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The estimation problem




The estimation problem

+ The estimation problem arises when there is a need of
determining one or more unknown quantities using
experimentally observed data

Experimental observations Unknown parameter(s)
dit), t=ty, ty, ...ty I(t)

+ In most cases the unknown parameters are constant

I(t) =0

« T={t, ta, ..., tn} set of the observation time-instants

« In general, there is no need of equally-spaced ¢;

- If there is the possibility of choosing the instants ¢; when to get
experimental data, it is convenient to have more observations
where the experiment is more significant.
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d(ty) — |

(t2) —— ) I(t)

d(tn)

The estimator is a deterministic function yielding as output the
unknown parameters on the basis of the observed data as inputs
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Estimation of constant parameters

d(ty) —
d I(t)
D= f0

d(ty) ]

- If ¥(t) = 9 = const we have a parametric estimation or
identification problem.

- The estimate given by the estimator is denoted as ¥ or J; to
enhance the set of observation time-instants.

 The “true” value of the parameter is denoted as ¥°.
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Estimation of time-varying parameters

d(ty) — |
dgi; —] o

L

d(ty) ———

+ The estimate generated by the estimator is denoted as 9 (¢| T
orsimply as J (¢| N) ifwecansetT = {1, 2, ..., N}.
« Typically we have three cases:

« t > ty: problem of prediction

t
« t =ty : problem of filtering / \

» t < tn: problem of smoothing

t1to N
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The estimation problem

Dynamical systems identification: the
prediction problem



The prediction problem

It is a fundamental problem in the context of dynamical systems
identification

 To set the basics, let us focus on the case of time-series

- A sequence of observations y(1), y(2), ..., y(t) of avariable
y (-) is available.

- We want to estimate y(t + 1)
+ Therefore, we want to design a predictor

glE+10t) = fly@®), yE—1), ..., y(1)]
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The prediction problem (cont.)

« The predictor expresses an estimate (¢ + 1|t) of y(t+ 1) asa
function of ¢ past values of y (-)

past
/_)%

12 ttt1
« A predictor is linear if
g+ 1[t) =ai(t) y@)+--+alt) y(1)

« A predictor is finite-memory (hence uses a limited memory of
the past) if

ga+1[t) =a(®) y(t) + -+ an(t) y(E-—n+1)
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The prediction problem (cont.)

« A predictor is linear time-invariant if
gt+1|t)=arylt)+ - +a,y(t—n+1)

where the parameters a;, ..., a, are constant
+ We define the vector of parameters ¥ = [a;, ..., a,]

Determining a “good” predictor means determining a
suitable vector 9 such that the prediction ¢ (¢t + 1t)
is the more accurate possible
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The prediction problem (cont.)

More precisely:

« Consider a finite-memory linear time-invariant predictor
Ggt+1t)y=ay@t)+ - +a,yt—n+1)

where n is “small” with respect to the number of data
observed till time-instant ¢

+ The performances of the predictor can be evaluated on the
already-available data: y(i) i=1, ..., t

+ we compute
gl+1li)=ary@)+ - -4+any(i—n+1), Vi>n
+ We evaluate the prediction error

e(i+ ) =yli+1)—gli+1]i), Vi>n
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The prediction problem (cont.)

The vector ¥ =[ay, ..., a,] is “good”
if ¢ is “small” over the available data.

* Introduce the criterion:

* Hence

9¥° = argmin J (0)
9

The determination of ¥° is thus reduced to the solution of an
optimization problem.
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It is very important to clarify the meaning of ¢ “small”

{The minimization of J () is not per se a fully satisfactory criterion]

£

£=0.

™

—e
-—|

S

b ».

o Tt Z_ (b)

« CASE (A): not satisfactory because the average error ¢ is not
zero = systematic error

+ CasE (B): despite the fact that the average error ¢ is zero, it is
not satisfactory because the sequence is alternatively positive
and negative; hence, at any time-instant the sign of the next
error is known in advance = The predictor does not embed all
the information
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The ideal situation

Prediction error £ with smallest possible average and “as much as
unpredictable as possible”

e()~ WN (o, )\2)

white noise / variance

average
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Predictor as a dynamic system

gtlt=1)=ayt—1)+ - +any(t —n)
e)=y@t)—glt-1) = ylt)=c@®)+glt-1)
y(t) =ary(t — 1) + -+ apy(t — n) + ()

y(t) = (Cl|2'71 P oooap a'nzin) y(t) + €(t)

