Process Simulation Techniques

Maurizio Fermeglia

- Maurizio.fermeglia@units.it
- Department of Engineering & Architecture
- University of Trieste

Agenda

Numerical strategies and types of process simulation

- Equation oriented
- Sequential modular approach

Steady state process simulation

- Procedure and structure of a steady state process simulator
- Results obtainable and problems involved

Dynamic simulation

Numerical strategies and types of PSS

Equation oriented

Sequential modular approach

Mathematically speaking

- n non linear material balances equations
- 1 energy balance non linear equation
- set of differential algebraic equations (dynamic simulators)

In presence of:

- Many components;
- Complex thermo-physical models for phase equilibria calculations
- A high number of subsystems (equipment)
- Rather complex equipment (distillation column,...)
- Recycle streams
- Control loops

Numerical strategies

Equation oriented strategy - simultaneous solution

- Write down the entire set of equation
 - Identify the constraints
- Solve the non liner system
- Sequential Modular approach
 - Each subsystem is solved independently, starting from the first one
 - Output streams for the solved subsystems are input streams for the next subsystem
 - Problems for the recycle streams (of material, energy and information)
- Combination of the two extreme approach
 - Equation can be lumped into modules
 - Modules can be represented by polynomials that fit input-output information

Equation oriented (EO) flowsheeting ...

- Solution of a set of non liner equations with constraints
- Definition of the matrix of the stream connection (process matrix)
- Definition of the inequality constraints
 - Linearization of non-linear equations
 - Process limits for Temperature, Pressure, concentration
 - Requirements that variable be in a certain order
 - Requirements that variables be positive or integer
- Define the procedure for determining the order in solving the equations
- The treatment of feedback (recycles)

Equation oriented (EO) convergence

Method of solution

- Newton Raphson
- Secant
- Tearing = selecting certain output variables from a set of equations as known values so that the remaining variables can be solved by serial substitution
- Partitioning = partition of equations into blocks containing common variables
- Definition of initial guess
- Scaling the variables (the same order of magnitude)
- Scaling the equations (the same deviation from zero)

Sequential modular approach (SMA)

- Most common approach
- Each unit operation is described by a subroutine
- The output of a module is the input of the next module
- Other subroutines take care of
 - equipment sizing and cost estimation
 - numerical calculations
 - handle recycle calculations
 - optimize and serve as controllers for the whole set of modules

Tearing is the process of solving the recycles by deciding which stream should be interrupted and guessed

Partitioning: grouping of equations for fast solving

Process Simulation – Maurizio Fermeglia

Trieste, 4 October, 2021 - slide 10

SMA: Advantages and disadvantages

Advantages of sequential modular approach

- The flow-sheet architecture is easily understood because it closely follow the process
- Individual modules can easily be added and removed
- Modules of different levels of accuracy can be substituted

Drawbacks of sequential modular approach

- The input of a module is the output of a module: you cannot arbitrarily introduce an output or input
- The modules need extra time to generate derivatives (perturbation of the input)
- The modules may require a fixed procedure for the order of solution: slow convergence
- Parameter specification is done with control loops: possibility of introducing nested loops
- Phase equilibrium instability during the convergence of the process may lead to inconsistency in the process specifications

SMA is the most popular approach,

- but EO is the most applied in modern Process Simulators
- SMA is adopted to initialize or get close to the solution, then EO to solve the model more precisely

Sequential Modular appoach

Equation-Oriented approach

Steady State process simulation

A typical flow-sheeting code: steady state

Steady State simulators: the core product

Directly used in:

- Process and equipment design
- Evaluating process changes
- Analyzing what-if scenarios
- Sensitivity analysis
- Optimization
- Debottlenecking

Basis for:

- Dynamic simulation
- Process synthesis
- Detailed equipment design
- Off-line and on-line equation based optimization
- Application technologies for vertical markets, e.g. polymers

Process simulation: the procedure

Identify the problem: perform a detailed analysis Obtain all the relevant information

