
two atoms per unit cell => 10 electrons per unit cell

Bi   Z=83, group VA  ; structure: RHL

Bi has:

- the highest Hall coefficient, RH = -1/(nec), is several orders of magnitude 
higher than expected with that n. 
- the second lowest thermal conductivity (after Hg) 
- a high electrical resistance (or low electrical conductivity) 
(look for instance at Tab 1.2 and 1.6 of A&M)

Why? 
Is the “effective” electron concentration n for some reason much lower 
than the calculated one?
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Figure 1: Electronic structure of Bismuth. (a) Bulk band dispersion in di↵erent directions of the
Brillouin zone (b) Schematic band structure of the bands crossing the Fermi energy. (c) Density
of states.

Here we simplify this by assuming that n = p so that

RH =
µ2
h
� µ2

e

en(µh + µe)2
. (2)

This expression does not only contain the electron (or hole) concentration but also
the mobilities. In any event, both n and p are very small such that the denominator is
small, too, giving rise to a high RH . This e↵ect would, however, disappear for equal
electron and hole mobilities because this would lead to a vanishing numerator.

Online note to accompany the book “Solid State Physics - An Introduction”, Wiley VCH. Copyright
(C) 2014 by Philip Hofmann.
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The effect of the presence of both holes and electrons on the Hall constant can be 
understood qualitatively from the expression for RH:

Hall e↵ect in Bismuth

Table 5.1 illustrates the curious Hall e↵ect in Bismuth: If we make the apparently
reasonable assumption that every Bi atom contributes to the metallic state with 5
valence electrons, the Hall constant RH = �1/(ne) is several orders of magnitude
higher than expected. A possible explanation for this could be that the electron
concentration n is for some reason much lower and this is also the case. This
note explains this in more detail and it also gives a good illustration of the electron
counting arguments that we have used in the text in order to determine if a solid
is a metal or a semiconductor.

Bi atoms have 5 valence electrons, two s electrons and 3 p electrons. The bulk
crystal structure of Bi is a bit complicated but for us the only important thing is
that there are two atoms per unit cell. This makes 10 electrons per unit cell. Since
this is an even number, Bi could technically be a semiconductor but we need to
keep in mind that having an even number of valence electrons per unit cell is only
a necessary criterion for having a semiconductor. It is not su�cient. In the case
of Bi, we have an electronic situation that is very close to being a semiconductor -
but not quite.

This is illustrate in Figure 1(a) which shows the band structure of Bi. The two
lowest bands can be viewed as s-derived. The are well separated from the higher
p-type bands and fully occupied by the 4 s electrons in the unit cell. this leaves
6 p electrons which could exactly fill three more bands. A superficial look on the
band structure appears to confirm this. When zooming in as schematically done
in Figure 1(b), however, we see that the upper “valence band” crosses the Fermi
energy the T point of the Brillouin zone whereas the lowest “conduction band”
drops below the Fermi energy at the L point. The valence band is thus almost
completely filled apart from a very small concentration of holes and the conduction
band is completely empty apart from a very small concentration of electrons. The
total electron and hole concentration must the the same, of course, so that the Bi
remains charge neutral. An impressive illustration of the small carrier concentration
is shown in density of states shown Figure 1(c). At first glance the density of states
appears to go to zero near the Fermi energy such that a gap is formed. But this is
so only superficially. The density of states does not actually go to zero. It is just
very small.

The e↵ect on the Hall constant can now be seen qualitatively from the expression
for the Hall e↵ect in the presence of both holes and electrons (see Problem 7.6)

RH =
pµ2

h
� nµ2

e

e(pµh + nµe)2
. (1)
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(see: Ashcroft-Mermin: problem 12.4;

written test of January 16, 2012 - problem n. 3)

Exercise 2: E↵ective masses and density of levels

Consider bulk Silicon, whose conduction band minima Ec are near the Brillouin zone boundary

along h100i directions. Assume a parabolic conduction band with ellipsoidal constant energy

surfaces around the minima, described by:

E(k) = Ec +
h̄2
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(t=transverse, `=longitudinal, with m⇤
`= 0.98m0 m⇤

t= 0.19m0, where m0 is the free electron

mass; ~k is with respect to the location of the minima).

1. How many equivalent minima there are?

2. Write the expression of the density of states g(E) around one of the conduction band

minima, in terms of Ec,m⇤
` ,m

⇤
t .

3. Calculate the number of states per unit energy for an energy 100 meV above the

conduction band bottom, in a 100 ⇥ 100 ⇥ 10 nm piece of silicon. Write the result

in units of eV �1
.

Exercise 3: Semi metals

Bismuth is a ”semi metal”; it has the second lowest

thermal conductivity (after mercury) and the highest Hall

coe�cient, a high electrical resistance (or low electrical

conductivity) (look for instance at Tab 1.2 and 1.6 of A&M

book!).

The unit cell is rhombohedral with two atoms (see Tab 7.5

A&M book), so it could be an insulator. However, there

is a little band overlap that makes the situation similar to

the case of a divalent metal with simple cubic lattice, whose

Fermi-surfaces in (kx, ky) plane is shown in the figure. We

refer therefore for simplicity to this case.

1. Make the same picture using the repeated zone scheme. Which part of the Fermi-surface

can be described as electron-like and which as hole-like?

2. By which factor is the specific heat of the electrons at low temperatures (kBT << EF )

smaller than the electronic specific heat in the model of free electrons? For numerical

estimations use the following data: the radius of the electronic Fermi-sphere is ke = 0.1G0,

where G0 is the shortest reciprocal lattice vector; the bands in the vicinity of EF are

parabolic with e↵ective masses me = mh = 0.1m0.

3. Why is the conductivity of such metals smaller than in the model of free electrons?

(qualitative picture!)


