ATOM ECONOMY

The Atom Economy – A Search for Synthetic Efficency Barry M. Trost *Science* **1991**, *254*, 1471-1477.

Atom Economy – A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way
Barry M. Trost *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 259-281.

On Inventing Reactions for Atom Economy Barry M. Trost *Acc. Chem. Res.* **2002**, *35*, 695-705.

Organic Synthesis – Past, Present and Future Roger A. Sheldon *Chem. & Industry (London)* **1992**, 903-906.

Catalysis and pollution Prevention
Roger A. Sheldon *Chem. & Industry (London)* **1997**, 12-15.

ATOM ECONOMY

Efficient synthetic methods require to assemble complex molecular arrays include reactions that are both selective (chemo-, regio-, diastereo-, and enantio-) and economical in atom count (maximum number of atoms of reactants appearing in the products).

Come?

Usando reazioni catalizzate

e continua evoluzione dei metodi di sintesi

usare quantità catalitiche di "attivatori"

Questo ha per esempio consentito di sintetizzare anche sostanze molto complesse come la palytoxina, una tossina marina estremamente potente.

Palytoxin

$$C_{129}H_{223}N_3O_{54}$$

$$C_{129}H_{223}N_3O_{54}$$

$$C_{149}H_{223}N_3O_{54}$$

$$C_{149}H_{223}N_3O_{54}$$

$$C_{149}H_{24}H_{34}H$$

Tra le sostanze più tossiche al mondo ben 115 atomi di C contigui!!!

ATOM ECONOMY

Quanti atomi dei reagenti si trovano nei prodotti?

Chimica sostenibile

chimica a basso impatto ambientale – Green Chemistry

i principi della green chemistry sono di tipo qualitativo

AE invece è una determinazione quantitativa che consente il confronto dell'**efficienza** di processi diversi

però AE è una espressione che riguarda solo la massa dell'equazione stechiometrica

$$AE = \frac{\text{prodotto (g/mol)}}{\text{reagente1} + \text{reagente2} + ... \text{ reagentex (g/mol)}}$$

ATOM ECONOMY

Scheme 1. Atom Economy of the Esterification of Phenylacetic Acid with Different Substrates [11]

$$\label{eq:AE} \mathbf{AE}(1) = \frac{b_{\mathrm{product}} \cdot \mathbf{MW}_{\mathrm{product}}}{a_{\mathrm{substr.1}} \cdot \mathbf{MW}_{\mathrm{substr.1}} + \ldots + a_{\mathrm{substr.}m} \cdot \mathbf{MW}_{\mathrm{substr.}m}},$$

Quali reazioni sono ad ALTA o BASSA economia dell'atomo?

... sostituzioni?

... addizioni?

... cicloaddizioni?

... uso di gruppi protettivi?

... processi stereoselettivi?

... processi catalitici?

... Wittig reaction?

CH₃CH₂CH₂CH₂OH + NaBr +H₂SO₄→CH₃CH₂CH₂CH₂Br + NaHSO₄+ H₂O 1 2 3 4 5 6

Weight

ATOM ECONOMY TABLE

Reagents Formula	Reagents FW	Utilized Atoms	of Utilized Atoms	Unutilized Atoms	Weight of Unutilized Atoms
1 C ₄ H ₉ OH	74	4C,9H	57	но	17
2 NaBr	103	Br	80	Na	23
3 H ₂ SO ₄	98	<u> </u>	0	2H,4O,S	98
Total 4C,12H,5O,BrNaS	275	4C,9H,Br	137	3H,5O,Na,S	138

% Atom Economy = (FW of atoms utilized/FW of all reactants)
X 100 = (137/275) X 100 = 50%

Per un processo chimico:

- massimizzare il numero di atomi dei reagenti che vanno a costituire i prodotti
- ogni reazione deve essere "benigna" nei confronti dell'ambiente
- in una reazione A + B → C + D
 se C e' il prodotto che interessa, D deve essere quanto piu' piccolo ed innocuo possibile
- massimizzare la concentrazione
- massimizzare le rese chimiche

