Università di Trieste, A.A. 2019/2020 – Laurea Triennale in Fisica

Elettromagnetismo, Prova Scritta Secondo Appello Sessione Invernale (20.02.2020)

Cognome N	Nome
-----------	------

Accetto la valutazione ottenuta nella [] prima o nella [] seconda prova intermedia.

Istruzioni per gli esercizi:

Per ciascuna domanda rispondere fornendo solo il risultato finale: i principali passaggi logici per la soluzione del problema, la grandezza incognita espressa simbolicamente in funzione delle grandezze date o di quelle ottenute in altre risposte, e poi il corrispondente risultato numerico con le unità di misura appropriate. Verranno valutati sia il procedimento logico (argomentato) che il risultato numerico.

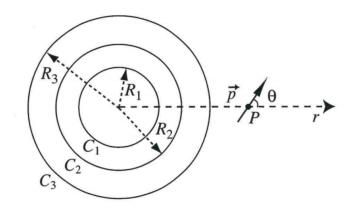
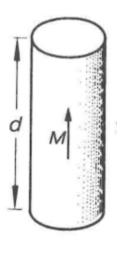



Fig. 1

- 1. Un dipolo elettrico di momento \vec{p} è disposto con la direzione orientata normalmente ad un piano conduttivo molto esteso, collegato a terra. La distanza tra il centro del dipolo e il piano è pari a D. Ricavare l'espressione della forza che si esercita sul dipolo.
- 2. Tre sottili gusci conduttori cilindrici C_1 , C_2 e C_3 (Figura 1), coassiali, isolati, hanno raggi rispettivamente R_1 = 10 cm, R_2 = 20 cm, R_3 = 40 cm. Il cilindro interno C_1 è caricato con densità di carica λ_1 = -20 nC/m e il cilindro C_2 con λ_2 = 60 nC/m. Calcolare la differenza di potenziale elettrostatico tra i conduttori C_3 e C_1 . Determinare anche l'energia elettrostatica di un dipolo p = 5 nCm situato nel punto P posto ad una distanza d = 1.0 m dall'asse dei cilindri, orientato a formare un angolo θ = 60° con la direzione radiale r. In un secondo momento l'intercapedine tra i conduttori C_1 e C_2 (C_1 0 viene completamente riempita di materiale dielettrico con C_1 1 e C_2 2 (C_1 1 conductori C_2 2 e C_3 3 con la differenza di potenziale tra C_3 3 e C_3 5.

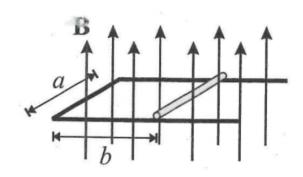


Fig. 2

Fig. 3

- 3. Un cilindro di ferro, lungo d = 50 cm e di raggio R = 10 cm, è magnetizzato uniformemente, con magnetizzazione parallela all'asse del cilindro e in modulo pari a M = $5 \cdot 10^5$ A/m (Figura 2). Determinare come varia il campo \vec{B} generato da questo cilindro nei punti dell'asse orientato lungo la direzione dello stesso. In particolare calcolarne poi il valore al centro del cilindro. Calcolare infine la circuitazione di \vec{B} , \vec{H} e \vec{M} lungo una linea chiusa Γ_1 che attraversa il cilindro in tutta la sua lunghezza e lungo un'altra linea chiusa Γ_2 che passa nel materiale solo per metà della sua lunghezza.
- 4. Un circuito rettangolare di lati a e b (Figura 3) con un lato libero di scorrere è posto in un piano ortogonale ad un campo magnetico \vec{B} uniforme e variabile nel tempo secondo la legge B = kt, dove k è una costante positiva. Si determini la forza che bisogna applicare al lato mobile per tenerlo fermo se la resistenza del circuito è pari a R.