AR)yt) =e@®) With A(z) =1 —a1 27 —apz™ — - —apz™™
1 (t) 1 y(t)

y(t) = mf(t)

A(z)
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A Glimpse on Estimation theory &
Estimators’ characteristics




A Glimpse on Estimation theory &
Estimators’ characteristics

General concepts and definitions



General concepts and definitions

« In general we have:
d=d(s, 9°)

where

« d <= observed (measured) data
+ 9¥° <= unknown quantity to be estimated
« s <= result of the random experiment

« The estimator is a function:

U= fld(s, 9°)]

The estimator is a random variable because
its value depens on the result s of the random
experiment
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- In general, the estimator 9 = f [d (s, ©¥°)] is unbiased if
o (9) =

« Clearly, it is important to try to ensure that the estimator is
unbiased.

In this example, the
estimators are both
biased but the
estimator ¥ is
characterized by a
lower bias

fie)

N

£[p0] E[3?)] s
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Minimum variance

+ The “unbiasedness” (correctness) is not the only criterion to be
used to evaluate the quality of an estimator.
In this case, both
estimators are
unbiased.

However:

B0 =E[p@) =00 ?
var [19(1)} < var [19(2)}

- Hence, the estimator 9! has a higher probability of yielding
estimates closer to the true value 9° as compared with the
estimator J®

« Therefore, the goal is to reduce the variance of the estimator as
much as possible.
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Minimum variance (cont.)

« In general, under the same bias characteristics, we say that the
estimator J(!) is better than the estimator J® if

var {19(1)] < var {19(2)}
that is, if the matrix ( ¥ may be a vector)
var [19(2)} — var [19(1)} >0
* Recallingthat A >0 = detA>0, \; >0, a;; >0, we have

var {19(2)] — var [19(1)} > () ) var [197(2)} > var [197(1)]

where 9!, 9® denote the i-th components of the vectors
I 9D
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Estimate’s confidence

Consider an estimator ¥ :

-0 ¥° ©

The estimate J belongs to the interval (—©, ©) around ¥° with
confidence (1 — 5)-100%.
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Asymptotic characteristics

- If the number NV of available data increases over time
- the available information to compute the estimate increases
+ the uncertainty decreases

- From this perspective the estimator 9y is “good” if

lim var {@N} =0

N—o0

E[pW] = E[9P] = E[§®)] = v°
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Convergence in “quadratic mean”

« When the estimate Jy is computed on the basis of a
time-increasing amount of data IV, another estimate’s quality
criterion is

i B[ - 0°

N —o0

2} —0 (%

If (+) holds we say that the estimate 5 converges to ¥° in
“quadratic mean”

« Notice that Jy is a random vector, ¥° is a constant vector and
H@N = 190’ is a scalar random variable with a well-defined
expected value.
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Almost-sure convergence

 Recall that the estimator based on IV data is

In (s, 9°) = fld(s, ¥°)]
- For a given 5 € S, we have a sequence
Dy (s, 9°), Dy (s, 9°), ..., On (s, 9°), ...
+ It may happen that:
5E€ S mmmmmy lim Oy (5, 9°) = 0°
N—o00

§€ S mmmmmp lim Oy (5, 9°) #£0°
—00
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Almost-sure convergence (cont.)

« Introduce the set of random experiment results

Acs, A={ses: lim Iy (s, 9°) =v°}
—>00

« If A= S =P Sure convergence
«If Ac Sand P(A) = 1 ===~ Almost-sure convergence

Note that, if the measure of the set S \ A is zero, this
implies P(A) = 1 and hence almost-sure convergence.

+ClearlyA=5S = P(A) =1
Sure convergence === Almost-sure convergence

 An estimator characterized by almost-sure convergence
properties is called consistent.
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A Glimpse on Estimation theory &
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Examples



« Consider N scalar data d(1), d(2), ..., d(N) such that

+ Assume that data are mutually un-correlated, that is
E{[d(i) —9°] [d(j) —9°]} =0, Vi#j

« Consider the estimator

N
1 c
N = N z_: Sampled-average estimator
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Example 1 (cont.)

