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Some Useful Moment Results in Sampling Problems

B. O’NEILL

We consider the standard sampling problem involving a finite
population of N objects and a sample of n objects taken from
this population using simple random sampling without replace-
ment. We consider the relationship between the moments of the
sampled and unsampled parts and show how these are related
to the population moments. We derive expectation, variance,
and covariance results for the various quantities under consid-
eration and use these to obtain standard sampling results with
an extension to variance estimation with a “finite population
correction.” This clarifies and extends standard results in sam-
pling theory for the estimation of the mean and variance of a
population.

KEY WORDS: Finite population correction; Population mo-
ments; Ratio of nested variance estimators; Sample moments;
Variance estimator.

In this article, we examine the interrelation between sam-
ple and population moments arising in basic sampling prob-
lems, with a view to allowing estimation of a finite popula-
tion variance. The relationship between the sample mean and
variance has previously been investigated in Zhang (2007) and
Sen (2012) giving moment results in terms of the unknown
parameters in the problem. In the present article, we extend
this analysis to look at the relationship between the sample
moments and finite population moments. These wider results
allow us to obtain a confidence interval for the finite population
variance.

We consider a standard case in sampling problems where
we sample from a finite population using simple random sam-
pling without replacement. We consider a finite population
vector XN = (X1, X2, . . . , XN ) and a sample vector Xn =
(X1, X2, . . . , Xn) with n ≤ N taken from this population. We
have n sampled values and N − n unsampled values, giving a

B. O’Neill is Lecturer in Statistics, School of Physical, Environmental and
Mathematical Sciences, University of New South Wales (Canberra), Northcott
Drive, Canberra ACT 2600, Australia (E-mail: ). The author thanks an anony-
mous referee and associate editor at the journal for providing valuable feedback
on an earlier version of this article.

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/r/tas.

total of N population values. (For the values X1, X2, . . . , XN in
the population, we will use the standard convention of rep-
resenting random variables by upper-case letters and their
realized values by corresponding lower-case letters. In our anal-
ysis, we will consider the population values to be random vari-
ables. Note that n and N are separate variables, not following
this convention.)

The population is presumed to be infinitely exchangeably ex-
tendible, meaning that it can be embedded within an exchange-
able series of values called the “superpopulation.” Since the pop-
ulation vector is exchangeable this means that the first n values
included in the sample vector implicitly give us a simple ran-
dom sample without replacement (which is why the model of
an exchangeable superpopulation can adequately capture this
sampling process).

From the representation theorem of de Finetti, the condi-
tion of infinite exchangeability is equivalent to saying that
the random variables in the population are independent and
identically distributed conditional on the underlying superpop-
ulation distribution (see O’Neill 2009 for discussion). This
common distribution gives a common mean and variance
for the individual random variables in the population, which
we denote by μ and σ 2 respectively. These underlying pa-
rameters represent the true mean and variance of the super-
population distribution, but we will actually be concerned
with inferences about the mean and variance of the finite
population.

1. DESCRIPTIVE QUANTITIES FOR THE
POPULATION AND ITS PARTS

To analyze this standard case, we define mean and variance
quantities for the sampled part, the unsampled part, and the
whole population:

X̄n = 1

n

n∑
i=1

Xi S2
n = 1

n − 1

n∑
i=1

(Xi − X̄n)2,

X̄n:N = 1

N − n

N∑
i=n+1

Xi S2
n:N = 1

N − n − 1

N∑
i=n+1

(Xi − X̄n:N )2,

X̄N = 1

N

N∑
i=1

Xi S2
N = 1

N − 1

N∑
i=1

(Xi − X̄N )2.

(Note that we incorporate Bartlett’s correction into the pop-
ulation variance, which is contrary to the approach taken in
some texts. This differs from some other treatments of sam-
pling, which use the number of data points as the denominator

282 © 2014 American Statistical Association DOI: 10.1080/00031305.2014.966589 The American Statistician, November 2014, Vol. 68, No. 4

D
ow

nl
oa

de
d 

by
 [

U
N

SW
 L

ib
ra

ry
] 

at
 1

8:
03

 0
1 

M
ar

ch
 2

01
5 

http://www.tandfonline.com/r/tas
http://www.amstat.org
http://dx.doi.org/10.1080/00031305.2014.966589


in the sample variance fraction, without using Bartlett’s correc-
tion. The reason we choose to incorporate Bartlett’s correction
is that it makes sense to consider the finite population variance
as an estimator of a larger infinite superpopulation variance in
the context of a superpopulation model. With this consideration,
Bartlett’s correction ensures that the sample variance and popu-
lation variance both have the same expected value and therefore
function as unbiased estimators of the superpopulation variance
parameter.)

We also define a distance measure comparing the means of
the sampled and unsampled parts:

D2
N = n (N − n)

N

(
X̄n − X̄n:N

)2
.

