RECUPERO DEI DATI ALGORITMI DI ORDINAMENTO

ALGORITMI E STRUTTURE DATI

Recupero dei Dati

 $A = \langle a_1, \dots, a_n \rangle$ contiene alcuni dati, es. dati medici di pazienti

Ciascun elemento è associato a un identificatore A[i].id, es. codice fiscale

Come trovare i dati associati all'identificatore id_1 ?

La Soluzione Naïve

Scandiamo tutta la base di dati cercando un i per cui $A[i].id = id_1$

Qual'à la complessità asintotica?

La Soluzione Naïve

Scandiamo tutta la base di dati cercando un i per cui $A[i].id = \mathrm{id}_1$

Qual'à la complessità asintotica? O(n)

Possiamo fare meglio?

Suggerimento: Come cerchiamo una pagina in un libro? E una parola nel dizionario? Perché?

Una Tecnica più Efficiente: La Ricerca Binaria

Se $A = \langle a_1, \ldots, a_n \rangle$ è ordinato rispetto agli id...

(cioè, i < j implica $A[i].id \le A[j].id$)

Una Tecnica più Efficiente: La Ricerca Binaria

Se $A=< a_1,\ldots,a_n>$ è ordinato rispetto agli id... (cioè, i< j implica $A[i].id\leq A[j].id$)

Consideriamo il valore della mediana (cioè A[n/2])

Una Tecnica più Efficiente: La Ricerca Binaria

Se
$$A=< a_1,\ldots,a_n>$$
 è ordinato rispetto agli id...
$$(\text{cioè},\ i< j\ \text{implica}\ A[i].id \leq A[j].id)$$
 Consideriamo il valore della mediana (cioè $A[n/2]$) se $A[n/2].id=\operatorname{id}_1$ Trovato!

Consideriamo il valore della mediana (cioè
$$A[n/2]$$
)

se $A[n/2].id = \mathrm{id}_1$

Trovato!

se $A[n/2].id > \mathrm{id}_1$

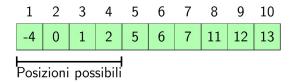
Concentriamoci sulla I metà di A , i.e, $a_1, \ldots, a_{n/2-1} > 2$

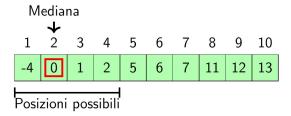
if $A[n/2].id < \mathrm{id}_1$

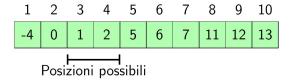
Concentriamoci sulla II metà di A , i.e, $a_1, \ldots, a_{n/2-1} > 2$

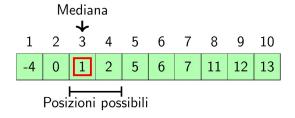
Ripetiamo finchè A non è vuoto

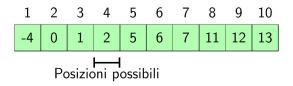
1	2	3	4	ე 	Ö	<i>1</i>	ð	9	10
-4	0	1	2	5	6	7	11	12	13











Cerchiamo 2 in < -4, 0, 1, 2, 5, 6, 7, 11, 12, 13 >.

Trovato: A[4] = 2

Ricerca Dicotomica: Pseudo-Codice e Complessità

M microhe/query

1) RICERCA LINEARE O(m·n)

L) RICERCA DINARIA + ORDINARE O(n·logn + m·logn)

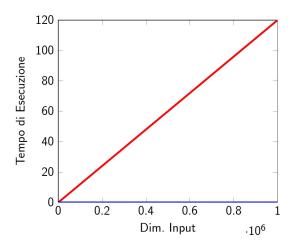
Ricerca Dicotomica vs Ricerca Lineare: un Test

Tempo di esecuzione per 1×10^5 ricerche casuali.

