(sca.rf)

> rf.glm <- glm(I(re78>0) ˜ ns(sca.rf,2)+trt, data=nswa,

+ family=binomial)

> summary(rf.glm)

. . . .

Deviance Residuals:

Min 1Q Median 3Q Max

-1.926 -1.363 0.705 0.831 1.313

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.158 0.555 0.28 0.776

ns(sca.rf, 2)1 1.001 1.313 0.76 0.446

ns(sca.rf, 2)2 -1.026 0.492 -2.09 0.037

trttreated (experimental) 0.740 0.305 2.43 0.015



13.2∗ Propensity scores in regression comparisons – labor training data 425

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 691.39 on 595 degrees of freedom

Residual deviance: 676.63 on 592 degrees of freedom

AIC: 684.6

Number of Fisher Scoring iterations: 4

The estimate is in line with that from comparing experimental treatment data with exper-
imental controls. Use of the linear discriminant scores yields a result that is even more
clearcut.

Distribution of non-zero earnings – analysis using the scores

> rf.lm <- lm(log(re78+30) ˜ ns(sca.rf,2)+trt, data=nswa,

+ subset = re78>0)

> summary(rf.lm)

. . . .

Residuals:

Min 1Q Median 3Q Max

-3.639 -0.441 0.153 0.660 2.695

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.699 0.329 29.47 <2e-16

ns(sca.rf, 2)1 -1.488 0.768 -1.94 0.053

ns(sca.rf, 2)2 -0.432 0.263 -1.64 0.101

trttreated (experimental) -0.373 0.151 -2.47 0.014

Residual standard error: 0.987 on 433 degrees of freedom

Multiple R-squared: 0.0931, Adjusted R-squared: 0.0868

F-statistic: 14.8 on 3 and 433 DF, p-value: 3.37e-09

The negative (and statistically significant) treatment estimate contrasts with the result
from the experimental data, where the estimated treatment effect is well below the threshold
of statistical detectability.

> round(summary(lm(log(re78+30) ˜ trt, data=nswdemo,

+ subset=re78>0))$coef, 4)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.5601 0.0578 148.1486 0.0000

trt 0.0021 0.0874 0.0245 0.9804

In the absence of the check that the experimental data provides, it would be necessary
to treat any of these results with extreme caution. Use of psid2 or psid3 (or cps2
or cps3) is not an adequate answer. There are large elements of arbitrariness in the
choice of observations to be removed, the filtering leaves data sets that still differ from the
experimental treatment data in important respects, and results vary depending on which of
these data sets is used as a control.



426 Regression on principal component or discriminant scores

13.3 Further reading

Streiner and Norman (2003) discuss important issues that relate to the collection and
analysis of multivariate data in medicine, in the health social sciences, and in psychology.
On the use of propensity scores, see Rosenbaum and Rubin (1983), Rosenbaum (2002).
On wider issues with respect to the analysis of observational data, see Rosenbaum (1999,
2002, 2005).

References for further reading

Rosenbaum, P. and Rubin, D. 1983. The central role of the propensity score in observational
studies for causal effects. Biometrika 70: 41–55.

Rosenbaum, P. R. 1999. Choice as an alternative to control in observational studies. Statis-
tical Science 14: 259–78. With following discussion, pp. 279–304.

Rosenbaum, P. R. 2002. Observational Studies, 2nd edn.
Rosenbaum, P. R. 2005. Reasons for effects. Chance 18: 5–10.
Streiner, D. L. and Norman, G. R. 2003. Health Measurement Scales. A Practical Guide to

their Development and Use, 3rd edn.

13.4 Exercises

1. Repeat the principal components calculation omitting the points that appear as outliers in
Figure 13.1, and redo the regression calculation. What differences are apparent, in loadings
for the first two principal components and/or in the regression results?

2. Examine the implications that the use of the logarithms of the income variables in the anal-
ysis of the data set nswpsid1 has for the interpretation of the results. Determine predicted
values for each observation. Then exp(predicted values) gives predicted incomes in 1978. Take
exp(estimated treatment effect) to get an estimate of the factor by which a predicted income for
the control group must, after adding the offset, be multiplied to get a predicted (income+offset)
for the treatment group, if explanatory variable values are the same.

3. Investigate the sensitivity of the regression results in Subsection 13.2.2 to the range of values
of the scores that are used in filtering the data. Try the effect of including data where: (a) the
ratio of treatment to control numbers, as estimated from the density curve, is at least 1:40;
(b) the ratio lies between 1:40 and 40; (c) the ratio is at least 1:10.

4. Modify the function nswlm() so that use of fac74 as an explanatory factor is optional. With
the psid3 controls, is use of fac74 as an explanatory factor justified? What is the effect on the
confidence interval for the treatment effect?

5. Subsection 13.2.1 defined a function nswlm(), then using it to create a table that gives treatment
effect estimates. Rerun the calculations that generated the table entries, now supplying the
argument log 78=FALSE. Comment on changes in the treatment effect estimates.



14

The R system – additional topics

14.1 Graphical user interfaces to R

The R Commander (Rcmdr) will be the main focus, with brief reference to other GUIs.
Subsection 1.1.1 mentioned the usefulness of the R Commander for data input. Especially
for novices or infrequent users of R, a GUI can be similarly helpful for creating simple
graphs, for statistical testing, for simple tabulation and summarization, and for fitting
standard models. The final subsection describes how the function gui() (fgui package)
can be used to create simple GUIs.

Some tasks are best done from the command line, and some from a GUI, with the balance
likely to change in favor of the command line as familiarity with R increases. The two modes
of use can be mixed. All the GUIs discussed here make available the commands used by
R, for inspection and/or modification and/or for audit trail purposes. The user can examine
the help page for the relevant function(s), modify the code as required, and re-execute it.

In addition to the R Commander, note:

� JGR (Java Graphics for R) and the Deducer GUI that is designed to work with JGR.
� The rattle GUI gives access to a range of multivariate graphics, regression and classifi-

cation routines.
� A more limited alternative to the R Commander is pmg (Poor Man’s GUI).
� The function (latticist()) (latticist package) should be invoked with a data frame or table

as argument. It then opens a GUI to the lattice and vcd packages, allowing rapid creation
of plots that may be useful in their own right, or may be a first step in creating more
carefully honed plots.

� The playwith package has extensive features for interacting with graphs, including the
addition of annotation. It includes an interface to latticist. The playwith package is
described further in Subsection 15.5.4.

For rattle, both the Gtk + system and Glade must be installed. Further brief details are in
Subsection 14.1.2. The playwith package requires Gtk +.

Installing the R Commander

To install the R Commander from the command line, enter:

install.packages("Rcmdr", dependencies=TRUE)



428 The R system – additional topics

Among the many dependencies are the graphics packages rgl (3D dynamic graphics), vcd
(visualization of categorical data), and colorspace (for generation of color palettes, etc).

14.1.1 The R Commander’s interface – a guide to getting started

To start the R Commander, start up R and enter:1

library(Rcmdr)

This opens an R Commander script window, with the output window underneath. This
window can be closed by clicking on the × in the top left corner. If thus closed, enter
Commander() to reopen it again later in the session.

From GUI to writing code. The R Commander displays the code that it generates. Users
can take this code, modify it, and rerun it. The code can be run either from the R Commander
script window or from the R console window (if open).

The active data set. There is at any time a single “active” data set. Start by clicking on
the Data drop-down menu. Here are alternative ways to select or create the active data set:

� Click on Active data set, and pick from among data sets, if any, in the workspace.
� Click on Import data, and follow instructions, to read in data from a file. The data set is

read into the workspace, at the same time becoming the active data set.
� Click on New data set . . . , then entering data via a spreadsheet-like interface.
� Click on Data in packages, then on Read data from package, then select an attached

package and choose a data set from among those included with the package.
� A further possibility is to load data from an R image (.RData) file; click on

Load data set . . . .

Creating graphs. To draw graphs, click on the Graphs drop-down menu. Then

� Click on Scatterplot . . . to obtain a scatterplot. This uses scatterplot() from the
car package, which is an option-rich interface to functions that are in base graphics.

� Click on X Y conditioning plot . . . for lattice scatterplots and panels of scatterplots.
� Click on 3D graph to obtain a 3D scatterplot, using the R Commander function scat-
ter3d() that is an interface to functions in the rgl package.

Statistics (& fitting models). Click on the Statistics drop-down menu to get submenus
that give summary statistics and/or carry out various statistical tests. This includes (under
Contingency tables) tables of counts and (under Means) One-way ANOVA. Also, click
here to get access to the Fit models submenu.

∗Models. Click here to extract information from model objects once they have been fitted.
(NB: To fit a model, go to the Statistics drop-down menu, and click on Fit models).

1 At startup, the R Commander may check whether all the suggested packages, needed to use all its features, are available.
If some are missing, then the R Commander offers to install them. To install such packages, there must be a live internet
connection.



14.1 Graphical user interfaces to R 429

14.1.2 The rattle GUI

To get started, type:

library(rattle}

rattle()

First click on the radio button that identifies the source of the data – CSV or ARFF (used
by some data mining packages); Library (from an R package); an RData file (a .RData
image file); or ODBC. Click on the relevant button and click on Execute. Selecting CSV
and clicking on the Execute tab leads to an offer to load the audit sample data set, which
can be used for experimenting with rattle’s abilities.

Once loaded, information will be displayed on the data columns, with a tentative speci-
fication as Input or Target or Risk or Ident or Ignore. This can be changed as required.

Immediately below Execute is a row of tabs: Data (to load data), Explore (for data
exploration), . . . Model (fit a model), Evaluate (create a new column), and Log (examine
code). Thus, to explore the data, click on Explore, click on the type of information required
(start maybe with Summary), and click on Execute. To fit a model, click on Model, click
maybe on the Forest button, and click on Execute.

14.1.3 The creation of simple GUIs – the fgui package

The fgui package allows the ready creation of a GUI to a user function. Here is a simple
example, with explanation following, that uses the function gui() in this package:

library(fgui)

library(DAAG); library(lattice)

## Create function that does the smoothing

fitsmooth <-

function(form=mdbRainˆ(1/3) ˜ Year, df=bomregions, myspan=0.75)

print(xyplot(form, data=df, type=c("p","smooth"), span=myspan))

## Create function that sets up a GUI interface to fitsmooth()

callsmooth <- function()gui(func=fitsmooth,

argSlider=list(myspan=c(0.1,1.5,0.025)), # start,stop,stepsize

output=NULL, callback=guiExec)

callsmooth()

## Click on and/or move the slider to display the graph.

� The first argument to gui() is the function fitsmooth that is to be executed.
� The argument argSlider was used to specify values, controlled by a slider, for
myspan. Text boxes are automatically created for any arguments to func, here form
and df, that are not otherwise specified. If these text boxes are left blank, the defaults
form=mdbRainˆ(1/3) and df=bomregions will be used.

� The argument output=NULL suppresses the text box that would otherwise be created
to hold function output. (Here, there is no output to hold.)

� The argument callback=guiExec ensures that the function fitsmooth() is re-
executed whenever one of its arguments is changed, e.g., by moving the slider.

� Click OK to terminate the interaction.



430 The R system – additional topics

14.2 Working directories, workspaces, and the search list

14.2.1∗ The search path

At any time in an R session, R has a set of names of repositories (“databases”) where it
looks, in order, for objects that are required for a command line evaluation. The workspace
(.Globalenv) is first on this search list. Thus, ls(pos=1) is equivalent to ls(). Use
ls(pos=2) to display names of objects in the database in position 2 on the search list,
and so on. The following search list is from a version 2.8.0 installation immediately after
startup:

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

This listing includes all packages automatically loaded at startup. For information on
Autoloads, see the relevant help page.

The search list can be extended in three ways – by the use of library() to attach
another package, by the use of attach() to attach a data frame or list object, and by the
attachment of an image file, perhaps the .RData file from another directory. For packages,
the effect of library() is to give access to the functions and data sets in the package.
For data frames, the effect of attach() is to allow reference to data frame columns by
name, without further mention of the name of the data frame. For image files, the effect of
attach() is to give access to the objects that have been stored in the image file. Examples
will be given below.

14.2.2 Workspace management

Failure to remove objects that are no longer needed leads to a cluttered workspace, which
can be difficult to manage. Meaningful names should be used for objects that will be
retained for future sessions. Acronyms can help in shortening names, but they should be
memorable. For data sets of modest size, it may be reasonable to keep two versions: one
with a name such as BodyMassIndex and another such as BMI; the latter helps to keep
typing to a minimum. Short names with slight mnemonic significance can be reserved for
use for objects that can be deleted almost immediately after use; such names are in the style
of a, b, x, tmp, and junk. Such strategies make it easier to identify the objects that can
be removed prior to quitting a session.

There are two complementary strategies for managing data and other objects.

� Objects that cannot easily be reconstructed or copied from elsewhere, but are not for the
time being required, can be saved to an image file, using save(). For example:

xy <- matrix(rnorm(60000), nrow=600)

xy.rowrange <- apply(xy, 1, range)

save(xy, xy.rowrange, file="xy.RData")

rm(xy, xy.rowrange)

Use of the command attach("xy.RData") then makes these objects available, as
and when required. They are in memory (this may change), but would not be saved into



14.2 Working directories, workspaces, and the search list 431

an image of the workspace. (If modified in some way, the modified version will appear
in the workspace.)

� Use a separate working directory for each major project.

Such management can be more than otherwise important when working with data objects
that occupy a substantial part of available memory.

Thus, for working through the code and exercises in this book, it may be helpful to reserve
a different working directory for each different chapter. On a Windows system, suitable
names for the respective working directories, each with its own default .RData image file,
would be c:\r\ch1, c:\r\ch2, . . . . If while in the working directory c:\r\ch2\,
access is required to objects from the image file in c:\r\ch1\, enter:

attach("c:/r/ch1/.RData") # Microsoft Windows system
# NB: Forward slashes have replaced Windows backslashes

ls(pos=2) # Check names of available objects

An alternative is to continue use of the same directory, but once finished with
chapter 1 use, e.g., save.image(file="ch1.RData"), to save chapter 1 objects
into the image file ch1.RData. The current workspace contents can then be removed (use
the relevant menu option, or specify rm(list=ls(all=TRUE))), leaving an empty
workspace for use with chapter 2. For later resoration of the chapter 1 workspace, type
load("ch1.RData"). Alternatively, use attach("ch1.RData") to give access to
its objects.

Workspaces typically contain a number of objects whose names have “.” as their first
character, and that are ordinarily hidden from display. For removal of all objects from a
workspace, be sure to specify:

rm(list = ls(all=TRUE))

The default action of save.image(), i.e., save all objects in the workspace to the
default .RData file, is save(list=ls(all=TRUE), file=".RData").

Changing the working directory and/or workspace

As a preliminary to loading a new workspace, it will usually be desirable to remove
unwanted objects, save the workspace, clear it, and move to a new working directory. These
operations may be performed from the menu, if any. Alternatively, use save.image()
to save the current workspace, rm(list=ls(all=TRUE)) to clear the workspace,
setwd() to change the working directory, and load() to load a new workspace.

14.2.3 Utility functions

Useful functions are:

dir() # List files in the working directory

file.choose() # Choose a file interactively

sessionInfo() # Print version numbers for R and for

# attached packages



432 The R system – additional topics

system.file() # Show path, by default to 'package="base"'

# Try, e.g.: system.file(package="DAAG")

R.home() # Give the path to the R home directory

.Library # Path to the default library.

Sys.getenv() # Show settings of environment variables

object.size() # Show size of R object

Here is an example of the use of dir():

> dir()

[1] "chap12.Rnw" "diary.R" "figs12.R" "oneBadRow.txt"

[5] "scan-demo.txt"

Optionally, a directory path and/or search pattern can be given as argument.
Type names(Sys.getenv()) to get names of environment variables. Individual

settings can then be obtained thus:

> Sys.getenv("R_HOME")

R_HOME

"C:\\PROGRA˜1\\R\\R-29˜1.0"

> normalizePath(Sys.getenv("R_HOME"))

[1] "C:\\Program Files\\R\\R-2.9.0"

The following can be used to get the path to files that come with an installed package:

> system.file("misc/ViewTemps.RData", package="DAAG")

[1] "C:/PROGRA˜1/R/R-29˜1.0/library/DAAG/misc/ViewTemps.RData"

14.3 R system configuration

14.3.1 The R Windows installation directory tree

The R system is installed into a directory tree that has a directory with the R version name
(e.g., R-2.10.0) at its base. This can be placed anywhere that write permissions allow. The
Windows R-2.10.0 default, for installers who have administrator privileges, is:

"C:\PROGRAM FILES\R\R-2.10.0\"

A likely alternative, in the absence of administrator privileges, is:

"C:\Documents and Settings\Owner\My Documents\R\R-2.10.0\"

The directory tree is relocatable. It can be copied to a flash drive or to a CD or DVD.
An R session can then be run from the executable bin\Rgui.exe in, for example, the
directory D:\R\R-2.10.0\. For running R from a CD or DVD, be sure to change the
Start In directory to a directory where the user has write permission.



14.4 Data input and output 433

14.3.2 The library directories

Users can install packages into their own library directory. For users who do not have write
permission for the library directory used for the initial installation, installation into a local
directory is a necessity.

An R session that is running from one installation, perhaps the main installation on the
hard drive, can in principle access an installed library directory from any compatible R
installation. Thus, the following gives access, from an R session that is started (e.g.) from
the hard drive, to a library tree that is under D:\R-2.10.0:

.libPaths("D:/R-2.10.0/library")

This can, for example, be used to make available the library tree from an R installation tree
on a DVD that is in the D: drive.

In order to avoid the need to type this each time a new session is created in the session’s
working directory, create the following function .First():

.First <- function().libPaths("D:/R-2.10.0/library")

This function will then be saved as part of the default workspace, and executed at the start
of any new session in that directory.

14.3.3 The startup mechanism

Various system variables are set at startup, and a number of packages are attached. The
details can be controlled at an installation level, at a user level, and at a startup directory
level. See help(Startup) for details. If started in the standard manner, and with the
“R PROFILE USER” environment variable unset, R searches at startup for a file called
.Rprofile in the current directory or in the user’s home directory (in that order). The
.Rprofile file can, for example, define a .First() and/or a .Last() function.

14.4 Data input and output

Definitive information is in the help information for the relevant functions or packages,
and in the R Data Import/Export manual that is part of the official R documentation. New
features will appear from time to time.

The present discussion will use two files which, in order for the code given below to
work, must reside in the working directory. These files have the names oneBadRow.txt
and scan-demo.txt. The DAAG function datafile() offers an easy and convenient
way to place these in the working directory, thus:

library(DAAG)

datafile("oneBadRow")

datafile("scan-demo")

As viewed from a text editor, or using the function file.show(), the entries of the
first three lines of oneBadRow.txt should be as follows:



434 The R system – additional topics

10 9 17 # First of 7 lines

11 13 1 6

9 14 16

The second line has four fields, while the other lines have three.
The entries in scan-demo.txt (again viewed with a text editor) are:

First of 4 lines

a 2 3

b 11 13

c 9 7

14.4.1 Input of data

Most common data input requirements, for data where records all have the same number of
fields (usually numeric or character) can be handled using read.table(), or one of its
variants that differs only in the choice of default arguments. Variants of read.table()
include read.delim() for reading tab-delimited data files and read.csv() for read-
ing comma-delimited data files. The function scan() allows greater user control, and
extends somewhat the range of data formats that are readily handled.

The package foreign has functions that accept data in various proprietary and other
formats. At the time of writing, this includes ARFF, DBF, and formats used by S-PLUS,
Minitab, SPSS, SAS, Stata, and Systart. Files can be written in ARFF, Stata binary format,
and in DBF database format. See the help(package="foreign"). Then examine the
help page for individual functions.

Most of the available functionality for input of data from a rectangular file, or from a
clipboard or spreadsheet equivalent, or from one of the common statistical package formats,
can be accessed from the R Commander (RCmdr) GUI, or from the rattle GUI (see
Section 14.1). Both of these GUIs can be convenient for input of data from Excel or similar
spreadsheet format. See also the R Data Import/Export manual.

Issues for data input with read.table() and variants

Any column that does not consist entirely of numeric data (or entirely of logical or complex
values) is taken to be of mode character. By default it is stored as a factor, with as many
levels as there are unique text strings. Small mistakes in data entry, such as accidental use
of the letter “O” in place of the number “0”, will have the result that the columns are treated
as text and stored as a factor.

The argument stringsAsFactors=FALSE prevents conversion to factors. The
argument colClasses="numeric" forces all columns to be numeric, with an error
message if an input field is not a legal numeric value. For finer control, either of
stringsAsFactors and colClasses can be a vector; see the help page for
read.table() for details.

Missing value symbols that differ from the default NA (or a space for logical, numeric,
or complex fields) must be explicitly indicated. Thus, if the period (.) has been used as the
missing value symbol, supply the argument na.strings=c("."). Multiple missing



14.4 Data input and output 435

value symbols are allowed; thus the argument na.strings=c("*", ".") will cause
both "*" and "." to be interpreted as NA.

The argument comment.char is by default set to "#". Anything that follows # on an
input field is treated as comment and ignored.

By default, both double and single quotes are treated as character string delimiters.
Following the appearance of a " that initiates a text field, anything that appears up until the
next ", including ', is taken as part of the text field. The same is true with the roles of "
and ' reversed.

For input of a file whose text fields may include the vertical single quote, set
quote="\"" (set string delimiter to ") or quote="". Thus, suppose that the file
quote.txt has the single line

'Quotes: "' "Quotes: ' and '"

The following indicates the behavior of the quote argument:

> read.table("quote.txt")

V1 V2

1 Quotes: " Quotes: the 'Fortunes' package

> read.table("quote.txt", quote="'")

V1 V2 V3 V4 V5

1 Quotes: " "Quotes: the Fortunes package"

Tracking errors in input data

An error message stating that different rows have different numbers of fields may be an
indication that one or more arguments should be changed. The argument fill=TRUE
allows data input to proceed regardless, filling out rows with blank fields as necessary. The
data can then be checked carefully to identify the source of the problem.

The function count.fields() counts the number of fields that it finds in each row,
making it easy to identify any differences between rows in the number of fields.

> nfields <- count.fields("oneBadRow.txt")

> nfields # Number of fields, for each row

[1] 3 4 3 3 3 3 3

>

> ## Now identify rows where the number of fields seems anomalous

> (1:length(nfields))[nfields == 4]

[1] 2

One character string for each input row – readLines()

The function readLines() creates a character vector that holds one character string for
each input row of the file. The argument n controls the number of lines that are read. By
default n = -1, which inputs the entire file:

readLines("oneBadRow.txt", n=3) # First 3 lines

readLines("oneBadRow.txt", n=-1) # All lines



436 The R system – additional topics

Input of fixed format data

Use read.fwf(). The argument widths is an integer vector that specifies the widths of
the fixed-width fields. Alternatively, it may be a list of integer vectors, with one list element
(an integer vector) for each line of multi-line records. See help(read.fwf).

Input of large rectangular files

The function scan() is likely to be faster than read.table() (possibly, much faster)
for reading a large data set in which data are all of the one type. By default, scan() stores
all data in a single numeric vector; this is then readily dimensioned as a matrix.

> scan("oneBadRow.txt", skip = 1, quiet= TRUE)

[1] 11 13 1 6 9 14 16 12 15 14 8 15 15 9 13 12 7 14 18

Alternatively, the argument what="" can be a vector or list. The output is
then a list that has one vector for each vector or list element. For example,
what=list(ab="", col2=1, col3=1) will generate a list consisting of one char-
acter vector, named ab and two numeric vectors, named col2 and col3. The following
turns the list into a data frame (with the code as it stands, the column ab becomes a factor):

> data.frame(scan("scan-demo.txt", skip = 1, quiet= TRUE,

+ what=list(ab="", col2=1, col3=1)))

ab col2 col3

1 a 2 3

2 b 11 13

3 c 9 7

Example – input of the Boston housing data

The StatLib data sets archive at http://lib.stat.cmu.edu/datasets/
includes, among others, the file boston_corrected.txt. The command
datafile("bostonc") places this file in the working directory, under the name
bostonc.txt.

Careful examination of the file, and some preliminary experimentation that uses
readLines() in the way that will now be described, indicates that the first nine lines are
background documentation, line 10 is header information, and line 11 is the first record.

To check this, enter:

readLines("bostonc.txt", n=11)[10:11]

The output makes it clear that the tab symbol (\t) is the separator. More useful output is
obtained from:

> strsplit(readLines("bostonc.txt", n=11)[10:11], split="\t")

[[1]]

[1] "OBS." "TOWN" "TOWN#" "TRACT" "LON" "LAT"

[7] "MEDV" "CMEDV" "CRIM" "ZN" "INDUS" "CHAS"

[13] "NOX" "RM" "AGE" "DIS" "RAD" "TAX"

[19] "PTRATIO" "B" "LSTAT"

http://lib.stat.cmu.edu/datasets/


14.4 Data input and output 437

[[2]]

[1] "1" "Nahant" "0" "2011"

[5] "-70.955000" "42.255000" "24.0" "24.0"

[9] "0.00632" "18.0" "2.31" "0"

[13] "0.538" "6.575" "65.2" "4.0900"

[17] "1" "296" "15.3" "396.90"

[21] "4.98"

The following uses scan() to input this file:

boston <- scan("bostonc.txt", n=-1, sep="\t", skip=10,

what=c(list(1,""), as.list(rep(1,19))))

colnams <- scan("bostonc.txt", skip=9, n=21, what="")

boston <- data.frame(boston)

names(boston) <- colnams

Compare the above with the use of read.table():

boston <- read.table("bostonc.txt", sep="\t", skip=9,

comment.char="", header=TRUE)

The argument comment.char="" allows the input of fields, here the column name
TOWN#, containing the # character. Text that follows TOWN# would otherwise be ignored.

14.4.2 Data output

Output of data frames

The function write.table() writes out data frames, thus:

write.table(fossilfuel, file="fuel.txt")

The file fuel.txt then contains the following:

"year" "carbon"

"1" 1800 8

"2" 1850 54

"3" 1900 534

"4" 1950 1630

"5" 2000 6611

Specify row.names=FALSE to suppress row names, and/or col.names=FALSE to
suppress column names, and/or quote=FALSE to suppress quotes in the output.

For completeness, note also write(), used primarily for writing matrices or vectors.
See help(write).

Redirection of screen output to a file

The function sink() takes as argument the name of a file. Screen output is then directed
to that file. To direct output back again to the screen, call sink() without specifying an
argument. For example:



438 The R system – additional topics

> fossilfuel # Below, this will be written to the file

year carbon

1 1800 8

2 1850 54

3 1900 534

4 1950 1630

5 2000 6611

> sink("fuel2.txt")

> fossilfuel # NB: No output on screen

> sink()

Output to a file using cat()

The function cat() can be used to direct output either to the screen or to a file. Output
objects must at present be scalars or vectors or matrices. Matrices are output as single
vectors, with elements in columnwise order. The user can place limited format controls
(spaces, tabs, and newlines) between the names of output objects.

14.4.3 Database connections

Note in particular the RSQLite, the RMySQL, and the ROracle packages. These all use the
common database interface provided by the DBI package.

The RSQLite package makes it possible to create an SQLite database, or to add new rows
to an existing table, or to add new table(s), within an R session. The SQL query language
can then be used to access tables in the database. Here is an example:

library(DAAG)

library(RSQLite)

driveLite <- dbDriver("SQLite")

con <- dbConnect(driveLite, dbname="hillracesDB")

dbWriteTable(con, "hills2000", hills2000, overwrite=TRUE)

dbWriteTable(con, "nihills", nihills, overwrite=TRUE)

dbListTables(con)

## Obtain rows 11 to 20 from the newly created nihills table

dbGetQuery(con, "select * from nihills limit 10 offset 10")

dbDisconnect(con)

The databasehillracesDB, if it does not already exist, is created in the working directory.

14.5 Functions and operators – some further details

Once code is in place for a computation that will be carried out repeatedly, it makes sense to
place the code in a function. This should happen sooner rather than later. Such functions ease
the burden of documenting the computations, and of ensuring an audit trail. What precise
sequence of changes was applied to the initial data frame, created from data supplied by a
client, to create the data frame used for the analysis?

Functions are usually the preferred way to parcel code that is to be taken over and used
by another person. The R packages do this, for a collection of functions that are built around



14.5 Functions and operators – some further details 439

a common theme, in the carefully structured and documented way that is desirable for code
that will be offered to a wider community.

A further possibility is to extend or adapt built-in functions. One of R’s major merits is
that its resources are at the user’s command, to use or modify or enhance at one’s discretion.
Take care to use that freedom well!

Issues for the writing and use of functions

The number of the user’s own functions may soon become large. Choose names carefully,
so that they are meaningful. Choose meaningful names for arguments, even if longer than
is preferred. Remember that they can be abbreviated in actual use. Use lists, where this
seems appropriate, to group together arguments that are conceptually related.

If at all possible, give arguments sensible defaults. Often a good strategy is to
use as defaults arguments that are suitable for a demonstration run of the function.
NULL is a useful default where the argument is mostly not required, but where if it
appears may be any one of several types of data structure. Within the function body,
an if(!is.null(ArgumentOfInterest)) form of construction then determines
whether it is necessary to investigate that argument further. Values of constants that may
need to change in later use of the function should appear as argument defaults.

A demonstration mode that shows by example what the function does may be useful
for debugging. Thus, in the function mean.and.sd() in Subsection 1.4.3, the argument
x had the default value x = rnorm(10). The default could equally well have been
x = rnorm(20) or x = runif(10), or even x = 1:10. This last has the advantage
of giving predictable output, which can make debugging easier.

Structure code to avoid multiple entry of information. As far as possible, make code
self-documenting. Use meaningful names for objects. The R system allows the use of
names for elements of vectors and lists, and for rows and columns of arrays and data
frames. Consider the use of names rather than numbers when extracting individual elements,
columns, etc. Thus, fossilfuel[, "carbon"] is more meaningful and safer than
fossilfuel[, 2].

Break functions into a small number of subfunctions or “primitives”. Reuse existing
functions wherever possible. Write any new “primitives” so that they can be reused. This
helps ensure that functions contain well-tested and well-understood components. Functions
that are useful for one or other task are posted from time to time on the R-help electronic
mail list, and on other such lists. There may be functions in our DAAG package that readers
will wish to take over and use or adapt for their own purposes.

Where data and labeling must be pulled together from a number of different objects and
files, and especially where it may be necessary to retrace steps some months later, take the
same care over organizing and naming data as over structuring code.

14.5.1 Function arguments

The args() function

This function displays named function arguments, with any default settings. For example:



440 The R system – additional topics

> args(write.table) # Version 2.10.0 of R

function (x, file = "", append = FALSE, quote = TRUE, sep = " ",

eol = "\n", na = "NA", dec = ".", row.names = TRUE,

col.names = TRUE, qmethod = c("escape", "double"))

NULL

Use of args() may, when a check is needed on argument names, be an alternative to
looking up the help page. Note however that in some very common functions, including
plot(), many or most of the arguments are not named in the argument list, but are instead
passed via the optional ... argument.

The . . . argument

The optional. . . argument allows the passing of arguments that are additional to those in the
named arguments list. Parameters that are passed in this way can be accessed by extracting
the appropriate list element from list(...). The list elements have the names, if any,
that they are given when the function is called.

The function rm() uses this mechanism to target an arbitrary set of objects for removal,
as in the following code fragment:

x <- c(1,5,7); z <- c(4,9,10,NA); u <- 1:10

# Now do calculations that use x, z and u

rm(x, z, u)

The . . . argument can be useful when the number of possible arguments is large, as for
plot() and related functions. The onus is on the user to ensure that arguments have names
that will be recognized within the function, or within functions to which the . . . argument
list is passed.

14.5.2 Character string and vector functions

The function nchar() counts the number of characters in a string, substring()
extracts a substring, and paste() pastes its arguments together into a single string. Type
help.search("string") for a more complete list.

> substring("abracadabra",3, 8) # Extract characters 3 to 8

# inclusive

[1] "racada"

> nchar("abracadabra") # Count the number of characters

[1] 11

> strsplit("abracadabra", "r") # Split wherever "r" appears

[[1]]

[1] "ab" "acadab" "a"

> strsplit("abcd", split="") # Split into separate characters

[[1]]

[1] "a" "b" "c" "d"

> paste("ab","c","d", sep="") # Join together

[1] "abcd"

> paste(c("a","b","c"), collapse="") # Join vector elements

[1] "abc"



14.5 Functions and operators – some further details 441

All these functions can be applied to a character vector. If strsplit() is supplied
with a vector of strings as argument, the output has one list element for each element
of the vector. By default, the first argument to strsplit() is interpreted as a “regular
expression”, in which certain characters have a special meaning. To avoid this, supply the
argument fixed=TRUE.

Use is.character() to test whether an object is a character rather than perhaps a
factor.

14.5.3 Anonymous functions

Anonymous functions are defined in the same way as for named functions, except that there
is no assignment to a name. Thus the two lines

ssfun <- function(x)sum(xˆ2)

sapply(elastic1, ssfun) # elastic1 is from the DAAG package

can be replaced by the single expression

sapply(elastic1, function(x)sum(xˆ2))

The calculation of Subsection 1.4.7 can be handled conveniently using an anonymous
function. First, here is a version that uses an explicit named function:

growthfun <- function(x)(x[9] - x[1])/x[1]

sapply(austpop[, -c(1,10)], growthfun)

Using an anonymous function, this becomes:

sapply(austpop[, -c(1,10)], function(x)(x[9] - x[1])/x[1])

14.5.4 Functions for working with dates (and times)

The R base system has several functions for working with dates. See help(Dates) and
help(as.Date) and help(format.Date) for detailed information.