(Discussion of interpretation of the distance measure is set out
in Appendix B.) The mean and variance for the population can be
decomposed into statistics for the sampled and unsampled parts,
according to the following result. (All proofs are in Appendix
A.)

Result 1. The population mean and variance can be decom-
posed into

NX̄N = nX̄n + (N − n) X̄n:N,

(N − 1)S2
N = (n − 1) S2

n + (N − n − 1)S2
n:N + D2

N.

It is easily shown that the mean statistics all have expected
value μ and the variance statistics and distance measure all
have expected value σ 2. This means that the above formulas
turn into simply arithmetic decompositions when we take the
expectation of both sides. The result gives us decompositions
for the population mean and variance, which can be used in
inference problems to derive confidence intervals subject to “fi-
nite population correction.” (We will see more on this later.)
The decompositions in the above result are represented graph-
ically in Figure 1, which shows how the descriptive quantities
for the population are formed by the descriptive quantities for
the sampled and unsampled parts.

In addition to the above, it will be useful to be able to refer
directly to the part of the variance decomposition containing
information from the unsampled part. We will refer to this as
the out-of-sample variability measure and denote it by

C2
N = (N − n − 1) S2

n:N + D2
N

N − n
.

This allows us to write the variance decomposition as

(N − 1) S2
N = (n − 1) S2

n + (N − n) C2
N.

To allow us to use the descriptive quantities effectively, we
will need to know a bit about their marginal behavior, and how
they are related to each other. Specifically, it will be useful to
find the mean and variance of each of these quantities and the
covariances between them. These results will extend the well-
known moment results for the sample mean and variance, to look
at the moment results for all parts of the above decomposition.
To determine the various moments of interest we will begin
with specification of the relevant moments of the underlying

Figure 1. Decomposition of descriptive quantities for the population.

distribution for the values in the population. For our purposes,
we will require values for the mean, variance, skewness, and
kurtosis of the distribution. (We do not assume that these values
are known.) Following standard notation we take the central
moments to be

E((Xi − μ)2) = σ 2,

E((Xi − μ)3) = γ σ 3
E((Xi − μ)4) = κσ 4.

This means that σ 2 is the variance, γ is the skewness, and
κ is the kurtosis for the underlying distribution of the superpop-
ulation. To facilitate our results, we also define the quantity

φ = γ√
κ − 1

.

This measure adjusts the skewness based on the kurtosis.
One of the properties of skewness and kurtosis is that γ 2 ≤
κ − 1 so that −1 ≤ φ ≤ 1. (See Sen 2012, and note that Sen
used the notation κ to refer to the excess kurtosis, so the result
he presented is that γ 2 ≤ κ + 2. This is equivalent to the result
we present here once the difference in notation is accounted for.)
This means that the adjusted measure gives us a simple bounded
measure of skewness.

This parameter specification for the moments leads to re-
sults for the central moments of the various quantities of in-
terest. Our interest will be in making inferences about the
mean and variance parameters, but we will need to consider the
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higher-order moments to describe the behavior of our estima-
tors. (All proofs are in Appendix A.)

Result 2. The expected values and variances of the mean
quantities are

E
(
X̄n

) = μ V
(
X̄n

) = σ 2

n
,

E
(
X̄n:N

) = μ V
(
X̄n:N

) = σ 2

N − n
,

E
(
X̄N

) = μ V
(
X̄N

) = σ 2

N
.

Result 3. The expected values and variances of the variance
quantities are

E
(
S2

n

) = σ 2
V
(
S2

n

) =
(

κ − n − 3

n − 1

)
σ 4

n
,

E
(
S2

n;N

) = σ 2
V
(
S2

n:N

) =
(

κ − N − n − 3

N − n − 1

)
σ 4

N − n
,

E
(
S2

N

) = σ 2
V
(
S2

N

) =
(

κ − N − 3

N − 1

)
σ 4

N
.

Result 4. The expected value and variance of the distance
measure are

E
(
D2

N

) = σ 2

V
(
D2

N

) =
(

2 + (κ − 3)

(
N

n (N − n)
− 3

N

))
σ 4.

Result 5. The expected value and variance of the out-of-
sample variability measure are

E
(
C2

N

) = σ 2

V
(
C2

N

) =
(

2 + (κ − 3)

(
1 − 2

N
+ 1

Nn

))
σ 4

N − n
.

Result 6. The covariances with the distance measure are

C
(
X̄n,D

2
N

) = N − n

N
· γ σ 3

n
,

C
(
S2

n,D
2
N

) = (κ − 3)
N − n

N
· σ 4

n
,

C
(
X̄n:N,D2

N

) = n

N
· γ σ 3

N − n
,

C
(
S2

n:N,D2
N

) = (κ − 3)
n

N
· σ 4

N − n
,

C
(
X̄N ,D2

N

) = γ σ 3

N
,

C
(
S2

N,D2
N

) =
(

2N

N − 1
+ (κ − 3)

)
σ 4

N
.

