JIAIC[S

COMMUNICATIONS

Published on Web 07/28/2005

Enantioselective Organocatalytic Intramolecular Diels —Alder Reactions. The
Asymmetric Synthesis of Solanapyrone D

Rebecca M. Wilson, Wendy S. Jen, and David W. C. MacMillan*
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

Received June 16, 2005; E-mail: Dmacmill@caltech.edu

Over the last 20 years, considerable research efforts have beepfable 1. _Organocatalyzed Intramolecular Diels—Alder Reaction
directed toward the development of enantioselective catalytic aminc
variants of the Diels Alder reactiont During this time, remarkable ~ [*™ triene®
advances in both catalyst design and substrate tolerance have beg¢n

accomplished within thentermolecularclass of [4+ 2] cycload- H
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ditions. In contrast, few catalysts have been reported that achievg ! C\A/C\O a :
high levels of enantiocontrol in thimtramolecular Diels—Alder 2 NF e 2a : 85 >20:1 93
3

(IMDA) reaction?® a notable deficiency in light of the numerous
examples of diastereoselective IMDA reactidr@ur laboratory

has recently established that the LUMO-lowering activation,Gf 3 ™ cHo 1a
unsaturated carbonyls via the reversible formation of iminium ions . @\/\Me 2a
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is a valuable platform for the development of a variety of

enantioselective cycloadditiofd;riedel-Crafts alkylation$, con-
jugate additiong,and hydrogenationsln this communication, we
further advance this iminium activation strategy to establish the| 5 Ci\/CiO/ 1
first example of an organocatalytic intramolecular DieAdder 6 N~ 2
reaction (eq 1). Moreover, we demonstrate the utility of this new 7
organocatalytic technology via the total synthesis of the marine o

metabolite solanapyrone D. e Ph .
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aTrienes3, 5, 9, and13 were contaminated with 15% of th&E-diene

diastereomer. ThesgE-dienes were uniformly inert to this catalytic IMDA.

b 20 mol % catalyste Yields reported are based on the conversion of the

E,E-diene substrate to IMDA product. See Supporting Information for details

regarding solvent, temperature, and reaction times for each transformation.

Our LUMO-lowering organocatalytic strategy has proven to be
effective for the enantioselective cycloisomerization of a range of  \We were delighted to find that our organocatalytic IMDA
trienal aldehydes (Table 1). In general, use of our documented protocol is effective at generating cycloadducts that incorporate
“second generation” imidazolidinone catalg8t resulted in superior quaternary carbon functionality. Indeed, using 3-methyl-10-phenyl-
yields and enantioselectivities in comparison with imidazolidinone 2,7,9-decatrien-1-a8, we were able to obtain the corresponding
catalyst1.5@ Thus, in the presence of catalytic amounts of imida- bicyclic adduct10, which exhibits an angular quaternary methyl
zolidinone2a, both phenyl- and crotyl-substituted decatrien@s ( group. Interestingly, adductO was obtained regardless of the
and5) underwent facile cycloaddition to provide the corresponding geometric composition of the dienophile starting material in accord
[4.3.0] bicyclic aldehyde productd,and6, in high yield and with with our recently reported hydrogenation studiésdeed, we have
excellent enantio- and diastereoselectivity (Table 1, entry 2, 85% observed rapid equilibration of tHe- and Z-isomers of aldehyde
yield, >20:1 enddexq 93% ee, and entry 4, 75% vyield;20:1 9, and as such, addut0 presumably arises via cyclization Bf9
enddexq 94% ee). Surprisingly, in contrast to the success of the in anendotransition topography with subsequent epimerization of
crotyl-substituted decatrienal, the allyl-congeriéailed to provide the a-formyl stereocenter to minimize transannular interactions. It
cycloadduct using either catalyst or 2 (Table 1, entries 5 and  is important to note that, in this case, catalygirovided superior
6). We attribute this limitation to substrate sensitivity, as the tetraene levels of diastereocontrol in comparison to am@entry 7,>20:1
starting material was not recovered from these experiments. exdendq 94% ee).
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Scheme 1. Catalytic Total Synthesis of Solanapyrone D? product was formed as a single diastereomer and with excellent

16, 71% yield
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In summary, we have developed a powerful new enantioselective
S°'a“ap>”°""| catalytic variant of the intramolecular Dieté\lder reaction using
D (18) our LUMO-lowering iminium activation strategy. The synthetic

HY

aKey: (a) Methyl acetoacetate bis(trimethylsilyl) enol ether, FiCl utility of this new protocol has been demonstrated by the preparation

CH;Clp, —78 °C, 75%. (b) DessMartin Periodinane, CkCl2, 71%. (c) of cycloadducts incorporating ether and quaternary carbon func-

2)‘2%' t%%‘;g:‘aeth?gcé1%/7‘)/‘@5(12'%":@"_?;%’58‘ig“(')f?g?;‘iéﬁ%b Irjnwla'ié tionality and via the total synthesis of the marine metabolite solana-
—78°C, 57% (91% based on recovered starting material). pyrone D (8). Morgover, we'have further extendgd this technology
to execute the first enantioselective, catalytic Type Il IMDA
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