Esempi comuni di "Metriche Chimiche"

- Fattore E
- Economia Atomica
- Resa Massiva Effettiva
- Efficienza del carbonio
- Efficienza massiva di reazione

Altre problematiche non coperte da queste metriche:

- problematiche energetiche
- materie prime rinnovabili
- tipi di reazione
- reagenti catalitici vs. stechiometrici
- sicurezza
- analisi del ciclo di vita
- quoziente ambientale

Fattore E

Environmental Factor (Sheldon)

dipende da cosa si definisce per scarto include:

solo usato nel processo

o anche composti necessari per l'abbattimento/trattamento

metrica molto utile per l'industria

il fattore E è spesso suddiviso in sotto-categorie: scarti organici scarti acquosi, ecc.

più il numero è **piccolo**, più ci si avvicina all'obiettivo di **scarto 0**

Fattore E

II fattore E =

kg totale di tutte le altre sostanze prodotte

kg prodotto desiderato

Il fattore E nell'industria

Tipo di industria	Tonnelate di prodotto	Kg by product/kg product
Oil refining	$10^6 - 10^8$	<0.1
Bulk chemicals	$10^4 - 10^6$	<1 –5
Fine chemicals	$10^2 - 10^4$	5 ->100
pharmaceuticals	10 - 10 ³	25 ->100

Il fattore **EQ** quoziente ambientale

E' il prodotto del fattore E per il grado di impatto ambientale Per es. se assegnamo Q 1 al sodio cloruro daremo un valore 100-1000 a Sali di metalli pesanti

economia atomica in reazioni chimiche

in una reazione A + B → C + co-prodotti

$$AE = \frac{\text{prodotto (g/mol)}}{\text{reagente1 + reagente2 + ... reagentex (g/mol)}}$$

- un calcolo di quanti reagenti rimangono nel prodotto finale semplice calcolo
- non tiene conto di solventi, reagenti, resa di reazione ed eccesso molare dei reagenti
- più il numero è grande, maggiore è la percentuale di tutti i reagenti che compare nel prodotto

0 < AE < 1

misure di sostenibilità chimica: resa chimica e selettività

resa di reazione:

selettività di reazione

selettività
$$\% = \frac{\text{resa del prodotto desiderato}}{\text{quantità di substrato convertito}} \times 100$$

Efficienza Atomica

Efficienza Atomica = % Resa x Economia Atomica

Importanza:

si può usare per sostituire la resa e AE esempio: AE può essere 100% e la resa solo del 5% per cui la reazione non è un processo sostenibile.

Più è vicina al 100% più il processo è sostenibile

● 0 - 100%

Effective Mass Yield (RME)

Eff. mass Yield (%) = 100 x
$$\frac{\text{prodotto (kg)}}{\text{reagenti pericolosi (kg)}}$$

definizione: la percentuale della massa del prodotto desiderato relativa alla massa di tutti i materiali non benigni usati per la sua sintesi.

cos'è benigno? chi decide?

questa metrica ignora i recuperi (RME)

non si considerano i solventi benigni. Cosa succede se i solventi benigni sono combinati con altri non-benigni *in-situ* per formare una miscela di non-benigni?

come EA, è preferita la percentuale più alta

● 0 - 100%

RME, Reaction Mass Efficiency = Mass of product C x 100 / Mass of A + mass of B tiene conto di atom economy, resa chimica e stechiometria della reazione, vedi dopo.

