Diagramma di fase \rightarrow ES.: Argon.

Simetria per traslasione contina

$$
\langle F(\vec{r})\rangle=\langle F(\vec{r}+\vec{R})\rangle \quad \forall \vec{R}
$$

Fase cristallina : simmetria trasl-discreta

$$
\begin{aligned}
& \vec{R} e=l_{1} \vec{a}_{1}+l_{2} \vec{a}_{2}+l_{3} \vec{a}_{3} \\
& F\left(\vec{r}+\vec{R}_{l}\right)=\vec{F}(\vec{r}) \quad \forall \vec{R} l
\end{aligned}
$$

Fase liquids: wo simuetria traslazioue discreta

Media dlensubble $\langle\ldots\rangle$

$$
\langle F\rangle \cong \frac{\operatorname{Tr}\left[e^{-\beta H} F\right]}{\operatorname{Tr}\left[e^{-\beta H}\right]} \rightarrow \text { misordine }
$$

materiali annorfi

$F\left(\vec{r}+\vec{R}_{l}\right)=F(\vec{r}) \quad \nless \vec{R}_{l}$

$F\left(\vec{r}+\vec{R}_{i}\right) \approx F(\vec{r}) \quad \forall \vec{R}_{i}$
$|\vec{r}| \lesssim r_{c}$

plisordine continuo

- leggi di couservazione
- leggi costitutive

Correlazioni

Ordine a corto raggio ES: gas, leghe

funzione di correlazione

$$
G\left(\vec{r}^{\prime}, \vec{r}^{\prime \prime}\right)
$$

Ordine a quasi-lugo raggio
Es: solidu cristalline $2 d$

$$
G\left(\vec{r}, \vec{r}^{\prime \prime}\right) \sim r^{-\gamma} \quad \gamma>0
$$

Ordine a lungo raggio

$$
\left\{\begin{array}{l}
G\left(\vec{r}_{e^{\prime}}, \vec{r}_{e^{\prime \prime}}\right) \rightarrow \cos t \\
\left|\vec{r}_{e}\right|-\vec{r}_{e^{\prime \prime}} \mid \rightarrow \infty
\end{array}\right.
$$

Es: cristallo
Ordine a raggio intermedio Es: liquidi

$$
\begin{gathered}
G\left(\vec{r}_{1}^{\prime} \vec{F}^{\prime \prime}\right) \sim r^{-n} \exp (-r / \xi) \quad \text { uso } \\
\vec{r}=\vec{r}^{\prime \prime}-\vec{r}^{\prime} \\
\xi \rightarrow 0 T_{i} \quad \xi=\infty \quad{ }^{\prime} \quad \sum \rightarrow \infty \quad T \rightarrow T c
\end{gathered}
$$

1930 : Peierls, Landau
'1960: teor. Mermin - Wagher: Solto ipotesi abbi generali sulla natura delle intrazioui, non c'è ordine spontaneo a lungo raggis in $d=1$ e $d=z$

Esempri

1) Vibrazioni armoniche reticds

$$
\begin{aligned}
& \left|\Delta \vec{r}_{i}\right|^{2}=\left|\vec{r}_{i}-\vec{r}_{i 0}\right|^{2} \\
& \left|\Delta \vec{r}^{2}\right|^{2}=\frac{1}{N} \sum_{i=1}^{N}\left|\Delta \vec{r}_{i}\right|^{2}
\end{aligned}
$$

sposte quadratico medio

$$
\begin{array}{ll}
\left.\left.\langle | \Delta \vec{r}\right|^{2}\right\rangle \sim & \int \frac{d^{d} k}{w^{2}} \sim \int \frac{k^{d-2} d k}{k} \\
w \simeq c k & \sim \int k^{d-3} d k
\end{array}
$$

$$
\left.\left.\langle | \Delta \vec{r}\right|^{2}\right\rangle \sim \ln L \quad d=2
$$

2) spin $1 d$

I accoppriamento primi vicini
$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$
$\uparrow \uparrow \uparrow: \downarrow \downarrow \downarrow$
$\Delta U=J$ costo energetico
$\Delta S=K_{B} \ln N$ guadcyuo entropico

$$
\begin{aligned}
\Delta F & =\Delta U-T \Delta S \\
& =J-K_{B} T \ln N<0 \\
& \text { se } N \rightarrow \infty
\end{aligned}
$$

Scala atomica
10-10-10-9

Scala mesoscopica
10-7-10-5

Scala macroscopica
10-2-100

costitreuti

Wateria condeusata DURA
elementar
colloidi, polimeri
\downarrow
Materia condensata SOFFLCE

$$
\text { Meq } \sigma \text {, yogert }
$$

dispersione
colloidale
particelle selide

emulsioni

schiuma
particelle gassose