Use as.Date() to convert character strings into dates. The default format has year,
then month, then day of month, thus:

> # Electricity Billing Dates

> dd <- as.Date(c("2003-08-24","2003-11-23","2004-02-22","2004-05-03"))

> diff(dd)

Time differences of 91, 91, 91 days

Use format() to set or change the way that a date is formatted. The following is a
selection of the available symbols:

%d: day, as number
%a: abbreviated weekday name (%A: unabbreviated)

%m: month (00–12)
%b: month abbreviated name (%B: unabbreviated)
%y: final two digits of year (%Y: all four digits)



442 The R system – additional topics

The default format is "%Y-%m-%d". The character / can be used in place of -. Other
separators (e.g., a space) must be specified explicitly, using the format argument, as in
the examples below.

The function as.Date() takes a vector of character strings that has an appropriate
format, and converts it into a dates object. By default, dates are stored in integer numbers
of days, using January 1 1970 as origin. Use julian() to convert a date into its integer
value. Here are examples:

> as.Date("1/1/1960", format="%d/%m/%Y")

[1] "1960-01-01"

> as.Date("1:12:1960",format="%d:%m:%Y")

[1] "1960-12-01"

> as.Date("1960-12-1") - as.Date("1960-1-1")

as.Date("1960-12-1") - as.Date("1960-1-1")

> as.Date("31/12/1960","%d/%m/%Y")

[1] "1960-12-31"

> julian(as.Date("1/1/2000","%d/%m/%Y"))

[1] 10957

attr(,"origin")

[1] "1970-01-01"

Use format() to control the formatting of dates in printed output. See
help(format.Date).

> dec1 <- as.Date("2004-12-1")

> format(dec1, format="%b %d %Y")

[1] "Dec 01 2004"

> format(dec1, format="%a %b %d %Y")

[1] "Wed Dec 01 2004"

Such formatting may be used to give meaningful labels on graphs. The following uses
the function seq() to assign a regular sequence of dates that become positions on the
x-axis:

## Labeling of graph: data frame jobs (DAAG)

startofmonth <- seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="1 month", length=24)

atdates <- seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length=4)

datelabs <- format(atdates, "%b%y")

xyplot(BC+Alberta ˜ startofmonth, data=jobs, outer=TRUE,

scale=list(x=list(at=atdates, labels=datelabs)),

auto.key=list(columns=2, between=1))

See help(seq.Date) for details of options that are available for generating regular
sequences of dates.

Other useful functions include weekdays(), months(), quarters(). For
example:



14.5 Functions and operators – some further details 443

> dd <- as.Date(c("2003-08-24","2003-11-23","2004-02-22","2004-05-03"))

> weekdays(dd)

[1] "Sunday" "Sunday" "Sunday" "Monday"

> months(dd)

[1] "August" "November" "February" "May"

quarters(dd)

[1] "Q1" "Q3" "Q4" "Q2"

The function date() returns the current date and time, while Sys.Date() returns the
date. For information on functions for working with times, see help(ISOdatetime).
The CRAN Task View for Time Series Analysis has notes on classes and methods for
working with times and dates, and on packages that provide useful functionality.

14.5.5 Creating groups

The following uses cut() to collapse the column bp in the data frame Pima.tr2
(MASS) into four categories, and to tabulate the frequencies. Notice the use of the argument
exclude=NULL (cf. useNA="ifany") to ensure that any NAs are included in the
tabulation.

> library(MASS)

> catBP <- cut(Pima.tr2$bp, breaks=4)

> table(catBP, exclude=NULL)

catBP

(37.9,57] (57,76] (76,95] (95,114] <NA>

22 170 87 8 13

By default (exclude=NA), table() ignores NAs. Section 14.7 has further discussion.

14.5.6 Logical operators

The logical operators & (and) and | (or) operate on vectors. They have counterparts &&
and || that expect a single element; if either operand is a vector, the first element only is
taken. Thus compare:

> c(TRUE, TRUE, FALSE) & c(FALSE, TRUE, FALSE)

[1] FALSE TRUE FALSE

> c(TRUE, TRUE, FALSE) && c(FALSE, TRUE, FALSE)

[1] FALSE

A vector form of if statement

The function ifelse() may be regarded as a vector form of the if statement. The
comparison is made, and the resultant action taken, for all elements of a vector. See
help(ifelse).



444 The R system – additional topics

Operators are functions

Operators are a special type of function. Thus 2+3 is the result of applying the operator +
with the arguments 2 and 3. The following syntax makes the function evaluation explicit:

> "+"(2, 3)

[1] 5

14.6 Factors

Factors are an essential adjunct to the use of model formulae and graphics formulae.
They find wide use in the statistical modeling functions in the various R packages. Recall
(Subsection 1.2.7) that factors are stored as integer vectors, where the integer values range
from one to the number of levels. A table of levels, stored as an attribute of the factor,
associates a unique character string with each different integer value. The levels can be
accessed using attr() with the argument which="levels". It is however better to
use the function levels().

Factors have the potential to cause surprises, so be careful! Note that:

� When a vector of character strings is included as a column in a call to data.frame(),
the default is that the character vector becomes a factor, where the distinct character
strings are the level names. To avoid this, either enclose the character vector name in the
wrapper function I(), or supply the argument stringsAsFactors=FALSE.

� When the index variable in a for loop takes factor values, the values are the integer
codes. For example:
> fac <- factor(c("c", "b", "a"))

> for (i in fac) print(i)

[1] 3

[1] 2

[1] 1
� Use, for example, as.character(fac) to obtain a character vector in which factor

levels replace the factor elements.
� If arguments to cbind() are matrices and/or vectors, a matrix is returned, and elements

are coerced to the same vector mode. Thus factor elements are replaced by their integer
values, if necessary coerced to character. See Subsection 14.9.4 for details.

� To extract the numeric values 1, 2, . . . , specify unclass(fac).
� In Subsection 8.1.4, use of the function aggregate() generated a factor conc

whose levels were "0.8", "1", "1.2", "1.4", "1.6", and "2.5". Use of
as.numeric(as.character(conc)) extracted the numeric values.

Ordered factors

Actually, it is the levels that are ordered. To create an ordered factor, or to turn a factor into
an ordered factor, use the function ordered(). The levels of an ordered factor specify
positions on an ordinal scale. Try



14.6 Factors 445

> stress.level <- rep(c("low","medium","high"), 2)

> ordf.stress <- ordered(stress.level, levels=c("low", "medium",

+ "high"))

> ordf.stress

[1] low medium high low medium high

Levels: low < medium < high

> ordf.stress < "medium"

[1] TRUE FALSE FALSE TRUE FALSE FALSE

> ordf.stress >= "medium"

[1] FALSE TRUE TRUE FALSE TRUE TRUE

Ordered factors have (inherit) the attributes of factors, and have a further ordering attribute.
All factors, ordered or not, have an order for their levels! The special feature of ordered
factors is that there is an ordering relation (<) between factor levels.

Factor contrasts

When the lm() or another similar modeling function is called, the model formula is parsed,
and the functionmodel.matrix() is used to create a model matrix. Where factors appear
in the model formula, the choice of factor contrasts determines how the model matrix will
be constructed. The different model matrices give different mathematical descriptions for
the same model, as described in Subsection 7.1.2. Note also polynomial contrasts, usually
reserved for use with ordered factors.

In order to use sum contrasts in place of treatment contrasts, specify
options(contrasts=c("contr.sum", "contr.poly")). It is also possible
to set contrasts separately for each factor. See help(C).

The coding for any particular choice of contrasts can be inspected directly. Note the
following:

> contr.treatment(3)

2 3

1 0 0

2 1 0

3 0 1

> contr.sum(3)

[,1] [,2]

1 1 0

2 0 1

3 -1 -1

> cities <- factor(c("Melbourne","Sydney","Adelaide"))

Sydney Adelaide

Melbourne 0 0

Sydney 1 0

Adelaide 0 1

> contr.sum(cities)

[,1] [,2]

Melbourne 1 0

Sydney 0 1

Adelaide -1 -1



446 The R system – additional topics

The default is that Adelaide is level 1, Melbourne is level 2, and Sydney is level 3.
Level names are by default ordered alphabetically.

∗Tests for main effects in the presence of interactions?

With rare exceptions, tests for main effects in the presence of interactions are a bad idea.
The function anova.lme() in the nlme package allows the argument type = "m".
This gives marginal tests of the effect of dropping each term in the model in turn, while
retaining other terms. This includes tests on the effect of “dropping” each factor main effect,
while retaining all interaction terms – tests that in most circumstances do not make much
sense. See Venables (1998) for commentary.

The word “drop” is inappropriate. Constraints are implicitly applied, in the “omission”
of main effects from the model, that depend on the choice of contrasts. Thus the Type 3 test
will test a different null hypothesis, depending on the choice of contrasts. Users of lme()
should not go down this road unless they are very sure that they know what they are doing.
Most who know what they are doing avoid Type 3 tests!

14.7 Missing values

Any arithmetic or logical operation that has the missing value indicator NA as one of its
arguments returns NA. This applies to the relations <, <=, >, >=, ==, !=. The first
four compare magnitudes, == tests for equality, and != tests for inequality.

Be sure to use is.na(x) to test which values of x are NA. The expression
any(is.na(x)) returns TRUE if the vector has any NAs, and is otherwise FALSE.

The construct x==NA gives a vector in which all elements are NAs, and thus gives no
information about the elements of x. The logic is that, in for example 5==NA, the missing
value might or might not equal 5.

Users who do not give adequate consideration to the handling of NAs may be surprised
by the results. The following compares use of is.na(x) with x==NA:

> x <- c(1, 6, 2, NA)

> is.na(x) # TRUE for NAs, otherwise FALSE

[1] FALSE FALSE FALSE TRUE

> x == NA # All elements are set to NA

[1] NA NA NA NA

> NA == NA

[1] NA

Values cannot be assigned to expressions whose subscripts include missing values:

> x <- c(1, NA, 6, 2, 10)

> x > 4 # The second element will be NA

[1] FALSE NA TRUE FALSE TRUE

> x[x>4] # NB: This generates a vector of length 3

[1] NA 6 10

> x[x > 4] <- c(101, 102)

Error: NAs are not allowed in subscripted assignments



14.7 Missing values 447

Use of !is.na(x) limits the elements that are identified by a subscript expression to
those that are not NAs. The following replaces elements that are greater than 4 by elements
from the vector c(101, 102):

> x[!is.na(x) & x > 4] <- c(101, 102)

> x

[1] 1 NA 101 2 102

Counting and identifying NAs – the use of table()

The variable re74 in the data frame nswdemo (DAAG) has a number of missing values.
The following gives a tabulation that indicates, for each treatment group, whether re74 is
0, greater than 0, or unknown:

library(DAAG)

> with(nswdemo, table(trt, re74>0, useNA="ifany"))

trt FALSE TRUE <NA>

0 195 65 165

1 131 54 112

Another possibility is to create a factor named perhaps fac re74 that has levels 0,
gt0, and <NA>, thus:

> fac_re74 <- with(nswdemo, factor(re74>0, exclude=NULL))

> levels(fac_re74)

[1] "FALSE" "TRUE" NA

> levels(fac_re74) <- c("0", "gt0", "<NA>")

> with(nswdemo, table(trt, fac_re74))

fac_re74

trt 0 gt0 <NA>

0 195 65 165

1 131 54 112

The removal of NAs

The function complete.cases() takes as arguments any sequence of vectors, data
frames, and matrices that all have the same number of rows. It returns a vector that has
the value TRUE whenever a row is complete, i.e., has no missing values across any of the
objects, and otherwise has the value FALSE.

The function na.omit() omits NAs from vectors. For matrices and data frames, it
omits any rows where one or more elements is NA.

NAs in modeling functions

Many of the modeling functions have an argument na.action. We can inspect the global
setting, thus:



448 The R system – additional topics

> options()$na.action # Version 2.10.0, following startup

[1] "na.omit"

The argument na.action=na.omit causes omission of rows that hold NAs, prior to
the analysis. A useful alternative to na.omit, when it is available, can be na.exclude.
This omits rows that have NAs from the analysis. However, it returns values for all rows
when fitted values, residuals, etc. are calculated, placing NAs in those positions.

Individual functions may have defaults that are different from the global setting. See
help(na.action), and help pages for individual modeling functions, for further details.

Sorting and ordering, where there are NAs

By default, sort() omits any NAs. The function order() places NAs last. Hence:

> x <- c(1, 20, 2, NA, 22)

> order(x) # By default, na.last=TRUE

[1] 1 3 2 5 4

> x[order(x)]

[1] 1 2 20 22 NA

> sort(x) # By default na.last=NA

[1] 1 2 20 22

> sort(x, na.last=TRUE)

[1] 1 2 20 22 NA

14.8∗ Matrices and arrays

Conceptually, a matrix is a rectangular array in which all elements have the same mode. The
common modes are numeric, character, logical, or complex. A matrix is in this sense a more
restricted structure than a data frame. Numeric matrices allow a variety of mathematical
operations, including matrix multiplication, that are not available for data frames.

A matrix is a special case of an array, which may have more than two dimensions. Names
may be assigned to the rows and columns of a matrix, or more generally to the different
dimensions of an array. Details are below.

Matrix elements are stored in column order in one long vector, i.e., columns are stacked
one above the other, with the first column first. Consistent with this, a matrix is a vector
(numeric or character or logical) whose dimension attribute has length 2. Thus consider

> xx <- matrix(1:6, ncol=3) # Equivalently, enter

# matrix(1:6, nrow=2)

> xx

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Use the function dim() to determine the dimensions. Thus:

> dim(xx)

[1] 2 3



14.8∗ Matrices and arrays 449

The following are alternative ways to turn the matrix xx back into the vector of elements
1, 2, . . . , 6:

## Use as.vector()

x <- as.vector(xx)

## Alternatively, directly remove the dimension attribute

x <- xx

dim(x) <- NULL

Both mechanisms have the effect of removing the dimension attribute.
The function t() takes a matrix as its argument, which it transposes. It may also be used

for data frames, with the side-effect that all elements will be promoted to a common type
when columns are of different types.

Use rownames() to extract or assign row names, and colnames() for column
names. An alternative, which assigns or extracts row and column names at the same time,
is the use of dimnames(). The dimnames() function gives a list, in which the first list
element is the vector of row names, and the second list element is the vector of column
names.

The extraction of submatrices

The syntax is the same as for data frames. The result is now, except when a single row or
column is extracted, a matrix.

For use in demonstrating the extraction of submatrices, set

> x34 <- matrix(1:12, ncol=4)

> x34

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

The following should be self-explanatory:

x34[2:3, c(1,4)] # Extract rows 2 & 3 and columns 1 & 4

x34[-2, ] # Extract all rows except the second

x34[-2, -3] # Omit row 2 and column 3

Extraction of a single row or column yields, by default, a vector. To extract the second
row, now as a matrix, use the syntax x34[1, , drop=FALSE]. Thus compare the
following:

> x34[2, ] # The dimension attribute is dropped

[1] 2 5 8 11

> x34[2, , drop=FALSE] # Retain the dimension attribute

[,1] [,2] [,3] [,4]

[1,] 2 5 8 11



450 The R system – additional topics

Conversion of data frames and tables into matrices

Use as.matrix() to convert a data frame into a matrix. The columns should all be of
one of the modes numeric or character or logical. If this is not the case, type conversion
will be necessary. Where there is a choice between matrix computations and equivalent
computations that start from the data frame equivalent of the matrix, the matrix computations
can be much more efficient.

In R version 2.10.0, use of as.matrix() with a two-way table leaves the table
unchanged, i.e., its class is still returned as “table”. The rationale may be that two-way
tables are already in matrix form. If tab is a two-way table, use as(tab, "matrix")
to convert tab to the class matrix.

14.8.1 Matrix arithmetic

Matrix arithmetic has many different applications, including the implementation of new
regression and multivariate methods. The following are some of the more basic operations:

## Set up example matrices G, H and B

G <- matrix(1:12, nrow=4); H <- matrix(112:101, nrow=4); B <- 1:3

G + H # Element-wise addition (X & Y both n by m)

G * H # Element-wise multiplication

G %*% B # Matrix multiplication (X is n by k; B is k by m)

## Set up example matrices X (square, full rank) and Y

X <- matrix(c(1,1,1, -1,0,1, 2,4,2), nrow=3)

Y <- matrix(1:6, nrow=3)

solve(X, Y) # Solve XB = Y (X must be square)

Note also the more numerically stable alternative for matrix multiplication,
crossprod(G,H), and the linear system solver qr.solve(X, Y).

Computational efficiency

As noted above, matrix computations can be much more efficient than the equivalent
computations with data frames. The difference can be substantial. The following is on a
2.16GHz Intel Core 2 Duo Macbook Pro with 2GB of random access memory:

> xy <- matrix(rnorm(1500000),ncol=50)

> dim(xy)

[1] 30000 50

> system.time(xy+1) # user and system are processor times

user system elapsed

0.010 0.012 0.023

> xy.df <- data.frame(xy)

> system.time(xy.df+1)

user system elapsed

0.345 0.233 0.580



14.8∗ Matrices and arrays 451

14.8.2 Outer products

A common use of outer() is to generate a matrix of quantities of the form

xij = aibj .

For example:

# Multiplication table

> outer(1:4, 1:10)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 2 3 4 5 6 7 8 9 10

[2,] 2 4 6 8 10 12 14 16 18 20

[3,] 3 6 9 12 15 18 21 24 27 30

[4,] 4 8 12 16 20 24 28 32 36 40

More generally, outer() may be used to generate an array whose (i, j )th element is a
function of ai and bj . Often it is convenient to use an anonymous function.

The argument col in R plotting functions may be supplied either with a number,
or with the name of a color. Many of these colors come in five different shades; thus
in addition to “blue” there are “blue1”, “blue2”, “blue3”, and “blue4”. The following
generates all five shades of the colors “red”, “blue”, and “green”, storing the result in a
matrix.

> rbgshades <- outer(c("red","blue","green"), c("",paste(1:4)),

+ function(x,y)paste(x,y, sep=""))

> rbgshades # Display the matrix

[,1] [,2] [,3] [,4] [,5]

[1,] "red" "red1" "red2" "red3" "red4"

[2,] "blue" "blue1" "blue2" "blue3" "blue4"

[3,] "green" "green1" "green2" "green3" "green4"

> plot(rep(0:4, rep(3,5)), rep(1:3, 5), col=rbgshades, pch=15, cex=8)

14.8.3 Arrays

An array is a generalization of a matrix (2 dimensions), to allow > 2 dimensions.
The dimensions are, in order, rows, columns, . . . . By way of example, we start with a
numeric vector x of length 24. For ease of keeping track of the elements, they will be
1, 2, . . . , 24.

By giving the vector x suitable dimensions, it is readily changed into, e.g., a 3 × 8
matrix, or into a 3 × 4 × 2 array:

> x <- 1:24

> dim(x) <- c(2, 12); print(x)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 1 3 5 7 9 11 13 15 17 19 21 23

[2,] 2 4 6 8 10 12 14 16 18 20 22 24

>

> dim(x) <- c(3, 4, 2); print(x)



452 The R system – additional topics

, , 1

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

, , 2

[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

The functionaperm() permutes the dimensions. Thusaperm(x, c(3,2,1)) inter-
changes dimensions 1 and 3.

14.9 Manipulations with lists, data frames, matrices, and time series

It can be important to understand the points of connection between lists and data frames,
and between data frames and matrices. Data frames are a specialized type of list, in which
the list elements hold vectors (the columns) that all have the same length and are all indexed
by the same row names.

Data frames and matrices use the same subscripting syntax, though the outcome can be
subtly different. Certain functions that are primarily designed for use with matrices can
also be applied to data frames. Data frames are however, unlike matrices, stored as lists,
and functions that are designed for use with lists can also be used with data frames.

The functions dim() and dimnames() generalize in the obvious way for use with
arrays.

14.9.1 Lists – an extension of the notion of “vector”

Vectors, in a general sense, are of two types. First, there are atomic vectors whose elements
are logical, integer, numeric, complex, or character. These are atomic because their elements
do not break down into anything more fundamental. In earlier chapters, the word “vector”
was reserved for use with atomic vectors.

Second, there are lists (and data frames). These are recursive (or generic) vectors. Such
vectors consist of a sequential set of elements, just as for atomic vectors. The difference is
that each list element is itself a list, with implications that will be explained shortly.

As lists are vectors, elements can be referenced using the usual subscript notation. The
first list element is zz[1], the second is zz[2], and so on. Those elements, themselves
lists, are wrappers for objects of arbitrary class and type. The list elements can hold scalars,
matrices or more general arrays, functions, other lists, atomic vectors, etc. The elements of
lists can, and often do, hold a rag-tag collection of different objects. A good example is the
list object that R creates as output from an lm calculation.

Lists do not store the contents of the list elements directly. Instead they store pointers
that allow the extraction of those contents, when and if required. Use of square brackets to
extract a subset of a list merely subsets the pointers.



14.9 Manipulations with lists, data frames, matrices, and time series 453

Here is an example:

> zz <- list("Shireen", "Peter", c("Luke","Amelia","Ted"), c(8,4,0))

> zz[c(3,1)]

[[1]]

[1] "Luke" "Amelia" "Ted"

[[2]]

[1] "Shireen"

> ## List whose only element is the vector c("Luke","Amelia","Ted")

> zz[3]

[[1]]

[1] "Luke" "Amelia" "Ted"

A notation is then required for obtaining the contents of list elements, that is, the objects
to which the pointers refer, without their bags. The syntax zz[[1]], zz[[2]], ...
does this. Thus zz[[1]] extracts the object that is held in the first list element, and
similarly for other elements in the list. For example:

> ## Return the vector c("Luke","Amelia")

> zz[[3]]

[1] "Luke" "Amelia"

List elements can be named. Elements, or the contents of elements, can then be extracted
by name, thus:

> duo <- list(family="Braun", names=c("Matthew","Phillip"),

+ ages=c(14,9))

> duo[["names"]] # Alternatively, specify duo$names

[1] "Matthew" "Phillip"

Functions such as c(), length(), and rev() (take elements in the reverse order)
can be applied to any vector, including a list. To interchange the first two elements of the
list zz, write zz[c(2, 1, 3:length(zz))].

The dual identity of data frames

Data frames have the form of rectangular arrays whose elements can be extracted using the
same subscript notation as for matrices. More fundamentally, they are lists whose elements
hold columns that are all of the same length. Thus, set:

xyz <- data.frame(x=1:4, y=11:14, z=I(letters[1:4]))

Then rev(xyz) gives a data frame whose columns are taken in the reverse order. The
function length() returns the value 3; this is because xyz is a list that has three elements.
The wrapper function I() was used to prevent z from becoming a factor.



454 The R system – additional topics

Note the contrast between:

> xyz[1, ] # Returns a data frame, i.e., a list)

x y z

1 1 11 a

> xyz[1, , drop=TRUE]

$x

[1] 1

$y

[1] 11

$z

[1] "a"

> unlist(xyz[1, ]) # Returns, here, a vector of atomic mode

x y z

"1" "11" "a"

> unlist(xyz[1, , drop=TRUE])

x y z

"1" "11" "a"

The elements of xyz[1, ] were of different modes. The inconsistency was resolved, in
coercing xyz[1, ] to vector mode, by constraining all elements to character. (If xyz[1,
3] had been a factor, all elements would have become numeric. Why?)

14.9.2 Changing the shape of data frames (or matrices)

The manipulations that will be described will use the functions melt() and cast() in
the reshape package. There are methods for both data frames and matrices.

Melting and casting

The melt() function is a counterpart of stack() (discussed in Subsection 1.3.2) that
has the advantage of carrying along other columns of the data frame.

> library(reshape)

> Jobs <- melt(jobs, measure.vars=names(jobs)[1:6],

+ variable_name="Region", id.vars="Date")

> head(Jobs, 3)

Date Region value

1 95.00000 BC 1752

2 95.08333 BC 1737

3 95.16667 BC 1765

The explicit use of the argument id.vars="Date" was unnecessary. If the argument
measure.vars is given, the default is to carry along all other columns in the data
frame.



14.9 Manipulations with lists, data frames, matrices, and time series 455

The following returns the data frame Jobs that was created above, to the wide format:

> jobsBack <- cast(Jobs, Date ˜ Region)

> head(jobsBack,3)

Date BC Alberta Prairies Ontario Quebec Atlantic

1 95.00000 1752 1366 982 5239 3196 947

2 95.08333 1737 1369 981 5233 3205 946

3 95.16667 1765 1380 984 5212 3191 954

In the casting formula Date ˜ Region, Date and Region uniquely identified a row
of the data frame Jobs. In the data frame (jobsBack) that results, values of Date
identify rows, and elements of Region identify columns. When the casting formula does
not uniquely specify rows, the argument fun.aggregate must be supplied.

Subsection 15.5.3 has an example of the use of melt().

14.9.3∗ Merging data frames – merge()

The DAAG package has the data frame Cars93.summary, which has as its row names
the six different car types in the data frame Cars93 from the MASS package. The column
abbrev holds one or two character abbreviations for the car types. We show how to merge
the information on abbreviations into the data frame Cars93, thus:

new.Cars93 <- merge(x=Cars93, y=Cars93.summary[, "abbrev", drop=F],

by.x="Type", by.y="row.names")

The arguments by.x and by.y specify the keys, the first from the data frame that is
specified as the x- and the second from the data frame that is specified as the y-argument.
The new column in the data frame new.Cars93 has the name abbrev.

If there had been rows with missing values of Type, these would have been omitted
from the new data frame. We can avoid this by ensuring that Type has NA as one of its
levels, in both data frames.

14.9.4 Joining data frames, matrices, and vectors – cbind()

Use cbind() to join, side by side, two or more objects that may be any mix of data frames
and vectors.

If arguments to cbind() are matrices and/or vectors, a matrix is returned, and elements
will be coerced to the same vector mode – character if one or more columns is character,
and otherwise numeric. If one or more arguments is a data frame, a data frame is returned,
and factor columns remain factor.

Use rbind() to stack any combination of data frames, matrices, and (row) vectors.
When data frames are stacked one above the other, the names and types (numeric, logical,
character, factor, . . . ) of the columns must agree.

Conversion of tables and arrays into data frames

Use as.data.frame() to handle the conversion, from a table, to a data frame that
has one column of values of the classifying factor corresponding to each dimension



456 The R system – additional topics

of the table. If the argument is an array, either first coerce it into a table with the
same number of dimensions, or use an explicit call to the function as.data.frame.
table(), with the array as argument.

The adply() function (plyr package) applies a given function across specified dimen-
sions of an array, returning a data frame. Note also aaply (returns an array), and other
such functions in the same package. See Exercise 12 at the end of the chapter for simple
examples.

14.9.5 The apply family of functions

The functions that are in mind are sapply(), lapply(), apply(), and tapply().
The functions sapply() and lapply() operate on vectors, on lists, and on data frames.
We encountered sapply() (s = simplify) in Chapter 1, and it has been used extensively
in earlier chapters. The function apply() is designed for use with matrices and arrays. It
can also be used with data frames, provided of course that the operations that the function
performs are legal for elements in the data frame.

The tapply() function

The arguments are a vector, a list of factors, and a function that operates on a vector to return
a single value. For each combination of factor levels, the function is applied to corresponding
values of the variable. For simplicity, assume that the function returns a scalar. The default
output (with simplify=TRUE) is then an array with as many dimensions as there are
factors.

Compare the following two calculations, the first using tapply() and the second (from
Subsection 2.2.2) using aggregate():

## Compare tapply() with aggregate(): data frame kiwishade (DAAG)

with(kiwishade, tapply(yield, INDEX=list(block, shade), FUN=mean))

with(kiwishade, aggregate(yield, by=list(block, shade), FUN=mean))

The function tapply() yields an array, where aggregate() yields a data frame.
Another difference is that the first argument to tapply() must be a vector, where
aggregate() can be used with data frames or with time series objects and will then carry
out the aggregation in parallel across all columns. Where there are no data values for a par-
ticular combination of factor levels tapply() returns NA, whereas aggregate() does
not include that row in the data frame. Where the time taken for the calculation is an issue,
tapply() typically completes the task in a fraction of the time taken by aggregate().

The apply() function

The function apply() applies a function to rows or columns of a matrix, or to specified
dimension(s) of an array, or (if necessary, after coercing all elements to the same vector
mode) with a data frame.

The first argument to apply() is the array or data frame. The second argument specifies
the dimension(s) – 1 for applying the function to each row in turn, and 2 when the function
is to be applied to each column in turn (if the first argument is an array of more than two



14.9 Manipulations with lists, data frames, matrices, and time series 457

dimensions, then a number greater than 2 is possible). Examples can be found in Exercise
11 in Chapter 1, Subsections 8.1.4 and 6.2.4, and elsewhere.

The functions lapply() and sapply()

The functions lapply() and sapply() apply a function to each element of a vector in
turn. They are most commonly used with recursive vectors, i.e., with lists or data frames.
For lapply(), the result is a list, with one element corresponding to each element of the
list that was supplied as argument. The function sapply() differs only in simplifying the
result as far as possible, to give a vector or matrix or list.

The arguments of lapply() or sapply() are the name of the data frame or list (or
other vector), and the function that is to be applied. Additional arguments may be given
that will be passed to the function that is the second argument:

> ## Uses data frame rainforest (DAAG)

> sapply(rainforest[, -7], range, na.rm=TRUE)

dbh wood bark root rootsk branch

[1,] 4 3 8 2 0.3 4

[2,] 56 1530 105 135 24.0 120

Note the additional argument na.rm=TRUE, which sapply() passed to the function
range().

For use of sapply(), note that:

� If sapply() is used with a matrix as argument, the function is applied to all elements
of the matrix – not usually what is wanted. Use apply() instead, or convert the matrix
to a data frame.

� Any rectangular structure that results from the use of sapply() will be a matrix, not
a data frame. For manipulations on the columns of such a matrix, use apply(), not
sapply().

14.9.6 Splitting vectors and data frames into lists – split()

As an example, we split the column No.of.cars, from the data frame
Cars93.summary (DAAG library), according to distinct values of Max.passengers:

> with(Cars93.summary, split(No.of.cars, Max.passengers))

$'4'

[1] 14

$'5'

[1] 21

$'6'

[1] 16 11 22

$'8'

[1] 9



458 The R system – additional topics

The argument to split() may alternatively be a data frame, which is split into a list
of data frames. For example:

## Split dataframe by Max.passengers (2nd column)

split(Cars93.summary[, -2], Cars93.summary[, 2])

14.9.7 Multivariate time series

As demonstrated in Subsection 2.1.5, the function ts() can be used to create a multivariate
time series from a matrix or data frame whose columns hold the separate series, thus:

> jobts <- ts(jobs[,1:6], start=1995, frequency=12)

> colnames(jobts)

[1] "BC" "Alberta" "Prairies" "Ontario" "Quebec" "Atlantic"

To extract the first column, specify tsunits[, 2] or tsunits[, "Alberta"].
The subscript notation can be used to extract rows, but returns a matrix rather than a time
series. Use the function window() to extract, as a time series, a subseries. For example:

> ## Subseries through to the third month of 1995

> window(jobts, end=1995+2/12)

BC Alberta Prairies Ontario Quebec Atlantic

Jan 1995 1752 1366 982 5239 3196 947

Feb 1995 1737 1369 981 5233 3205 946

Mar 1995 1765 1380 984 5212 3191 954

> # Rows are 1995+0/12, 1990+1/12, 1990+2/12

There is a plot method for multivariate time series:

plot(jobts, plot.type="single") # Use one panel for all

plot(jobts, plot.type="multiple") # Separate panels.

Here is alternative code for Figure 2.10A that plots the data as time series:

## Alternative code for Figure 2.9A; plot as time series

plot(jobts, plot.type="single", xlim=c(1995,1997.2), lty=1:6, log="y",

xaxt="n", xlab="", ylab="Number of Jobs")

## Move label positions so that labels do not overlap

ylast <- bounce(window(jobts, 1996+11/12), d=strheight("O"), log=TRUE)

# bounce() is from DAAG

text(rep(1996+11/12,6), ylast, colnames(ylast), pos=4)

datlab <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"), by="3 month",

length=8), "%b%Y")

axis(1, at=seq(from=1995, by=0.25, length=8), datlab)

14.10 Classes and methods

Generic functions, whose action varies according to the class of the object that is given
as the first argument, were mentioned briefly in Subsection 1.4.2. There are two imple-
mentations – the S3 implementation that is provided by base R, and the more recent S4



14.10 Classes and methods 459

implementation of the methods package. Generic functions do not call the specific method,
such as print.factor(), directly. Instead, they call a dispatch function, which in the
case of print() calls the relevant print function.

S3 methods and classes

For S3 methods and classes, the dispatch function is UseMethod(). For example, here
is the function print():

> print

function (x,...)

UseMethod("print")

The function UseMethod() notes the class of the object, now identified as x, and calls
the print function for that class. If the object is a factor, then UseMethod() will call
print.factor().

Use the function class() to determine the class of an object. Classes may be defined so
that they inherit the properties of parent classes. Thus ordered factors inherit from factors,
and inherit the print method for factors.

Use methods(print) to list all (S3) print methods. Use methods
(class="lm") to list all methods for the linear model class lm. Use getAnywhere()
to list functions whose names are shown with an asterisk that identifies them as non-visible.