Dim. Input	Ricerca Lineare	Ricerca Dicotomica
$1 imes 10^1$	$3.3 imes 10^{-3} ext{ s}$	$3.2 \times 10^{-3} \text{ s}$
1×10^2	$1.4 imes 10^{-2}$ s	$4.3 imes 10^{-3} ext{ s}$
1×10^3	$1.2 imes 10^{-1}$ s	$5.9 imes 10^{-3} ext{ s}$
1×10^4	1.2 s	$7.8 imes 10^{-3} ext{ s}$
$1 imes 10^5$	$1.2 imes10^{1}$ s	$8.7 imes 10^{-3} ext{ s}$
$1 \times 10^{\circ}$	$\sqrt{1.2 \times 10^2 \text{ s}}$	1.2×10^{-2} s \langle

Ricerca Dicotomica vs Ricerca Lineare: un Test

Tempo di esecuzione per 1×10^5 ricerche casuali.



II Problema dell'Ordinamento

Input: Un array A di numeri

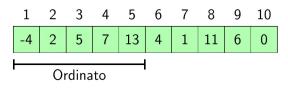
Output: L'array A ordinato, cioè, se i < j allora $A[i] \le A[j]$

Es.,

Qualche suggerimento su un possibile algoritmo? Qual'è la complessità attesa?

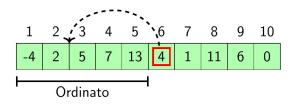
Insertion Sort

Se la prima parte dell'array è già ordinata



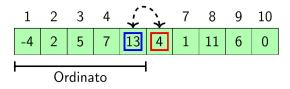
Se la prima parte dell'array è già ordinata

possiamo "allargarla" inserendo il valore successivo **v** nella posizione corretta



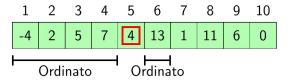
Se la prima parte dell'array è già ordinata

possiamo "allargarla" inserendo il valore successivo v nella posizione corretta



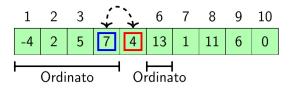
Se la prima parte dell'array è già ordinata

possiamo "allargarla" inserendo il valore successivo v nella posizione corretta



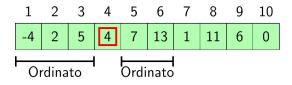
Se la prima parte dell'array è già ordinata

possiamo "allargarla" inserendo il valore successivo v nella posizione corretta



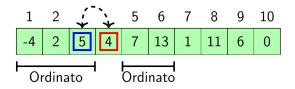
Se la prima parte dell'array è già ordinata

possiamo "allargarla" inserendo il valore successivo v nella posizione corretta



Se la prima parte dell'array è già ordinata

possiamo "allargarla" inserendo il valore successivo v nella posizione corretta

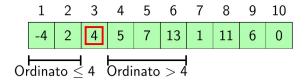


Se la prima parte dell'array è già ordinata

possiamo "allargarla" inserendo il valore successivo **v** nella posizione corretta

scambiando v con il valore precedente nell'array p

finchè **p** (se esiste) è più grande di **v**

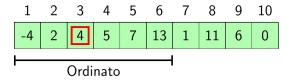


Se la prima parte dell'array è già ordinata

possiamo "allargarla" inserendo il valore successivo $\mathbf v$ nella posizione corretta

scambiando v con il valore precedente nell'array p

finchè p (se esiste) è più grande di v



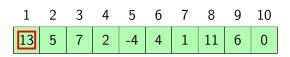
Insertion Sort: Codice e Complessità

```
def insertion_sort(A):
                                         Il blocco del while costa \Theta(1)
    for i in 2..|A|:
        i \leftarrow i
                                        Viene iterato O(i) (\Omega(1)) volte
        while (j>1 and
       A[j] < A[j-1]):
swap(A, j-1, j)
j \leftarrow j-1
                                         per ogni i \in [2, n]
        endwhile
    endfor
enddef
```