Efficienza del Carbonio

% efficienza carbonio =
$$100 \times \frac{\text{massa di carbonio nel prodotto}}{\text{massa di carbonio nei reagenti}}$$

$$A + B \rightarrow C$$
 $CE = 100 \times \frac{\text{(# moli prodotto)} \times \text{(# carboni nel prodotto)}}{\text{(moli A x carboni di A) + (moli B x carboni in B)}}$

definizione: la percentuale di carbonio nei reagenti che rimane nel prodotto finale

tiene conto di: resa e stechiometria

importanza: direttamente correlata ai gas serra

è meglio che il numero sia grande

Waste and Material Efficiency Ratios

• il rapporto degli scarti (waste ratio) fu sviluppato dalla 3M per incoraggiare la conversione di rifiuti in sottorprodotti (residui che si possono riusare in produzione) riducendo gli scarti.

poichè uno scarto è considerato un segno di produzione inefficiente, il rapporto fornisce un indicatore della generazione di scarti come pure della perdita di prodotto e materiali. Alcuni, però, preferiscono il ratio of material efficency (RME) rispetto al waste ratio per la mancanza di un accordo sulla definizione di "waste"

misura di resa, selettività ed efficienza atomica di una reazione

alchilazione del *p*-cresolo: processo acido catalizzato catalisi eterogenea

```
condizioni: p-cresolo 19.61 g, 0.18 moli),
MTBE (15.84 g, 0.18 moli)
catalizzatore di silice/zirconia (3.5% in peso)
si scalda a 100 °C per 3 ore.
i prodotti sono identificati per analisi GC
Il prodotto è il 2-t-butil-p-cresolo (13.0 g)
rimangono 10.78 g di p-cresolo non reagito.
```

calcolare la resa, selettività ed efficienza atomica

misura di resa, selettività ed efficienza atomica di una reazione

alchilazione del *p*-cresolo: processo acido catalizzato catalisi eterogenea

resa teorica = 29.77 g
resa % = 100 x 13/29.77 = 43.7%
selettività % = 100 x 13/29.77 [(19.61-10.78)/19.61] *conversione*
= 13/13.4 = 97%

$$AE = 164/(164+32) = 0.836$$

Reaction Mass Efficency (RME)

$$RME = (\epsilon) (AE)1/SF)(MRP)$$

dove:

ε è la resa di reazione

AE è l'economia atomica

SF è il fattore stechiometrico dato da

$$RME = \frac{1}{1 + E_m}$$

Fattore di Impatto Ambientale (fattore E o E_m)

$$SF = 1 + \frac{\Sigma \text{ mass }_{excess \text{ reagents}}}{\Sigma \text{ mass }_{stoichiometric \text{ reagents}}} = 1 + \frac{AE \text{ Σ mass }_{excess \text{ reagents}}}{\text{theoretical mass }_{product}}$$

e MRP è il "recovery material parameter"

$$MRP = \frac{1}{1 + \frac{\epsilon(AE)(c+s+\omega)}{(SF)m_p}}$$

dove c è la massa del catalizzatore, s è la massa del solvente, w è la massa di tutti i materiali di postreazione usati nel work up e purificazione, e m_p è la massa del prodotto voluto raccolto. Ciascuno dei 4 fattori è nell'intervallo 0-1.

sintesi dell'idrochinone: via classica

% AE = 100 (PM del prodotto desiderato/PM di tutti i prodotti)

si possono avere reazioni con rese del 100% ma si ottiene meno del 20% di prodotto utile

sintesi dell'idrochinone: via Upjohn

sintesi dell'idrochinone: via ENI

vengono separati per distillazione frazionata

catalizzatore: anni '80 – omogeneo: Fe(2+) poi Fe(cp)₂ (cp = ciclopentadienile)

anni '90 - eterogeneo: Titanio-silicalite (zeolite)

una lezione di Economia Atomica

$$+ 4.5 O_2$$
 V_2O_5 $+ 2 CO_2$ $+ 2 H_2O$

anidride maleica

storia della produzione di anidride maleica

pre 1960: specialità di valore molto alto, scarsa competizione ossidazione del benzene