14.10.1 Printing and summarizing model objects

Just as for any other R object, typing the name of a model object on the command line
invokes the print function, if any, for that class of object. Thus typing elastic.lm,
where elastic.lm is an lm object, has the same effect as print.lm(elastic.lm)
or print(elastic.lm).

Print functions for model objects, e.g., print.lm() for printing the model object
elastic.lm, process output into a form that is, broadly, suitable for immediate inspec-
tion. Additional or different information may be available by directly accessing the list ele-
ments of the model object. For many classes of object there is, in addition, a summary()
function that gives a different and often more detailed summary. The following stores
summary information for elastic.lm in the elastic.sum summary object:

elastic.lm <- lm(distance ˜ stretch, data=elasticband)

elastic.sum <- summary(elastic.lm)

Typing elastic.sum (or summary(elastic.lm)) on the command line invokes the
function print.summary.lm(), thus printing the summary information.

Other generic functions that commonly find use with model objects are coef() (alias
coefficients()), residuals() (alias resid()), fitted(), predict(), and
anova().



460 The R system – additional topics

14.10.2 Extracting information from model objects

In S3, model objects are usually lists with named elements. To get the names of the elements
of elastic.lm, type

> names(elastic.lm)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

Here are three different and equivalent ways to examine the contents of the first list
element:

elastic.lm$coefficients

elastic.lm[["coefficients"]]

elastic.lm[[1]]

The preferred way to extract the coefficients is however to use the extractor function
coef(), i.e.

> coef(elastic.lm)

(Intercept) stretch

-63.571429 4.553571

S3 classes are not formally defined. Classes can be assigned to objects in an arbitrary
manner, whether or not the object has the structure (e.g., the expected list elements) for that
class. For example:

> x <- 1:5

> class(x) <- "lm" # Inappropriate assignment of class

> print(x)

Error in x$call : $ operator is invalid for atomic vectors

14.10.3 S4 classes and methods

S4 objects have formally defined slots; these have a similar role to the list elements in,
e.g., lm objects. The names and classes of the slots are established at the time of the class
definition. In computations with objects of an S4 class, the names and classes of the slots
are validated against the definition. Methods must likewise be formally defined.

Use showMethods() to get information on S4 methods.
Users of packages (e.g., lme4 or Bioconductor packages) may need to access the slots

of S4 objects. Use slotNames() to obtain the names of the slots, and either slot() or
the operator @ to extract or replace a slot. For example, consider the lmList object that
was created in Subsection 10.6.1:

## Use data frame humanpower1, from DAAG

> library(lme4)

> hp.lmList <- lmList(o2 ˜ wattsPerKg | id, data=humanpower1)

> slotNames(hp.lmList)

[1] ".Data" "call" "pool"

> slot(hp.lmList, "call")

lmList(formula = o2 ˜ wattsPerKg | id, data = humanpower1)



14.11 Manipulation of language constructs 461

> hp.lmList@call

lmList(formula = o2 ˜ wattsPerKg | id, data = humanpower1)

For further information on S4 classes and methods, see help(Methods), Chambers
(2007), Gentleman (2008). Lumley (2004a) compares S3 and S4 approaches to the definition
of a simple class. See also Bates and DebRoy (2003).

14.11 Manipulation of language constructs

As with any R object, formulae and expressions can be manipulated. This extends to
constructing model or graphics formulae, or expressions from character strings. These and
related abilities will be demonstrated.

14.11.1 Model and graphics formulae

The following function plot.mtcars() takes two named columns from the data frame
mtcars, plotting them one against another:

> plot.mtcars <- function(xvar="disp", yvar="hp"){

+ mt.form <- paste(yvar, "˜", xvar)

+ plot(formula(mt.form), data=mtcars)

+ }

> ## Plot using data frame mtcars (datasets)

> names(mtcars)

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am"

[10] "gear" "carb"

> plot.mtcars()

> plot.mtcars(xvar="disp", yvar="mpg")

Extraction of variable names from formula objects

The function all.vars() takes a formula as argument, and returns the names of the
variables that appear in the formula. For example:

> all.vars(mpg ˜ disp)

[1] "mpg" "disp"

As well as allowing the use of a formula to specify the graph, the following gives more
informative x- and y-labels:

plot.mtcars <- function(form = mpg˜disp){

## Include information that allows a meaningful label

mtcars.info <- c(mpg= "Miles/(US) gallon",

cyl= "Number of cylinders",

disp= "Displacement (cu.in.)",

hp= "Gross horsepower",

drat= "Rear axle ratio",

wt= "Weight (lb/1000)",

qsec= "1/4 mile time",

vs= "V/S",



462 The R system – additional topics

am= "Transmission (0 = automatic, 1 = manual)",

gear= "Number of forward gears",

carb= "Number of carburettors")

xlab <- mtcars.info[all.vars(form)[1]]

ylab <- mtcars.info[all.vars(form)[2]]

plot(form, xlab=xlab, ylab=ylab, data=mtcars)

}

14.11.2 The use of a list to pass arguments

The following are equivalent:

mean(rnorm(20))

do.call("mean", args=list(x=rnorm(20)))

Use of do.call() allows the argument list to be set up in advance of the call, as in the
following function:

simulate.distribution <-

function(distn="weibull", params=list(n=10)){

## Simulates one of: weibull, gaussian, logistic

if(distn=="weibull" & !("shape" %in% names(params)))

params <- c(shape=1, params)

## weibull requires a default shape argument.

## =====================================================

## Choose the function that will generate the random sample

rfun <- switch(distn,

weibull = rweibull,

normal = rnorm,

logistic= rlogis)

## Call rfun(). Use of do.call() makes it possible to give

## the argument list as a list of named values.

## Pass shape argument (or NULL), plus n = # of numbers

do.call("rfun", args=params)

}

Now try the following:

simulate.distribution()

plot(density(simulate.distribution("normal", params=list(n=100))))

plot(density(simulate.distribution("weibull",

params=list(n=100, scale=0.5))))

The function call(), which has the same syntax as do.call(), sets up an unevalu-
ated expression. The expression can be evaluated at some later time, using eval():

> mean.call <- call("mean", x=rnorm(5))

> eval(mean.call)

[1] -0.6276536

> eval(mean.call)

[1] -0.6276536



14.11 Manipulation of language constructs 463

Notice that the argument x was evaluated when call() was evoked. Hence the result is
unchanged upon repeating the use of eval(). This can be verified by printing out the
expression:

> mean.call

mean(x = c(-0.68467334794551, -0.376091734366091, -0.289459988631994,

-3.04694266628697, 1.25889972957396))

14.11.3 Expressions

An expression is anything that can be evaluated. Thus xˆ2 is an expression, y <- xˆ2 is
an expression that returns the value that is assigned to y, and y == xˆ2 is an expression.
Recall that y <- xˆ2 assigns the value of xˆ2 to y, while y == xˆ2 tests whether y
equals xˆ2.

The following can be convenient for the repeated evaluation of a complicated expression,
changing one or more of the arguments at each new evaluation:

> local(a+b*x+c*xˆ2, envir=list(x=1:4, a=3, b=5, c=1))

[1] 9 17 27 39

14.11.4 Environments

Every call to a function creates a frame that contains the local variables created in the
function. This combines with the environment in which the function was defined to create
a new environment.

The global environment, .Globalenv, is the workspace. This is frame number 0.
Broadly, the frame number increases by one with each new function call. Additionally,
frames may be referred to by name. Use

sys.nframe() to get the number of the current evaluation frame.
sys.frame(sys.nframe()) to identify the frame by name.
sys.parent() to get the number of the parent frame.
sys.call() to return, from within a function, the function call.

There are many other such functions, but these will do for present purposes!
Here is a function that determines, from within the function, its name:

test <- function()as.character(sys.call())

The result of executing the function is:

> test()

[1] "test"

> newtest <- test # Create a copy with a different name

> newtest()

[1] "newtest"



464 The R system – additional topics

Automatic naming of a file that holds function output

The following automatically matches the names of files that hold hard copies of graphs to
the names of the functions that created them. Thus, functions for creating figures may be
given names fig1(), fig2(), etc. These functions in turn call a function hcopy() that
sets up the pdf graphics device, and directs output to a file with a name that is formed by
appending ".pdf" to the file name:

hcopy <-

function(width=2.25, height=2.25, pointsize=8){

funtxt <- sys.call(1)

fnam <- paste(funtxt, ".pdf", sep="")

print(paste("Output is to the file '", fnam, "'", sep=""))

pdf(file=fnam, width=width, height=height, pointsize=

pointsize)

}

Now define fig1(), which is designed to plot the sine function over the range
(−π , π ), so that it calls hcopy():

fig1 <- function(){

hcopy() # Call with default arguments

curve(sin, -pi, 2*pi)

dev.off()

}

Output goes to the file fig1.pdf. For a function fig2() that calls hcopy(), the file
name will be fig2.pdf. The function hardcopy() in the DAAG package is a more
sophisticated version of hcopy().

14.11.5 Function environments and lazy evaluation

When a function is defined, this sets up an evaluation environment for that function.
Variables that are not passed as arguments are first searched for in the frame of the function,
which in R is the environment in which the function was itself defined. If not found there,
the parent frame (if any) is searched, then the parent frame of the parent frame, and so on. If
they are not found in any of the frames, then they are sought in the search list. A complete
description is beyond the scope of this book.

The consequences for lazy evaluation, which we now discuss, are mildly subtle.

Lazy evaluation

Expressions may be specified as arguments to R functions. The expression is evaluated
only when it is encountered in the R function. For example:

> lazyfoo <- function(x=4, y = xˆ2)y

> lazyfoo()

[1] 16



14.12∗ Creation of R packages 465

> lazyfoo(x=3)

[1] 9

This is unsurprising. Expressions that appear in default arguments are evaluated within the
function environment.

By contrast, however, expressions that are specified when the function is called are
evaluated in the parent environment, i.e., in the environment from which the function was
called. Hence the following behavior:

> lazyfoo(y=xˆ3) # We specify a value for y in the function call

Error in lazyfoo(y = xˆ3) : Object "x" not found

> x <- 9 # Now, in the parent environment, x=9

> lazyfoo(y=xˆ3)

[1] 729

The function new.env() can be used to create new environments. Just as for lists, the
operators $ or [[ can be used to access objects whose names are in an environment, or to
add the names of new objects.

Example – a function that identifies objects added during a session

This illustrates points that were made in the discussion above.
At the beginning of a new session, we might store the names of the objects in the

workspace in the vector dsetnames, thus:

dsetnames <- objects()

Now suppose that we have a function additions(), defined thus:

additions <- function(objnames = dsetnames){

newnames <- objects(envir=.GlobalEnv)

existing <- newnames %in% objnames

newnames[!existing]

}

The function call sys.frame(0) returns the name of the workspace. At some later point
in the session, we can enter

additions(dsetnames)

to obtain the names of objects that have been added since the start of the session.
Use of newnames <- objects() in the above function, i.e., leaving arguments at

their defaults, would have returned the names of objects in the function environment.

14.12∗ Creation of R packages

Much of the functionality of R, for many important tasks, comes from the packages that
are built on top of base R. Users who make extensive use of R are likely to find a need
to document and organize both their own functions and associated data. Packages are the
preferred vehicle for making functions and/or data available to others.



466 The R system – additional topics

Organization of data and functions into a package has the following benefits:

� The package format imposes minimum standards of documentation, and consistency
between code and documentation.

� Attaching the package gives immediate access to package functions, data, and associated
documentation.

� Submission to CRAN (Comprehensive R Archive Network), and use by others, extends
opportunities for testing and/or getting contributions from other workers. CRAN
enforces additional checks, beyond those required to get the package up and running.

Researchers may find it helpful to put together into a package all data and user functions
that relate to any major project. This facilitates returning to the project at some later time,
and/or passing the project across to other workers.

It is relatively straightforward to create packages that make no calls to externally com-
piled C or Fortran code. For Unix and Linux systems, the necessary tools should already
be available as part of the operating system. For MacOS X, the Xcode Tools must be
installed. For Windows, package construction tools must be downloaded and installed. Go
to http://www.murdoch-sutherland.com/Rtools, and see the manual “Writ-
ing R Extensions”.

A first step is to set up a workspace that has only the functions and data objects that are
to be included in the package. The image file viewtemps.RData that is included in the
R installation has data and several functions that can be used for experimentation. To find
where this file is located on the system, type

system.file("misc/ViewTemps.RData", package="DAAG")

Then, to create a package from the functions and data in this image file, start with
an empty workspace and load viewtemps.RData. There should then be four objects
in the workspace – the functions plotD, plotT and plotTofD, and the data frame
housetemps.

Starting with the workspace as just described, the following steps create a package with
the name ViewTemps:

1. Type
package.skeleton(name = "ViewTemps")

This creates all the needed directories and files or file skeletons, in a subdirectory
ViewTemps in the working directory. Instructions for proceeding further are placed
in a file Read-and-delete-me in this directory; the following is a synopsis.

2. Edit the DESCRIPTION file in the directory ViewTemps, as required. (This is not
absolutely necessary, if the file is for your own use.)

3. Edit the help file skeletons in ViewTemps/man. (Optionally, combine help files for
two or more functions.)

4. Open a terminal window (on Windows, a DOS prompt), go to the parent directory of
ViewTemps, and build the package tarball:

R CMD build ViewTemps

http://www.murdoch-sutherland.com/Rtools


14.13 Document preparation – Sweave() and xtable() 467

5. Now check the package tarball:

R CMD check ViewTemps

6. If there are errors, make the necessary corrections, and repeat the build and check steps.

If new functions and/or data are added later, use prompt() to make skeletons that can be
edited to create the new files.

To compile the package into a zip file on a Windows system, go to a DOS prompt in the
parent directory and type

R CMD build --binary ViewTemps

Namespaces

Packages can have their own namespaces, with private functions and classes that are
not ordinarily visible from the command line, or from other packages. For example, the
function intervals.lme() that is part of the nlme package must be called via the
generic function intervals().

14.13 Document preparation – Sweave() and xtable()

Recall that R implements the S language. Hence the name Sweave() for the function that
will now be described, and hence the reference to S code. According to the help page for
Sweave():

‘Sweave’ provides a flexible framework for mixing text and S code for automatic
report generation. The basic idea is to replace the S code with its output, such that
the final document only contains the text and the output of the statistical analysis.

The present description assumes use of the LATEX markup language, i.e., R code is added
into a LATEX manuscript, creating an Sweave document. The Sweave file sec1-1.Rnw,
available from the web page for this book, can be used to reproduce a close approximation
to Section 1.1, including Figure 1.1 and Table 1.1. The file sec1-1.Rnw is in LATEX
markup format, supplemented with Sweave markup commands and associated R code that
controls the inclusion of code and/or output, the figure and the table. To process this file,
place it in the working directory, and type, from the R command line:

Sweave("sec1-1.Rnw", keep.source=TRUE)

# actually, Sweave("sec1-1") is sufficient

# The argument keep.source=TRUE preserves the code layout

# and ensures that comments are retained.

This will write the LATEX file sec1-1.tex to the working directory. Additionally, the
graphics file that is needed for Figure 1.1 will be generated by the R code and placed in
that directory. Providing LATEX is installed, the file can then be processed to give PDF or
postscript output that will pretty much reproduce Section 1.1.

Use of the Sweave document processing system makes it straightforward to regenerate
a report if the input data and/or the code change. Gentleman and Lang (2004) argue for



468 The R system – additional topics

making research results available in this form as a matter of standard practice, thus making
research more genuinely reproducible.

The LATEX system must be able to find the file Sweave.sty. If it is necessary to locate
this file, type

R.home(component="share/texmf/Sweave.sty")

The Sweave syntax is based on the Noweb literate programming syntax. See
help(Sweave) and Leisch (2002) for further details. For details of the version of LATEX
that is recommended for Microsoft Windows, go to www.miktex.org/

14.14 Further reading

The definitive document on R’s implementation of the S language is the relevant current
version of the R Language Definition (R Development Core Team). Recent texts that
give comprehensive accounts of R syntax and semantics are Chambers (2007), Gentleman
(2008). See also Braun and Murdoch (2007) and Muenchen (2008). Spector (2008) is a
useful source of information on data manipulation. Murrell (2009) is a very useful reference
on HTML, XML, data formats (plain text, binary, and other), databases, the SQL query
language, and regular expressions. There is a chapter on “Data Processing Using R”.

For citing R in a publication, use R Development Core Team (2009b). For historical
background, see Ihaka and Gentleman (1996). The R function citation() can be used
to obtain citation information, both for R itself and for any installed package, thus:

citation()

citation("DAAG")

Vignettes

Vignettes are (currently) pdf documents that describe the abilities in packages for R, and
that can be accessed using the vignette() function. Many packages have no vignettes,
while some have several. To get a list of vignettes in all installed packages, type

vignette() # All vignettes in all installed packages

To get name(s) of vignette(s), if any, for specific packages, type, e.g.

vignette(package="grid")

The package grid had, at the time of writing, 13 vignettes.
Assuming that a pdf viewer (perhaps Acroread) is installed, the following displays the

vignette “viewports”:

vignette("viewports") # Equivalent to vignette(topic="viewports")

References for further reading

Braun, W. J. and Murdoch, D. J. 2007. A First Course in Statistical Programming with R.
Chambers, J. M. 2007 Software for Data Analysis: Programming with R.

www.miktex.org/


14.15 Exercises 469

Gentleman, R. 2008. R Programming for Bioinformatics.
Ihaka, R. and Gentleman, R. 1996. R: a language for data analysis and graphics. Journal

of Computational and Graphical Statistics 5: 299–314.
Muenchen, R. A. 2008. R for SAS and SPSS Users.
Murrell, P. 2009. Introduction to Data Technologies.
R Development Core Team. R Language Definition. Available from CRAN sites.
R Development Core Team. 2004b. R: a language and environment for statistical comput-

ing. Spector, P. 2008. Data Manipulation with R.

14.15 Exercises

1. Compare the different outputs from help.search("print"), apropos(print), and
methods(print). Look up the help for each of these three functions, and use what you find
to explain the different outputs.

2. Identify as many R functions as possible that are specifically designed for manipulations with
character strings.

3. Test whether strsplit() is vectorized, i.e., does it accept a vector of character strings as
input, then operating in parallel on all elements of the vector?

4. For the data frame Cars93, get the information provided by summary() for each level of
Type. [Use split().]

5. Determine the number of cars, in the data frame Cars93, for each Origin and Type.

6. In the data frame Insurance (MASS package):

(a) determine the number of rows of information for each age category (Age) and car type
(Group);

(b) determine the total number of claims for each age category and car type.

7. Enter the following, and explain the steps that are performed to obtain the result:
## Use of split() and sapply(): data frame science (DAAG)

with(science, sapply(split(school, PrivPub),

function(x)length(unique(x))))

8. Save the objects in your workspace, into an image (.RData) file, with the name archive.
RData. Then remove all objects from the workspace. Demonstrate how, without loading the
image file, it is possible to list the objects that were included in archive.RData and to
recover a deleted object that is again required.

9. Determine the number of days, according to R, between the following dates:

(a) January 1 in the year 1700, and January 1 in the year 1800;
(b) January 1 in the year 1998, and January 1 in the year 2007.

10.∗ The following concatenates (x, y) data that are random noise to data pairs that contain a
“signal”, randomly permutes the pairs of data values, and finally attempts to reconstruct the
signal:

### Thanks to Markus Hegland (ANU), who wrote the initial version

##1 Generate the data



470 The R system – additional topics

cat("generate data \n")

n <- 800 # length of noise vector

m <- 100 # length of signal vector

xsignal <- runif(m)

sig <- 0.01

enoise <- rnorm(m)*sig

ysignal <- xsignal**2+enoise

maxys <- max(ysignal)

minys <- min(ysignal)

x <- c(runif(n), xsignal)

y <- c(runif(n)*(maxys-minys)+minys, ysignal)

# random permutation of the data vectors

iperm <- sample(seq(x))

x <- x[iperm]

y <- y[iperm]

# normalize the data, i.e., scale x & y values to

# lie between 0 & 1

xn <- (x - min(x))/(max(x) - min(x))

yn <- (y - min(y))/(max(y) - min(y))

##1 End

##2 determine number of neighbors within

# a distance <= h = 1/sqrt(length(xn))

nx <- length(xn)

# determine distance matrix

d <- sqrt( (matrix(xn, nx, nx) - t(matrix(xn, nx, nx)) )**2 +

(matrix(yn, nx, nx) - t(matrix(yn, nx, nx)) )**2 )

h <- 1/sqrt(nx)

nnear <- apply(d <= h, 1, sum)

##2 End

##3 Plot data, with reconstructed signal overlaid.

cat("produce plots \n")

# identify the points which have many such neighbors

ns <- 8

plot(x,y)

points(x[nnear > ns], y[nnear > ns], col="red", pch=16)

##3 End

(a) Run the code and observe the graph that results.
(b) Work through the code, and write notes on what each line does.

[The key idea is that points that are part of the signal will, on average, have more near
neighbors than points that are noise.]

(c) Split the code into three functions, bracketed respectively between lines that begin ##1,
lines that begin ##2, and lines that begin ##3. The first function should take arguments
m and n, and return a list xy that holds data that will be used subsequently. The second
function should take vectors xn and yn as arguments, and return values of nnear, i.e.,
for each point, it will give the number of other points that lie within a circle with the point
as center and with radius h. The third function will take as arguments x, y, nnear, and



14.15 Exercises 471

the constant ns such that points with more than ns near neighbors will be identified as
part of the signal. Run the first function, and store the output list of data values in xy.

(d) Run the second and third functions with various different settings of h and ns. Comment
on the effect of varying h. Comment on the effect of varying ns.

(e) Which part of the calculation is most computationally intensive? Which makes the heaviest
demands on computer memory?

(f ) Suggest ways to make the calculation more efficient.

11. Try the following, for a range of values of n between, e.g., 2 × 105 and 107. (On systems that are
unable to cope with such large numbers of values, adjust the range of values of n as necessary.)
n <- 10000; system.time(sd(rnorm(n)))

The function system.time() returns the user and system cpu times, and the elapsed time.
Plot each of these numbers, separately, against n. Comment on the graphs. Is the elapsed time
roughly linear with n? Try the computations both for an otherwise empty workspace, and with
large data objects (e.g., with 107 or more elements) in the workspace.

12. The plyr package has functions that provide powerful and flexible data manipulation abilities.
Functions have names in the style of aaply(), adply(), and so on, where the first letter of
the name indicates the class of object that will be used as input (for adply() it is a = array),
and the second letter denotes the output class (for adply() it is d = data frame). In addition
to array and data frame, note l = list.
Try the following, and in each case explain the result:

library(plyr)

aaply(.data=UCBAdmissions, .margins=1:2, .fun=sum)

adply(.data=UCBAdmissions, .margins=1:3, .fun=identity)

daply(.data=tinting, .variables=c("sex","agegp"), .fun=length)



15

Graphs in R

This chapter starts with comments on the graphical devices that are available in R, on font
families and fonts, on plotting symbols, and on R’s color choices. It discusses the abilities
in the lattice package in modest detail, with a more cursory discussion of the ggplot2
package.

15.1 Hardcopy graphics devices

The following writes the graph to the pdf file fossilfuel.pdf:

pdf(file="fossilfuel.pdf", width=6.5, height=6.5, pointsize=18)

# For pdf() and postscript(), heights and widths are in inches

plot(carbon ˜ year, data=fossilfuel, pch=16)

dev.off()

Other functions that open hardcopy graphics devices include png(), jpeg(), bmp(),
and tiff(). Unless the default units="px" is changed, height and width are in pixels.
Use dev.off() to close the device, thus making the file available for display, or for
printing, or for incorporation into a document. For a complete list of devices, and further
details of specific devices, see help(Devices).

Subsection 1.5.4 described commands used to open graphics windows on commonly
used implementations of R. Use dev.copy() to copy a graph from the display that is
currently active to a hardcopy graphics device. For example:

plot(carbon ˜ year, data=fossilfuel, pch=16) # Display graph

## Now open pdf device and copy graph to it

dev.copy(pdf, file="fossilcopy.pdf")

dev.off() # Close pdf device

15.2 Plotting characters, symbols, line types, and colors

Setting pch to one of the numbers 0, 1, . . . , 25 gives one of 26 different plotting symbols.
In addition, assuming that a single-byte character set is in use, pch may be set to any value
in the range 32–255. (Multi-byte character sets are needed, e.g., for Asian languages.)
Figure 15.1 gives the full range of characters for font=1. An alternative is to use a
quoted string, e.g., pch="a". For plotting, characters are centered vertically about their
mid-position.



15.2 Plotting characters, symbols, line types, and colors 473

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25pch =
● ● ● ● ● ● ●

32−63 ! " # $ % & ' ( ) * + , − / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

64−95 @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _

96−127 ‘ a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ •

font = 1
plain

64−76 96−108@ A B C D E F G H I J K L ‘ a b c d e f g h i j k l2
bold

64−76 96−108@ A B C D E F G H I J K L ‘ a b c d e f g h i j k l3
italic

64−76 96−108@ A B C D E F G H I J K L ‘ a b c d e f g h i j k l4
bold italic

64−9564−95 ≅≅ Α ΒΒ Χ ∆∆ Ε ΦΦ Γ Η Ι ϑϑ ΚΚ ΛΛ ΜΜ ΝΝ ΟΟ ΠΠ ΘΘ Ρ Σ Τ Υ ςς ΩΩ ΞΞ ΨΨ ΖΖ [[ ∴∴ ]] ⊥⊥ __φοντ = 5φοντ = 5
σψµβολσψµβολ

96−12796−127 
αα ββ χχ δδ εε φφ γγ ηη ιι ϕϕ κκ λλ µµ νν οο ππ θθ ρρ σ τ υυ ϖϖ ωω ξξ ψψ ζζ {{ | }} ∼∼

lty = 0 blank

1 solid

2 dashed 44

3 dotted 13

4 dotdash 1343

5 longdash 73

6 twodash 2262

Figure 15.1 Fonts, symbols, line types, and colors, created using the default postscript/pdf encoding
(see help(postscript) for details). For characters in the range 32–127, symbols may vary
depending on the family and on the device. Here, the font family is Helvetica, which is the default
sans serif font (par(family="") or par(family="sans")) for a postscript or pdf device.
Observe that the “y” in “symbol” has translated, in the symbol font, to ψ . Line types may be specified
by number, by name (lty="dashed", . . . ), or by code (lty="44", . . . ).

There are six line types that can be specified by number (0, 1, . . . , 6) or by name
("blank", "solid", . . . ). Use of a number sequence that is enclosed in quotes allows
a more flexible specification of line types. Thus "33" describes a length of 3 units that is
drawn, followed by 3 units that are skipped. Up to 4 (draw, skip) pairs are allowed, i.e., a
total of 8 numbers. Units are, on most devices, line widths.

Footnote 4 in Subsection 3.2.2, and Plate 1, show the use of polygon(). The argument
col specifies the fill color (if any). Use border to change the border color from the
default.

The function symbols() offers a choice of circles, squares, rectangles, stars, ther-
mometers, and boxplots. Supply fg (foreground) to specify the color of the symbol outline,
and bg (background) for the fill color. See help(symbols) for details.

Font families

A font family is a collection of device-specific font faces. Within any font family, the
numbers 1–4 identify, wherever possible, a specific face. Font 1 is plain text, font 2 is bold



474 Graphs in R

face, font 3 is italic, and font 4 is bold italic. Font 5 is a special setting that specifies the
symbol font (in Adobe symbol encoding).

Generic family names that can be specified using the family argument to the par()
function are: "sans" (on a vanilla setup, the default), "serif", "mono", and "sym-
bol". On devices that honor this setting, these are in each case mapped to device-specific
families. Thus Helvetica is the default device-specific "sans" family for postscript or
pdf devices, where for Windows (win.graph()) it is Arial.

Colors

The default color palette, shown in Plate 10, attaches the numbers 1, . . . , 8 to the eight
colors in the default palette. The palette can be changed as required, perhaps to one of the
other built-in palettes.

The colors() function returns the names of 657 named colors. Many are different
shades of the same basic color. Thus "red", "red1", "red2", "red3", and "red4"
are different shades of red. The function show.colors() (DAAG) can be used to show
various selections of colors.

Plate 10 shows sets of graduated colors from heat.colors(), topo.colors(),
cm.colors(), rainbow() (not usually a good choice), and hcl(). The hue, chroma,
and lightness representation of hcl() may be a better starting point for generation of
graduated colors than the red, green, and blue representation of rgb(). There are also
various palettes from the RColorBrewer package, intended primarily for use in coloring
maps.

Plate 11 shows several palettes, created using dichromat() (dichromat package).
These are designed so that individuals with one of two common types of red–green color
blindness can distinguish the colors. The final several rows simulate the effects of such red–
green color blindness, first for the default palette plus "green", and then for the dichromat
Categorical.12 palette. The color "green3", which has replaced "green" in the
default palette, does appear different from "red".

Contour and filled contour plots

The functions contour(), filled.contour(), and image() all take arguments x
and y that are coordinates, and z that is a matrix of contour level values. The matrix z has
one row for each element of x, and one column for each element of y.

Alternatively, the argument x may be a list, with elements the vector x$x, the vector
x$y, and the matrix x$z. Values of x and y must be in increasing order of x and of y
within x.

Both filled.contour() and image() use a color scale to show the levels. Type
demo(image) to see some of the visually appealing possibilities.

15.3 Formatting and plotting of text and equations

Subsection 1.5.5 demonstrated the formatting and plotting of mathematical symbols and
formulae, either on their own or as part of character strings. The relevant expressions can
be plotted using text(), mtext(), title(), legend(), or another such command.



15.3 Formatting and plotting of text and equations 475

Figures in earlier chapters that used these abilities are: 5.3D (
√

Residual as the y-axis label),
10.7 (the y-axis label mixes text and mathematical symbols), and Plate 1B (mixes text and
mathematical symbols). Below, various refinements will be described.

15.3.1 Symbolic substitution of symbols in an expression

Use of substitute(), in place of expression(), allows the character string to be
given in symbolic form:

library(DAAG)

## Replace the symbol tx by its value

specnam <- "Acmena smithii"

plot(wood ˜ dbh, data=rainforest, subset=species==specnam)

title(main=substitute(italic(tx) * ": " * "wood vs dbh",

list(tx=specnam)))

15.3.2 Plotting expressions in parallel

The functionexpression() calculates one expression for each argument that is supplied
to it, thus:

## Sample from bivariate normal (x, y) with correlation rho

rho <- 0.75; x <- rnorm(40); y <- rnorm(40) + rho/sqrt(1-rhoˆ2)*x

## Now map all values of x onto 3 integer values

x0 <- cut(x, breaks=c(-Inf,-1,1,Inf))

plot(unclass(x0), y, xaxt="n")

axis(3, at=1:3, labels=expression("(-Inf,-1]", "(-1,1]", "(1, Inf]"))

The following, more automated, alternative uses symbolic substitution in parallel to
replace “Inf” by the symbol ∞:

tiklab <- lapply(strsplit(levels(x0), "Inf"),

function(x)if(length(x)>1)substitute(x1*infinity*x2,

list(x1=x[1],x2=x[2])) else x)

axis(1, at=1:3, labels=as.expression(tiklab))

Symbolic substitution in parallel

When a logarithmic scale is requested, and the axis labels are not otherwise specified, lattice
functions label the scale in powers of the logarithmic base, by default 10.

Figure 15.2 demonstrates the use of a powers-of-ten style of labeling for a plot that uses
base graphics. The function lapply() is used, applying an anonymous function that does
the substitution in parallel to each element of the vector log10ticks, to yield the list
object ticklabs.

seps <- c(-12.5, -10.523, -8.523, -6.85, -6.6, -3.523, -1, 1, 2.5)

plot(range(10ˆseps), c(0, 1), axes=FALSE, xlab="Wavelength (m)",

ylab="", type="n", xaxs="i", yaxs="i", log="x")

log10ticks <- pretty(seps,6)

log10ticks <- log10ticks[log10ticks > seps[1]]



476 Graphs in R

Wavelength (m)

10−12 10−10 10−8 10−6 10−4 10−2 100 102

ga
m

m
a 

ra
y

X
−

ra
y

ul
tr

av
io

le
t

vi
si

bl
e

in
fr

a−
re

d

m
ic

ro
w

av
e

ra
di

o,
 T

V

lo
ng

−
w

av
e

ga
m

m
a 

ra
y

Figure 15.2 The code for this graph uses symbolic substitution to label the tick marks, on a
logarithmic scale, in powers of 10.

ticklabs <- lapply(round(log10ticks,2),

function(x)substitute(10ˆa, list(a=x)))

axis(1, at=10ˆlog10ticks, labels=as.expression(ticklabs))

## Use rect() to divide the axis a/c to types of radiation

len <- length(seps)

rect(xleft=10ˆseps[-len], ybottom=rep(0, len-1),

xright=10ˆseps[-1], ytop=rep(1, len-1),

border=c(NA, rep(1,len-3), NA),

col=c(rep("gray70",3), "white", rep("gray70",4)))

radtypes <- c("gamma ray","X-ray","ultraviolet", "visible",

"infra-red", "microwave", "radio, TV", "long-wave")

mid <- 0.5*(seps[-1]+seps[-len])

text(10ˆmid, rep(0.08, len), radtypes, adj=c(0,0.5), srt=90)

A further use for substitute()

The function substitute()may, additionally, be used to extract the names of the actual
function arguments when they are passed at run time. This can be useful for graphical
annotation. The following demonstrates the syntax:

> testfun <- function(x, y)deparse(substitute(x))

> testfun(x = AnyValidName)

[1] "AnyValidName"

For further details of the formatting and plotting of symbols and expressions, see the
help pages plotmath, expression, substitute, and bquote.