- Get process data: flow rates, operative conditions, concentrations
 - Get thermodynamic data:
 - In-house data
 - Data Banks (Dechema, ...) or literature
 - Test run on laboratory / pilot plant
 - Via estimation methods (be suspicious on Group Contribution methods)
 - Via molecular modeling
- Get kinetic data
 - Directly from pilot plant
 - from excess Gibbs energy calculations (if possible)
 - directly from plant data

TIP: avoid a rigorous definition of kinetic model and use concept of yield and conversion wherever possible and reasonable, at least in the first stage of the development

Select the software

- Steady state simulators
 - Aspen Plus (Aspentech)
 - SuperPro Designer
 - PRO II (Sim Sci)
 - Aspen HYSIS (AspenTech)
 - gPROMS (PSE)
 - ۰.
 - Dynamic simulators
 - Aspen Dynamics (Aspentech)
 - Aspen Batch modeler (Aspentech)
 - Batch model and DynSim (Sim Sci)
 - gPROMS (PSE)
 - ABACUS (MIT)
 - Integrated solution

....

- Aspen Dynamic, Hysis, Pro II, ...
- Select the Hardware

- Training
 - Material and energy balances
 - Basic course on process simulation
 - Thermodynamic, phase equilibria and model selection
 - Specific topics in thermophysical property calculation
 - Electrolytes
 - Polymer systems
 - Kinetic data and kinetic modeling
 - Specific topics in unit operation modeling
 - heat exchangers design
 - Batch distillation and reaction
 - heat integration
 - Process dynamics and control and dynamic process simulation
 - Economic factors, cost analysis and energy consumption
 - Batch process modelling
 - Environmental impact and environmental evaluation
 - Control system

Run the base case that is:

- a complete representation of the plant (or part of the plant) in which the goals are
 - the closure of the degree of freedom analysis
 - the convergence of all the variables
- may not correspond to the goals to be achieved
- the starting point of 'what if analysis'
- validation procedure for thermodynamic models and for data used
- the validation for the reaction modeling and for the kinetic assumption
- the validation for the unit operation models used in terms of:
 - Reliability
 - Convergence and numerical methods
 - Completeness of the results
- There is not a necessary one-to-one correspondence between pieces of equipment and a model block

- Fine tune the base case by adjusting
 - Thermodynamic models and parameters (thermodynamic analysis)
 - Kinetic models

Assign Design Specification to each block

- Assign internal design specification which involves variables and equation of specific blocks, such as solvent recovery, outlet temperature, number of stages, reflux ratio,...
- The simulator will close again the degree of freedom analysis by considering the new design specification
- The simulator will solve the unit operation by varying an indicated variable so that the design specification is met
- Different way of performing such task in different process simulators

Perform Sensitivity analysis

- A sensitivity analysis is the observation of a process condition consequent to the variation of a single process variable (partial derivative)
- One can perform one sensitivity per each variable
- One can observe the effect of the variation in several process conditions
 Sensitivity analysis is of paramount importance for determining the most 'sensitive' variables for an optimization of the process
- Plot of the results are normally prepared

Steady State Process Simulation ... Sensitivity Analysis ...

- Your most useful ally in identifying problems and assessing risk is the Sensitivity Analysis (Tony Perris)
 - "what if ...?"
 - vary the input data (and even the models)
 - explore the defaults
 - vary the assumptions
 - bound your region of confidence
 - explore combinations of uncertainties

Sensitivity Analysis ...

- identify key sensitivities & their engineering consequences (efficiency vs. structure)
- focus on what really matters (i.e. what has a serious effect)
- allocate design margins accordingly

Design specification for the entire process

- Is the natural result of a correct sensitivity analysis
- Allows to define a given process condition by modifying a variable in any part of the process
- IS a one to one relationship between specification and variable

Case Studies

- Run the simulation with different operating condition
- Different from the sensitivity analysis
- The simulation converges completely for each process condition

Optimization

- Is the procedure that allow to find the best conditions in terms of a well defined objective function
 - The objective function may be:
 - Energy consumption
 - Operating cost
 - Equipment cost
 - Environmental impact

• ...