1962: uso più ampio, maggiore competizione

la Denka introduce il processo di ossidazione del butene

fine anni '60: il prezzo del butene aumenta

l'impianto della Denka si converte a benzene

anni '70: crisi petrolifera, il prezzo del benzene sale

- la Monsanto costruisce l'impianto di ossidazione del butano
- la Denka si converte all'uso del butano

inizi anni '80: in USA non restano impianti di ox. del benzene

anni '90: pericolo ambientale

UCB e BASF isolano la MA co-prodotta nel processo PA

ossidazione del benzene

 $EA \% = 100 \times 98/(78 + 4.5 \times 32) = 100 \times 98/222 = 44.1\%$

ossidazione del butene

 $EA\% = 100 \times 98/(56+96) = 100 \times 98/152 = 64.5\%$

talvolta è utile analizzare le singole economie atomiche, per esempio per i soli atomi di C o di S

può essere utile nel caso in cui la produzione di materiali non tossici, come l'acqua, distorce l'AE complessiva

si calcola come semplice % del numero di atomi nel prodotto diviso per il numero di atomi del materiale di partenza

Efficienze Atomiche per la produzione dell'anidride maleica

	dal benzene	dal butene	dal butano
carbonio %	67 (4/6)	100 (4/4)	100 (4/4)
idrogeno%	33	25	20
ossigeno %	33	50	43

via classica

Economia Atomica

formula reagenti	PM reagenti	Atomi utilizzati	peso atomi utilizzati	atomi non utilizzati	peso atomi non utilizzati
1 C ₁₀ H ₁₄	134	10C, 13H	133	Н	1
$2 C_4 H_6 O_3$	102	2C, 3H	27	2C, 3H, 3O	75
4 C ₄ H ₇ ClO ₂	122.5	C,H	13	3C,6H,CI,2O	109.5
5 C ₂ H ₅ ONa	68		0	2C,5H,O,Na	68
7 H₃O	19		0	зн,о	19
9 NH₃O	33		0	3H,N,O	33
12 H ₄ O ₂	36	H,2O	33	ЗН	3
Totale: 20C,42H,N,1 CI, Na	514.5 0O	ibuprofen 13C,18H,2O	ibuprofen 206	rifiuti prodott 7C,24H,N,8C CI,Na	•

% EA = (PM atomi utilizzati/PM di tutti i reagenti) x 100 = (206/514.5) x 100 = 40%

via Hoechst

via Hoechst, Economia Atomica

formula reagenti	PM reagenti	Atomi utilizzati	peso atomi utilizzati	atomi non utilizzati	peso atomi non utilizzati
1 C ₁₀ H ₁₄	134	10C, 13H	133	H	1
2 C ₄ H ₆ O ₃	102	2C, 3H	27	2C, 3H, 3O	59
4 H ₂	2	2H	2	3C,6H,Cl,2O	0
6 CO	28		28	2C,5H,O,Na	0
Totale:	514.5	ibuprofen	ibuprofen	rifiuti prodott	ti rifiuti prodotti
15C,22H,4O		13C,18H,20	206	2C,3H,2O	60.0

Economia Atomica intrinseca

Es. reazioni ad Economia Atomica	Es. reazioni non-economiche
trasposizioni	sostituzioni
addizione	eliminazione
cicloaddizioni	Wittig
altre reazioni concertate	Grignard

- peso molecolare crescente in ogni fase,
- limitare il numero di protezioni dei gruppi funzionali
- co-prodotti a basso PM
- mezzi di reazione contenuti o assenti,
- alta produttività

Trasposizione di Claisen

polarità del mezzo

$$CO_2H$$
 CO_2H
 CO_2H
 CO_2H

reazione 100 volte più veloce in acqua che in metanolo perchè più polare

Copley, J. Am. Chem. Soc. 1987, 109, 2628.