15.4 Multiple graphs on a single graphics page

Note first, for comparison, the use of the base graphics parameter fig to mark out a
rectangular region where the graph will appear. Thus, Figure 2.4A in Subsection 2.1.2
used:

par(fig = c(0, 1, 0.38, 1)) # xleft, xright, ybottom, ytop

## Plot graph A

par(fig = c(0, 1, 0, 0.38), new=TRUE)

## Plot graph B

par(fig = c(0, 1, 0, 1)) # Reset to default



15.5 Lattice graphics and the grid package 477

The initial par(fig = c(0, 1, 0.38, 1)) marked out a plot region that occupied
the total width of the graphics page, started 38% of the way up, and extended to the top
of the page. The subsequent par(fig=c(0, 1, 0, 0.38), new=TRUE) marked
out the lower 38% of the page. The effect of new=TRUE is, counter-intuitively, “assume a
new page is already open; do not open a new page”.

For lattice graphs, the location of the graph can be determined by the argument
position, when print() is called. The following simplified version of the code for
Figure 2.8A in Subsection 2.1.4 demonstrates its use:

library(lattice)

cuckoos.strip <- stripplot(species ˜ length, xlab="", data=cuckoos)

print(cuckoos.strip, position=c(0,0.5,1,1))

# x, y, x, y; left, bottom, right, top

cuckoos.bw <- bwplot(species ˜ length, xlab="", data=cuckoos)

print(cuckoos.bw, position=c(0,0,1,0.5), newpage=FALSE)

# NB: Use newpage=FALSE in order to retain the first graph

Base and trellis plots on the same graphics page

The following uses the base graphics command mtext() to label a lattice plot:

plot(0:1, 0:1, type="n", bty="n", axes=FALSE, xlab="", ylab="")

mtext(side=3, line=3, "Lattice bwplot (i.e., boxplot)")

cuckoos.bw <- bwplot(species˜length, data=cuckoos)

print(cuckoos.bw, newpage=FALSE)

Use of layout() – base graphics only

The function layout() sets up a set of rectangular regions on the graphics page, in
advance of any plotting. Use layout.show(n) to show where the first n regions are
located on the page. Be sure to save the graphics parameters at the start, for later resetting.

15.5 Lattice graphics and the grid package

Subsection 1.5.8 gave an introductory account of lattice plots. Further details that will now
be discussed include: customization of arguments, creation of keys or legends, interaction
with plots, the use of panel functions to supplement plots, and the “printing” of multiple
lattice plots on the one graphics page.

Lattice graphics versus base graphics

Lattice functions create trellis objects. They do not themselves plot (or “print”) the graph.
Objects can be created even if no device is open. Such objects can be updated. Objects
are plotted (by this time, a device must be open), either when the object is returned to the
command line (this implicitly invokes print()), or by the explicit use of print().

By successively updating a trellis graphics object, it can be built up and/or modified in
steps. Additionally, it is possible to make additions to a “printed” or displayed graphics
page. Subsection 15.5.5 will show how to do this.



478 Graphs in R

A
m

ou
nt

 c
on

su
m

ed
 (

pe
r 

pe
rs

on
)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●

●
●

●
● ●

Australia

1998 2000 2002 2004 2006

●
●

●
● ● ● ● ●

●

NewZealand

Beer Spirit Wine●

Figure 15.3 Australian and New Zealand apparent per person annual consumption (in liters) of the
pure alcohol content of liquor products, for 1998 to 2006.

15.5.1 Groups within data, and/or columns in parallel

Here are selected lines from the data set grog (DAAG package):

Beer Wine Spirit Country Year

1 5.24 2.86 1.81 Australia 1998
2 5.15 2.87 1.77 Australia 1999

. . . .
9 4.57 3.11 2.15 Australia 2006

10 4.50 2.59 1.77 NewZealand 1998
11 4.28 2.65 1.64 NewZealand 1999

. . . .
18 3.96 3.09 2.20 NewZealand 2006

There are three liquor products (drinks), in different columns, and two countries, occu-
pying different rows that are indexed by the factor Country. The function xyplot()
can accommodate any of the following:

� Different symbols and/or colors, in the one panel, distinguish drinks. Different panels
distinguish countries, as in Figure 15.3.1 If different countries are in the same panel,
then drinks must be separated across different panels.

� Use a 3 drinks × 2 countries, or 2 countries × 3 drinks layout of panels.

Where plots are superposed in the one panel and, e.g., regression lines or smooth curves
are fitted, this is done separately for each different set of points. Different colors, and/or
different symbols and/or line styles, can be used to make the necessary distinctions.

Code for Figure 15.3 is:

## Simple version of plot

grogplot <- xyplot(Beer+Spirit+Wine ˜ Year | Country, data=grog,

1 The data (data set grog, from DAAG) are 1998–2006 Australian and New Zealand apparent per person annual consumption
(in liters) of the pure alcohol content. Data, based on Australian Bureau of Statistics and Statistics New Zealand figures, are
obtained by dividing estimates of total available alcohol by number of persons aged 15 or more.



15.5 Lattice graphics and the grid package 479

outer=FALSE, auto.key=list(columns=3))

## Enhance, and print enhanced code

update(grogplot, ylim=c(0,5.5),

xlab="", ylab="Amount consumed (per person)",

par.settings=simpleTheme(pch=c(1,3,4)))

The footnote has alternative code that updates the object, then uses an explicit print().2

Observe that:

� Use of Beer+Spirit+Wine gives plots for each of Beer, Spirit, and Wine. The
effect of outer=FALSE is that these appear in the same panel.

� Conditioning by country (| Country) gives separate panels for separate countries.
� The call to simpleTheme() sets up a “theme” that supplies point and line settings.

For separate panels for the three liquor products (different levels of Country can now
use the same panel), specify outer=TRUE:

xyplot(Beer+Spirit+Wine ˜ Year, groups=Country, outer=TRUE,

data=grog, auto.key=list(columns=2) )

Here is a summary:

Overplot (a single panel) Separate panels

Break data down a/c to levels of the factor Country:
Beer ∼ Year, groups=Country Beer ∼ Year | Country

Plot columns in parallel, as in Beer+Wine+Spirit ∼ Year:
outer=FALSE outer=TRUE

Keys – auto.key, key, and legend

The argument auto.key=TRUE gives a basic key that identifies colors, plotting symbols,
and names for the groups. For greater flexibility, auto.key can be a list. Settings that are
often useful are:

� points, lines: in each case set to TRUE or FALSE.
� columns: number of columns of keys.
� x and y, which are co-ordinates with respect to the whole display area. Use these with
corner, which is one of c(0,0) (bottom left corner of legend), c(1,0), c(1,1),
and c(0,1).

� space: one of "top", "bottom", "left", "right".

The argument auto.key sets up a call key=simpleKey(). If not otherwise spec-
ified, colors, plotting symbols, and line type use the current settings for the device. The
argument text has levels(groups) as its default. If necessary, use legend=NULL
when updating, to remove an existing key and allow the addition of a new key.

2 ## Update trellis object, then print
frillyplot <- update(grogplot, xlab="", ylab="Amount consumed (per person)",

ylim=c(0,5.5), par.settings=simpleTheme(pch=c(1,3,4)))
print(frillyplot)



480 Graphs in R

15.5.2 Lattice parameter settings

In general, use themes to make point, line, and fill color settings. Use the scales
argument, in the call to the lattice function, for axes, tick marks, and tick labels.

Point, line, and fill color settings, using simpleTheme()

The function simpleTheme() creates a “theme”, i.e., a list of parameter settings, in a
form that can be supplied: (i) in the argument par.settings in the graphics function
call; or (ii) in the argument theme in a call to trellis.par.set(), prior to calling
the graphics function.

A further possibility is to include an argument theme when using trellis.
device() to start a new device. The function trellis.device() has the default
argument retain=FALSE. Parameters that are not specified as part of the theme are
reset to their defaults for the relevant device.

The following creates two “themes”:

settings1 <- simpleTheme(pch = c(1,3,4), cex=1.5)

settings2 <- simpleTheme(pch = c(1,3,4), alpha=0.75)

The settings1 theme may be appropriate when the number of points is small, while
settings2 may be appropriate when there are many points and there is extensive over-
plotting. Here, alpha controls the background transparency (cf., also, alpha.points
and alpha.line). Use of a value less than 1 helps in showing the density of points in
regions where there is extensive overlapping.

The following gives the symbols and size of symbol used in Figure 15.3:

grogplot0 <- xyplot(Beer+Spirit+Wine ˜ Year | Country, outer=FALSE,

data=grog, ylim=c(0,5.5))

grogplot1 <- update(grogplot0, par.settings=settings1)

# settings1 are then stored with the object grogplot1

print(grogplot1)

In the following, trellis.par.set() changes the settings globally, so that they
remain in place until there is a further change or a new device is opened:

trellis.par.set(settings2)

Then, print(grogplot1) will use the settings1 parameters that are stored as part
of the object, while print(grogplot0) will use the global settings2.

Settings that are not available using simpleTheme()

For changes that go beyond what simpleTheme() allows, it is necessary to know the
names under which settings are stored. To inspect these, type

> names(trellis.par.get())

[1] "fontsize" "background" "clip"

. . .

[28] "par.sub.text"



15.5 Lattice graphics and the grid package 481

For a visual display that shows default settings for points, lines, and fill color, enter

trellis.device(color=FALSE)

show.settings()

trellis.device(color=TRUE)

show.settings()

The following sets the font size. Notice the separate settings for text and points.

trellis.par.set(list(fontsize = list(text = 7, points = 4)))

Parameters that affect axes, tick marks, and axis labels

These are readily manipulated by use of the scales argument to the lattice function.
Figure 2.10B in Subsection 2.1.5 plotted quarterly labor force numbers, in six regions of
Canada, over 1995–1996. The code was:

## Create a simplified version of the graphics object

jobsB.xyplot <-

xyplot(Ontario+Quebec+BC+Alberta+Prairies+Atlantic ˜ Date,

data=jobs, type="b", layout=c(3,2), ylab="Number of jobs",

scales=list(y=list(relation="sliced", log=TRUE)),

outer=TRUE)

## Update jobsB.xyplot, with various enhancements

ylabpos <- exp(pretty(log(unlist(jobs[,-7])), 100))

ylabels <- paste(round(ylabpos),"\n(", log(ylabpos), ")", sep="")

## Create a date object ’startofmonth’; use this instead of ’Date’

atdates <- seq(from=95, by=0.5, length=5)

datelabs <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length=5), "%b%y")

update(jobsB.xyplot, xlab="", between=list(x=0.5, y=0.5),

scales=list(x=list(at=atdates, labels=datelabs),

y=list(at=ylabpos, labels=ylabels), tck=0.6) )

The enhancements are:

� The y-axis labels show number of jobs, with log(number) in parentheses underneath.
� Dates of the form Jan95 label the x-axis. See further Subsection 14.5.4.
� Tick marks are reduced in length (tck=0.6, i.e., 60% of the default).

Notice also the use of between=list(x=0.5, y=0.5) to add horizontal and vertical
space between the panels, ensuring that the tick labels do not overlap.

An example – the ais data set

Data in the data set ais (DAAG) were shown earlier, in Figure 1.3 in Subsection 1.5.8.
Data were collected with a view to studying possible differences in blood characteristics,
between athletes in endurance-related events and those in power-related events. See the
help page for ais for details of the measurements, including a variety of blood cell counts.
Here is a breakdown, by sex and sport, of numbers:



482 Graphs in R

Red cell count (1012.L−−1)

B
lo

od
 c

el
l t

o 
pl

as
m

a 
ra

tio
 (

%
)

40

45

50

4.0 4.5 5.0 5.5

●
●

●

●

●

●

●
●

●
● ●

●

●

f

4.0 4.5 5.0 5.5

●

●

●

●

●

●

●

●

●

●

●

●

m

B_Ball Swim Tennis●

Figure 15.4 Blood cell to plasma ratio (hc) versus red cell count (rcc), by sex (different pan-
els) and sport (distinguished within each panel), for a subset of the ais data. The argument
type=c("p", "r") displays both points ("p") and regression lines ("r").

> with(ais, table(sex,sport))

sport

sex B_Ball Field Gym Netball Row Swim T_400m T_Sprnt Tennis W_Polo

f 13 7 4 23 22 9 11 4 7 0

m 12 12 0 0 15 13 18 11 4 17

There are 202 athletes in total, all from the Australian Institute of Sport.
Figure 15.4 plots blood cell to plasma ratio (%) against red cell count, for three sports

only. The three sports are in the one panel, distinguished by different symbols and/or colors.
Females and males are in separate panels. Regression lines have been added. Again, an
initial basic plot is updated to give the desired result. Code is:

basic1 <- xyplot(hc ˜ rcc | sex, groups=sport[drop=TRUE],

data=subset(ais, sport %in% c("B_Ball", "Swim",

"Tennis")),

ylab="Blood cell to plasma ratio (%)")

parSet <- simpleTheme(pch = c(1:3), lty=1:3, lwd=1.5,

col.line=c("gray40","black","black"))

xaxlab <- expression("Red cell count (10"ˆ{12}*"."*Lˆ{-1}*")")

basic2 <- update(basic1, par.settings=parSet,

auto.key=list(columns=3, lines=TRUE),

scales=list(tck=0.5), xlab=xaxlab)

print(update(basic2, type=c("p", "r")))

Again, there are details that require explanation:

� The drop=TRUE in groups=sport[drop=TRUE] ensures that levels that are no
longer present in the data (here, sports other than B Ball and Swim) are omitted when
the key is drawn. (Subsetting a factor leaves the levels attribute unchanged. Redundant
levels must be explicitly removed.)



15.5 Lattice graphics and the grid package 483

� As in base graphics, graphical annotation (tick labels, axis labels, labels on points, etc.)
can be given using the function expression().

� The argument type=c("p","r") gives both points and fitted regression lines.

15.5.3 Panel functions, strip functions, strip labels, and other annotation

Each lattice command that creates a graph has its own panel function. Thus xyplot()
has the panel function panel.xyplot(). The following are equivalent:

xyplot(species ˜ length, xlab="", data=cuckoos)

xyplot(species ˜ length, xlab="", data=cuckoos,

panel=panel.xyplot)

The user’s own function can be substituted for panel.xyplot(). Panel functions
that may be used, either in combination with functions such as panel.xyplot() or
separately, include:

� panel.points(), panel.lines(), and a number of other such functions that are
documented on the same help page as panel.points();

� panel.abline(), panel.curve(), panel.rug(), panel.average(),
and a number of other functions that are documented on the same help page as
panel.abline().

A panel function that fits and plots parallel lines

The following updates basic2, used for Figure 15.4 in Subsection 15.5.2 above, so that
the lines for the two sports are parallel. Plate 13 shows the result.

update(basic2,

strip=strip.custom(factor.levels=c("Female","Male")),

# In place of level names c("f", "m"), use c("Female", "Male")

panel=function(x, y, groups, subscripts, ...){

panel.superpose(x,y, groups=groups,

subscripts=subscripts, ...)

## Obtain fitted values for parallel line model

parallel.fitted <- fitted(lm(y ˜ groups[subscripts] + x))

panel.superpose(x, parallel.fitted, groups=groups, type="l",

subscripts=subscripts, ...)

})

When a groups argument is supplied, panel.xyplot() calls panel.
superpose(). The customized panel function calls panel.superpose() twice,
once to plot the paints, and a second time to join the fitted values and thus generate the
lines.

Here is a further example:

library(grid)

stripplot(species ˜ length, xlab="", data=cuckoos,

legend=list(top=list(fun=textGrob,



484 Graphs in R

args=list(label="Stripplot", x=0, just="left"))))

# Here, x=0 is equivalent to x=unit(0,"npc"); the range is (0,1)

Modification of the strip labels

The following has modified strip labels. It is in the style of Figure 6.18, but with more
elaborate strip labels:

tau <- (0:5)/2.5; m <- length(tau); n <- 200; SD <- 2

x0 <- rnorm(n, mean=12.5, sd=SD) # Generate x-values

df <- data.frame(sapply(tau, function(s)x0+rnorm(n, sd=2*s)))

# Columns after the first are x-values with addedd error

df$y = 15+2.5*x0

names(df) <- c(paste("X", tau, sep=""), "y")

lab <- c(list("0"),

lapply(tau[-1], function(x)substitute(A*s[z], list(A=x))))

form <- formula(paste("y ˜ ", paste(paste("X", tau, sep=""),

collapse="+")))

xyplot(form, data=df, outer=TRUE,

strip=strip.custom(strip.names=TRUE, var.name="SD(added err)",

sep=expression(" = "), factor.levels=as.expression(lab)))

The argument var.name has text that will appear in all strip labels. See also Subsection
3.3.3, where there was another example of this form of strip labeling.

In the internal code the variables that are printed in parallel become levels of a single
factor, as in the following alternative that achieves the same result:

library(reshape)

longdf <- melt(df, measure.vars=1:6, id.vars="y",

variable_name="tau")

# Columns of "measure" variables are stacked in a column that has

# the name "value": column 1, then 2, then 3, ...

xyplot(y ˜ value | tau, data=longdf,

strip=strip.custom(strip.names=TRUE,

var.name="SD(added err)", sep=expression(" = "),

factor.levels=as.expression(lab)))

Annotation using textGrob()

The following uses the function textGrob() (grid) to create a text object which is then
supplied to the lattice function:

library(grid)

stripplot(species ˜ length, xlab="", data=cuckoos,

legend=list(top=list(fun=textGrob,

args=list(label="Stripplot of cuckoo data", x=0))))

# Here, x=0 is equivalent to x=unit(0,"npc"); the range is (0,1)

Multiple legends, for example a list element bottom as well as a list element top, can be
supplied by this means.



15.5 Lattice graphics and the grid package 485

15.5.4 Interaction with lattice (and other) plots – the playwith package

For using playwith, the GTK+ toolkit must be installed. For details, go to the web site
http://playwith.googlecode.com/

For installing the playwith package type, from the command line:

install.packages("playwith", dependencies=TRUE)

Now type, for example

library(DAAG)

library(playwith)

playwith(xyplot(age ˜ distance, data=hotspots),

labels=hotspots$name)

Plate 12 was then obtained as described in the figure caption.
An alternative is

gph <- xyplot(age ˜ distance, data=hotspots)

playwith(update(gph), labels=hotspots$name)

The menu that appears to the left of the graph can be used to initiate single-click identifi-
cation, to add annotation or arrows, or to mark out a rectangle on the graph for zooming in
or out. If labels are not specified, row names are used.

Note also the function latticist() in the latticist package. When called with a data
frame as argument, this opens a window that has graphical summary information on the
columns of the data frame. Additionally, the window gives a graphical user interface to the
creation of further lattice plots from the data frame. As when playwith() is used as a
wrapper for a call to a lattice function, various annotation features are available.

Note that playwith() can be used, also, for more limited interaction with plots that
have been created using basic graphics, or using ggplot2.

15.5.5 Interaction with lattice plots – focus, interact, unfocus

As described here, interaction starts with the use of trellis.focus() to focus down
to the relevant “viewport”, by default a panel. It may be called without arguments. If there
is only one panel, it is then selected immediately. If there is more than one panel, the user
chooses a panel by clicking on it.

Other choices of name include "panel", "strip", name="legend", and
"toplevel". For name="legend", side should be indicated.

Use of panel.text() to label points or add annotation

Following a call to trellis.focus(), panel functions can be used to supplement plots.
Use trellis.panelArgs() to extract arguments that are available to panel functions
following such a call. The following adds text labels:

xyplot(Brainwt ˜ Bodywt, data=primates)

trellis.focus("panel", row=1, column=1, clip.off=TRUE,

highlight=FALSE) # Non-interactive use

http://playwith.googlecode.com/


486 Graphs in R

xyetc <- trellis.panelArgs()

panel.text(x=xyetc$x, y=xyetc$y, labels=row.names(primates), pos=3)

trellis.unfocus()

For non-interactive use, be sure to call trellis.focus() with the argument high-
light=FALSE.

The following uses textGrob() (grid) to add labeling to a lattice plot:

library(grid)

stripplot(species ˜ length, xlab="", data=cuckoos)

trellis.focus(name="toplevel", highlight=FALSE)

panel.text("Stripplot of cuckoo data", x=0.5, y=0.98)

# x=0.05 translates to x=unit(0.05,"npc"); the range is (0,1)

trellis.unfocus()

Use of panel.identify() to label points interactively

Here is an example of interactive labeling:

## Use of xyplot(): data frame tinting (DAAG)

library(lattice)

xyplot(it ˜ csoa | sex, data=tinting)

trellis.focus("panel", column=1, row=1)

panel.identify(labels=as.character(tinting$target))

## Now click near points as required.

## Terminate by right clicking inside the panel.

## Now interact with panel 2

trellis.focus("panel", row=1, column=2)

panel.identify(labels=as.character(tinting$target))

## Click, ..., and right click

By default, the x and y arguments to the function panel.identify() are taken to be
those that were supplied to the lattice function, here xyplot().

Functions that may be called include panel.lines() and related functions, and
panel.abline() and related functions, as described earlier.

15.5.6 Overlaid plots with different scales

The data set edcT holds estimates of temperature anomalies dT (i.e., differences from the
average of approximately −54.5 ◦C over the past 1000 years), from the EPICA (European
Project for Ice Coring in Antarctica) Dome C ice cores that cover 0 to 800 000 years before
the present. The data set edcCO2 (DAAG) holds estimates of carbon dioxide levels, over
the same time period. Plate 14 overlays mildly smoothed versions of the two data series.

The plot uses the function doubleYScale() from the latticeExtra package, thus:

library(latticeExtra)

library(DAAG)

CO2smu <- with(edcCO2, supsmu(age, co2, span=.005))

tempsmu <- with(edcT, supsmu(Age, dT, span=.001))



15.6 An implementation of Wilkinson’s Grammar of Graphics 487
A

v.
 r

ai
nf

al
l, 

M
−

D
 b

as
in

400

500

600

700

800

900

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●●
●●

●

●●
●●

●●
●●

●●●●●●●● ●●

●

●●

●●

●●
●

●

●

●

●●

●

●

●●

●●

●
●●

●

●●

●●

●

●
●●

●

●●

●●

●

●

●

●

●●

●

●

●●

●●

●

●●●●●

●

●●

●●

●●

●●
●●

●

●●

●●

●

●

●
●

●

●●●●●
● ●●●

●●

●

●

●●

●●
●●●●●

●●●

●●

●
●●

●●●●●●●

●

●●●●●

●●●

●●

● ●●●●●

●●

●●●●●●●

●●●●●

●

●●

●●

●●

●●
●

●●

1900 1920 1940 1960 1980 2000

Figure 15.5 Annual rainfall (mm), from 1901 to 2008, for the Murray–Darling basin region of
Australia. The curve is fitted using the default loess smoother. The pointwise standard error bands
assume that errors about the curve are independent; this is unlikely to be strictly true. To suppress the
bands, specify se=FALSE.

co2_layer <- xyplot(y ˜ I(-x), data=CO2smu, type="l",

xlab="Years Before Present",

ylab = expression(CO[2]*" (ppm)"))

temp_layer <- xyplot(I(y+54.5) ˜ I(-x), data=tempsmu, type="l",

ylab=expression("Temperature ("*degree*C*")"))

doubleYScale(co2_layer, temp_layer, add.ylab2 = TRUE)

Two separate graphics objects, co2 layer and temp layer, are created. The func-
tion doubleYScale() superposes the two graphs. The argument add.ylab2=TRUE
ensures that the y-label for the second object will appear in the right margin.

15.6 An implementation of Wilkinson’s Grammar of Graphics

The ggplot2 syntax implements a Grammar of Graphics, as expounded in Wilkinson (2005).
It is consistent, but less stylized than lattice. As with lattice, a graphics object is created,
which can then be saved or printed directly on to the graphics page.

Each different type of plot – scatterplot, histogram, density plot, etc. – has a different
plot geom, or “geometry”. Different geometries can be overlaid. This ability to build plots
layer upon layer is a powerful feature of ggplot2. Examples will be given that demonstrate
the syntax.

Australian rain data

Figure 15.5 plots annual rainfall for Australia’s Murray–Darling basin region. The following
code uses the function quickplot():

library(DAAG)

library(ggplot2)

## Default loess smooth, with SE bands added.

quickplot(Year, mbdRain, data=bomregions, geom=c("point","smooth"),

span=0.5, xlab="", se= TRUE, ylab="Av. rainfall, M-D basin")



488 Graphs in R

Arguments such as size (e.g., size=I(2.5)) and color (e.g., color=I("red")
can be supplied, but note that they affect both points and the added smooth curve. The
slightly different result of size=I(2.5), as opposed to size=2.5, will be explained
below.

The function quickplot() (or qplot()) generates a sequence of function calls that
create the different components of the plot. In order to allow better control of the details of
the plot, those calls can be made separately, thus:

ggplot(bomregions, aes(x=Year, y=mdbRain)) +

geom_point() + # Specify a scatterplot

geom_smooth(span=0.5, se=TRUE) + # Add a smooth curve

xlab("") + # Blank out x-axis label

ylab("Av. rainfall, M-D basin")

## NB: Note use of aes() to supply x- and y-axis variables

The successive “+” operators combine the separate graphical components into a single
graphics object. The graph is built up in layers. In Figure 15.5, the first layer has the points,
while the second has the smooth curve. Further modifications change the x- and y-axis
labels from the defaults.

In the call to ggplot(), the data argument is the only mandatory argument. It can
be repeated in the call(s) to one or more of the later geom functions. Different geoms can
thus, if required, take their data from different data frames.

Changes to color or size or shape settings can be made separately for each different
geom. Thus, changing geom_point() to geom_point(size=2.5) affects only the
points. (As the default size for points is 2, this increases the size by 25%.)

The function aes() maps variables in the data to visual properties (“aesthetics”) of
geoms. In the code just given, the mappings are to the x- and y-axes of the plot. Other
possible mappings are to color (use color to distinguish groups within the data), shape
(distinguish by shape), size and fill. The choice of pch in base graphics becomes, in
ggplot2, a choice of shape.

A further possibility is to use quickplot() for a substantial part of the task, then
adding graphical components to the object that quickplot() has created. Here is a third
way to create Figure 15.5:

quickplot(Year, mdbRain, data=bomregions, geom="point",

xlab="", ylab="Av. rainfall, M-D basin") +

geom_smooth(span=0.5, se=TRUE)

However created, the end result is a ggplot object. This can be printed immediately,
or it can be saved as a named object. The graph is created using the print method for a
ggplot object.

Try also the following:

library(splines)

library(quantreg)

quickplot(Year, mdbRain, data=bomregions, geom=c("point", "quantile"),

formula = y ˜ ns(x,5), quantiles=c(0.2,0.5,0.8) )



15.6 An implementation of Wilkinson’s Grammar of Graphics 489

Weight (kg)

H
ei

gh
t (

cm
)

150

160

170

180

190

200

f

●
●

●
●●

●

40 60 80 100 120

m

●

40 60 80 100 120

Figure 15.6 Height versus weight, by sex, for Australian athletes in the ais data set. Boxplots that
show the distributions of heights, and two-dimensional density contours, have been added.

The natural spline basis ns(x,5) is supplied to the function that estimates the quantile
curves, so that 5 d.f. spline curves are fitted at the 20%, 50%, and 80% quantiles.

Physical measurements of Australian athletes

Figure 15.6 plots height against weight, by sex, for the ais data. Additionally, boxplots
show the distributions of heights, and there are two-dimensional density contours estimates.
The graph is a tad crowded. The following gives a first draft version of the plot:

## Overlay scatterplots with boxplots and with density contours

quickplot(wt, ht, data=ais, geom=c("boxplot", "point", "density2d"),

facets = . ˜ sex)

To set axis labels, show the boxplot outline in gray, show contour lines in gray (the default
is blue), and make various other changes as in Figure 15.6, specify:

quickplot(wt, ht, xlab="Weight (kg)", ylab="Height (cm)", data=ais,

facets = . ˜ sex) +

geom_boxplot(outlier.size=1.75, outlier.colour="gray",

color="gray") +

geom_point(shape=2, size=1) +

geom_density2d(color="gray")

The facets argument takes the form row.var ˜ col.var, where row.var indexes
the rows of panels, col.var indexes columns, and “.” is used as a placeholder when
there is one row or one column only.

Code for further plots will work with a subset of the ais data, limiting attention to
rowers and swimmers:

## Extract from ais the data for rowers and swimmers

aisBS <- subset(ais, sport %in% c("Row","Swim"))

aisBS$sport <- factor(aisBS$sport)



490 Graphs in R

The following are equivalent:

## Single panel: distinguish sexes by color; sports by shape

## Use quickplot()

quickplot(wt, ht, data=aisBS, geom="point",

color=sex, shape=sport)

## Follow a call to ggplot() with a call to geom_point()

ggplot(aisBS) + geom_point(aes(wt, ht, color=sex, shape=sport))

## Two panels (sports); sexes have different colors and shapes

quickplot(wt, ht, data=aisBS, geom="point", size=I(2.5),

color=sex, shape=sex, facets = . ˜ sport)

## Single panel: distinguish sexes by color; sports by shape

quickplot(wt, ht, data=aisBS, geom="point",

color=sex, shape=sport, size=I(2.5))

## Single panel: distinguish sexes by color; sports by size

quickplot(wt, ht, data=aisBS, geom="point", color=sex, size=sport)

Possible choices of geom, additional to those already demonstrated, are "path" (join
points), "line" (join points), "histogram", and "density".

Aesthetic mappings vs settings

Note the distinction between settings and aesthetic mappings:

Calls to quickplot() Plots based on ggplot()

Settings size=I(3) or cex=3 size=3

Aesthetic mappings size=sport aes(size=sport)

Use of the argument size=3 in a call to quickplot() does change the point size, but
it adds an extraneous key. The same happens if the argument mapping=aes(size=3)
is supplied to ggplot() or to geom_point() or to another such function.

In calls to quickplot(), cex and size are synonyms, as are color and colour.
Also type is a synonym for geom.

Available geometries and settings

Table 15.1 has details of a number of geometries that are available for ggplot objects.
Table 15.2 lists some of the settings, in addition to those already noted, that are available.

Themes and updates

Note also the following:

## Set theme_bw() defaults: black gridlines & white background

## Also set base text size to 8pt

old <- theme_set(theme_bw(base_size=8))



15.7 Dynamic graphics – the rgl and rggobi packages 491

Table 15.1 Some available geoms.

quickplot() Available arguments to the geom function

geom= ggplot() (data, mapping, color, fill, alpha, plus . . . )

"point" + geom_point() size, shape, etc.
"line" + geom_line() size, linetype
"path" + geom_path()a size, linetype
"smooth" + geom_smooth() linetype, weight, se (TRUE or FALSE).
"histogram" + geom_histogram() linetype, weight
"density" + geom_density() weight, linetype, size
"density2d" + geom_density2d() weight, linetype, size

a Use geom path() to connect observations, in the original order.

Table 15.2 Additional settings for ggplot objects.

quickplot() ggplot(), . . . Notes

[eg, + xlab("myxlab")]
Title main="mytitle" opts(title="mytitle")
Axis labels xlab="myxlab", etc. xlab("myxlab"), etc a

Facets facets=sex˜sport facet_grid(sex˜sport) c.f., “conditioning”
Flip axes see noteb axis_flip()
log axes see noteb scale_x_log() log or log10 or log2
Aspect ratio see noteb see notec

a Alternatively, use scale x continuous() or scale x discrete(), etc. as appropriate.
b The function quickplot() returns ggplot objects. Add plot components just as for any other ggplot

object.
c Use coord equal(). By default (ratio=1), 1cm represents the same range along both x- and y-axes.

## Reduce default size for geom_point(), from 2 to 1.5

update_geom_defaults("point", aes(size=1.5))

theme_set(old) # Restore the earlier settings

The default theme is theme gray(), called theme gray() because its white gridlines
overlay a very light gray background.

Figure 12.3 in Subsection 12.1.2 is a further example of the use of ggplot2 abilities.

15.7 Dynamic graphics – the rgl and rggobi packages

Both these packages provide three-dimensional dynamic graphics. The left panel in
Figure 6.9 in Subsection 6.3.1 used the abilities of the rgl package. Rather than using
these directly, novices may find it more convenient to use functions in the Rcmdr
package – scatter3d() and identify3d(), which call functions from the rgl pack-
age.

Here is code that gives an initial plot. By holding down the left mouse button and moving
the mouse, this can be rotated to give the projection shown in the left panel of Figure 6.9:

## The Rcmdr and rgl packages must be installed

library(Rcmdr) # This makes scatter3d() available



492 Graphs in R

with(nihills, scatter3d(x=log(dist), y=log(climb), z=log(time),

grid=FALSE, surface.col="gray",

point.col="black", axis.scales=FALSE))

with(nihills, identify3d(x=log(dist), y=log(climb), z=log(time),

labels=row.names(nihills), col="gray40"))

## NB: Use the middle or right mouse button to drag a rectangle

## around any point that is to be labeled.

Following the call to identify3d(), use the middle (or maybe right) mouse button to
drag a rectangle around any point that is to be labeled. To cease identifying points, make
a middle (or right) click on an empty region of the plot. Use rgl.snapshot() to save
the current plot into a file.