- The number of variables is more than one
- Points of attention:
 - Multiple minimum
 - Feasible and non-feasible path
 - Numerical convergence

Steady State Process Simulation The Recipe

- Components definition
- Physical Chemical properties definition
- Choosing the proper unit operation models
- Design the flowsheet connectivity
- Feed conditions definition
- Unit operation internal definitions for each unit operation involved in the process
- Process specification definition (Design Specifications)
- Analysis tools
 - Sensitivity analysis
 - Case studies
 - Optimization
- Sustainability evaluation (Profit, Planet, People)

Structure of a Process Simulator

Process Simulation – Maurizio Fermeglia

^{*}Areas of Special Concern Trieste, 4 October, 2021 - slide 28

Results obtainable

- Verification of the process operating conditions
- Information on intermediate streams (not measured)
- Enthalpy balances information
- Verification of the plant specifications
- Validation of phase equilibrium models for the real system to be used in similar conditions
- Influence of the operative parameters on the process specifications
- Process De-bottlenecking for each individual section
- A priori Identification of process control strategies and tuning of instrumentation
- Possibility to verify security systems behavior for variation of process condition

Problems involved

- Availability of all the required thermodynamic properties of the pure components involved
- Definition of an accurate thermodynamic model (Equations of state or Excess Gibbs energy model) for binary and multi-component mixtures
- Availability of all the necessary interaction parameters
- Availability of all the necessary unit operations modules
- Necessity of defining dummy operations, not always easy to identify
- Tear streams identification to achieve rapid convergence if in presence of recycles
- Necessity of defining user models and user thermo (in C++, FTN or VB - VBA)

Dynamic Simulation

Definitions

What does "dynamic" mean?

 Dynamic simulation accounts for process transients, from an initial state to a final (steady) state

Why dynamic simulation?

predicted transient behavior of processes under different conditions can be used in different fields

When adopting dynamic approach?

 Whenever the process itself is dynamic (i.e. batch process), for start-up phase of steady state processes or in order to deal with non-predictable events, such as changing in environmental conditions, rupture of equipment/controllers, etc...

Dynamic simulation Process design and development

- Gives the design engineers a tool to conceptualize and verify process design by simulating
 - different design alternatives
 - operative conditions
 - safer process design can be accomplished quicker and more cost-effectively
- On-line applications
 - Calculation of inferential measurements
 - Decision support
- developing and testing alternative control schemes used to model a chemical process in basic regulatory control schemes as
 - Internal Model Control (IMC)
 - Model Predictive Control (MPC)

Features of Dynamic simulation

Advanced control

- Advanced control of processes includes
 - Regulatory mode: responsible for
 - disturbance rejection
 - bringing the process set point
 - Transition mode: responsible for manipulating setpoints for controllers
 - start up
 - shut down

Training plant personnel

- Disturbances can be modeled and operator response can be monitored in an easy, cost effective way
 - DCS systems control panel simulated by an external dynamic simulator
 - networked workstation central server provides access to problem data base
 - standalone PC (see above)

Features of Dynamic simulation

Optimizing plant operations

- By using an appropriate objective function (product quality) dynamic simulation can optimize (off-line or real time):
 - operating efficiency
 - profit or cost
 - environmental impact
 - troubleshoot process operability

Process reliability/availability studies

- Determining
 - failure propagation speed
 - equipment reliability
 - equipment availability

Characteristics of a dynamic simulator

Components

- Thermodynamic / Physical properties
- Unit operation models
- Numerical solvers
- Mathematically
 - Consist of large systems of ordinary differential and algebraic equations

Computationally intensive

- Solver issues: speed robustness
- Mathematical problems: non-linear sparse stiff

Approaches

- Equation based approach (the most popular approach)
- Sequential modular approach
- Dynamic simulation in Aspen+
 - Aspen+ steady state → batch processes (reactor, distillation)
 - Aspen Custom modeler
 - Aspen Batch Process developerAspen+ Dynamics
 - Aspen Chromatography
 - Aspen Operator training

Benefits of Dynamics Modeling

- Capital avoidance and lower operating costs through better engineering decisions
- Throughput, product quality, safety and environmental improvements through improved process understanding
- Increased productivity through enhanced integration of engineering work processes