reazioni di Addizione

- alta efficienza atomica

esempi:

addizioni elettrofile ad alcheni

$$+ Br_2 \longrightarrow Br$$

addizioni nucleofile a carbonili

reazioni di cicloaddizione

- metodo eccellente di formare 2 legami C-C simultaneamente
- meccanismo concertato
- alcune reazioni si possono condurre in acqua o liquidi ionici,
 che possono agire anche da catalizzatori

valutazione

- prendere in esame solo reazioni con buoni valori di AE in tutti gli stadi della progettazione della sintesi
- molto importante è il prodotto resa x AE (100 x 35 <<< 90 x 85) (3500/7650)
 (resa x AE = atom efficency)
- considerare anche gli altri normali parametri di reazione, quali condizioni di reazione, numero di stadi, facilità di separazione, natura dei sottoprodotti, solventi, ecc.
- valutare la possibilità di condurre più stadi di una reazione in una unica fase
- lavorare a concentrazioni elevate o senza solvente
- se si devono usare reazioni con basso EA (efficienza atomica) bisogna cercare di minimizzarne gli effetti con, per esempio, un'attenta scelta del catalizzatore, riuso nel processo o ricilo, assicurando che i sottoprodotti siano benigni.

catalisi organometallica

catalisi enzimatica

organocatalisi

flessibilita' costi minori

- + basso impatto ambientale
 - + facile "scale up"

impianti industriali + semplici

catalisi: esempi

reazioni organometalliche di maggior successo

formazione del legame carbonio-carbonio

reazioni di Heck, Suzuki, Sonogashira, Stille, carbonilazione

epossidazione

Sharpless-Katsuki, Jacobsen

diidrossilazione

Sharpless

ammino idrossilazione

Sharpless

catalisi: esempi di organocatalisi

SCIENCE VOL 316 25 MAY 2007

Aromatic compounds can be coupled without having to preactivate the reactants. The method is more efficient and generates less waste than other approaches.

Reaction type 1
$$A - X + M - B$$
 $Catalyst$ $A - B$

Reaction type 2 $A - H + M - B$ $Catalyst$ $A - B$

Reaction type 3 $A - H + H - B$ $Catalyst$ $A - B$

How to couple two different aromatic compounds. In reaction type 1, both aromatic compounds are preactivated (compound A with a halide X and compound B with an electropositive metal M). In reaction type 2, only one of the aromatic compounds is preactivated. In reaction type 3, simple aromatic compounds are coupled, neither of which is preactivated. Stuart and Fagnou now show how reaction type 3 can be realized.

solventi

- Massimizzare la concentrazione
- Bisogna tener presente che se si usa solvente c' e' un solvente da smaltire o recuperare
- \Rightarrow

Se un solvente ha un basso punto di ebollizione il recupero sara' minore di un solvente piu' alto bollente.

il toluene e' migliore dell'etere etilico

- Considerando la legislazione Europea che regola l'uso del metanolo e dell'etanolo, i dati di tossicita' e il costo l'ISOPROPANOLO e' l'alcol migliore
- Anche il POCl₃ e il PCl₅ sono di difficile uso perche' possibili precursori di armi chimiche e il loro uso e' regolamentato

reagenti

La scelta dei reagenti e' determinata da diversi fattori:

costo

disponibilita'

stabilita'

grado di pericolosita'

impatto ambientale ai fini dello smaltimento

Es. Sintesi ACYCLOVIR

>si_0~0~1

2-trimethylsilyloxy-ethoxymethyliodide 2-acetoxy-ethoxymethylbromide

2-acetoxy-ethoxymethylacetate

tossici e instabili (forti agenti alchilanti)

- Sintesi di Lazabemide (Hoffmann-La Roche) farmaco anti-Parkinson

Biocatalisi - uso di enzimi come catalizzatori

Ossidazione enzimatica dell'acido gliossilico (DuPont)

$$H_2O$$
 Catalase

 I_2O_2 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2
 I_2O_2

Si usava ossidare l'aldeide acetica o il gliossale con ac. nitrico o ozonolisi della anidride maleica

Processo Lonza per la sintesi della nicotinammide

Lonza

2,5-dimetilpirazina

intermedio farmaceutico

- •Le catalisi enzimatiche possono essere condotte in acqua in condizioni blande
- Mostrano un elevato grado di chemio-, regio-, ed enantioselettiivta'