To go immediately to the projection shown in Figure 6.9, precede the call to scat-
ter3d() with:

open3d(userMatrix= matrix(c(

1, 0.000, 0.000, 0,

0, 0.966, -0.259, 0,

0, 0.259, 0.966, 0,

0, 0.000, 0.000, 1), ncol=4, byrow=TRUE))

par3d(cex=0.6) # Optional; see help(par3d) for other parameters

The call to par3d() is needed only if some change is required to graphics parameters.
The rggobi package offers a wider range of features, via an interface to the GGobi system

(Cook and Swayne, 2007). For installation details go to http://www.ggobi.org/.

15.8 Further reading

Murrell (2005) shows R’s graphical abilities off to impressive effect. The code used for the
graphs is available from the web page that is given with the reference. For lattice graphics
see Sarkar (2007). For ggplot2 see Wickham (2009).

References for further reading

Murrell, P. 2005. R Graphics.
http://www.stat.auckland.ac.nz/˜paul/RGraphics/rgraphics.
html

Sarkar, D. 2007. Lattice: Multivariate Data Visualization with R.
http://lmdvr.r-forge.r-project.org/figures/figures.html

Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis.
http://had.co.nz/ggplot2/

http://www.ggobi.org/
http://www.stat.auckland.ac.nz/protect unhbox voidb@x penalty @M  {}paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/protect unhbox voidb@x penalty @M  {}paul/RGraphics/rgraphics.html
http://lmdvr.r-forge.r-project.org/figures/figures.html
http://had.co.nz/ggplot2/


Epilogue

The first several chapters of this book were introductory in style, though with more attention
to the subtleties of practical application than is common in elementary treatments. The
simple models considered here are somewhat restricted in their range of application, because
they are based on assumptions of independence and stationarity which will not nearly always
be true. The last several chapters treated topics that have traditionally been thought of as
more advanced. We hope this has given readers a taste of models for data which can be
applied in a wide variety of situations.

Models that are not strictly correct, or even perhaps badly broken, may nevertheless be
useful, giving acceptably accurate predictions. The validity of model assumptions remains
an important issue. We need to know the limits of the usefulness of our models. Comparing
results from a simple model with results from a model that takes better account of the
data can help in developing intuition. Somewhat ironically, Chapters 7–13 could be viewed
as essential background for those who hope to do a good job of the analyses described
in Chapters 3–6! An understanding of multi-level and repeated measures models seems
particularly important, since these models bring attention to structure in the noise component
which must be accounted for in a proper analysis.

Whether or not faulty assumptions matter will depend on the circumstances. For simpler
models, the assumption of independently and identically distributed errors typically makes
little difference to estimates of model parameters and to fitted values, but can have a large
effect on standard errors. For example, a better model for the frogs data in Chapter 8 would
account for spatial correlations. Because we did not take account of spatial autocorrelation
in our more standard logistic regression analysis, the standard errors are not very reliable;
the best we could do was to make a tentative distinction between coefficients that seemed
clearly statistically significant, and those that were not. Modeling the correlation structure
would have given us a description that should generalize better to sites in the vicinity of those
that were studied, with more believable indications of the accuracy of such a description.
For generalizing in time, e.g., to a subsequent year, the benefits are more doubtful. If
data from multiple years were available, then for predictive purposes the modeling of the
temporal structure should be the priority.

The emphasis in this text has been on careful modeling of the data, using both fixed
and random effects as appropriate. This allows maximum flexibility in the subsequent use
of the fitted model, whether the aim is scientific understanding or prediction. Predictive
accuracy measurement makes its own modeling demands. In general, there may be two
models. First, there is a model for the population from which the data have been drawn and



494 Epilogue

the sampling mechanism. Second, there must be a model for the population and associated
sampling mechanism when predictions are made. AIC, BIC, and cross-validation error rates
that relate to the data used to develop the model all assume that the two populations and
associated sampling mechanisms are the same.

The following situations all occur in practice:

1. The data used to develop the model are, to a close approximation, a random sample
from the population to which predictions will be applied. If this can be assumed, a
simple use of a resampling method will give an estimate of the score function that is
unbiased with respect to the population that is the target for predictions.

2. Test data are available from the target population, with a sampling mechanism that
reflects the intended use of the model. The test data can then be used to derive a
realistic estimate of predictive accuracy.

3. The sampling mechanism for the target data differs from the mechanism that yielded
the data in 1, or yielded the test data in 2. However, there is a model that predicts how
predictive accuracy will change with the change in sampling mechanism. Thus, in the
attitudes to science data considered in Chapter 10, the predictive accuracy for the mean
of a new class depends on the number in the class.

4. The connection between the population from which the data have been sampled and
the target population may be weak or tenuous. It may be so tenuous that a confident
prediction of the score function for the target population is impossible. In other words, a
realistic test set and associated sampling mechanism may not be available. An informed
guess may be the best that is available.

These four possibilities are not completely distinct; they overlap at the boundaries. A
modeling approach offers a framework of understanding from which to make an informed
judgment in all these situations.



References

Methodological References

Agresti, A. 2002. Categorical Data Analysis, 2nd edn. John Wiley.
Aitchison, J. 2003. The Statistical Analysis of Compositional Data. Blackburn Press.
Aldrich, J. 1995. Correlations genuine and spurious in Pearson and Yule. Statistical Science 10:

364–76.
Ambroise, C. and McLachlan, G. J. 2002. Selection bias in gene extraction on the basis of microarray

gene-expression data. PNAS 99: 6262–6.
Andersen, B. 1990. Methodological Errors in Medical Research: An Incomplete Catalogue. Blackwell

Scientific.
Barnett, V. 2002. Sample Survey: Principles & Methods, 2nd edn. Arnold Publishers.
Bartholemew, D. 2004. Measuring Intelligence. Facts and Fallacies. Cambridge University Press.
Bates, D. 2005. Fitting linear mixed models in R. R News 5(1): 27–30.
Bates, D. M. and DebRoy, S. 2003. Converting a large R package to S4 classes and meth-

ods. In K. Hornik, F. Leisch and A. Zeileis (eds), Proceedings of the 3rd International Work-
shop on Distributed Statistical Computing (DSC 2003). http://www.ci.tuwien. ac.at/
Conferences/DSC-2003/Proceedings/

Bates, D. M. and Watts, D. G. 1988. Nonlinear Regression Analysis and Its Applications. John Wiley.
Belson, W. A. 1959. Matching and prediction on the principle of biological classification. Applied

Statistics 8: 65–75.
Berk, R. A. 2008. Statistical Learning from a Regression Perspective. Springer.
Bickel, P. J., Hammel, E. A. and O’Connell, J. W. 1975. Sex bias in graduate admissions: data from

Berkeley. Science 187: 398–403.
Bland, M. and Altman, D. 2005. Do the left-handed die young? Significance 2: 166–70.
Bolker, B. M. 2008. Ecological Models and Data in R. Princeton University Press.
Box, G. E. P. and Cox, D. R. 1964. An analysis of transformations (with discussion). Journal of the

Royal Statistical Society B 26: 211–52.
Braun, W. J. and Murdoch, D. J. 2007. A First Course in Statistical Programming with R. Cambridge

University Press.
Breiman, L. 2001. Statistical modeling: the two cultures. Statistical Science 16: 199–215.
Brockwell, P. and Davis, R. A. 2002. Time Series: Theory and Methods, 2nd edn. Springer.
Canty, A. J. 2002. Resampling methods in R: the boot package. R News 2/3: 2–7.
Carroll, R. 2004. Measuring diet. Texas A & M Distinguished Lecturer Series. http://stat.
tamu.edu/˜carroll/talks.php

Carroll, R. J., Ruppert, D. and Stefanski, L. A. 2006. Measurement Error in Nonlinear Models: A
Modern Perspective, 2nd edn. Chapman and Hall/CRC.

Chalmers, I. and Altman, D. G. 1995. Systematic Reviews. BMJ Publishing Group.

http://www.ci.tuwien.
ac.at/Conferences/DSC-2003/Proceedings/
ac.at/Conferences/DSC-2003/Proceedings/
http://stat.tamu.edu/protect unhbox voidb@x penalty @M  {}carroll/talks.php
http://stat.tamu.edu/protect unhbox voidb@x penalty @M  {}carroll/talks.php


496 References

Chambers, J. M. 2007. Software for Data Analysis: Programming with R. Springer.
Chanter, D. O. 1981. The use and misuse of regression methods in crop modelling. In D. A. Rose and

D. A. Charles-Edwards (eds), Mathematics and Plant Physiology. Academic Press.
Chatfield, C. 2002. Confessions of a statistician. The Statistician 51: 1–20.
Chatfield, C. 2003a. The Analysis of Time Series: An Introduction, 6th edn. Chapman and Hall.
Chatfield, C. 2003b. Problem Solving. A Statistician’s Guide, 2nd edn. Chapman and Hall/CRC.
Clarke, D. 1968. Analytical Archaeology. Methuen.
Cleveland, W. S. 1981. Lowess: a program for smoothing scatterplots by robust locally weighted

regression. The American Statistician 35: 54.
Cleveland, W. S. 1993. Visualizing Data. Hobart Press.
Cleveland, W. S. 1994. The Elements of Graphing Data, revised edn. Hobart Press.
Cochran, W. G. and Cox, G. M. 1957. Experimental Designs, 2nd edn. John Wiley.
Collett, D. 2003. Modelling Survival Data in Medical Research, 2nd edn. Chapman and Hall.
Cook, D. and Swayne, D. F. 2007. Interactive and Dynamic Graphics for Data Analysis. Springer.
Cook, R. D. and Weisberg, S. 1999. Applied Regression Including Computing and Graphics. John

Wiley.
Cox, D. R. 1958. Planning of Experiments. John Wiley.
Cox, D. R. and Reid, N. 2000. Theory of the Design of Experiments. Chapman and Hall.
Cox, D. R. and Wermuth, N. 1996. Multivariate Dependencies: Models, Analysis and Interpretation.

Chapman and Hall.
Cox, T. F. and Cox, M. A. A. 2001. Multidimensional Scaling, 2nd edn. Chapman and Hall.
Dalgaard, P. 2008. Introductory Statistics with R, 2nd edn. Springer.
Davison, A. C. and Hinkley, D. V. 1997. Bootstrap Methods and Their Application. Cambridge

University Press.
Dehejia, R. H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the

evaluation of training programs. Journal of the American Statistical Association 94: 1053–62.
Diggle, P. 1990. Time Series: A Biostatistical Introduction. Clarendon Press.
Diggle, P. J., Heagerty, P. J., Liang, K.-Y. and Zeger, S. L. 2002. Analysis of Longitudinal Data, 2nd

edn. Clarendon Press.
Dobson, A. J. 2001. An Introduction to Generalized Linear Models, 2nd edn. Chapman and Hall.
Donner, A. and Klar, N. 2000. Design and Analysis of Cluster Randomization Trials in Health

Research. Edward Arnold.
Durbin, R. S., Eddy, A., Krogh, A. and Mitchison, G. 1998. Biological Sequence Analysis. Cambridge

University Press.
Edwards, D. 2000. Introduction to Graphical Modelling, 2nd edn. Springer.
Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. 2003. Least angle regression. http://www-
stat.stanford.edu/˜hastie/Papers/LARS/LeastAngle_2002.pdf

Efron, B. and Tibshirani, R. 1993. An Introduction to the Bootstrap. Chapman and Hall.
Eubank, R. L. 1999. Nonparametric Regression and Spline Smoothing, 2nd edn. Marcel Dekker.
Ewens, W. J. and Grant, G. R. 2005. Statistical Methods in Bioinformatics: an Introduction, 2nd edn.

Springer.
Fan, J. and Gijbels, I. 1996. Local Polynomial Modelling and Its Applications. Chapman and Hall.
Faraway, J. J. 2004. Linear Models with R. Chapman and Hall/CRC.
Faraway, J. J. 2006. Extending the Linear Model with R. Generalized Linear, Mixed Effects and

Nonparametric Regression Models. Chapman and Hall/CRC.
Finney, D. J. 1978. Statistical Methods in Bioassay, 3rd edn. Macmillan.
Fisher, R. A. 1935. The Design of Experiments. Oliver and Boyd (7th edn, 1960).
Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. Sage Books.

http://www-
stat.stanford.edu/protect unhbox voidb@x penalty @M  {}hastie/Papers/LARS/LeastAngle_2002.pdf


References 497

Gardner, M. J., Altman, D. G., Jones, D. R. and Machin, D. 1983. Is the statistical assessment of
papers submitted to the British Medical Journal effective? British Medical Journal 286: 1485–8.

Gaver, D. P., Draper, D. P., Goel, K. P., Greenhouse, J. B., Hedges, L. V., Morris, C. N. and Waternaux,
C. 1992. Combining Information: Statistical Issues and Opportunities for Research. National
Research Council, National Academy Press.

Gelman, A. and Hill, J. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press.

Gelman, A. B., Carlin, J. S., Stern, H. S. and Rubin, D. B. 2003. Bayesian Data Analysis, 2nd edn.
Chapman and Hall/CRC.

Gentleman, R. 2008. R Programming for Bioinformatics. Chapman and Hall/CRC.
Gentleman, R. and Lang, D. 2004. Statistical analyses and reproducible research. Bioconductor

Project Working Papers. Working Paper 2. http://www.bepress. com/bioconductor/
paper2

Gentleman, R., Carey, V., Huber, W., Irizarry, R. and Dudoit, S. 2005. Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor. Springer.

Gigerenzer, G. 1998. We need statistical thinking, not statistical rituals. Behavioural and Brain
Sciences 21: 199–200.

Gigerenzer, G. 2002. Reckoning with Risk: Learning to Live with Uncertainty. Penguin Books.
Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J. and Krüger, L. 1989. The Empire of

Chance. Cambridge University Press.
Gill, J. 2008. Bayesian Methods: A Social and Behavioral Sciences Approach, 2nd edn. Chapman

and Hall/CRC.
Goldstein, H. 1995. Multilevel Statistical Models. Arnold. http://www.arnoldpublishers.
com/support/goldstein.htm

Gordon, A. D. 1999. Classification, 2nd edn. Chapman and Hall/CRC.
Gourieroux, C. 1997. ARCH Models and Financial Applications. Springer.
Hall, P. 2001. Biometrika centenary: nonparametrics. Biometrika 88: 143–65.
Harlow, L. L., Mulaik, S. A. and Steiger, J. H. (eds) 1997. What If There Were No Significance Tests?

Lawrence Erlbaum Associates.
Harrell, F. E. 2001. Regression Modelling Strategies, with Applications to Linear Models, Logistic

Regression and Survival Analysis. Springer.
Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learning. Data Mining,

Inference and Prediction, 2nd edn. Springer.
Hauck, W. W. J. and Donner, A. 1977. Wald’s test as applied to hypotheses in logit analysis. Journal

of the American Statistical Association 72: 851–3.
Hoaglin, D. C. 2003. John W. Tukey and data analysis. Statistical Science 18: 311–18.
Hyndman, R. J. and Khandakar, Y. 2008. Automatic time series forecasting: the forecast package for

R. Journal of Statistical Software 27(3): 1–22. http://www.jstatsoft.org/v27/i03
Hyndman, R. J., Koehler, A. B., Snyder, R. D. and Grose, S. 2002. A state space framework for

automatic forecasting using exponential smoothing methods. International Journal of Forecasting
18: 439–54.

Hyndman, R. J., Koehler, A. B., Ord, J. K. and Snyder, R. D. 2008. Forecasting with Exponential
Smoothing: The State Space Approach. Springer.

Ihaka, R. and Gentleman, R. 1996. R: A language for data analysis and graphics. Journal of Compu-
tational and Graphical Statistics 5: 299–314.

Izenman, A. J. 2008. Modern Multivariate Statistical Techniques: Regression, Classification, and
Manifold Learning. Springer.

http://www.bepress.
com/bioconductor/paper2
com/bioconductor/paper2
http://www.arnoldpublishers.
com/support/goldstein.htm
http://www.jstatsoft.org/v27/i03


498 References

Jackson, R., Broad, J., Connor, J. and Wells, S. 2005. Alcohol and ischaemic heart disease: probably
no free lunch. The Lancet 366: 1911–12.

Johnson, D. H. 1995. Statistical sirens: the allure of nonparametrics. Ecology 76: 1998–2000.
Krantz, D. H. 1999. The null hypothesis testing controversy in psychology. Journal of the American

Statistical Association 44: 1372–81.
Krzanowski, W. J. 2000. Principles of Multivariate Analysis. A User’s Perspective, revised edn.

Clarendon Press.
Leavitt, S. D. and Dubner, S. J. 2005. Freakonomics. A Rogue Economist Explores the Hidden Side

of Everything. William Morrow.
Leek, J. T. and Storey, J. D. 2007. Capturing heterogeneity in gene expression studies by surrogate

variable analysis. PLoS Genet 3(9): e161. doi: 10.1371/journal.pgen.0030161.
Leisch, F. 2002. Sweave User Manual. http://www.ci.tuwien.ac.at/˜leisch/Sweave
Liaw, A. and Wiener, M. 2002. Classification and regression by randomforest. R News 2(3): 18–22.
Lim, T.-S. and Loh, W.-Y. 2000. A comparison of prediction accuracy, complexity, and training time

of thirty-three old and new classification algorithms. Machine Learning 40: 203–28.
Lumley, T. 2004a. Programmers’ niche: a simple class, in S3 and S4. R News 4(1): 33–6.
Lumley, T. 2004b. The survival package. R News 4(1): 26–8.
Maindonald, J. H. 1984. Statistical Computation. John Wiley.
Maindonald, J. H. 1992. Statistical design, analysis and presentation issues. New Zealand Journal of

Agricultural Research 35: 121–41.
Maindonald, J. H. 2003. The role of models in predictive validation. Invited Paper.
Maindonald, J. 2006. Data mining methodological weaknesses and suggested fixes. In P. Christen,

P. J. Kennedy, L. Jiuyong, S. J. Simoff and G. J. Williams (eds), Fifth Australasian Data Mining
Conference (AusDM2006), volume 61 of CRPIT , pp. 9–16. ACS, Sydney, Australia. http://
crpit.com/abstracts/CRPITV61Maindonald.html

Maindonald, J. H. 2008. Using R for data analysis and graphics.
http://wwwmaths.anu.edu.au/˜johnm/r/usingR.pdf

Maindonald, J. H. and Burden, C. J. 2005. Selection bias in plots of microarray or other data that have
been sampled from a high-dimensional space. In Proceedings of 12th Computational Techniques
and Applications Conference CTAC-2004, volume 46, pp. C59–C74. http://www.maths.
anu.edu.au/˜johnm/dm/ausdm06/ausdm06-jm.pdf

Maindonald, J. H. and Cox, N. R. 1984. Use of statistical evidence in some recent issues of DSIR
agricultural journals. New Zealand Journal of Agricultural Research 27: 597– 610.

Maindonald, J. H., Waddell, B. C. and Petry, R. J. 2001. Apple cultivar effects on codling moth
(Lepidoptera: Tortricidae) egg mortality following fumigation with methyl bromide. Postharvest
Biology and Technology 22: 99–110.

Manly, B. F. J. 2005. Multivariate Statistical Methods. A Primer, 3rd edn. Chapman & Hall/CRC.
McCullagh, P. and Nelder, J. A. 1989. Generalized Linear Models, 2nd edn. Chapman and Hall.
Meyer, D. 2001. Support vector machines. R News 1(3): 23–6.
Miller, R. G. 1986. Beyond ANOVA, Basics of Applied Statistics. John Wiley.
Muenchen, R. A. 2008. R for SAS and SPSS Users. Springer.
Murrell, P. 2005. R Graphics. Chapman and Hall/CRC.
http://www.stat.auckland.ac.nz/˜paul/RGraphics/rgraphics.html

Myers, R. H. 1990. Classical and Modern Regression with Applications, 2nd edn. Brooks Cole.
Nelder, J. A. 1999. From statistics to statistical science. Journal of the Royal Statistical Society, Series

D 48: 257–67.
Nicholls, N. 2000. The insignificance of significance testing. Bulletin of the American Meteorological

Society 81: 981–6.

http://www.ci.tuwien.ac.at/protect unhbox voidb@x penalty @M  {}leisch/Sweave
http://crpit.com/abstracts/CRPITV61Maindonald.html
http://crpit.com/abstracts/CRPITV61Maindonald.html
http://wwwmaths.anu.edu.au/protect unhbox voidb@x penalty @M  {}johnm/r/usingR.pdf
http://www.maths.anu.edu.au/protect unhbox voidb@x penalty @M  {}johnm/dm/ausdm06/ausdm06-jm.pdf
http://www.maths.anu.edu.au/protect unhbox voidb@x penalty @M  {}johnm/dm/ausdm06/ausdm06-jm.pdf
http://www.stat.auckland.ac.nz/protect unhbox voidb@x penalty @M  {}paul/RGraphics/rgraphics.html


References 499

Ord, J. K., Koehler, A. B. and Snyder, R. D. 1997. Estimation and prediction for a class of dynamic
nonlinear statistical models. Journal of the American Statistical Association 92: 1621–9.

Paradis, E. 2006. Analysis of Phylogenetics and Evolution with R. Springer.
Payne, R. W., Lane, P. W., Digby, P. G. N., Harding, S. A., Leech, P. K., Morgan, G. W., Todd, A. D.,

Thompson, R., Tunnicliffe Wilson, G., Welham, S. J. and White, R. P. 1997. Genstat 5 Release 3
Reference Manual. Oxford University Press.

Pinheiro, J. C. and Bates, D. M. 2000. Mixed Effects Models in S and S-PLUS. Springer.
R Development Core Team. 2009a. An introduction to R. The most recent version is available from

CRAN sites. http://cran.r-project.org
R Development Core Team. 2009b. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org

R Development Core Team. 2009c. R Language Definition. Available from CRAN sites.
Ramsay, J. and Silverman, B. 2002. Applied Functional Data Analysis. Springer.
Rao, C. and Wu, Y. 2001. On model selection (with discussion). In P. Lahiri (ed.), Model Selection

volume 38 of IMS Lecture Notes – Monograph Series, pp. 1–64. Institute of Mathematical Statistics.
Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge University Press.
Rosenbaum, P. R. 1999. Choice as an alternative to control in observational studies. Statistical Science

14: 259–78. With following discussion, pp. 279–304.
Rosenbaum, P. R. 2002. Observational Studies, 2nd edn. Springer.
Rosenbaum, P. R. 2005. Reasons for effects. Chance 18: 5–10.
Rosenbaum, P. and Rubin, D. 1983. The central role of the propensity score in observational studies

for causal effects. Biometrika 70: 41–55.
Sammon, J. W. 1969. A non-linear mapping for data structure analysis. IEEE Transactions on

Computers C-18: 401–9.
Sarkar, D. 2002. Lattice. R News 2(2): 19–23.
Sarkar, D. 2007. Lattice: Multivariate Data Visualization with R. Springer. http://lmdvr.
r-forge.r-project.org/figures/figures.html

Schatzkin, A., Kipnis, V., Carroll, R., Midthune, D., Subar, A., Bingham, S., Schoeller, D., Troiano,
R. and Freedman, L. 2003. A comparison of a food frequency questionnaire with a 24-hour recall
for use in an epidemiological cohort study: results from the biomarker-based observing protein
and energy nutrition (open) study. International Journal of Epidemiology 32: 1054–62.

Schmidt-Nielsen, K. 1984. Scaling. Why Is Animal Size So Important? Cambridge University Press.
Senn, S. 2003. Dicing with Death: Chance, Risk and Health. Cambridge University Press.
Sharp, S. J., Thompson, S. G. and Altman, D. G. 1996. The relation between treatment benefit and

underlying risk in meta-analysis. British Medical Journal 313: 735–8.
Shumway, R. and Stoffer, D. 2006. Time Series Analysis and Its Applications: With R Examples.

Springer.
Simpson, E. H. 1951. The interpretation of interaction in contingency tables. Journal of the Royal

Statistical Society, Series B 13: 238–41.
Smyth, G. K. 2004. Linear models and empirical Bayes methods for assessing differential expression

in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3 (1),
Article 3.

Snijders, T. A. B. and Bosker, R. J. 1999. Multilevel Analysis. An Introduction to Basic and Advanced
Multilevel Modelling. Sage Books.

Spector, P. 2008. Data Manipulation with R. Springer.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. 2002. Bayesian measures of

model complexity and fit. Journal of the Royal Statistical Society, Series B 64: 583–616. With
following discussion, pp. 616–39.

http://cran.r-project.org
http://www.R-project.org
http://lmdvr.
r-forge.r-project.org/figures/figures.html


500 References

Sprent, P. 1966. A generalized least squares approach to linear functional relationships. Journal of
the Royal Statistical Society, Series B 28: 278–88. With following discussion, pp. 288–97.

Steel, R. G. D., Torrie, J. H. and Dickie, D. A. 1993. Principles and Procedures of Statistics, A
Biometrical Approach, 3rd edn. McGraw-Hill.

Stidd, C. K. 1953. Cube-root-normal precipitation distributions. Transactions of the American Geo-
physical Union 34: 31–5.

Streiner, D. L. and Norman, G. R. 2003. Health Measurement Scales. A Practical Guide to their
Development and Use, 3rd edn. Oxford University Press.

Talbot, M. 1984. Yield variability of crop varieties in the U.K. Journal of the Agricultural Society of
Cambridge 102: 315–21.

Therneau, T. M. and Atkinson, E. J. 1997. An introduction to recursive partitioning
using the rpart routines. Technical Report 61, Department of Health Science Research,
Mayo Clinic, Rochester, MN. http://mayoresearch.mayo.edu/mayo/research/
biostat/techreports. cfm

Therneau, T. M. and Grambsch, P. M. 2001. Modeling Survival Data: Extending the Cox Model.
Springer.

Tufte, E. R. 1997. Visual Explanations. Graphics Press.
Tukey, J. W. 1991. The philosophy of multiple comparisons. Statistical Science 6: 100–16.
Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S. and Thompson, S. G. 2009. Bias modelling in

evidence synthesis. Journal of the Royal Statistical Society, Series A 172(1): 21–47. http://
ideas.repec.org/a/bla/jorssa/v172y2009i1p21-47.html

Vaida, F. and Blanchard, S. 2005. Conditional Akaike information for mixed-effects models.
Biometrika 92: 351–70.

Venables, W. N. 1998. Exegeses on linear models. In Proceedings of the 1998 International S-PLUS
User Conference. http://www.stats.ox.ac.uk/pub/MASS3/Compl.html

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn. Springer. See
also R Complements to Modern Applied Statistics with S. http://www.stats. ox.ac.uk/
pub/MASS4/

Wainer, H. 1997. Visual Revelations. Springer.
Weisberg, S. 1985. Applied Linear Regression, 2nd edn. John Wiley.
Welch, B. L. 1949. Further note on Mrs. Aspin’s tables and on certain approximations to the tabled

function. Biometrika 36: 293–6.
Wickham, H. 2009. ggplot2:Elegant Graphics for Data Analysis. Springer. http://had.co. nz/
ggplot2/

Wilkinson, L. 2005. The Grammar of Graphics. Springer.
Wilkinson, L. and Task Force on Statistical Inference. 1999. Statistical methods in psychology

journals: guidelines and explanation. American Psychologist 54: 594–604.
Williams, E. R., Matheson, A. C. and Harwood, C. E. 2002. Experimental Design and Analysis for

Use in Tree Improvement. CSIRO Information Services. Revised.
Williams, G. P. 1983. Improper use of regression equations in the earth sciences. Geology 11:

195–7.
Wonnacott, T. H. and Wonnacott, R. 1990. Introductory Statistics, 5th edn. John Wiley.
Wood, S. N. 2001. mgcv: GAMs and generalized ridge regression for R. R News 1(2): 20–25.
Wood, S. N. 2006. Generalized Additive Models. An Introduction with R. Chapman and Hall/CRC.
Würtz, D. 2004. Rmetrics: An Environment for Teaching Financial Engineering and Computational

Finance with R. Rmetrics, ITP, ETH Zürich, Switzerland. http://www.rmetrics.org
Xie, Y. and Cheng, X. 2008. animation: A package for statistical animations. R News 8(2):

23–7.

http://mayoresearch.mayo.edu/mayo/research/biostat/techreports.
http://mayoresearch.mayo.edu/mayo/research/biostat/techreports.
cfm
http://ideas.repec.org/a/bla/jorssa/v172y2009i1p21-47.html
http://ideas.repec.org/a/bla/jorssa/v172y2009i1p21-47.html
http://www.stats.ox.ac.uk/pub/MASS3/Compl.html
http://www.stats.
ox.ac.uk/pub/MASS4/
ox.ac.uk/pub/MASS4/
http://had.co.
nz/ggplot2/
nz/ggplot2/
http://www.rmetrics.org


References 501

Young, G. and Smith, R. L. 2005. Essentials of Statistical Inference. Cambridge University Press.
Zeger, S. L., Thomas, D., Dominici, F., Samet, J. M., Schwartz, J., Dockery, D. and Cohen, A. 2000.

Exposure measurement error in time-series studies of air pollution: concepts and consequences.
Environmental Health Perspectives 108: 419–26. See also vol. 109, p. A517.

Zhang, H. and Singer, B. 1999. Recursive Partitioning in the Health Sciences. Springer.
Zhu, X., Ambroise, C. and McLachlan, G. J. 2006. Selection bias in working with the top genes in

supervised classification of tissue samples. Statistical Methodology 3: 29–41.

References for Data Sets

Andrews, D. F. and Herzberg, A. M. 1985. Data. A Collection of Problems from Many Fields for the
Student and Research Worker. Springer.

Ash, J. and Helman, C. 1990. Floristics and vegetation biomass of a forest catchment, Kioloa, south
coastal N.S.W. Cunninghamia 2: 167–82.

Blake, C. and Merz, C. 1998. UCI repository of machine learning databases. http://www.ics.
uci.edu/˜mlearn/MLRepository.html

Boot, H. M. and Maindonald, J. 2008. New estimates of age- and sex-specific earnings and the
male–female earnings gap in the British cotton industry, 1833–1906. Economic History Review
61: 380–408.

Burns, N. R., Nettlebeck, T., White, M. and Willson, J. 1999. Effects of car window tinting on visual
performance: a comparison of elderly and young drivers. Ergonomics 42: 428–43.

Bussolari, S. 1987. Human factors of long-distance human-powered aircraft flights. Human Power 5:
8–12.

Charig, C. R. 1986. Comparison of treatment of renal calculi by operative surgery, percutaneous
nephrolithotomy, and extracorporeal shock wave lithotripsy. British Medical Journal 292: 879–82.

Christie, M. 2000. The Ozone Layer: A Philosophy of Science Perspective. Cambridge University
Press.

Chu, I., Secours, V., Villeneuve, D. C., Valli, V. E., Nakamura, A., Colin, D., Clegg, D. J. and Arnold,
E. P. 1988. Reproduction study of toxaphene in the rat. Journal of Environmental Science and
Health Part B. Pesticides and Food Contamination 23: 101–26.

Clutton-Brock, T. H., O’Riain, M. J., Brotherton, P. N. M., Gaynor, D., Kansky, R., Griffin, A. S. and
Manser, M. 1999. Selfish sentinels in cooperative mammals. Science, pp. 1640–44.

Cohen, P. 1996. Pain discriminates between the sexes. New Scientist 2054: 16.
Daniels, M., Devlin, B. and Roeder, K. 1997. Of genes and IQ. In B. Devlin, S. Fienberg and K. Roeder

(eds), Intelligence, Genes and Success, Chapter 3. Springer.
Darwin, C. 1877. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. Appleton and

Company.
Dehejia, R. H. and Wahba, S. 1999. Causal effects in non-experimental studies: re-evaluating the

evaluation of training programs. Journal of the American Statistical Association 94: 1053–62.
Ezzet, F. and Whitehead, J. 1991. A random effects model for ordinal responses from a crossover

trial. Statistics in Medicine 10: 901–7.
Farmer, C. 2005. Another look at Meyer and Finney’s ‘who wants airbags?’ Chance 19: 15–22.
Gihr, M. and Pilleri, G. 1969. Anatomy and biometry of Stenella and Delphinus. In G. Pilleri (ed.),

Investigations on Cetacea. Hirnanatomisches Institute der Universität Bern.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H.,

Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. and Lander, E. S. 1999. Molecular
classification of cancer: class discovery and class prediction by gene expression monitoring. Science
286: 531–7.

http://www.ics.
uci.edu/protect unhbox voidb@x penalty @M  {}mlearn/MLRepository.html


502 References

Gordon, N. C., Gear, R. W., Heller, P. H. and Levine, J. D. 1995. Enhancement of morphine analgesia
by the GABA[subscript B] agonist baclofen. Neuroscience 69: 345–9.

Gordon, W. 1894. Our Country’s Birds and How to Know Them. Day and Son.
Grasso, L. C., Maindonald, J., Rudd, S., Hayward, D. C., Saint, R., Miller, D. J. and Ball, E. E. 2008.

Microarray analysis identifies candidate genes for key roles in coral development. BMC Genomics
9: 540.

Guy, W. A. 1882. Two hundred and fifty years of small pox in London, together with a supplement
relating to England and Wales. Journal of the Royal Statistical Society 45: 399–443.

Hales, S., de Wet, N., Maindonald, J. and Woodward, A. 2002. Potential effect of population and
climate change global, distribution of dengue fever: an empirical model. The Lancet 360: 830–34.