Bolle, Selezioni e Varie

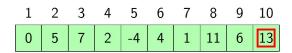
Ordinare Scegliendo il Massimo

Trova il massimo



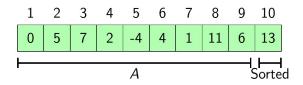
Trova il massimo

Sposta il massimo alla fine dell'array



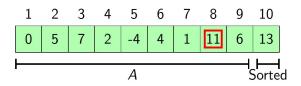
Trova il massimo

Sposta il massimo alla fine dell'array



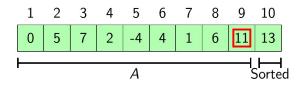
Trova il massimo

Sposta il massimo alla fine dell'array



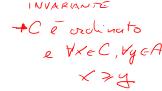
Trova il massimo

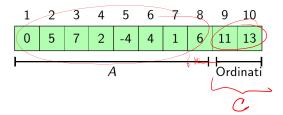
Sposta il massimo alla fine dell'array



Trova il massimo

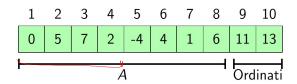
Sposta il massimo alla fine dell'array





Trova il massimo

Sposta il massimo alla fine dell'array



La complessità è
$$\sum_{i=1}^{|A|} (T_{\max}(i) + \Theta(1))$$

Come Troyare il Massimo?

Usando ...

spostandolo verso destra con scambi

$$T(|A|) \in \sum_{i=1}^{|A|} (\Theta(i) + O(i)) = \Theta(|A|^2)$$

▶ ricerca lineare sulla porzione non ordinata ⇒ Selection Sort /

$$T(|A|) \in \sum_{i=1}^{|A|} (\Theta(i) + \Theta(1)) = \Theta(|A|^2)$$

Bubble Sort: Pseudo-Codice e Complessità

il costrutto if costa $\Theta(1)$ Viene iterato i-1 volte per ogni $i \in [2, n]$ $\sum_{i=2}^n \sum_{j=1}^{i-1} \Theta(1) = \Theta(n^2)$ = Z (D(i) = (D(n2)

Selection Sort: Pseudo-Codice e Complessità

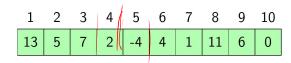
```
def selection_sort(A):
                                           il costrutto if, l'assegnamento e
    for i in |A|...2:
                                           lo scambio costano \Theta(1)
        max i \leftarrow i
        for j in 1 \dots i-1:
                                           il costrutto if viene iterato i-1
           if A[j] > A[max_i]:
                                           volte per ogni i \in [2, n]
              max_i \leftarrow i
           endif
        endfor
                                          \sum_{i=2}^{n} \left( \Theta(1) + \sum_{i=1}^{i-1} \Theta(1) \right) = \Theta(n^2)
        swap(A, max_i, i)
    endfor
enddef
```

Merge Sort

Il paradigma divide-et-impera è uno strumento tipico di progettazione degli algoritmi.

L'idea di fondo è di risolvere ricorsivamente istanze più semplici del problema e combinare queste soluzioni parziali in una soluzione del problema originale.

Se le istanze sono molto semplici, la soluzione è di solito banale.



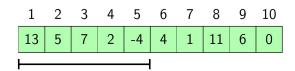
Il paradigma divide-et-impera è uno strumento tipico di progettazione degli algoritmi.

L'idea di fondo è di risolvere ricorsivamente istanze più semplici del problema e combinare queste soluzioni parziali in una soluzione del problema originale.

Se le istanze sono molto semplici, la soluzione è di solito banale.

Un idea per ordinare un array:

1. ordino la prima metà



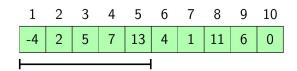
Il paradigma divide-et-impera è uno strumento tipico di progettazione degli algoritmi.

L'idea di fondo è di risolvere ricorsivamente istanze più semplici del problema e combinare queste soluzioni parziali in una soluzione del problema originale.

Se le istanze sono molto semplici, la soluzione è di solito banale.

Un idea per ordinare un array:

1. ordino la prima metà



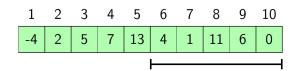
Il paradigma divide-et-impera è uno strumento tipico di progettazione degli algoritmi.

L'idea di fondo è di risolvere ricorsivamente istanze più semplici del problema e combinare queste soluzioni parziali in una soluzione del problema originale.

Se le istanze sono molto semplici, la soluzione è di solito banale.

