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The estimation problem



The estimation problem

• The estimation problem arises when there is a need of
determining one or more unknown quantities using
experimentally observed data

Experimental observations
d(t) , t = t1 , t2 , . . . tN

Unknown parameter(s)
ϑ(t)

• In most cases the unknown parameters are constant

ϑ(t) ≡ ϑ

• T = {t1 , t2 , . . . , tN} set of the observation time-instants
• In general, there is no need of equally-spaced ti

• If there is the possibility of choosing the instants ti when to get
experimental data, it is convenient to have more observations
where the experiment is more significant.

DIA@UniTS – 267MI –Fall 2021 TP GF – L6–p2



Estimator

The estimator is a deterministic function yielding as output the
unknown parameters on the basis of the observed data as inputs
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Estimation of constant parameters

• If ϑ(t) ≡ ϑ̄ = const we have a parametric estimation or
identification problem.

• The estimate given by the estimator is denoted as ϑ̂ or ϑ̂T to
enhance the set of observation time-instants.

• The “true” value of the parameter is denoted as ϑ◦ .
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Estimation of time-varying parameters

• The estimate generated by the estimator is denoted as ϑ̂ ( t|T )
or simply as ϑ̂ ( t|N) if we can set T = {1 , 2 , . . . , N} .

• Typically we have three cases:

• t > tN : problem of prediction

• t = tN : problem of filtering

• t < tN : problem of smoothing
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The estimation problem

Dynamical systems identification: the
prediction problem



The prediction problem

It is a fundamental problem in the context of dynamical systems
identification

• To set the basics, let us focus on the case of time-series
• A sequence of observations y(1) , y(2) , . . . , y(t) of a variable
y (·) is available.

• We want to estimate y(t+ 1)
• Therefore, we want to design a predictor

ŷ(t+ 1 |t ) = f [y(t) , y(t− 1) , . . . , y(1)]
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The prediction problem (cont.)

• The predictor expresses an estimate ŷ(t+ 1 |t ) of y(t+ 1) as a
function of t past values of y (·)

• A predictor is linear if

ŷ (t+ 1 |t ) = a1(t) · y(t) + · · ·+ at(t) · y(1)

• A predictor is finite-memory (hence uses a limited memory of
the past) if

ŷ (t+ 1 |t ) = a1(t) · y(t) + · · ·+ an(t) · y (t− n+ 1)
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The prediction problem (cont.)

• A predictor is linear time-invariant if

ŷ (t+ 1 |t ) = a1 y(t) + · · ·+ an y (t− n+ 1)

where the parameters a1 , . . . , an are constant
• We define the vector of parameters ϑT = [a1 , . . . , an]

Determining a “good” predictor means determining a
suitable vector ϑ such that the prediction ŷ (t+ 1 |t )
is the more accurate possible
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The prediction problem (cont.)

More precisely:

• Consider a finite-memory linear time-invariant predictor

ŷ (t+ 1 |t ) = a1 y(t) + · · ·+ an y (t− n+ 1)

where n is “small” with respect to the number of data
observed till time-instant t

• The performances of the predictor can be evaluated on the
already-available data: y(i) i = 1 , . . . , t

• we compute

ŷ (i+ 1 |i ) = a1 y(i) + · · ·+ an y (i− n+ 1) , ∀i > n

• We evaluate the prediction error

ε(i+ 1) = y(i+ 1)− ŷ(i+ 1 |i ) , ∀i > n
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The prediction problem (cont.)

The vector ϑT = [a1 , . . . , an] is “good”
if ε is “small” over the available data.

• Introduce the criterion:

J (ϑ) =

t∑
i=n+1

(ε(i))
2

• Hence
ϑ◦ = argmin

ϑ
J (ϑ)

The determination of ϑ◦ is thus reduced to the solution of an
optimization problem.
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Remarks

It is very important to clarify the meaning of ε “small”

The minimization of J (ϑ) is not per se a fully satisfactory criterion

(a)
(b)

• CASE (A): not satisfactory because the average error ε̄ is not
zero ⇒ systematic error

• CASE (B): despite the fact that the average error ε̄ is zero, it is
not satisfactory because the sequence is alternatively positive
and negative; hence, at any time-instant the sign of the next
error is known in advance ⇒ The predictor does not embed all
the information
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The ideal situation

Prediction error ε with smallest possible average and “as much as
unpredictable as possible”

ε (·) ∼ WN
(
0 , λ2

)

white noise variance

average
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Predictor as a dynamic system

ŷ (t |t− 1 ) = a1y(t− 1) + · · ·+ any(t− n)

ε(t) = y(t)− ŷ (t |t− 1 ) ⇒ y(t) = ε(t) + ŷ (t |t− 1 )

y(t) = a1y(t− 1) + · · ·+ any(t− n) + ε(t)

y(t) =
(
a1z

−1 + · · ·+ anz
−n
)
y(t) + ε(t)