Hall, P. 2003. A possum’s tale – how statistics revealed a new mammal species. Chance 16: 8–13.
Harker, F. R. and Maindonald, J. H. 1994. Ripening of nectarine fruit. Plant Physiology 106: 165–71.
Hobson, J. A. 1988. The Dreaming Brain. Basic Books.
Hunter, D. 2000. The conservation and demography of the southern corroboree frog (Pseudophryne

corroboree). MSc, University of Canberra.
Jouzel, J. et al. 2007. EPICA Dome C ice core 800kyr deuterium data and temperature estimates.

IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2007-091.
NOAA/NCDC Paleoclimatology Program, Boulder, CO, USA.

King, D. A. 1998. Relationship between crown architecture and branch orientation in rain forest trees.
Annals of Botany 82: 1–7.

King, D. A. and Maindonald, J. H. 1999. Tree architecture in relation to leaf dimensions and tree
stature in temperate and tropical rain forests. Journal of Ecology 87: 1012–24.

Lalonde, R. 1986. Evaluating the economic evaluations of training programs. American Economic
Review 76: 604–20.

Latter, O. H. 1902. The egg of cuculus canorus. An inquiry into the dimensions of the cuckoo’s
egg and the relation of the variations to the size of the eggs of the foster-parent, with notes on
coloration, &c. Biometrika 1: 164–76.

Linacre, E. 1992. Climate Data and Resources. A Reference and Guide. Routledge.
Linacre, E. and Geerts, B. 1997. Climates and Weather Explained. Routledge.
Linde, K., Streng, A., Jurgens, S., Hoppe, A., Brinkhaus, B., Witt, C., Wagenpfeil, S., Pfaffenrath,

V., Hammes, M., Weidenhammer, W., Willich, S. and Melchart, D. 2005. Acupuncture for patients
with migraine. A randomized controlled trial. Journal of the American Medical Association 293:
2118–25.

Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B. and Donnelly, C. F. 1995. Morphological
variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby (Phalan-
geridae: Marsupiala). Australian Journal of Zoology 43: 449–58.

Lüthi, D., Floch, M. L., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel,
J., Fischer, H., Kawamura, K. and Stocker, T. 2008. High-resolution carbon dioxide concentration
record 650,000–800,000 years before present. Nature 453: 379–82.

Marland, G., Boden, T. A. and Andres, R. J. 2003. Global, regional, and national CO2 emissions. In
Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center,
Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA. http://
cdiac.esd.ornl.gov/

Matthews, D. E. and Farewell, V. T. 1996. Using and Understanding Medical Statistics. Karger.
McLellan, E. A., Medline, A. and Bird, R. P. 1991. Dose response and proliferative characteristics of

aberrant crypt foci: putative preneoplastic lesions in rat colon. Carcinogenesis 12: 2093–8.
McLeod, C. C. 1982. Effect of rates of seeding on barley grown for grain. New Zealand Journal of

Agriculture 10: 133–6.

http://cdiac.esd.ornl.gov/
http://cdiac.esd.ornl.gov/


References 503

Meyer, M. 2006. Commentary on “another look at Meyer and Finney’s ‘who wants airbags?”’ Chance
19: 23–2.

Meyer, M. and Finney, T. 2005. Who wants airbags? Chance 18: 3–16.
Mitchell, B. R. 1988. British Historical Statistics. Cambridge University Press.
Nadel, E. and Bussolari, S. 1988. The Daedalus project: physiological problems and solutions.

American Scientist 76: 351–60.
Newton, A. 1893–1896. Cuckoos. In A. Newton and H. Gadow (eds), Dictionary of Birds. A.& C.

Black.
Nicholls, N., Lavery, B., Frederiksen, C. and Drosdowsky, W. 1996. Recent apparent changes in

relationships between the El Niño, southern oscillation and Australian rainfall and temperature.
Geophysical Research Letters 23: 3357–60.

Nightingale, F. 1871. Notes on Lying-in Institutions. Longmans, Green and Co.
Perrine, F. M., Prayitno, J., Weinman, J. J., Dazzo, F. B. and Rolfe, B. 2001. Rhizobium plasmids

are involved in the inhibition or stimulation of rice growth and development. Australian Journal
of Plant Physiology 28: 923–7.

Roberts, H. V. 1974. Conversational Statistics. Hewlett-Packard University Business Series. The
Scientific Press.

Shanklin, J. 2001. Ozone at Halley, Rothera and Vernadsky/Faraday. www.antarctica.ac. uk/
met/jds/ozone/

Sharp, W. D. and Clague, D. A. 2006. 50-ma initiation of Hawaiian–Emperor bend records major
change in Pacific Plate motion. Science 313: 1281–4.

Snelgar, W. P., Manson, P. J. and Martin, P. J. 1992. Influence of time of shading on flowering and
yield of kiwifruit vines. Journal of Horticultural Science 67: 481–7.

Stewardson, C. L., Hemsley, S., Meyer, M. A., Canfield, P. J. and Maindonald, J. H. 1999. Gross
and microscopic visceral anatomy of the male Cape fur seal, Arctocephalus pusillus pusillus
(Pinnipedia: Otariidae), with reference to organ size and growth. Journal of Anatomy (Cambridge)
195: 235–55. (WWF project ZA-348.)

Stewart, K. M., Van Toor, R. F. and Crosbie, S. F. 1988. Control of grass grub (Coleoptera: Scarabaei-
dae) with rollers of different design. New Zealand Journal of Experimental Agriculture 16:
141–50.

Stiell, I. G., Wells, G. A., Vandemheen, K., Clement, C., Lesiuk, H., Laupacis, A., McKnight, R. D.,
Verbeek, R., Brison, R., Cass, D., Eisenhauer, M. A., Greenberg, G. H. and Worthington, J. F.
2001. The Canadian CT head rule for patients with minor head injury. The Lancet 357: 1391–6.

Stocks, P. 1942. Measles and whooping cough during the dispersal of 1939–1940. Journal of the
Royal Statistical Society 105: 259–91.

Telford, R. D. and Cunningham, R. B. 1991. Sex, sport and body-size dependency of hematology in
highly trained athletes. Medicine and Science in Sports and Exercise 23: 788–794.

Thall, P. F. and Vail, S. C. 1990. Some covariance models for longitudinal count data. Biometrics 46:
657–71.

Tippett, L. H. C. 1931. The Methods of Statistics. Williams and Norgate.
Wainright, P., Pelkman, C. and Wahlsten, D. 1989. The quantitative relationship between nutritional

effects on preweaning growth and behavioral development in mice. Developmental Psychobiology
22: 183–93.

References for Packages

base: base, datasets, grDevices, graphics, grid, methods, splines, stats, stats4, tcltk, tools, utils,
R Development Core Team, 2008. R Foundation for Statistical Computing. http://www.
r-project.org

www.antarctica.ac.
uk/met/jds/ozone/
uk/met/jds/ozone/
http://www.
r-project.org


504 References

boot: Bootstrap R (S-Plus) Functions (Canty), Canty, A. and Ripley, B. 2008. (Version 1.2-34.) See
further Canty (2002).

car: Companion to Applied Regression, Fox, J. 2008. (V. 1.2-8.) http://socserv.socsci.
mcmaster.ca/jfox/

cluster: Cluster Analysis Basics and Extensions, Maechler, M., Rousseeuw, P., Struyf, A. and Hubert,
M. 2008. (V. 1.11.11.) Based on S original by P. Rousseeuw, A. Struyf and M. Hubert; initial R
port by K. Hornik.

colorRamps: Builds color tables, Keitt, T. 2007. (V. 2.2.)
compositions: Compositional Data Analysis, van den Boogaart, K. G., 2009. (V. 0.91-6.)
DAAG: Data Analysis And Graphics, Maindonald, J. and Braun, W. J. 2009. (V. 0.98.) http://
www.stats.uwo.ca/DAAG

DAAGxtras: Data sets and Functions, supplementary to DAAG, Maindonald, J. 2009. (R package
version 0.7-7.) http://www.maths.anu.edu.au/˜johnm

dichromat: Color schemes for dichromats, Lumley, T. 2007. (V. 1.2-3.) fgui: Automatic creation of
Graphical User Interfaces for command-line R packages, Hoffmann, T. J. 2009.

Forecasting (functions and datasets for forecasting): bundle of forecast, fma, Mcomp, expsmooth,
Hyndman, R. J. 2009. (R package version 1.24.) http://www.robhyndman. info/

Rlibrary/forecast/

foreign: Read Data from Minitab, S, SAS, SPSS, Stata, Systat, dBase, . . . , R-core, DebRoy, S., Bivand,
R. and others. 2008. (V. 0.8-33.) See COPYRIGHTS file in the sources for acknowledgments.

ggplot2: An implementation of the Grammar of Graphics, Wickham, H. 2009. (V. 0.8.3.) http://
had.co.nz/ggplot2/

golubEsets: exprSets for golub leukemia data, Golub, T. 2002. (V. 1.0.1.) Maintained by V.
Carey.

hddplot: Use known groups in high-dimensional data to derive scores for plots, Maindonald, J. H.
2006. (V. 0.5-0.) See further Maindonald and Burden (2005).

lattice: Lattice Graphics, Sarkar, D. 2009. (V. 0.17-20.) See further Sarkar (2002).
latticeExtra: Extra Graphical Utilities Based on Lattice, Sarkar, D. and Andrews, F. 2008. (V. 0.5-4.)

See further Sarkar (2002).
latticist: A Lattice-based tool for exploratory visualisation, Andrews, F. 2008. (R package version

0.9-40.) http://latticist.googlecode.com/
leaps: regression subset selection, Lumley, T. and Miller, A. 2009. (V. 2.8.) Compiled by T. Lumley;

Fortran code by A. Miller. See further Miller (1986).
lme4: Linear mixed-effects models using S4 classes, Bates, D., Maechler, M. and Dai, B. 2008.

(V. 0.999375-28.) See further Bates (2005).
MCMCpack: Markov chain Monte Carlo (MCMC) Package, Martin, A. D., Quinn, K. M. and Park,

J. H. 2009. (V. 0.9-6.)
MEMSS: Data sets from Mixed-effects Models in S, Bates, D. 2008. (V. 0.3-4.)
mgcv: GAMs and Generalized Ridge Regression for R, Wood, S. N. 2008. (V. 1.4-1.) See further

Wood (2001).
monoProc: strictly monotone smoothing procedure, Scheder, R. 2005. (V. 1.0-4.)
multtest: Resampling-based multiple hypothesis testing, Pollard, K. S., Ge, Y. and Dudoit, S. 2005.

(V. 1.8.0.)
nlme: Linear and nonlinear mixed effects models, Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and

R core team. 2008. (V. 3.1-89.) See further Pinheiro and Bates (2000).
oz: Plot the Australian coastline and states, Venables, W. N. and Hornik, K. 2007. (V. 1.0-16.) S

original by W. Venables; R port by K. Hornik.
playwith: A GUI for interactive plots using GTK+, Andrews, F. 2008. (R package version 0.9-43;

requires Gtk+.) http://playwith.googlecode.com/

http://socserv.socsci.
mcmaster.ca/jfox/
http://www.stats.uwo.ca/DAAG
http://www.stats.uwo.ca/DAAG
http://www.maths.anu.edu.au/protect unhbox voidb@x penalty @M  {}johnm
http://www.robhyndman.
info/Rlibrary/forecast/
info/Rlibrary/forecast/
http://had.co.nz/ggplot2/
http://had.co.nz/ggplot2/
http://latticist.googlecode.com/
http://playwith.googlecode.com/


References 505

randomForest: Classification and Regression, Liaw, A. and Wiener, M. 2008. (V. 4.5-30.) See further
Liaw and Wiener (2002).

rattle: A graphical user interface for data mining in R using GTK, Williams, G. 2009. (R package
version 2.4.54.) http://rattle.togaware.com/

RColorBrewer: ColorBrewer palettes, Neuwirth, E. 2007. (V. 1.0-2.)
reshape: Flexibly reshape data, Wickham, H. 2008. (V. 0.8.2.) http://had.co.nz/reshape
rpart: Recursive Partitioning, Therneau, T. M. and Atkinson, B. 2008. (V. 3.1-42.) R port by

B. Ripley.
survival: Survival analysis, including penalised likelihood., Therneau, T. and Lumley, T. 2008.

(V. 2.34-1.) S original by T. Therneau; R port by T. Lumley. See further Therneau and Grambsch
(2001) and Lumley (2004b).

tseries: Time series analysis and computational finance, Trapletti, A. and Hornik, K. 2008.
(V. 0.10-16.) Compiled by A. Trapletti.

VR packages: bundle of MASS, class, nnet, spatial, Venables, W. N. and Ripley, B. D. 2008.
(V. 7.2-44.) R port by B. Ripley, following earlier work by K. Hornik and A. Gebhardt. See
further Venables and Ripley (2002). http://www.stats.ox.ac.uk/pub/MASS4/

xtable: Export tables to LaTeX or HTML, Dahl, D. and others. 2008. (V. 1.5-4.)
Other packages and package bundles mentioned in the text are: ape (Paradis, E., Claude, J. and

Strimmer, K.), Deducer (GUI; Fellows, I.), Devore6 (Devore, J. L. and Bates, D.), dr (Weisberg, S.),
dse (package bundle; Gilbert, P.), fseries (Wuertz, D.), gam (Hastie, T.), JGR (Helbig, H. and
Urbanek, S.), lars (Hastie, T. and Efron, B.), KernSmooth (Wand, M. and Ripley, B.), locfit
(Loader, C.), MPV (Braun, W. J.; data sets from Montgomery, Peck and Vining), muhaz (Hess, K.
and Gentleman, R.), plyr (Wickham, H.), pmg (Verzani, J.), RODBC (Lapsley, M. and Ripley, B.
D.) and strucchange (Zeileis et al.). For more complete acknowledgments, see the help pages for
the individual packages. See also the information given by calling citation()with the package
name as character string argument.

References for Web Pages

Comprehensive R Archive Network.
http://cran.r-project.org/

CRAN Task Views.
http://cran.r-project.org/web/views/

ESS – Emacs Speaks Statistics.
http://ess.r-project.org/

fgui: Rapidly create a gui interface, Hoffmann, T. J. and Laird, N. M. 2009 (V.1.0-0)
http://www.people.fas.harvard.edu/˜tjhoffm/fgui.html

Gtk+. The development version is required for playwith; suggested for rattle.
http://downloads.sourceforge.net/gladewin32/

Machine Learning Repository.
http://www.ics.uci.edu/˜mlearn/MLRepository.html

R News.
http://cran.r-project.org/doc/Rnews/

S+, Tibco Spotfire S+ (formerly S-PLUS).
http://spotfire.tibco.com/

Tinn-R.
http://sourceforge.net/projects/tinn-r

http://rattle.togaware.com/
http://had.co.nz/reshape
http://www.stats.ox.ac.uk/pub/MASS4/
http://cran.r-project.org/
http://cran.r-project.org/web/views/
http://ess.r-project.org/
http://www.people.fas.harvard.edu/protect unhbox voidb@x penalty @M  {}tjhoffm/fgui.html
http://downloads.sourceforge.net/gladewin32/
http://www.ics.uci.edu/protect unhbox voidb@x penalty @M  {}mlearn/MLRepository.html
http://cran.r-project.org/doc/Rnews/
http://spotfire.tibco.com/
http://sourceforge.net/projects/tinn-r


506 References

Acknowledgments for use of data

We thank the following for permission to reproduce graphs or tables that have appeared in published
material: Journal of Ecology, for permission to reproduce Figure 12.5B, which is a redrawn version
of the fourth panel in Figure 3 in King and Maindonald (1999); Plant Physiology, in relation to the
right panel of Figure 2.6, which is a redrawn version of Figure 3 in Harker and Maindonald (1994),
copyrighted by the American Society of Plant Biologists; SIR Publishing (The Royal Society of New
Zealand), for permission to reproduce data in Subsection 3.1.1 from Stewart et al. (1988), Table 10.2
from Maindonald (1992), and Figure 10.4 which is similar to Figure 1 in Maindonald (1992); CSIRO
Publishing, for permission to reproduce (in Section 4.4) data that appear in Table 4 in Perrine et al.
(2001); Australian Journal of Zoology, for permission to reproduce a graph that is similar to a part of
Figure 2 in Lindenmayer et al. (1995); American Medical Association ( c©2005, All rights reserved),
for permission to use the data in Exercise 4.11 in Section 9, from Linde et al. (2005).

We acknowledge the help of the following individuals and organizations in making data available.

Darren Kriticos (CSIRO Division of Entomology): data framehouseprices. J. D. Shanklin (British

Antarctic Survey): ozone (Shanklin, 2001). W. S. Snelgar (HortResearch NZ): kiwishade (Snel-

gar et al., 1992). Francine Adams and supervisors Rosemary Martin and Murali Nayadu (all from

ANU):science. Jasmyn Lynch (ANU), for the rare and endangered plant species data in Subsection

4.3.1. D. B. Lindenmayer and coworkers (ANU): possum (Lindenmayer et al., 1995). D. A. King

(formerly ANU): leafshape and leafshape17 (King and Maindonald, 1999). R. F. Harker

(HortResearch NZ): fruitohms (Harker and Maindonald, 1994). E. Linacre (ANU): dewpoint

(Linacre, 1992, Linacre and Geerts, 1997). N. R. Burns (University of Adelaide): tinting (Burns

et al., 1999). M. Boot (ANU): wages1833 (Boot and Maindonald, 2008). J. Erickson (University

of Chicago) and A. H. Welsh (University of Southampton): anesthetic. D. Hunter (Univer-

sity of Canberra): frogs. Sharyn Wragg (formerly ANU): moths. Claudia Haarman (ANU), for

the flow inhibition data of Exercise 1 in Section 8.9. Melissa Manning (ANU): socsupport. J.

Ash (ANU): rainforest (Ash and Helman, 1990). Katharina Siebke and Susan von Cammerer

(ANU):leaftemp. Ranjana Bird (University of Manitoba), for the aberrant crypt foci data in Section

3.7. Australian Bureau of Meteorology: bomregions. Note the abbreviation ANU for Australian

National University.

Acknowledgments for data from web pages

(Help pages are for the DAAG package.)

bomregions: See help(bomregions) for details.
edcT and edcCO2: See help(edcT) and help(edcCO2) for details. See Jouzel et al.

(2007), Lüthi et al. (2008). The help pages for edcCO2 and edcT give additional
references and links.

hills2000: http://www.hillrunning.co.uk
hotspots, hotspots2006: See help(hotspots); Sharp and Clague (2006).
monica: http://www.ktl.fi/monica
nihills: http://www.nimra.org.uk/calendar.asp
ozone: See help(ozone); Shanklin (2001).
nswdemo, cps1, psid1, nswpsid1: See help(nswdemo); Dehejia and Wahba

(1999), Lalonde (1986).

http://www.hillrunning.co.uk
http://www.ktl.fi/monica
http://www.nimra.org.uk/calendar.asp


Index of R symbols and functions

R symbols
!, 447
+ − * /, 2, 444
. . ., 439–40
< <= == != > >= >= 11, 14
<−, 2
[, 11, 16, 453, 460
[[, 453, 460
#, 2, 435
$, 4, 460
%%, 153
%in%, 23
&, &&, 443
|, ||, 443
ˆ, 2

NA, 12–13, 24, 446–7
NaN, 13
Inf, 13
NULL, 13, 19, 439, 446, 460
TRUE, FALSE, 8, 10, 11
break, 24
for, 24–5
if, 23
in, 25
repeat, 24
while, 24

Functions
Functions that are not otherwise identified are

defined in the text.

.First, 433

.Last, 433

.M1, 373

.libPaths, 433

aaply (plyr)
adply (plyr)
abbreviate (base), 40, 41, 75
abline (graphics), 50, 78, 80, 110, 129, 145, 150,

157, 247, 248, 337, 370
abs (base), 129, 145, 168, 192, 194

accTrainTest (hddplot), 399
acf (stats), 138, 284, 289, 291, 293, 344
add1 (stats), 194, 195
additions, 465
addmargins (stats), 61–3
aes (ggplot2), 488, 490, 491
aggregate (stats), 17, 18, 63, 64, 247, 313, 444, 456
AIC (stats), 202
all (base), 19
all.vars (base), 230, 461, 462
anova (lme4), 121, 147, 172, 214, 226, 240, 241,

257, 265, 322, 329, 330, 342, 459
anova.lme (nlme), 446
any (base), 19, 446
aov (stats), 120, 158, 218, 221–3, 305, 308, 319,

321, 350
aovFbyrow (hddplot), 396
aperm (base), 61, 452
apply (base), 89, 139, 141, 157, 182, 247, 301, 323,

328, 344, 408, 409, 430, 456, 457, 470
apropos (utils), 7, 469
ar (stats), 286, 287
arcsin, 279
args (base), 19, 439, 440
ARIMA, 289, 290, 294, 296–8
arima (stats), 288, 289, 297, 302
arima.sim (stats), 243, 291
array (base), 60, 139
arrows (graphics), 29
as (methods), 450
asin, 279
as.character (base), 247, 444, 463, 486
as.data.frame (lme4), 199, 455
as.data.frame.table (base), 257, 456
as.Date (base), 54, 441–3, 458, 481
as.expression (base), 90, 475, 476, 484
as.factor (base), 376
as.integer (base), 101, 214, 274, 275, 442
as.list (multtest), 437
as.matrix (Matrix), 409, 412, 450
as.numeric (base), 247, 317, 413, 444
as.vector (Matrix), 157, 184, 208, 317, 349, 449



508 Index of R symbols and functions

attach (base), 17, 36, 39, 45, 75, 313, 393, 413, 430,
431

attr (base), 96, 312, 315, 443, 444
attributes (base), 349
auto.arima (forecast), 288–91, 293, 294, 296–8
axis (graphics), 25, 26, 48, 117, 293, 296, 317, 458,

475, 476
axis flip (ggplot2), 491

barchart (lattice), 32
bestsetNoise (DAAG), 197
binomial (stats), 247, 280
bmp (grDevices), 472
boot (boot), 130–2, 140, 156, 157
boot.ci (boot), 131, 132, 140, 156
bounce (DAAG), 458
box (graphics), 117
Box.test (stats), 297, 298, 301
boxcox (MASS), 161, 168
boxplot (graphics), 33, 47, 137, 313, 353, 394, 489
bs (splines), 242
bwplot (lattice), 32, 47, 52, 74, 76, 477

c (base), 2, 5, 6, 10–19, passim
C (stats), 295
call (base), 462, 463, 488
callsmooth, 429
cast (reshape), 454, 455
cat (base), 19, 256, 438, 470
cbind (base), 19, 169, 177, 251, 296, 297, 323, 388,

390, 444, 455
chisq.test (stats), 114, 116, 118
CIcurves, 230, 232
citation (utils), 468
class (base), 15, 22, 459, 460
cloglog, 279
cloud (lattice), 32, 379
cm.colors (grDevices), 474
cmdscale (stats), 384, 385, 409, 423
coef (lme4), 81, 150, 156, 169, 182, 183, 208, 215,

337, 340, 341, 459, 460
coefficients (stats), 459
col (base), 388, 390, 408, 420
colnames (base), 18, 19, 316, 370, 449, 458
colors (grDevices), 27, 28, 474
Commander (Rcmdr), 428
compareTreecalcs (DAAG), 367, 370
complete.cases (stats), 24, 38, 381, 383, 412, 447
confusion, 408
contour (graphics), 474
contr.sum (stats), 445
contr.treatment (stats), 445
coord equal (ggplot2), 491
cor (stats), 67, 68, 76, 132, 140, 172, 177, 201, 250,

251
cor.test (stats), 68, 113
cos (base), 27, 28
count.fields (utils), 435

cox.zph (survival), 278
coxph (survival), 277
crossprod (Matrix), 450
CrossTable (gmodels), 63
cumprod (base), 19
cumsum (base), 19
curve (graphics), 141, 464
cut (base), 101, 409, 423, 443, 475
CVbinary (DAAG), 255, 256, 388
cvdisc (hddplot), 402–4
CVlm (DAAG), 154
cvscores (hddplot), 404, 405

daisy (cluster), 384
data (utils), 9, 199, 302, 393, 408
data.frame (base), 3, 7, 88, 89, 101, 117, 119, 150,

156, 181, 228, 230, 232, 243, 270, 292, 328, 356,
360, 370, 383, 394, 395, 436, 437, 444, 450, 453,
484

datafile (DAAG), 433, 436
date (base), 443
dbConnect (RSQLite), 438
dbDisconnect (RSQLite), 438
dbDriver (RSQLite), 438
dbGetQuery (RSQLite), 438
dbinom (stats), 82
dbListTables (RSQLite), 438
dbWriteTable (RSQLite), 438
defectiveCVdisc (hddplot), 402
demo (utils), 25, 29, 474
density (stats), 45, 129, 250, 409, 462, 491
densityplot (lattice), 32, 53, 89, 94
deparse (base), 23, 476
detach (base), 17, 23, 39, 45, 75, 313, 393,

413
dev.copy (grDevices), 472
dev.off (grDevices), 31, 464, 472
dfbetas (stats), 185, 186, 191
dichromat (dichromat), 474
diff (base), 19, 288, 302, 441
dim (base), 24, 166, 375, 376, 402, 448–52
dimnames (base), 60, 197, 257, 291, 415, 449,

452
dir (base), 21, 431, 432
dist (stats), 384, 409
dist.dna (ape), 384, 409
divideUp (hddplot), 399, 400
dnorm (stats), 85, 87, 133
do.call (base), 462
dotchart (graphics), 39
dotplot (lattice), 32, 40, 64, 75, 123, 261
doubleYScale (latticeExtra), 486, 487
dpois (stats), 83

edit (utils), 15
eqscplot (MASS), 409
equal.count (lattice), 239
errorsINseveral (DAAG), 206–7



Index of R symbols and functions 509

errorsINx (DAAG), 205, 206, 216
eval (base), 462, 463
example (utils), 7, 272
exp (base), 54, 89, 160, 177, 188, 195, 254, 259,

260, 263, 264, 271, 277, 278, 316, 375, 418, 419,
426, 481

expand.grid (base), 378, 381
expression (base), 29, 90, 137, 145, 336, 339, 475,

482–4, 487

factor (base), 13, 39, 40, 75, 144, 157, 214, 215,
218, 260, 265, 268, 344, 350, 356, 383, 416, 418,
444, 445, 447, 489

fig1, 464
fig2, 464
file.choose (base), 431
file.show (base), 433
filled.contour (graphics), 474
fisher.test (stats), 116
fitsmooth, 429
fitted (stats), 81, 145, 168, 192, 219, 254, 260, 311,

327, 333, 336, 338, 459, 483
fixef (nlme), 311
fligner.test (stats), 260
for (base), 42, 75, 87, 129, 250, 291, 367, 370, 375,

415, 493
forecast (forecast), 289, 290
format (base), 54, 441, 442, 458, 481
formula (lme4), 461, 484
ftable (stats), 61–3
function (base), 22, 23, 61, 62, 64, 89, 101, 123,

130–3, 139–41, 156, 169, 230, 261, 292, 328,
336, 338, 344, 374, 375, 380, 408, 409, 415, 416,
418, 421, 427, 429, 433, 441, 451, 461–5, 469,
475, 476, 483, 484

funlik, 133
funRel, 169

gam (mgcv), 235, 236, 240, 243, 282
garch (tseries), 299, 300
geom point, etc. ((ggplot2), 488–91
getAnywhere (utils), 459
getwd (base), 4
ggplot (ggplot2), 488, 490, 491
glm (stats), 247, 252, 253, 255, 257–60, 262, 263,

265, 266, 268, 281, 333, 386–8, 424
gpar (grid), 61
gray (grDevices), 491
grep (base), 21
grid (graphics), 491
gui (fgui), 427, 429

hardcopy (DAAG), 464
hatvalues (stats), 184, 185
hcl (grDevices), 474
hcopy, 464
head (Matrix), 15, 18, 41, 64, 263, 454,

455

heat.colors (grDevices), 474
help (utils), 7, 8, 11, 16, 21, 26–9, 34–6, 48, 57, 140,

166, 221, 232, 235, 242, 288, 294, 312, 364, 384,
433, 434, 437, 441–3, 445, 448, 461, 468, 472,
492

help.search (utils), 7, 440, 469
help.start (utils), 8
hist (graphics), 7, 33, 45, 87
histogram (lattice), 32, 491
history (utils), 19
HoltWinters (stats), 300
houseprices.fn, 156
HPDinterval (lme4), 312, 316, 343

I (base), 40, 194, 215, 228–30, 240, 242, 243, 252,
253, 259, 342–4, 399, 424, 444, 453, 487, 488,
490

identify (graphics), 29, 41
identify3d (Rcmdr), 491, 492
if (base), 418, 439, 462, 475
ifelse (base), 443
image (graphics), 7, 474
importance (randomForest), 370
install.packages (utils), 5, 427, 485
interaction.plot (stats), 123, 331
intervals, intervals.lme (nlme), 467
invisible (base), 30, 31, 408, 418
is.character (base), 441
is.factor (base), 19
is.logical (base), 19
is.matrix (base), 19
is.na (base), 12, 19, 24, 36, 38, 374, 375, 415, 446,

447
is.null (base), 439
isoMDS (MASS), 384, 385, 423
italic (grDevices), 29, 475

jpeg (grDevices), 472
julian (base), 442, 443

lag.plot (stats), 284
lapply (base), 456, 457, 475, 476, 484
larrows (lattice), 32
lars, 199
latticist (latticist), 485
layout (graphics), 166, 477
layout.show (graphics), 477
lazyfoo, 464, 465
lda (MASS), 385, 387–90, 392, 394, 395, 399, 408,

409, 419–22
lda.formula, 389
legend (graphics), 413, 474
length (base), 19, 41, 101, 103, 104, 107, 111, 129,

144, 157, 344, 383, 409, 415, 453, 469, 470, 475,
476

levels (base), 13, 52, 218, 327, 330, 413, 418, 444,
447, 475, 479

leverage.plots (car), 186



510 Index of R symbols and functions

library (base), 9, 12, 14, 18, 21, passim
lines (monoProc), 25, 26, 32, 45, 50, 75, 87, 145,

150, 192, 228, 230, 234, 237, 279, 293, 295, 296,
317, 360

list (base), 16, 18, 23, 31, 436, 437, 440, 442, 453,
456, 462, 463, 475, 476, 479, 481–4, passim

llines (lattice), 32
lm (stats), 80, 88, 127, 143, passim
lm.influence (stats), 185
lm.ridge (MASS), 203, 215
lme (nlme), 127, 303, 312, 446
lmer (lme4), 127, 303, 305, 310–12, 314–16,

318, 319, 326, 327, 329, 330, 338, 342, 349,
350

lmList (nlme), 337, 340, 341, 460, 461
load (base), 431
local (base), 463
locator (graphics), 29
locpoly (monoProc), 237
loess (stats), 168, 236, 237, 359, 360
log (base), 40, 42, 51, 54, passim
log10 (base), 48, 49, 51, 386
log2 (base), 39
logisticsim (DAAG), 281
logit (car), 245, 248, 279, 281, 421, 424
loglm (MASS), 272
lowess (stats), 50, 79, 145, 168, 192, 236, 237, 242,

279, 292, 293, 295, 296, 317
lpoints (lattice), 32
lqs (MASS), 149, 192, 194, 216
ls (base), 4, 19, 21, 430, 431
lsegments (lattice), 32
ltext (lattice), 32

mad (stats), 66
mantelhaen.test (stats), 139
margin.table (base), 61, 96
Markov, 100, 101
match (base), 24, 316, 332, 400
matplot (graphics), 88
matrix (base), 18, 89, 116, 117, 166, 197, 291, 301,

367, 370, 383, 402, 403, 415, 430, 448–50, 470,
492

max (base), 78, 380, 470
MCMCregress (MCMCpack), 165, 166
mcmcsamp (lme4), 312, 316, 343
MDSplot (randomForest), 406
mean (Matrix), 12, 13, 17, 20, 22, 23, 75, 100, 103,

107, 110, 111, 129, 144, 292, 293, 311, 323, 340,
375, 462, 463

mean.and.sd, 22, 140, 439
median (stats), 12, 17, 20, 23, 74, 104, 130, 131
median.fun, 130
melt (reshape), 454, 455, 484
merge (base), 455
methods (utils), 459, 469
min (base), 380, 470

model.matrix (lme4), 163, 172, 185, 218, 234, 243,
445

model.tables (stats), 223, 224, 322
monoproc (monoProc), 237
months (base), 442
mosaic (vcd), 60, 61
mosaicplot (graphics), 60, 61, 139
mt.maxT (multtest), 396, 397
mtext (graphics), 25, 26, 29, 49, 291, 474, 477
muhaz (muhaz), 277
multinom (nnet), 390

na.omit (stats), 24, 374, 375, 380, 381, 390, 412, 447
names (base), 15, 18, 19, 25, (passim)
nchar (base), 6, 440
new.env (base), 465
newtest, 463
nls (stats), 210, 211
normalizePath (utils), 432
nrow (base), 100
ns (splines), 231–4, 418, 420, 421, 424, 425, 488,

489
nswlm, 418, 426
numeric (base), 25, 100, 129, 299, 383, 415

object.size (utils), 432
objects (base), 465
onetPermutation (DAAG), 129
oneway.plot (DAAG), 120
onewayPlot (DAAG), 120
open3d (rgl), 492
options (base), 25, 34, 87, 88, 143, 218, 221, 387,