Un idea per ordinare un array:

- 1. ordino la prima metà
- 2. ordino la seconda metà



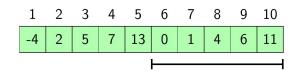
Il paradigma divide-et-impera è uno strumento tipico di progettazione degli algoritmi.

L'idea di fondo è di risolvere ricorsivamente istanze più semplici del problema e combinare queste soluzioni parziali in una soluzione del problema originale.

Se le istanze sono molto semplici, la soluzione è di solito banale.

Un idea per ordinare un array:

- 1. ordino la prima metà
- 2. ordino la seconda metà



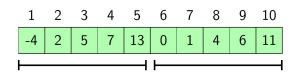
Il paradigma divide-et-impera è uno strumento tipico di progettazione degli algoritmi.

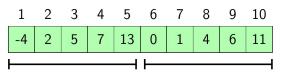
L'idea di fondo è di risolvere ricorsivamente istanze più semplici del problema e combinare queste soluzioni parziali in una soluzione del problema originale.

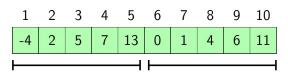
Se le istanze sono molto semplici, la soluzione è di solito banale.

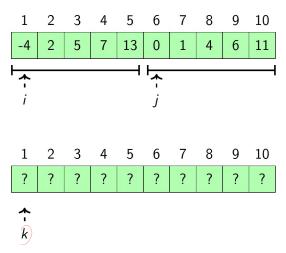
Un idea per ordinare un array:

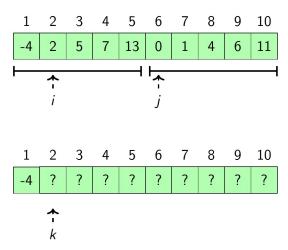
- 1. ordino la prima metà
- 2. ordino la seconda metà
- 3. unisco in qualche modo le due metà

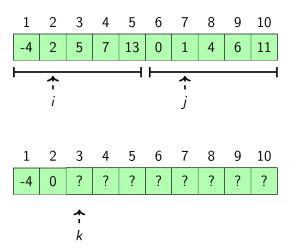


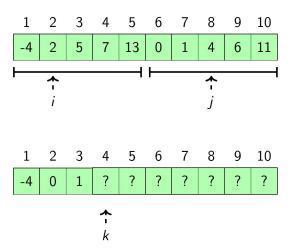


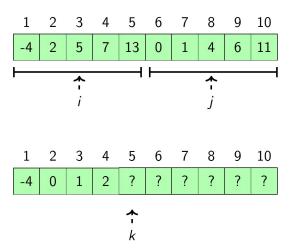


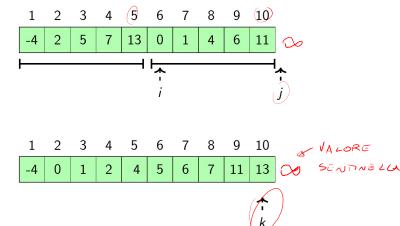












Merge sort: Pseudo-Code

```
def MERGESORT(A, begin=1, end=|A|):
       if end>begin:
          median \leftarrow (begin+end)/2
          MERGESORT (A, begin, median) ▼ ORD WAGES
          MERGESORT (A, median + 1, end) • ORDINA TO
          MERGE(A, begin, median, end) OR DNA PO
   enddef
                        BASE WEL
                        Vmcn = n
Per INDUZIONE STRUTIURICE
```

Merge: Pseudo-Code

enddef

```
def MERGE(A, begin, median, end):
        \Box \cup \leftarrow A[begin: median]
       - R \leftarrow A [median +1:end]
           i, j \leftarrow 1, 1
            for k in range (begin, end):
(j \leq len(R) \text{ and } R[j] \leq L[j]))
A[k] \leftarrow R[j]
j \leftarrow j+1
else:
A[k] \leftarrow L[i]
i \leftarrow i+1
```

La Complessità di Merge Sort

Merge prende tempo $\Theta(n)$

Ma mergesort contiene due chiamate ricorsive. Come facciamo a calcolare la complessità in questo caso?

$$\sqrt{T(n)} = 2T(\frac{n}{2}) + \Theta(n)$$

Equezon ricorre