A(z)y(t) = ε(t) with A(z) = 1− a1z
−1 − a2z

−2 − · · · − anz
−n

y(t) =
1

A(z)
ε(t)
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A Glimpse on Estimation theory &
Estimators’ characteristics



A Glimpse on Estimation theory &
Estimators’ characteristics

General concepts and definitions



General concepts and definitions

• In general we have:
d = d (s , ϑ◦)

where
• d ⇐⇒ observed (measured) data
• ϑ◦ ⇐⇒ unknown quantity to be estimated
• s ⇐⇒ result of the random experiment

• The estimator is a function:

ϑ̂ = f [d (s , ϑ◦)]

The estimator is a random variable because
its value depens on the result s of the random
experiment
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Bias

• In general, the estimator ϑ̂ = f [d (s , ϑ◦)] is unbiased if

E
(
ϑ̂
)
= ϑ◦

• Clearly, it is important to try to ensure that the estimator is
unbiased.

In this example, the
estimators are both
biased but the
estimator ϑ̂(2) is
characterized by a
lower bias
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Minimum variance

• The “unbiasedness” (correctness) is not the only criterion to be
used to evaluate the quality of an estimator.

In this case, both
estimators are
unbiased.

However:

var
[
ϑ̂(1)

]
≪ var

[
ϑ̂(2)

]
• Hence, the estimator ϑ̂(1) has a higher probability of yielding
estimates closer to the true value ϑ◦ as compared with the
estimator ϑ̂(2)

• Therefore, the goal is to reduce the variance of the estimator as
much as possible.
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Minimum variance (cont.)

• In general, under the same bias characteristics, we say that the
estimator ϑ̂(1) is better than the estimator ϑ̂(2) if

var
[
ϑ̂(1)

]
≤ var

[
ϑ̂(2)

]
that is, if the matrix ( ϑ may be a vector)

var
[
ϑ̂(2)

]
− var

[
ϑ̂(1)

]
≥ 0

• Recalling that A ≥ 0 =⇒ detA ≥ 0 , λi ≥ 0 , aii ≥ 0 , we have

var
[
ϑ̂(2)

]
− var

[
ϑ̂(1)

]
≥ 0 var

[
ϑ̂
(2)
i

]
≥ var

[
ϑ̂
(1)
i

]
where ϑ̂

(1
i , ϑ̂

(2)
i denote the i-th components of the vectors

ϑ̂(1 , ϑ̂(2) .
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Estimate’s confidence

Consider an estimator ϑ̂ :

The estimate ϑ̂ belongs to the interval (−Θ , Θ) around ϑ◦ with
confidence (1− β) · 100% .
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Asymptotic characteristics

• If the number N of available data increases over time
• the available information to compute the estimate increases

• the uncertainty decreases

• From this perspective the estimator ϑ̂N is “good” if

lim
N→∞

var
[
ϑ̂N

]
= 0
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Convergence in “quadratic mean”

• When the estimate ϑ̂N is computed on the basis of a
time-increasing amount of data N , another estimate’s quality
criterion is

lim
N→∞

E

[∥∥∥ϑ̂N − ϑ◦
∥∥∥2] = 0 (∗)

If (∗) holds we say that the estimate ϑ̂N converges to ϑ◦ in
“quadratic mean”

• Notice that ϑ̂N is a random vector, ϑ◦ is a constant vector and∥∥∥ϑ̂N − ϑ◦
∥∥∥ is a scalar random variable with a well-defined

expected value.
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Almost-sure convergence

• Recall that the estimator based on N data is

ϑ̂N (s , ϑ◦) = f [d (s , ϑ◦)]

• For a given s̄ ∈ S , we have a sequence

ϑ̂1 (s , ϑ
◦) , ϑ̂2 (s , ϑ

◦) , . . . , ϑ̂N (s , ϑ◦) , . . .

• It may happen that:

s̄ ∈ S lim
N→∞

ϑ̂N (s̄ , ϑ◦) = ϑ◦

s̃ ∈ S lim
N→∞

ϑ̂N (s̃ , ϑ◦) ̸= ϑ◦
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Almost-sure convergence (cont.)

• Introduce the set of random experiment results

A ⊂ S , A =
{
s ∈ S : lim

N→∞
ϑ̂N (s , ϑ◦) = ϑ◦

}
• If A = S Sure convergence

• If A ⊂ S and P (A) = 1 Almost-sure convergence

Note that, if the measure of the set S \ A is zero, this
implies P (A) = 1 and hence almost-sure convergence.

• Clearly A = S =⇒ P (A) = 1

Sure convergence Almost-sure convergence

• An estimator characterized by almost-sure convergence
properties is called consistent.
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A Glimpse on Estimation theory &
Estimators’ characteristics

Examples



Example 1

• Consider N scalar data d(1) , d(2) , . . . , d(N) such that

E [d(i)] = ϑ◦ , i = 1 , 2 , . . . , N

• Assume that data are mutually un-correlated, that is

E {[d(i)− ϑ◦] [d(j)− ϑ◦]} = 0 , ∀i ̸= j

• Consider the estimator

ϑ̂N =
1
N

N∑
i=1

d(i) Sampled-average estimator
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Example 1 (cont.)