390, 445, 448
opts (ggplot2), 491
order (base), 20, 75, 194, 323, 403, 448
ordered (base), 14, 270, 444, 445
orderFeatures (hddplot), 395, 398
outer (base), 141, 451
overlapDensity (DAAG), 139, 421
oz (oz), 407

pacf (stats), 284, 293
package.skeleton (utils), 466
pairs (graphics), 30, 179, 199, 249, 251, 412
palette (grDevices), 27
panel.abline (lattice), 483, 486
panel.average (lattice), 64, 123, 261, 483
panel.curve (lattice), 483
panel.densityplot (lattice), 90
panel.dotplot (lattice), 64, 123, 261
panel.identify (lattice), 486
panel.lines (lattice), 483, 486
panel.points (lattice), 483
panel.rug (lattice), 483
panel.smooth (graphics), 145, 292
panel.superpose (lattice), 336, 339, 483
panel.text (lattice), 485, 486
panel.xyplot (lattice), 483



Index of R symbols and functions 511

par (graphics), 7, 26–8, 40, 42, 44, 45, 49, 51, 87,
110, 137, 144, 148, 173, 233, 238, 239, 250, 255,
291, 293, 295, 317, 333, 365, 413, 473, 474, 476,
477, 493

par3d (rgl), 492
parallel (lattice), 32
paste (base), 40, 41, 48, 54, 144, 170, 177, 179,

188, 193, 197, 247, 248, 291, 293, 317, 323,
356, 375, 378, 416, 440, 451, 461, 464, 481,
484

pbinom (stats), 82, 83
pdf (grDevices), 464, 472
persp (graphics), 141
pexp (stats), 99
phantom (grDevices), 29
playwith (playwith), 485
plot (graphics), 2–4, 7, 14, 25–30, passim
plot.mcmc (MCMCpack), 166
plot.mtcars, 461
plot.ts (stats), 48
plotcp (rpart), 364, 366
plotTrainTest (hddplot), 400
png (grDevices), 472
pnorm (stats), 84, 85, 106, 193
points (graphics), 25–8, 32, 48, 407, 470
poissonsim (DAAG), 282
polr (MASS), 270, 271
poly (stats), 187, 188, 194, 195, 229, 232, 233, 242,

243, 298
polygon (graphics), 85, 473
postscript (grDevices), 472
ppoints (stats), 137, 397
ppois (stats), 84
prcomp (stats), 169
predict (stats), 149, 150, 156, 157, 178, 188, 200,

211, 219, 228, 230, 254, 263, 360, 389, 395, 408,
421, 459

predict.lm (stats), 157, 215
pretty (base), 54, 85, 87, 150, 232, 293, 296, 317,

475, 481
princomp (stats), 380, 381, 383, 412
print (base), 7, 20, 21, 23, 31, 34, 36, 52, 62, 101,

111, 197, 291, 349, 366, 369, 375, 383, 408,
418, 429, 451, 459, 460, 464, 477, 479, 480,
482

print.data.frame (base), 21
print.default (base), 22
print.factor (base), 21, 459
print.lm (stats), 459
print.summary.lm (stats), 459
printcp (rpart), 355, 364–6
prod (base), 133, 402
profile (stats), 312
prompt (utils), 467
prop.table (base), 96, 97
prune (rpart), 364, 367
prune.rpart (rpart), 367
pt (stats), 106, 107

q (base), 3, 5, 35
qbinom (stats), 83
qda (MASS), 389, 394, 408, 409
qf (stats), 396, 397
qnorm (stats), 85, 106
qplot (ggplot2), 408
qqmath (lme4), 32, 93, 94, 144, 327, 328
qqnorm (stats), 93, 132, 298, 317, 341
qqplot (stats), 137, 397
qqthin (hddplot), 397
qr.solve (base), 450
qreference (DAAG), 93, 94, 144
qt (stats), 106, 107, 140, 150, 171
qtukey (stats), 220
quantile (stats), 46, 423
quarters (base), 442
quartz (grDevices), 28
quickplot (ggplot2), 383, 408, 487–91
qunif (stats), 137

R.home (base), 432, 468
rainbow (grDevices), 474
randomForest (randomForest), 351, 369–72, 374–6,

408, 419–21, 423, 424
ranef (nlme), 316, 327, 328
range (base), 6, 12, 20, 45, 49, 234, 242, 263, 341,

370, 457, 475
rattle (rattle), 429
rbind (base), 114, 261, 400, 416, 418, 455
rbinom (stats), 86, 87, 215, 216
rchisq (stats), 99
read.csv (utils), 434
read.delim (utils), 434
read.dna (ape), 409
read.fwf (utils), 436
read.table (utils), 8, 34, 35, 434–7
readLines (base), 435, 436
rect (graphics), 476
refit (lme4), 328
regsubsets (leaps), 197
relevel (stats), 120, 257, 262, 263, 332
reorder (stats), 304
rep (base), 12, 13, 23, 39, 75, 90, 93, 117, 119, 137,

144, 157, 166, 169, 268, 270, 323, 349, 383, 396,
437, 445, 451, 458, 476

resid (stats), 81, 168, 260, 279, 289, 293, 296–8,
301, 333, 339, 344

residuals (stats), 118, 144, 145, 185, 192, 194, 211,
239, 260, 266, 317, 327, 459

residuals.glm (stats), 266
rev (base), 20, 453
rexp (stats), 88, 99, 140
rfun, 462
rgb (grDevices), 474
rlm (MASS), 149, 167, 241
rm (base), 4, 21, 33, 40, 430, 431, 440



512 Index of R symbols and functions

rnorm (stats), 22, 23, 87–9, 93, 99, 137, 138, 141,
144, 169, 197, 215, 299, 402, 430, 439, 450, 462,
470, 471, 475, 484

rollmean (zoo), 101
round (base), 54, 61, 62, 81, 96, 97, 202, 248, 256,

375, 388, 408, 416, 423, 425, 476, 481
row (base), 291, 388, 390, 403, 408, 420
row.names (base), 26, 29, 38, 39, 407, 409, 486, 492
rownames (base), 15, 19, 75, 192, 340, 341, 449
rpart (rpart), 354–8, 360, 364–7, 369–72
rpois (stats), 87, 100
RSiteSearch (utils), 8, 406
rt (stats), 99, 137
rug (graphics), 49, 50, 313
runif (stats), 88, 99, 215, 439, 470

s (mgcv), 236, 238, 240, 242, 243
sammon (MASS), 384, 385, 409
sampdist, 90, 94
sample (base), 90, 99, 100, 129, 153, 256, 349, 353,

375, 376, 383, 394, 470
samplingDist, 89
sampvals, 89, 90
sapply (base), 20, 21, 35, 42, 53, 66, 223, 260, 261,

311, 322, 344, 374, 375, 380, 415, 416, 441, 456,
457, 469, 484, 493

save (base), 430, 431
save.image (base), 33, 431
scale (base), 328
scale x continuous, etc. (ggplot2), 328
scan (base), 434, 436, 437
scatter3d (Rcmdr), 428, 491, 492
scatterplot (car), 428
scoreplot (hddplot), 395, 396, 404, 405
sd (stats), 22, 23, 66, 103, 104, 107, 144, 339, 471
search (base), 430
seq (base), 12, 41, 54, 88, 90, 101, 117, 230, 323,

353, 360, 442, 458, 470, 481
sessionInfo (utils), 9, 431
set.seed (base), 86, 87, 90, 141, 156, 291, 312, 402
setwd (base), 431
show.colors (DAAG), 474
show.settings (lattice), 481
showMethods (methods), 460
showprop, 415
signif (base), 129, 316
simpleKey (lattice), 479
simpleTheme (lattice), 57, 58, 378, 379, 423, 479,

480, 482
simulate (lme4), 88, 328
simulate.distribution, 462
simulateLinear (DAAG), 159
simulateScores (hddplot), 396
sin (base), 27, 28
sink (base), 437, 438
slot (methods), 460
slotNames (methods), 460
smooth (stats), 488, 491

smooth.spline (stats), 235
solve (Matrix), 450
sort (base), 6, 20, 23, 192, 412, 416, 448
source (base), 125
spline (stats), 230
split (base), 66, 90, 104, 130, 137, 260, 261, 311,

313, 322, 344, 353, 457, 458, 469
splom (lattice), 32, 175, 179, 181, 191, 378, 412,

416
sqrt (base), 2, 34, 40, passim
stack (utils), 18, 41, 117, 454
stem (graphics), 46
str (utils), 15, 20, 96, 274
strheight (graphics), 29, 458
strip.custom (lattice), 90, 483, 484
stripplot (lattice), 32, 52, 120, 217, 304, 477, 483,

484, 486
strsplit (base), 436, 440, 441, 469, 475
StructTS (stats), 300
sub (base), 52
subset (base), 12, 16, 44, 114, 263, 274, 275, 415,

416, 418, 419, 482, 489
substitute (base), 23, 475, 476, 484
substring (base), 340, 341, 440
sum (base), 12, 39, 61, 62, 247, 260, 344, 374, 375,

388, 390, 408, 409, 415, 420, 441
summary (multtest), 6, 15, 34, 36, passim
summary.aov (stats), 218, 330
summary.lm (stats), 186, 218, 220–3
summary.rpart (rpart), 366
supsmu (stats), 486
Surv (survival), 274, 276, 277
survfit (survival), 274, 276
svm (e1071), 406
Sweave (utils), 467
switch (base), 415, 462
symbols (graphics), 29, 473
sys.call (base), 463, 464
Sys.Date (base), 443
sys.frame (base), 463, 465
Sys.getenv (base), 432
sys.nframe (base), 463
sys.parent (base), 463
system.file (base), 432, 466
system.time (base), 450, 471

t (Matrix), 88, 117, 312, 316, 344, 395, 449, 470
t.test (stats), 107, 109, 111, 137, 341
table (base), 20, 21, 39–41, (passim)
tail (utils), 15
tapply (base), 317, 456
termplot (stats), 179, 193, 194, 212, 224, 255,

419
test, 463
testfun, 476
text (graphics), 25, 26, 29, 32, 39, 41, 75, 117, 170,

192, 247, 248, 341, 354, 356, 360, 365, 367, 407,
409, 458, 474, 476



Index of R symbols and functions 513

text.rpart (rpart), 356
textGrob (grid), 484, 486
theme bw (ggplot2), 490
theme gray (ggplot2), 491
theme set (ggplot2), 491
tiff (grDevices), 472
title (graphics), 39, 474, 475
topo.colors (grDevices), 474
toupper.initial, 330
trellis.device (lattice), 31, 480, 481
trellis.focus (lattice), 485, 486
trellis.panelArgs (lattice), 485, 486
trellis.par.get (lattice), 480
trellis.par.set (lattice), 57, 480, 481
trellis.unfocus (lattice), 486
ts (stats), 14, 48, 292, 458
tuneRF (randomForest), 369, 370
twot.permutation (DAAG), 129

unclass (base), 40, 170, 297, 317, 397, 409, 444,
475

unique (base), 20, 144, 260, 311, 332, 416,
469

unit (grid), 484, 486
unlist (base), 16, 35, 54, 418, 454, 481
unstack (utils), 18, 41, 323
update (stats), 52, 54, 57, 58, 263, 331, 343,

479–83, 485
update geom defaults (ggplot2), 491
UseMethod (base), 459

var (stats), 66, 100, 104, 111, 121, 309
VarCorr (lme4), 315, 318, 349
vif (DAAG), 201–3
vignette (utils), 468
vis.gam (mgcv), 240

weekdays (base), 442, 443
which (base), 20, 192
which.max (base), 20
which.min (base), 20
white.test (tseries), 299
window (stats), 14, 48, 49, 458
windows (grDevices), 28
wireframe (lattice), 32
with (base), 17, 18, 20, 25, 26, 29, 36, passim
woolf, 139
write (base), 437
write.table (utils), 437

x11 (grDevices), 28
xlab (ggplot2), 383
xtable (xtable), 467
xtabs (xtabs), 20, 21, 61–3
xyplot (lattice), 30–2, 36, 53, 55–8, 101, 239, 327,

336, 339, 340, 381, 422, 423, 429, 442, 478–87

ylab (ggplot2), 383

z.inverse, 140
z.transform, 140



Index of terms

Akaike information criterion (AIC), see information
criteria

analysis issues
analysis of summary data, 20, 59, 61, 63, 65, 67
analysis styles & traditions, xix, 43, 44, 71–3, 77,

136
assumptions, 43–5, 58–9, 91–8, 115, 117–18,

221
changes of plan, 73
data snooping, 43
deficiencies, 72
independence, 73, 91, 92, 115, 133, 283, 302
non-parametric methods, 95–6, 98, 240, 352, 373
planning, 72
presentation issues, 111
prior information, 135
random sampling assumptions, 91
robust & resistant methods, 91, 147, 149, 167,

183, 184, 191–4, 212, 236, 241, 295, 296
significance tests, 171
source/target differences, 153, 158, 189, 303, 307,

328, 361, 385, 387–8, 414, 493–4
strategies, 71, 72, 214

analysis of variance
decomposition (anova), 158, 159, 321
degrees of freedom, 121, 305–6

analysis of variance model (aov), 120–1, 158–9,
218–23, 305, 308, 319, 321–2, 330, 350

as linear model (lm), 217–21
categorized data vs linear fit, 125–6, 158–60
multi-way, 127, 222–305, 319–32
multiple comparisons, see inference
one-way layout, 120–2, 127, 218, 305, 307, 309,

313
argument, see function
array, 60, 139, 256, 448, 451–2, 455–6

dimensions, 139, 256, 448, 451, 456
permutation of dimensions, 61, 452

assignment, 2, 20, 35, 36, 446
subscripted, 446

Bayesian Information Criterion (BIC), see
information criteria

Bayesian methods, 8, 98, 132–6, 165, 166, 312, 388
posterior density or probability, 133, 134
prior density or probability, 133–5, 141, 312,

386–7
bootstrap, see resampling methods

Cp statistic (Mallows), see information criteria
censoring, see survival analysis
classes & methods, 30, 443, 458–61

S3, 458–61
S4, 460, 461

coefficients
GLM

standard error, 258, 263–4, 267, 281
linear model

confidence intervals, 171–2
correlation between estimates, 172–3, 181, 229
interpretation, 174–83, 208–9
regression spline coefficients, 234–5
standard error, 220, 222, 226, 228, 231

commands
comment character, 2
continuation character, 2

concatenation, 3, 10
confidence interval (CI), 68, 107–9, 111–13, 124–5,

149–50, 156, 171, 278, 426
1 & 2-sample means, 107–9, 111–12, 140, 301–2,

341
autocorrelation, 289
correlation, 68, 113, 131, 132, 140
median, 130–2
predicted values, 149–50, 171–2, 187–8, 215,

228–30, 232–3, 238, 275, 290, 426
proportions, 107, 112, 113
regression coefficients, 149–50, 171, 220, 312,

316, 426
confounding, 119
contrasts, see factor
correlation, 67–9, 76, 110, 147, 163, 172, 177, 310,

316, 334–6
Kendall, 68
linear (Pearson), 67, 68, 76, 113, 140, 163, 201,

207–8, 284–5



Index of terms 515

confidence interval, 68, 113, 140
confidence interval (bootstrap) 131–2

rank (Spearman), 67, 68
R2, see regression, linear model

cross-validation
see resampling methods

data
database connection, 438
input, 4, 427, 433–5, 437

comment character, 2, 435, 437
tracking errors, 435

management strategy, 33, 35, 430, 431
manipulation

apply family of functions, 456–8
convert to/from tables or matrices, 257
combine data objects (cbind, rbind), 19, 169,

177, 251, 296–7, 323, 388, 390, 444–5
computational efficiency, 450
count & identify NAs, 24, 38, 381, 383, 412,

447
merge data frames, 455
omit NAs, 24, 316, 374–5, 380–1, 390, 412,

447–8
plyr package: aaply, daply & related functions,

450
reshape data frames, 454, 484
selection & matching, 23–4
split by levels, 64, 66, 457–8, passim
subset, 11–12, 15–16, 23, 31, 44, passim
transpose matrix, data frame, 395, 449

measurement issues, 79, 81, 84, 169, 213, 334,
335, 426

output
database connections, 438
decimal places, 30
write to file, 437–8

patterned, 11, 12
summary, 20, 59, 61, 63, 65, 67

data analysis & commentary
(Data sets are in DAAG, unless otherwise

indicated)
Antarctica 800KYr ice core (edcCO2, edcT),

486
aberrant crypt foci (ACF1), rat colons, 258
acupuncture, real vs sham, 138, 139
admission rates, contrived data, 140
AIDS (Aids2, MASS), survival, 274, 275, 277
alcohol consumed, by year, country (grog), 478
anesthetic, effect on pain (anesthetic),

246–7
animal body, brain weight (Animals, MASS),

51, 67
Antiguan corn yields (ant111b), 304, 310
apple taste (appletaste), 223, 224
Australian athletes, morphology & blood (ais),

31, 482, 489
blood pressure, rabbits (Rabbit, MASS), 41

book weight, dimensions (allbacks,
softbacks), 170, 173, 185, 186, 208, 214

biased sample (oddbooks), 168, 181, 182
brain, body weight, litter size (litters), 179,

180, 215
Canadian city populations (cities), 214, 445
cancer, gene expression data (Golub,

golubInfo, hddplot), 392–405
car data

1993 Consumer reports (Cars93, MASS;
Cars93.summary), 14, 455, 469

fuel consumption, etc, 1974 data (mtcar,
datasets), 461

mileage vs weight (car.test.frame,
rpart), 360

mileage, etc (table.b3, MPV), 215
speed vs distance to stop (cars, datasets), 167

car window tinting (tinting), 56, 329
carbon emissions vs year (fossilfuel), 3–5
CO2 level & leaf temp (leaftemp), 225
comparison of firing methods (Gun, MEMSS),

349
cricketer life spans (cricketer), 282
cuckoo egg sizes (cuckoos), 52, 70
dengue projections (dengue), 65
depression, lawn roller weight (roller), 78–80,

88, 143, 147, 150, 151, 163–5
dewpoint, min & max temp (dewpoint), 238
distance vs ramp angle, starting point

(toycars), 241
drawings of dreams, 116
effort vs stool type (ergoStool, MEMSS), 350
egg dimensions

host vs cuckoo eggs (cuckoohosts), 70
elastic bands, distance vs stretch –stretc+ heated

vs unheated (elastic1, elastic2,
elasticband)

paired (pair65), 94, 103, 105, 107, 110, 141
unpaired (two65), 139

electrical resistance, kiwifruit (fruitohms), 50,
69

email spam (spam7), 352–6, 366, 367, 374
Fisher’s iris data (iris, MASS), 41
Food Frequency Questionnaire (FFQ), 204
frogs, spatial distribution (frogs), 256
gastric cancer screening, 119
geological substratum thickness vs distance

(geophones), 241, 242
grain/head vs seed rate (seedrates), 228
head injury, simulated (head.injury), 374
height & weight of women (women, datasets),

204, 209, 214
hill race times (nihills, hills2000), 174,

175, 188, 189, 191, 214, 215, 438
house prices (houseprices), 157, 158, 312
human power, O2 intake (humanpower1,

humanpower2), 336, 338, 460
insurance claims (Insurance, MASS), 469



516 Index of terms

data analysis & commentary (cont.)
iron slag, magnetic vs chemical values

(ironslag), 145
jobs, by Canadian region (jobs), 14, 18, 21, 32,

53–5, 442, 454, 455, 458, 481
kidney stone operations, 60, 61
kiwifruit shading (kiwishade), 69, 319, 320,

324, 325, 334, 345
labor training program (nswdemo & related

datasets), 59–60, 71, 114–16, 136–8, 168,
374, 414–27

lake area, elevation (Manitoba.lakes), 38, 39
levels of Lake Huron (LakeHuron, datasets),

283–7, 289, 290
maths achievement (MathAchieve, MEMSS),

350
measles, deaths in London (measles), 47, 48
milk sweetness by additive (milk), 49
model cars (modelcars), 125
mortality, female heart attacks (mifem), 281,

364, 374
moths, occurrence (moths), 261–4, 266, 281,

332, 333
oil platform escape times (ex01.36, Devore6),

40
ozone levels (Antarctic), 1956–2000 (ozone),

242
plant architecture, leafshape (leafshape), 408
population growth

Australian states (austpop), 25
possums, morphometric data (possum), 44,

378–80
pressure of mercury vapour, vs temp

(pressure, datasets), 168
primate body, brain weights (primates), 25,

26, 30
rare plants, habitat type (rareplants), 117,

118
record times, track, road (worldRecords), 241
rice variety 2-factor expt (rice), 123, 124
road accident mortality –mortalit+ US

(nassCDS), 62, 63
science, school survey (science), 72, 313, 315
seal morphometrics (cross-sectional data)

(cfseal), 17, 162
selfed vs crossed plants (mignonette,

Darwin’s data), 110, 140
skull growth in children (Orthodont, MEMSS),

340
social support survey (socsupport), 40, 71,

72, 410–13
Southern Oscillation Index, rainfall

(bomregions), 291–2, 295–7, 302, 429,
487–8

space shuttle damage (orings), 38
sugar weight, wild type vs GM plants (sugar),

218
tomato yield, salinity (ex10.22, Devore6), 75

tree dimensions, biomass (rainforest), 12,
38, 457

UCB admissions, by sex & dept
(UCBAdmissions, datasets), 96–7, 139,
210, 256–7, 272

wages, UK 19th C cotton workers (wages1833),
242

census data vs informal survey
(cottonworker), 40

data frame, 3–4, 8, 14–19, 20–1, 35, 452–8, passim
see also data, manipulation

as database, 371, 430, 438
as list, 16–17, 453
attach & detach, 17, 35–6
names & numbers of rows & columns, 60, 257,

291
writing, 437, 440,

data mining, 158, 351, 406, 407, 429
dates, 441–3
degrees of freedom, 66–7, 76, 105, 109–12, 115,

127, 147, 149–50, 229–30, 232, 246, 267,
305–7, 315, 319, 325, 330, 401

density
estimate, 44–6, 76, 102, 426

plot, see plot
deviance, see model
discriminant analysis

linear, 387, 389, 390, 395, 408, 419, 420, 422–4
distance measure, 384, 385

binary data, 385
diagnostics & diagnostic plots

GLM, 265–6
linear models, 144, 148–9, 170, 173–6, 183,

185–7, 190–1, 194, 195, 214–15, 227,
232–3, 241–3

distribution
t-distribution, 105–8, 137, 264

degrees of freedom, 99, 105–8, 137, 264
Bernoulli, 86
binomial, 82, 83, 86, 245, 266, 267, 279, 425
chi-squared, 85, 99, 114–18, 260, 267, 271, 298
cumulative probability, 82–5, 107, 266
density, see density estimate
exponential, 85, 88, 99
heavy-tailed, 86, 105
normal, 45–7, 58, 68, 86–9, 92–5, 99, 102–8,

passim
Poisson, 82–4, 245, 262, 264, 267, 279
quantile or percentile, 26, 46, 83, 85, 131, 132,

266
sampling distribution, 88, 89, 94, 95, 102, 103,

105, 155, 328
t-statistic, 105, 106
bootstrap estimate, 155
median, 130

simulation, 86–9, 99, 101, 134, 141, 165
skew, 45–6, 58, 71, 89, 92, 94, 95, 113, 190, 417
uniform, 85, 88, 99, 137, 165



Index of terms 517

document preparation
Sweave, 467–8

experimental design, 123, 222, 319, 325, 334
exploratory data analysis (EDA), 43, 44, 72–4, 77,

378, 379, 381, 383
expression, 1–2, 12, 39, 441, 446, 461–5, 474–6,

482–4
print on graph, 29, 474–6, 482–4, 487

factor, 10–12, 13–14, 16–17, 434, 441, 441–6, 447,
453–6, 459, 479, 482–4, 489, passim

coding & contrasts, 195, 218, 220–1, 445–6
columns in model matrix, 218–20, 225
in model formula, 372, 445
levels, 13–14, 17–18, 20, 31, 35, 39, 56, 444–5,

447, 455–6, 475, 479, 482–4, passim
order, 13–14, 444–5

ordered, 14, 444–5
reorder levels, 13, 120, 144, 257, 262–3, 332,

418, 484
split by levels, see data, manipulation

file names, 4, 9, 431, 432, 433
fitted values, see prediction
function, 3, 19–25, 429, 431–3, 438–44, passim

anonymous, 441, 451, 475
argument, 4, 23, 168, 439, 476

abbreviated, 439
lazy evaluation, 464–5
the . . . argument, 439–40
use list to pass arguments, 462–3

common useful functions, 19–20, 431–2
environment, 22, 36, 432–3, 463–5, 469

evaluation frame, 463
generic, 21, 30, 36, 458–9, 467, 474
issues for writing & use, 439
return value, 23, 31, 41, 254
utility functions, 21, 431–2, 463, 466, 468

generalized linear model, see regression,
generalized linear model (GLM)

generalized linear mixed model, see regression,
generalized linear mixed model

ggplot2 graphics, 33, 383, 408, 472, 487, 488, 491,
492

automatic generation of keys, 383
functions return ggplot objects, 487–8
layers, 488
use of quickplot(), 487–90

graph
see plot

graphics
see also ggplot2; lattice; plot
devices, 27, 30, 31, 57, 464, 472–4, 477, 479,

480–1
good practice, 32
links with analysis, 44

image file, see R session
inference

1 & 2-sample means, 103–14
Bayesian, see Bayesian methods
bootstrap methods, see resampling methods
confidence interval, see confidence interval
confidence interval vs hypothesis test, 113–14
hypothesis test, 107–8, 114
likelihood ratio test, 133, 265, 277, 278
maximum likelihood, 133, 141, 286–7, 299, 329,

331, 343
multiple comparison, 73, 119–21, 122–3, 209,

220, 319, 329, 352, 373–4, 476
Tukey’s HSD, 120–2, 220

information criteria
Akaike Information Criterion (AIC), 186–7,

194–5, 202, 248, 253, 259, 262–4, 270, 271,
287–9, 294, 297, 298, 310, 314, 330, 332,
338, 342, 343, 425

Bayesian Information Criterion (BIC), 187, 289,
294, 297–8, 310, 314, 330, 332, 338, 342,
343

Cp (Mallows), 187
interaction plot, 124

lattice graphics, 25, 30–3, 36, 52, 56, 74, 93, 152,
412, 427, 428, 472, 475, 477–87, 492

add smooth curve, 239, 429, 486
adding to plots, 52, 54, 57–8, 479–85
box plot (bwplot), 32, 47, 52, 74, 76, 477
built on grid package, 33, 477
conditioning factor or variable, 31–2, 428, 479
dotplot, 40, 64, 75, 123, 261
functions return trellis objects, 30–1
interaction with plots, 485–6
keys & legends, 31, 53, 56, 58, 64, 261, 327,

378–9, 381, 416, 423, 442, 479, 482
layout of panels, 55, 64, 76, 89, 101, 144, 239,

327, 340, 422, 481
panel function, 64, 89, 123, 261, 336, 483
par.settings, 57–8, 378–9, 423, 479–80, 482
point & text size, 412, 479–80, 492
print from user functions, 31, 472, 477
scaling of axes, 33, 475
strip plot, 32, 52, 477, 483, 484, 486

library, 9, 30, 179, 310, 483, 485
see also package

leverage
GLM, 266, 268
linear model, 149, 173, 176, 183–6, 195, 227,

233, 266, 419, 421
plot residuals vs leverage, 173, 184–5, 227,

233
list, 16–18, 23, 35, 81, 374, 440, 452–4, 457–62,

463, passim in code
concatenation, 36
data frame as list, 16, 453



518 Index of terms

Markov chain, 100, 101
Markov Chain Monte Carlo (MCMC) estimation,

134, 165, 312
matrix, 18–20, 36, 89, 100, 225, 436, 444–5,

448–51, 455–8, 470, 474, 492, passim
see also data, manipulation
arithmetic, 450
combine (cbind, rbind), see data, manipulation
convert to/from data frame, 450, 455–6
convert to/from vector, 19, 448–9
extract sub-matrix, 19, 449
form as outer product, 451
names & numbers of rows & columns, 18–19,

449
storage in memory, 35, 430–1, 450, 471
subscripts, 19, 449
transpose, 395

mean
trimmed, 75, 76

methods & classes
see classes & methods

missing values, 12–13, 20, 24, 38, 242, 373, 381,
383, 390, 446–7, 455 see also data,
manipulation

model
allometric growth, 161–2, 167
classification, see discriminant
discriminant, see discriminant
GAM, see regression, generalized additive model

(GAM)
GLM, see regression, generalized linear model

(GLM)
linear model, see regression, linear model
model formula, 80, 143, 305, 321, 360, 371–2,

445
model object, 81, 459

extractor function, 81, 143, 460
multinomial (multinom), 390
parameters, 79, 133, 134, 152, passim
signal & noise, 78, 97, 98, 469, 470
statistical vs deterministic, 77–9, 97
survival analysis, see survival analysis
time series, see time series

multi-dimensional scaling (MDS), see ordination
multi-level model, 302–50

fitted values, 311–12, 327, 331
fit by restricted maximum likelihood (REML),

339, 331, 343
random coefficients, 336–44
repeated measures, 334–44
residuals, 306–7, 311, 317, 325, 327–8
variance components, 303, 308–9, 315–16,

318–19, 322, 323, 325, 326, 336, 344, 345,
349

multivariate analysis, 377–409

nonlinear model (nls), 210–11

object
save, see R session

operator, 11, 14, 23, 444, 460, 465, 488
arithmetic, 2, 444, 450
assignment, see assignment
logical, 443
relational, 11, 14, 23

ordinal logistic model, see regression, ordinal
logistic

ordination
distance measure, see distance measure
multi-dimensional scaling (MDS), 383
principal components analysis (PCA), 169, 196,

198, 203, 347, 377–84, 386, 407, 410–13,
426

loadings, 382, 407, 411–13, 426
regression on PCA scores, 410–13, 426

outliers, 132, 147–9, 169, 170, 183–6, 190, 192,
193, 211, 212, 215, 237, 242, 295, 426

package
base, 9, 432, 465
boot, 130, 156
car, 186
cluster, 384
DAAG, 1, 5, 9, passim
datasets, 6, 9, 30, 41, passim
Deducer, 429
Devore6, Devore7, 40, 75
dichromat, 474
dr, 191
fgui, 427, 429
forecast, 283, 288–90, 300–1
foreign, 434
fseries, 300
gam, 236
ggplot2, 33, 383, 408, 472, 491, 492
golubEsets, 392
grid, 33, 468, 477, 483, 485
hddplot, 392, 395, 404
KernSmooth, 237
lars, 199
latticeExtra, 486
latticist, 427, 485
lazy data mechanism, 9
leaps, 197
lme4, 127, 303, 305, 312, 337, 346, 460
locfit, 240
lqs, 192
MASS, 9, 14, 40–1, passim
MEMSS, 304, 340, 349–50
mgcv, 235
monoProc, 237
muhaz, 277
multtest, 396
nlme, 303, 304, 312, 348, 446, 467
playwith, 427, 485
plyr, 450



Index of terms 519

pmg, 427
randomForest, 351, 352, 369, 371, 372, 374, 406,

408
Rcmdr, 427, 491
RColorBrewer, 474
reshape, 454, 484
RMySQL, ROracle, RSQLite, 438
rpart, 351, 352, 357, 371–4
stats, 9, 283, 287, 300
strucchange, 300
survival, 235, 256, 274, 280
tseries, 283, 299
xtable, 467

plot
see also ggplot2; graphics; lattice
aspect ratio, 28, 31, 64, 93, 120, 123, 144, 217,

239, 328, 422–3, 491
axes, 33, 51, 78, 85, 117, 158, 475, 480–1, 488,

491
box-&-whisker (boxplot), 41, 47, 52, 58, 73, 75,

86, 122, 137, 313, 353, 394, 473, 477, 489
outlier criterion, 47

contour, 240, 408, 479, 489
dates as axis labels, 481
density plot, 32, 44–6, 52–3, 84–5, 89–90, 94, 99,

105–6, 122, 129–30, 133, 251, 408–9, 416,
421, 462, 480, 489–91

dynamic graphics, 484
expression, 29, 476
font family, 473

face, 473
histogram, 38, 44–6, 75, 487, 491
identify points, 29, 41, 486, 491–2
interaction plot, 124
legend, 58, 61, 413, 474, 479
mosaic (multi-way tables), 60, 61, 139
normal probability, 58, 88, 92–5, 99, 144, 145,

227, 317, 327, 328
panel function, 64, 483
quantile-quantile (QQ), 397
shaded regions, 84, 85, 239
simulated data, 88, 93, 94, 159, 215, 281, 327, 328
size of points & text, 27, 28, 33, 451
stem-&-leaf, 46
strip plot, 52, 124, 483
transformation of scales, 40, 51, 58, 67, 160–1,

168, 175, 188, 214, 245, 250–1, 279, 292,
353

posterior density or probability, see Bayesian
methods

prediction
predicted values

GLM, scale of linear predictor, 254, 263, 266
GLM, scale of response, 254, 333
linear model (lm), 79–80, 142, 145–6, 149,

150–1, 156, 157, 167, 172, 177, 182, 187–8,
192–3, 208, 214, 217

prediction interval (new y-value), 150

predictive accuracy, 152–3, 493–4
GLM, 255
linear model (lm), 153–8, 186–7, 189, 230
multi-level model, 303, 309, 319, 328

see also discriminant; survival analysis (survival
estimate); time series; tree-based

principal components analysis (PCA), see ordination
printing, 20, 21, 366, 459, 463, 472, 477

digits, 36, 316, 408
prior density or probability, see Bayesian methods
propensity score, 410, 414–17, 419–23, 425,