- Bias:

E 9] = {]LZ }:]]V;E[d(i)]z;vngw

i=1

[the estimator is unbiasedJ

 Variance:

e (i) :E{[ﬁN_E(ﬁN)r} :E{Ll]id(i)—]ifigor}

N
_ L Z var [d(i)] the “cross-terms” are zero because of
N2 the assumption on un-correlated data
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Example 1 (cont.)

s Ifvar[d(i)] <o,i=1,2,..., N

lim var <1§N) < lim g _ 0

N—oo N—o0

[the estimator converges in quadratic mean]
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« Consider N scalar data d(1), d(2), ..., d(N) such that
E[d@)]=9°, i=1,2,..., N
« Assume that the data are mutually un-correlated, that is
E{[d(i) —0°] [d(j) =9°]} =0, Vi#j

« Consider the estimator

) N
In = Z i) d(3)
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Example 2 (cont.)

 Bias:

N
E[in] =E {Z a(i) d@} =" o) B =9 a()

=1 =1 i=1

N
The estimator is unbiased <t==p- " a(i) =1 (%)

=l

N.B. in the previous case a(i) = % and hence (%) holds

Condition (x) is a constraint to be satisfied so that the
estimator is unbiased.
This constraint characterizes a class of unbiased estimators
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Example 2 (cont.)

+ Let us now determine the best estimator among the unbiased
ones (hence satisfying the constraint (x) ) choosing the
minimum variance one

&un—correlated data

N

min var <1§N) = min Z [a(z’)]2 var [d(i)]

N
I—Za(i) =0

By using the Lagrange multipliers technique we have:

N
J (19) = @) - var[d(@)] + A (1 -3 a(i))

i=1 =1
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Example 2 (cont.)

0J . L A
Bl =0 < 2a(i)var[d(i)] —A=0 <= ai) T var [d@]

~—

+ Now, imposing the constraint (x) for unbiasedness

2
1

, Aem 1
Za(z)_1<:>2;var[d(i)]_l<:>>\_2:1v
- =1 var [d(7))

i=1

) = ! a Wi o=
i) = var [ with

AR

; var [d(7)]

Hence, a(i) is chosen to be inversely proportional to the data
variance var [d(i)]: the bigger the data variance, the smaller the

associated weight (consistent with intuition).
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Example 2 (cont.)

« Let us compute the estimator’s variance:

var (3) = B { [on —E (@N)f} ~E { [Z a(i)d(i) —v° iamr}

i=1 =1

PILOICOR m] } =" @B {[d0) - o }

N ’ ) N | |
; Hvar[d(i)] = a ; var(d(i) | N,
Z var [d(i)]

g=ll
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Example 2 (cont.)

s Ifvar[d(i)] <o,i=1,2,..., N

lim var <1§N) < lim g _ 0

N—oo N—o0

[the estimator converges in quadratic mean]
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« When the quantities to be estimated are time-varying, it is
necessary to modify the estimators’ quality indexes.

- Denote with ¥ (¢ |t — 1) the estimate of ¥°(¢) exploiting data
collected till time-instant ¢t — 1

« Clearly, as 9°(t) varies over time, it does not make sense to talk
about asymptotic convergence in terms of data in the past that
may turn up not to be meaningful any more.

+ Atypical criterion is
E [Hﬁ(ﬂt 1) - ﬁo(t)‘ﬂ <0

where c is a suitably small positive scalar

- In this time-varying case what matters is not “convergence” but
“boundedness”

DIA@UNITS - 267MI -Fall 2021 TPGF - L6-p32



267MI -Fall 2021

Lecture 6

Definitions and Properties of the
Estimation and Prediction Prob-
lems

END



	Lecture 6– 
	Lecture 6: Table of Contents
	The estimation problem 
	The estimation problem
	Estimator
	The identification problem
	Estimation of constant parameters

	Prediction, filtering and smoothing
	Estimation of time-varying parameters

	Dynamical systems identification: the prediction problem
	The prediction problem
	The prediction problem (cont.)
	The prediction problem (cont.)
	The prediction problem (cont.)
	The prediction problem (cont.)
	Remarks
	The ideal situation

	Predictor as a dynamic system
	Predictor as a dynamic system


	A Glimpse on Estimation theory & Estimators’ characteristics
	General concepts and definitions
	General concepts and definitions
	Bias
	Minimum variance
	Minimum variance (cont.)
	Estimate’s confidence 
	Asymptotic characteristics
	Convergence in ``quadratic mean''
	Almost-sure convergence
	Almost-sure convergence (cont.)

	Examples
	Example 1
	Example 1 (cont.)
	Example 1 (cont.)
	Example 2
	Example 2 (cont.)
	Example 2 (cont.)
	Example 2 (cont.)
	Example 2 (cont.)
	Example 2 (cont.)
	Generalization




