Geometria 3 — Topologia

Foglio di esercizi 1

Anno accademico 2021-2022 14/10/2021

- 1) Sia $A \subset X$ un sottospazio topologico. Mostrare che se A è chiuso in X e $B \subset A$ è chiuso in A allora B è chiuso in X. Mostrare con un controesempio che non si può togliere l'ipotesi "A chiuso in X".
- 2) Sia $A \subset X$ un sottospazio topologico. Mostrare che se A è aperto in X e $B \subset A$ è aperto in A allora B è aperto in X. Mostrare con un controesempio che non si può togliere l'ipotesi "A aperto in X".
- 3) Dimostrare che la famiglia degli intervalli semiaperti [a, b[per ogni a < b, è base per una topologia su R (detta topologia degli intervalli aperti a destra). Denotiamo questo spazio con R_l (retta di Sorgenfrey). Mostrare che gli aperti Euclidei sono aperti in R_l , ma che non vale il viceversa.
- 4) Per ogni $A \in M_n(R)$ poniamo $||A|| = \sqrt{\operatorname{tr}({}^t\!AA)}$. Mostrare che questa è una norma su $M_n(R)$, e scriverla esplicitamente (tr A è la traccia di A, somma delle entrate sulla diagonale principale). Mostrare che esiste un'isometria tra $M_n(R)$ con la distanza indotta da tale norma, e R^{n^2} con la distanza Euclidea.
- 5) Consideriamo $M_n(R)$ con la topologia Euclidea (indotta dalla norma dell'esercizio precedente). Mostrare che
 - (a) $GL_n(R)$ è aperto in $M_n(R)$;
 - (b) $SL_n(R)$ è chiuso;
 - (c) O(n) e SO(n) sono chiusi.