426
use as regression covariate, 419–25

questionnaires & surveys, 71
quit session, see R session

R session
image file, 5, 430, 431, 466, 469

attachment of image files, 430–1
quit, 5, 430
search list, 17, 430, 464

database, 430
working directory, 4, 8, 33, 431, 433, 436, 466,

467
change, 431

workspace, 3–5, 8–9, 17, 21, 33, 35, 86, 428,
430–1, 433, 463, 465–6, 469, 471

image file, 3–5, 33, 428, 430, 431, 466, 469
management, 33, 35, 430, 431

random
coefficients, see multi-level model
numbers, 22, 86–9, 93, 99, 155

seed, 86, 93
sample, 71, 87, 90–1, 99, 102, 117, 137, 153, 186,

307, 353, 369, 420, 462, see also sampling
of permutations, 90, 128, 129, 199, 396, 470

regression
(Note the separate entries: regression, generalized

additive model; regression, generalized
linear model; regression, linear model)

see also discriminant; multi-level model; survival
analysis; time series; tree-based

AIC, BIC, see information criteria
bootstrap, see resampling methods
Cp , see information criteria
cross-validation

see resampling methods
extrapolation, 230
fitted values, see prediction
functional relationship, 169
loglinear, 210, 257, 272
non-linear model, 210–13, 215, 217
observational data, 69–70, 183, 199, 212–13, 346,

385, 414, 426
normal probability plots, see plot, normal

probability
ordinal logistic model, 268–72



520 Index of terms

regression (cont.)
resistant, 149, 183, 184, 191–4, 212, 236, 295,

296
robust, 147, 149, 167, 212, 241
spline smoothers

see regression, generalized additive model
strategies for fitting models, 189–91

regression, generalized additive model (GAM), 235,
240, 280

smooth terms, 232, 235, 236, 417
regression, generalized linear model (GLM), 210,

240, 244–68, 280–2, 332, 333
see also regression, linear model
coefficients

see also coefficients
Hauck-Donner effect, 254, 263
SEs & Wald (z−) statistics, 265, 267, 277–8

design, 268
deviance, 246, 248, 253, 254, 257, 259, 260, 262,

264–7, 270, 332, 424
dispersion, 260, 262, 264–7
family, 248, 253, 255, 258–60, 262, 264–6, 280

binomial, 248, 253, 255, 258–60, 262, 264–6,
280

poisson, 248, 253, 255, 258–60, 262, 264–6,
280

quasibinomial, 248, 253, 255, 258–60, 262,
264–6, 280

quasipoisson, 248, 253, 255, 258–60, 262,
264–6, 280

leverage, see leverage
link function, 245, 254, 255, 257, 258, 262,

266–8, 280
logistic regression, 244–6, 248, 253–7, 269, 270,

272, 279, 280, 387
predicted values, see prediction
residuals, see residuals

regression, linear model (lm), 59, 142–235, 246,
258, 263, 268, 280, 318

anova table, 226
assumptions, 183–4
bootstrap, see resampling methods
check for linearity, 59, 93, 152, 179, 183, 190,

193, 228
coefficients, see coefficients
Cook’s distance, 148–9
cross-validation, see regression
design, 151–2
diagnostics & diagnostic plots, see diagnostics &

diagnostic plots
errors in x, 195, 203, 208, 212

attenuation of coefficient, 195, 203, 204,
205

simulation, 204, 206
transfer of effect between variables, 206

fitted values, see prediction
hat matrix, 184
heterogeneity of variance, 146, 189, 210

influence, 147–9, 173, 183, 185, 419
leverage, see leverage
linearity between explanatory variables, 189–90
model formula, 80, 143
model matrix, 163–4, 167, 172, 184–5, 218, 201,

217–18, 220, 225, 228, 231, 234, 242, 243,
445

one term; several columns, 224, 226–7, 228–9,
231–2, 235–6, 238

model non-linear response, 228–35
multicollinearity, 199, 203, 251

remedies, 203
variance inflation factor (VIF), 201–3, 251

omission of intercept, 172
on principal component scores, see ordination,

regression on PCA scores
on propensity scores, see propensity scores, use

as regression covariates
outliers, see outliers
polynomial, 167, 194, 195, 228, 229, 231, 232,

235, 241–3, 298
predicted values, see prediction
R2 & adjusted R2, 147, 186
regression splines, 231–5
residual degrees of freedom, 121–2, 147, 150,

171, 223, 226
residuals, see residuals
robust & resistant methods, see regression
shrinkage methods, 198
straight line model, 228, 231
strategies for fitting models, see regression
term plots, 224, 226, 228, 230, 231, 236, 240
terms, 59, 193, 224, 226, 228, 231, 232, 235, 238,

240
variable selection, see variable selection
variance inflation factor (VIF), see

multicollinearity
x on y vs y on x, 217, 224, 228, 230, 231, 234

replication, 140, 267
resampling methods

bootstrap, 128, 130–2, 140, 155–8, 189, 215, 351,
362, 369, 373, 375, 376, 382, 383, 416, 420

cross-validation, 153–5, 157–8, 187, 189, 198,
215, 236, 255, 256, 356, 361–3, 367, 374,
385, 387–9, 399, 401–4, 406, 420

validity of error estimate, 158
permutation, 128, 129, 396, 397
simulation, see simulation

residuals,
GAM, 239, 243
GLM, 254, 260, 266, 267, 278, 279

deviance, 266
Pearson, 266
working, 266

linear model, 80–1, 143–6, 147, 148–51, 155,
164, 167–8, 173–4, 176, 178, 179, 183–5,
188, 191–5, 211–12, 215, 217–19, 227, 232,
233, 236, 242



Index of terms 521

loess smooths, 237
multi-level models, see multi-level model
time series, see time series

rounding, 34, 92, 344

sampling
see also random sample
cluster sampling, 91
with replacement, 90, 155, 382, see also

resampling methods, bootstrap
search list, see R session
selection bias, 396–8, 407
session, see R session, 5, 430
simulation, 86–9, 91, 99–101, 134, 141, 158, 165,

197, 206, 207, 290, 291
smoother

see also regression, generalized additive model,
spline

loess, 44, 80, 146, 168, 236, 237, 278, 359–61,
487

lowess, 50, 79, 96, 145–6, 168, 192, 236–7, 242,
279, 292–3, 295–6, 317

spline, 231–7, 239–42, 347, 418, 420, 489
knots, 231–3, 235, 242
regression spline, see regression, linear model

standard deviation, 22, 47, 65–7, passim
vs inter-quartile range, 65, 66
degrees of freedom, 66, 67, 76, 111, 133, 137,

143, 171
maximum likelihood estimate, 133, 141
pooled, 67, 76, 104, 110, 111, 141

standard error (SE), 102, 105, 109–11, 113, 130,
156, 185, 263

binomial distribution
proportions, 112, 267, 281, 425

difference of means (SED), 66, 103, 110, 111,
124, 133, 137, 141, 143

of mean (SEM), 102, 103, 105, 111, 130
of median, 102, 104, 130, 131, 143, 219, 425

survival analysis, 244, 246, 248, 250, 252, 254, 256,
258, 260, 262, 264, 266, 268, 270, 272–8,
280, 282, 352

censoring, 273, 275, 276, 279
non-informative, 275, 276, 278
right, 282

Cox proportional hazard, 277, 278, 280, 282
data collection, 273
frailty model (multiple levels of variation), 280
hazard rate, 275–8, 282

confidence interval, 278
residuals

martingale, 278, 279
Schoenfeld, 278

survival estimate, 276–7, 372
tree-based, 352, 372, 374

table
margins, 96, 97

of frequencies, 20, 21, 61–3
adding across tables (Simpson’s paradox), 62,

96–7, 140
table formula, 62, 63

test
2-way table

chi-square statistic, 114, 116–18
Fisher exact, 116
residuals from row/column independence

model, 118
3-way table

Mantel-Haenzel, 139
Woolf, 139

correlation, 113
homogeneity of variance (Fligner-Killeen), 260
likelihood ratio, 265, 277, 278
nonparametric, 999
permutation

one- & two-sample, 128–9
proportion(s), 112–13
sequential correlation, 172, 298
t-statistic

one- & two- sample, 109, 110
two-sample, unequal variances, 110–11

type III, 446
Wald, 265, 267, 277–8
white noise (Ljung-Box), 297–8, 301

time series, 10, 14, 47, 48, 53, 55, 158, 165, 283–90,
292–4, 296, 298–303

ARCH or GARCH model, 298–300
ARMA or ARIMA model, 287–98

automated selection, 289–91, 293, 294, 296–8
autocorrelation, 165, 284–90, 293–5, 298, 302
autoregressive (AR) model, 165, 283, 285–7,

298–300, 301
Ljung-Box test (white noise), 297–8, 301
moving average (MA) model, 283, 287–90
partial autocorrelation function, 284–9, 293, 294
predicted values, 290
residuals, 289, 293–8, 301

transformation, 40, 51, 58, 59, 67, 73, 160–1, 168,
175, 189–90, 196, 210, 279, 286, 292, 354,
416–19, 424

Box-Cox, 161
count data

angular, 279
complementary log-log, 279
logit, 245, 254, 279, 424
probit, 279
square root, 160, 250, 279

cube root, 160, 292–3, 296
logarithmic, 51, 55, 58, 59, 160, 161, 175, 188,

190, 210, 214, 249, 250, 286, 354, 416,
418

logit, 245, 254, 279, 424
power, 160, 161, 196

tree-based, random forests (randomForest), 369,
371, 375, 420, 422



522 Index of terms

tree-based, decision trees (rpart)
classification, 351, 352, 354, 358–60, 362, 364,

366, 368, 369, 372–4
cost-complexity (CP), 361–2
error or impurity measures, 359
information on each split, 354, 357, 359, 366, 374
output, 354, 357, 359, 366, 374
predicted values, 360, 366
predictive accuracy, 355, 356, 361
pruning, 362, 372
splitting criterion, 356, 359, 362, 372

1 SE rule, 365–6
table of accuracies, 355, 364, 366
tree diagram, 354, 356, 360, 362, 363, 370
regression with a continuous outcome, 348, 357,

359–61

variability
heterogeneity, see model, homogeneity of

variance
variable selection

discriminant analysis, 398, 401
unbiased accuracy estimates, 398–404
simulation, 398–404

linear models, 196–9, 212, 411
realistic SEs, 197–9
simulation, 197–9

pruning decision trees as variable selection,
372

survival analysis, 273
vector

atomic, 452, 454
character, 6, 13, 16, 19, 21, 36, 434, 435, 440–2,

444, 448, 452, 454, 455, 469, 474, 475
number of characters, 6, 440
splitting, 436, 440

complex, 10, 434, 448, 452
concatenation, 10
logical, 10, 11, 19, 20, 24, 36, 434, 443, 446, 448,

452, 455
numeric, 10, 13, 15, 16, 19, 30, 36, 217, 434, 436,

444, 448, 451, 452, 454, 455
patterned, 11, 12
recursive (list), 457
subset, 11–12, 14, 23, 371, 393, 452

working directory, see R session
workspace, see R session



Index of authors

Agresti, 139
Aitchison, 199
Aldrich, 97
Ambroise and McLachlan, 392,

406
Andersen, 74

Barnett, 91
Bartholemew, 345
Bates, 305
Bates and DebRoy, 461
Bates and Watts, 213
Belson, 351
Berk, 203, 373, 406
Bickel et al., 96
Blake and Merz, 353
Bland and Altman, 209, 280
Bolker, 136, 212
Boot and Maindonald, 242
Box and Cox, 161
Braun and Murdoch, 468
Breiman, 98
Brockwell and Davis, 300
Burns et al., 56
Bussolari, 336

Canty, 130
Carroll, 204
Carroll et al., 206
Chalmers and Altman, 348
Chambers, 37, 461, 468
Chanter, 74
Charig, 60
Chatfield, 74, 300
Christie, 242
Chu et al., 141
Clarke, 98
Cleveland, 33 37, 74, 237
Clutton-Brock et al., 242
Cochran and Cox, 346
Cohen, 209
Collett, 280
Cook and Swayne, 406, 492

Cook and Weisberg, 184, 190, 212
Cox, 136, 348
Cox and Cox, 385
Cox and Reid, 136, 348
Cox and Wermuth, 68, 213

Dalgaard, 36
Daniels et al., 345
Davison and Hinkley, 132
Dehejia and Wahba, 414, 417
Diggle, 300
Diggle et al., 331, 335, 348
Dobson, 280
Donner and Klar, 91

Edwards, 213
Efron and Tibshirani, 131, 132
Efron et al., 199
Eubank, 240
Ezzet and Whitehead, 269

Fan and Gijbels, 237
Faraway, 212, 240, 280
Farmer, 62, 63
Finney, 280
Fisher, 348
Fox, 36, 186, 212

Gardner et al., 74
Gaver et al., 347, 348
Gelman and Hill, 348
Gelman et al., 136
Gentleman, 37, 461, 468
Gentleman and Lang, 467
Gentleman et al., 407
Gigerenzer, 135, 136
Gigerenzer et al., xix, 136
Gihr and Pilleri, 162
Goldstein, 348
Golub et al., 392
Gordon, 70, 385
Gordon et al., 208
Gourieroux, 300



524 Index of authors

Grasso et al., 123
Guy, 47

Hales et al., 65
Hall, 98, 237, 390
Harker and Maindonald, 232
Harlow et al., 136
Harrell, 24, 196, 197, 203, 212, 280
Hastie et al., 196, 198, 203, 212, 330, 373, 406
Hauck and Donner, 268
Hoaglin, 43
Hobson, 116
Hunter, 249
Hyndman and Khandakar, 300
Hyndman et al., 300

Ihaka and Gentleman, 468
Izenman, 385

Johnson, 96, 98

King, 386
King and Maindonald, 386
Krantz, 136
Krzanowski, 406

Lalonde, 59, 115, 414, 417
Latter, 52, 70
Leavitt and Dubner, 212, 344
Leisch, 468
Liaw and Wiener, 352
Lim and Loh, 373
Linacre, 238
Linacre and Geerts, 238
Linde et al., 138
Lindenmayer et al., 44, 390
Lumley, 461

Maindonald, 37, 74, 136, 158, 213, 319, 392, 404
Maindonald and Burden, 392, 404
Maindonald and Cox, 74
Maindonald et al., 266, 280
Manly, 406
Marland et al., 3
McCullagh and Nelder, 266, 267, 280
McLellan et al., 258
McLeod, 228
Meyer, 406
Meyer and Finney, 62
Miller, 111, 116, 136, 285
Mitchell, 47
Muenchen, 468
Murrell, 33, 37, 492
Myers, 203, 213

Nadel and Bussolari, 336
Nelder, 74
Newton, 70

Nicholls, 136
Nicholls et al., 291

Ord et al., 300

Payne et al., 346, 348
Pinheiro and Bates, 335, 348
Pollard et al., 396

R Development Core Team, 468
Ramsay and Silverman, 347
Rao and Wu, 196
Ripley, 362, 373, 406
Rosenbaum, 212, 426
Rosenbaum and Rubin, 414, 426

Sammon, 384
Sarkar, 33, 492
Schatzkin et al., 204, 205
Schmidt-Nielsen, 162
Senn, 47, 136
Shanklin, 242
Sharp et al., 208
Shumway and Stoffer, 300
Simpson, 97
Smyth, 123
Snelgar et al., 319
Snijders and Bosker, 348
Spiegelhalter et al., 330
Sprent, 163
Steel et al., 126
Stewart et al., 78
Stidd, 292
Stiell et al., 281
Stocks, 47
Streiner and Norman, 72, 411,

426

Talbot, 308, 348
Therneau and Atkinson, 351, 372,

373
Therneau and Grambsch, 280
Tippett, 52
Trapletti and Hornik, 299
Tufte, 37
Tukey, 113
Turner et al., 347, 348

Vaida and Blanchard, 330
Venables, 212, 446
Venables and Ripley, 9, 36, 196, 212, 237, 240, 280,

300, 348, 351, 372, 373, 385, 406

Würtz, 300
Wainer, 37
Weisberg, 212
Welch, 111
Wickham, 492



Index of authors 525

Wilkinson, 487
Wilkinson and Task Force on Statistical Inference,

37, 74, 136
Williams, 208
Williams et al., 348
Wonnacott and Wonnacott, 136
Wood, 240, 280

Xie and Cheng, 91

Young and Smith, 136

Zeger et al., 207, 208
Zhang and Singer, 374
Zhu et al., 392


	Half-title
	Series-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Influences on the modern practice of statistics
	New computing tools
	Third edition changes and additions
	Acknowledgments
	Conventions
	Solutions to exercises


	Content - how the chapters fit together
	Chapters 2-4: Exploratory data analysis and review of elementary statistical ideas
	Chapters 5-13: Regression and related methodology

	1 A brief introduction to R
	1.1 An overview of R
	1.1.1 A short R session
	1.1.2 The Uses of R
	1.1.3 Online help
	1.1.4 Input of data from a file
	1.1.5 R Packages
	1.1.6 Further steps in learning R

	1.2 Vectors, factors, and univariate time series
	1.2.1 Vectors
	1.2.2 Concatenation - joining vector objects
	1.2.3 The use of relational operators to compare vector elements
	1.2.4 The use of square brackets to extract subsets of vectors
	1.2.5 Patterned data
	1.2.6 Missing values
	1.2.7 Factors
	1.2.8 Time series

	1.3 Data frames and matrices
	1.3.1 Accessing the columns of data frames - with() and attach()
	1.3.2 Aggregation, stacking, and unstacking
	1.3.3 Data frames and matrices

	1.4 Functions, operators, and loops
	1.4.1 Common useful built-in functions
	1.4.2 Generic functions, and the class of an object
	1.4.3 User-written functions
	1.4.4 if Statements
	1.4.5 Selection and matching
	1.4.6 Functions for working with missing values
	1.4.7 Looping

	1.5 Graphics in R 
	1.5.1 The function plot( ) and allied functions
	1.5.2 The use of color
	1.5.3 The importance of aspect ratio
	1.5.4 Dimensions and other settings for graphics devices
	1.5.5 The plotting of expressions and mathematical symbols
	1.5.6 Identification and location on the figure region
	1.5.7 Plot methods for objects other than vectors
	1.5.8 Lattice (trellis) graphics
	1.5.9 Good and bad graphs
	1.5.10 Further information on graphics

	1.6 Additional points on the use of R
	1.7 Recap
	1.8 Further reading
	References for further reading

	1.9 Exercises

	2 Styles of data analysis
	2.1 Revealing views of the data
	2.1.1 Views of a single sample
	2.1.2 Patterns in univariate time series
	2.1.3 Patterns in bivariate data
	2.1.4 Patterns in grouped data - lengths of cuckoo eggs
	2.1.5 Multiple variables and times
	2.1.6 Scatterplots, broken down by multiple factors
	2.1.7 What to look for in plots

	2.2 Data summary
	2.2.1 Counts
	2.2.2 Summaries of information from data frames
	2.2.3 Standard deviation and inter-quartile range
	2.2.4 Correlation

	2.3 Statistical analysis questions, aims, and strategies
	2.3.1 How relevant and how reliable are the data?
	2.3.2 How will results be used?
	2.3.3 Formal and informal assessments
	2.3.4 Statistical analysis strategies
	2.3.5 Planning the formal analysis
	2.3.6 Changes to the intended plan of analysis

	2.4 Recap
	2.5 Further reading
	References for further reading

	2.6 Exercises

	3 Statistical models
	3.1 Statistical models
	3.1.1 Incorporation of an error or noise component
	3.1.2 Fitting models - the model formula

	3.2 Distributions: models for the random component
	3.2.1 Discrete distributions - models for counts
	3.2.2 Continuous distributions

	3.3 Simulation of random numbers and random samples
	3.3.1 Sampling from the normal and other continuous distributions
	3.3.2 Simulation of regression data
	3.3.3 Simulation of the sampling distribution of the mean
	3.3.4 Sampling from finite populations

	3.4 Model assumptions
	3.4.1 Random sampling assumptions - independence
	3.4.2 Checks for normality
	3.4.3 Checking other model assumptions
	3.4.4 Are non-parametric methods the answer?
	3.4.5 Why models matter - adding across contingency tables

	3.5 Recap
	3.6 Further reading
	References for further reading

	3.7 Exercises

	4 A review of inference concepts
	4.1 Basic concepts of estimation
	4.1.1 Population parameters and sample statistics
	4.1.2 Sampling distributions
	4.1.3 Assessing accuracy - the standard error
	4.1.4 The standard error for the difference of means
	4.1.5 The standard error of the median
	4.1.6 The sampling distribution of the t-statistic

	4.2 Confidence intervals and tests of hypotheses
	4.2.1 A summary of one- and two-sample calculations
	4.2.2 Confidence intervals and tests for proportions
	4.2.3 Confidence intervals for the correlation
	4.2.4 Confidence intervals versus hypothesis tests

	4.3 Contingency tables
	4.3.1 Rare and endangered plant species
	4.3.2 Additional notes

	4.4 One-way unstructured comparisons
	4.4.1 Multiple comparisons
	4.4.2 Data with a two-way structure, i.e., two factors
	4.4.3 Presentation issues

	4.5 Response curves
	4.6 Data with a nested variation structure
	4.6.1 Degrees of freedom considerations
	4.6.2 General multi-way analysis of variance designs

	4.7 Resampling methods for standard errors, tests, and confidence intervals
	4.7.1 The one-sample permutation test
	4.7.2 The two-sample permutation test
	4.7.3 Estimating the standard error of the median: bootstrapping
	4.7.4 Bootstrap estimates of confidence intervals

	4.8 Theories of inference
	4.8.1 Maximum likelihood estimation
	4.8.2 Bayesian estimation
	4.8.3 If there is strong prior information, use it!

	4.9 Recap
	4.10 Further reading
	References for further reading

	4.11 Exercises

	5 Regression with a single predictor
	5.1 Fitting a line to data
	5.1.1 Summary information - lawn roller example
	5.1.2 Residual plots
	5.1.3 Iron slag example: is there a pattern in the residuals?
	5.1.4 The analysis of variance table

	5.2 Outliers, influence, and robust regression
	5.3 Standard errors and confidence intervals
	5.3.1 Confidence intervals and tests for the slope
	5.3.2 SEs and confidence intervals for predicted values
	5.3.3 Implications for design

	5.4 Assessing predictive accuracy
	5.4.1 Training/test sets and cross-validation
	5.4.2 Cross-validation - an example
	5.4.3 Bootstrapping

	5.5 Regression versus qualitative anova comparisons - issues of power
	5.6 Logarithmic and other transformations
	5.6.1 A note on power transformations
	5.6.2 Size and shape data - allometric growth

	5.7 There are two regression lines!
	5.8 The model matrix in regression 
	5.9 Bayesian regression estimation using the MCMCpack package
	5.10 Recap
	5.11 Methodological references
	5.12 Exercises

	6 Multiple linear regression
	6.1 Basic ideas: a book weight example
	6.1.1 Omission of the intercept term
	6.1.2 Diagnostic plots

	6.2 The interpretation of model coefficients
	6.2.1 Times for Northern Irish hill races
	6.2.2 Plots that show the contribution of individual terms
	6.2.3 Mouse brain weight example
	6.2.4 Book dimensions, density, and book weight

	6.3 Multiple regression assumptions, diagnostics, and efficacy measures
	6.3.1 Outliers, leverage, influence, and Cook's distance
	6.3.2 Assessment and comparison of regression models
	6.3.3 How accurately does the equation predict?

	6.4 A strategy for fitting multiple regression models
	6.4.1 Suggested steps
	6.4.2 Diagnostic checks
	6.4.3 An example - Scottish hill race data

	6.5 Problems with many explanatory variables
	6.5.1 Variable selection issues

	6.6 Multicollinearity
	6.6.1 The variance inflation factor
	6.6.2 Remedies for multicollinearity

	6.7 Errors in x
	6.8 Multiple regression models - additional points
	6.8.1 Confusion between explanatory and response variables
	6.8.2 Missing explanatory variables
	6.8.3 The use of transformations
	6.8.4 Non-linear methods - an alternative to transformation?

	6.9 Recap
	6.10 Further reading
	References for further reading

	6.11 Exercises

	7 Exploiting the linear model framework
	7.1 Levels of a factor - using indicator variables
	7.1.1 Example - sugar weight
	7.1.2 Different choices for the model matrix when there are factors

	7.2 Block designs and balanced incomplete block designs
	7.2.1 Analysis of the rice data, allowing for block effects
	7.2.2 A balanced incomplete block design

	7.3 Fitting multiple lines
	7.4 Polynomial regression
	7.4.1 Issues in the choice of model

	7.5 Methods for passing smooth curves through data
	7.5.1 Scatterplot smoothing - regression splines
	7.5.2 Roughness penalty methods and generalized additive models
	7.5.3 Distributional assumptions for automatic choice of roughness penalty
	7.5.4 Other smoothing methods

	7.6 Smoothing with multiple explanatory variables
	7.6.1 An additive model with two smooth terms
	7.6.2 A smooth surface

	7.7 Further reading
	References for further reading

	7.8 Exercises

	8 Generalized linear models and survival analysis
	8.1 Generalized linear models
	8.1.1 Transformation of the expected value on the left
	8.1.2 Noise terms need not be normal
	8.1.3 Log odds in contingency tables
	8.1.4 Logistic regression with a continuous explanatory variable

	8.2 Logistic multiple regression
	8.2.1 Selection of model terms, and fitting the model
	8.2.2 Fitted values
	8.2.3 A plot of contributions of explanatory variables
	8.2.4 Cross-validation estimates of predictive accuracy

	8.3 Logistic models for categorical data - an example
	8.4 Poisson and quasi-Poisson regression
	8.4.1 Data on aberrant crypt foci
	8.4.2 Moth habitat example

	8.5 Additional notes on generalized linear models
	8.5.1 Residuals, and estimating the dispersion
	8.5.2 Standard errors and z- or t-statistics for binomial models
	8.5.3 Leverage for binomial models

	8.6 Models with an ordered categorical or categorical response
	8.6.1 Ordinal regression models
	8.6.2 Loglinear models

	8.7 Survival analysis
	8.7.1 Analysis of the Aids2 data
	8.7.2 Right-censoring prior to the termination of the study
	8.7.3 The survival curve for male homosexuals
	8.7.4 Hazard rates
	8.7.5 The Cox proportional hazards model

	8.8 Transformations for count data
	8.9 Further reading
	References for further reading

	8.10 Exercises

	9 Time series models
	9.1 Time series - some basic ideas
	9.1.1 Preliminary graphical explorations
	9.1.2 The autocorrelation and partial autocorrelation function
	9.1.3 Autoregressive models
	9.1.4 Autoregressive moving average models - theory
	9.1.5 Automatic model selection?
	9.1.6 A time series forecast

	9.2 Regression modeling with ARIMA errors
	9.3 Non-linear time series
	9.4 Further reading
	References for further reading

	9.5 Exercises

	10 Multi-level models and repeated measures
	10.1 A one-way random effects model
	10.1.1 Analysis with aov ()
	10.1.2 A more formal approach
	10.1.3 Analysis using lmer ()

	10.2 Survey data, with clustering
	10.2.1 Alternative models
	10.2.2 Instructive, though faulty, analyses
	10.2.3 Predictive accuracy

	10.3 A multi-level experimental design
	10.3.1 The anova table 
	10.3.2 Expected values of mean squares
	10.3.3 The analysis of variance sums of squares breakdown
	10.3.4 The variance components
	10.3.5 The mixed model analysis
	10.3.6 Predictive accuracy

	10.4 Within- and between-subject effects
	10.4.1 Model selection
	10.4.2 Estimates of model parameters

	10.5 A generalized linear mixed model
	10.6 Repeated measures in time
	10.6.1 Example - random variation between profiles
	10.6.2 Orthodontic measurements on children

	10.7 Further notes on multi-level and other models with correlated errors
	10.7.1 Different sources of variance - complication or focus of interest?
	10.7.2 Predictions from models with a complex error structure
	10.7.3 An historical perspective on multi-level models
	10.7.4 Meta-analysis
	10.7.5 Functional data analysis
	10.7.6 Error structure in explanatory variables

	10.8 Recap
	10.9 Further reading
	10.10 Exercises

	11 Tree-based classification and regression
	11.1 The uses of tree-based methods
	11.1.1 Problems for which tree-based regression may be used

	11.2 Detecting email spam - an example
	11.2.1 Choosing the number of splits

	11.3 Terminology and methodology
	11.3.1 Choosing the split - regression trees
	11.3.2 Within and between sums of squares
	11.3.3 Choosing the split - classification trees
	11.3.4 Tree-based regression versus loess regression smoothing

	11.4 Predictive accuracy and the cost-complexity trade-off
	11.4.1 Cross-validation
	11.4.2 The cost-complexity parameter
	11.4.3 Prediction error versus tree size

	11.5 Data for female heart attack patients
	11.5.1 The one-standard-deviation rule
	11.5.2 Printed information on each split

	11.6 Detecting email spam - the optimal tree
	11.7 The randomForest package
	Comparison between rpart() and randomForest()

	11.8 Additional notes on tree-based methods
	11.9 Further reading and extensions
	References for further reading

	11.10 Exercises

	12 Multivariate data exploration and discrimination
	12.1 Multivariate exploratory data analysis
	12.1.1 Scatterplot matrices
	12.1.2 Principal components analysis
	12.1.3 Multi-dimensional scaling

	12.2 Discriminant analysis
	12.2.1 Example - plant architecture
	12.2.2 Logistic discriminant analysis
	12.2.3 Linear discriminant analysis
	12.2.4 An example with more than two groups

	12.3 High-dimensional data, classification, and plots
	12.3.1 Classifications and associated graphs
	12.3.2 Flawed graphs
	12.3.3 Accuracies and scores for test data
	12.3.4 Graphs derived from the cross-validation process

	12.4 Further reading
	References for further reading

	12.5 Exercises

	13 Regression on principal component or discriminant scores
	13.1 Principal component scores in regression
	13.2 Propensity scores in regression comparisons - labor training data
	13.2.1 Regression comparisons
	13.2.2 A strategy that uses propensity scores

	13.3 Further reading
	References for further reading

	13.4 Exercises

	14 The R system - additional topics
	14.1 Graphical user interfaces to R
	14.1.1 The R Commander's interface - a guide to getting started
	14.1.2 The rattle GUI
	14.1.3 The creation of simple GUIs - the fgui package

	14.2 Working directories, workspaces, and the search list
	14.2.1 The search path
	14.2.2 Workspace management
	14.2.3 Utility functions

	14.3 R system configuration
	14.3.1 The R Windows installation directory tree
	14.3.2 The library directories
	14.3.3 The startup mechanism

	14.4 Data input and output
	14.4.1 Input of data
	14.4.2 Data output
	14.4.3 Database connections

	14.5 Functions and operators - some further details
	14.5.1 Function arguments
	14.5.2 Character string and vector functions
	14.5.3 Anonymous functions
	14.5.4 Functions for working with dates (and times)
	14.5.5 Creating groups
	14.5.6 Logical operators
	Operators are functions

	14.6 Factors
	14.7 Missing values
	14.8 Matrices and arrays
	14.8.1 Matrix arithmetic
	14.8.2 Outer products
	14.8.3 Arrays

	14.9 Manipulations with lists, data frames, matrices, and time series
	14.9.1 Lists - an extension of the notion of "vector"
	14.9.2 Changing the shape of data frames (or matrices)
	14.9.3 Merging data frames - merge ()
	14.9.4 Joining data frames, matrices, and vectors – cbind ()
	14.9.5 The apply family of functions
	14.9.6 Splitting vectors and data frames into lists – split ()
	14.9.7 Multivariate time series

	14.10 Classes and methods
	14.10.1 Printing and summarizing model objects
	14.10.2 Extracting information from model objects
	14.10.3 S4 classes and methods

	14.11 Manipulation of language constructs
	14.11.1 Model and graphics formulae
	14.11.2 The use of a list to pass arguments
	14.11.3 Expressions
	14.11.4 Environments
	14.11.5 Function environments and lazy evaluation

	14.12 Creation of R packages
	14.13 Document preparation - Sweave() and xtable()
	14.14 Further reading
	References for further reading

	14.15 Exercises

	15 Graphs in R
	15.1 Hardcopy graphics devices
	15.2 Plotting characters, symbols, line types, and colors
	15.3 Formatting and plotting of text and equations
	15.3.1 Symbolic substitution of symbols in an expression
	15.3.2 Plotting expressions in parallel

	15.4 Multiple graphs on a single graphics page
	15.5 Lattice graphics and the grid package
	15.5.1 Groups within data, and/or columns in parallel
	15.5.2 Lattice parameter settings
	15.5.3 Panel functions, strip functions, strip labels, and other annotation
	15.5.4 Interaction with lattice (and other) plots – the playwith package
	15.5.5 Interaction with lattice plots – focus, interact, unfocus
	15.5.6 Overlaid plots with different scales

	15.6 An implementation of Wilkinson's Grammar of Graphics
	Physical measurements of Australian athletes
	Aesthetic mappings vs settings
	Available geometries and settings
	Themes and updates

	15.7 Dynamic graphics – the rgl and rggobi packages
	15.8 Further reading
	References for further reading


	Epilogue
	References
	Methodological References
	References for Data Sets
	References for Packages
	References for Web Pages
	Acknowledgments for use of data
	Acknowledgments for data from web pages

	Index of R symbols and functions
	Index of terms
	Index of authors