• Bias:

E
[
ϑ̂N

]
= E

{
1
N

N∑
i=1

[d(i)]

}
=
1
N

N∑
i=1

E [d(i)] =
1
N

N∑
i=1

ϑ◦ = ϑ◦

the estimator is unbiased

• Variance:

var
(
ϑ̂N

)
= E

{[
ϑ̂N − E

(
ϑ̂N

)]2}
= E


[
1
N

N∑
i=1

d(i)− 1
N

N∑
i=1

ϑ◦

]2
= E

 1
N 2

[
N∑
i=1

d(i)−
N∑
i=1

ϑ◦

]2 =
1
N 2

N∑
i=1

E
{
[d(i)− ϑ◦]

2
}

=
1
N 2

N∑
i=1

var [d(i)] the “cross-terms” are zero because of
the assumption on un-correlated data
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Example 1 (cont.)

• If var [d(i)] ≤ σ̄ , i = 1 , 2 , . . . , N

lim
N→∞

var
(
ϑ̂N

)
≤ lim

N→∞

σ̄

N
= 0

the estimator converges in quadratic mean
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Example 2

• Consider N scalar data d(1) , d(2) , . . . , d(N) such that

E [d(i)] = ϑ◦ , i = 1 , 2 , . . . , N

• Assume that the data are mutually un-correlated, that is

E {[d(i)− ϑ◦] [d(j)− ϑ◦]} = 0 , ∀i ̸= j

• Consider the estimator

ϑ̂N =

N∑
i=1

α(i) d(i)
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Example 2 (cont.)

• Bias:

E
[
ϑ̂N

]
= E

{
N∑
i=1

α(i) d(i)

}
=

N∑
i=1

α(i) E [d(i)] = ϑ◦
N∑
i=1

α(i)

The estimator is unbiased
N∑
i=1

α(i) = 1 (⋆)

N.B. in the previous case α(i) =
1
N

and hence (⋆) holds

Condition (⋆) is a constraint to be satisfied so that the
estimator is unbiased.
This constraint characterizes a class of unbiased estimators
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Example 2 (cont.)

• Let us now determine the best estimator among the unbiased
ones (hence satisfying the constraint (⋆) ) choosing the
minimum variance one

un-correlated data
min var

(
ϑ̂N

)
= min

N∑
i=1

[α(i)]
2
var [d(i)]

1−
N∑
i=1

α(i) = 0

By using the Lagrange multipliers technique we have:

J
(
ϑ̂
)
=

N∑
i=1

[α(i)]
2 · var [d(i)] + λ

(
1−

N∑
i=1

α(i)

)
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Example 2 (cont.)

∂J

∂α(i)
= 0 ⇐⇒ 2α(i) var [d(i)]− λ = 0 ⇐⇒ α(i) =

λ

2 var [d(i)]

• Now, imposing the constraint (⋆) for unbiasedness
N∑
i=1

α(i) = 1 ⇐⇒ λ

2

N∑
i=1

1
var [d(i)]

= 1 ⇐⇒ λ =
2∑N

i=1
1

var [d(i)]

α(i) =
1

var [d(i)]
α with α =

1
N∑
i=1

1
var [d(i)]

Hence, α(i) is chosen to be inversely proportional to the data
variance var [d(i)]: the bigger the data variance, the smaller the
associated weight (consistent with intuition).
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Example 2 (cont.)

• Let us compute the estimator’s variance:

var
(
ϑ̂N

)
= E

{[
ϑ̂N − E

(
ϑ̂N

)]2}
= E


[

N∑
i=1

α(i)d(i)− ϑ◦
N∑
i=1

α(i)

]2
= E


[

N∑
i=1

α(i) [d(i)− ϑ◦]

]2 =

N∑
i=1

[α(i)]
2
E
{
[d(i)− ϑ◦]

2
}

=

N∑
i=1

(α(i))
2
var [d(i)] = α2

N∑
i=1

1
var [d(i)]

=
1

N∑
i=1

1
var [d(i)]
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Example 2 (cont.)

• If var [d(i)] ≤ σ̄ , i = 1 , 2 , . . . , N

lim
N→∞

var
(
ϑ̂N

)
≤ lim

N→∞

σ̄

N
= 0

the estimator converges in quadratic mean
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Generalization

• When the quantities to be estimated are time-varying, it is
necessary to modify the estimators’ quality indexes.

• Denote with ϑ̂ (t |t− 1 ) the estimate of ϑ◦(t) exploiting data
collected till time-instant t− 1

• Clearly, as ϑ◦(t) varies over time, it does not make sense to talk
about asymptotic convergence in terms of data in the past that
may turn up not to be meaningful any more.

• A typical criterion is

E

[∥∥∥ϑ̂ (t |t− 1 )− ϑ◦(t)
∥∥∥2] ≤ c

where c is a suitably small positive scalar
• In this time-varying case what matters is not “convergence” but
“boundedness”
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