Result 7. The covariances within the mean and variance
quantities are

C
(
X̄n, X̄n:N

) = 0,

C
(
X̄n, X̄N

) = σ 2

N
,

C
(
S2

n, S
2
N

) =
(

κ − N − 3

N − 1

)
σ 4

N
,

C
(
S2

n, S
2
n:N

) = 0,

C
(
X̄n:N, X̄N

) = σ 2

N
,

C
(
S2

n:N, S2
N

) =
(

κ − N − 3

N − 1

)
σ 4

N
.

Result 8. The covariances between the mean and variance
quantities are

C
(
X̄n, S

2
n

) = γ σ 3

n
,

C
(
X̄n:N, S2

n

) = 0,

C
(
X̄N , S2

n

) = γ σ 3

N
,

C
(
X̄n, S

2
n:N

) = 0,

C
(
X̄n:N, S2

n:N

) = γ σ 3

N − n
,

C
(
X̄N , S2

n:N

) = γ σ 3

N
,

C
(
X̄n, S

2
N

) = γ σ 3

N
,

C
(
X̄n:N, S2

N

) = γ σ 3

N
,

C
(
X̄N , S2

N

) = γ σ 3

N
.

Result 9. The covariances with the out-of-sample variability
measure are

C
(
X̄n, C

2
N

) = 1

N
· γ σ 3

n
,

C
(
S2

n, C
2
N

) = (κ − 3)
1

N
· σ 4

n
,

C
(
X̄n:N,C2

N

) = N − 1

N
· γ σ 3

N − n
,

C
(
S2

n:N,C2
N

) =
(

2

N
+ (κ − 3)

N − 1

N

)
σ 4

N − n
,

C
(
X̄N , C2

N

) = γ σ 3

N
,

C
(
S2

N,C2
N

) =
(

2N

N − 1
+ (κ − 3)

)
σ 4

N
.

Remark 1. To ensure the existence of the relevant moments
we assume in our analysis that N > 3 and n > 1. This means
that the above results are all properly defined for the sample
and population and moments. (Values for the unsampled part
are properly defined if N − n > 1 so that there is more than one
unsampled value.)

This gives us all the relevant moment results for looking at
the location, scale, and covariance for the various quantities of
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interest. With a substantial amount of additional algebra, it can
be shown that the moment results fit together using the rules for
linear functions using the previous decomposition results (see
Appendix B). This can be used as a useful check on working,
or as an alternative derivation of some of the results.

2. ASYMPTOTIC CORRELATION AND
DISTRIBUTIONAL APPROXIMATIONS

Correlation results follow trivially from the covariance and
variance results for the various quantities. They are not par-
ticularly interesting in their own right, but they are of interest
asymptotically, since we would like to know if these quantities
are asymptotically linearly related or not. This will be valuable
in attempting to derive asymptotic distributions.

To obtain asymptotic results, we will need to determine what
happens as n → ∞. Because we are dealing with problems
with a finite population size, we must deal with the fact that the
sample size is bounded by the population size, so that the former
can only tend toward infinity if the latter also tends to infinity
(at least as fast). To deal with this, we will want to consider the
limiting case for the sample based on some limiting value for
the unsampled proportion, which we define by

u ≡ N − n

N
.

We will assume that n → ∞ in such a way that a limiting
value for u exists. This allows us to refer to limits pertaining to
the sample size without the population size entering explicitly
into our analysis. (For simplicity, we will not introduce any
new notation for the limiting value of u. However, it should
be understood that anytime we refer to this value in a limiting
context, we mean to refer to the limiting value.) This allows us to
undertake an asymptotic analysis to find the limiting correlation
between the quantities.

Result 10. As n → ∞, the correlations with the distance
measure are

Corr
(
X̄n,D

2
N

) → 0 Corr
(
S2

n,D
2
N

) → 0,

Corr
(
X̄n:N,D2

N

) → 0 Corr
(
S2

n:N,D2
N

) → 0,

Corr
(
X̄N ,D2

N

) → 0 Corr
(
S2

N,D2
N

) → 0.

Result 11. As n → ∞, the correlations within the mean and
variance quantities are

Corr
(
X̄n, X̄n:N

) = 0 Corr
(
X̄n, X̄N

) = √
1 − u,

Corr
(
S2

n, S
2
N

) → √
1 − u Corr

(
S2

n, S
2
n:N

) = 0,

Corr
(
X̄n:N, X̄N

) = √
u Corr

(
S2

n:N, S2
N

) → √
u.

Result 12. As n → ∞, the correlations between the mean
and variance quantities are

Corr
(
X̄n, S

2
n

) → φ Corr
(
X̄n:N, S2

n

) = 0,

Corr
(
X̄N , S2

n

) → √
1 − u · φ Corr

(
X̄n, S

2
n:N

) = 0,

Corr
(
X̄n:N, S2

n:N

) → φ Corr
(
X̄N , S2

n:N

) → √
u · φ,

Corr
(
X̄n, S

2
N

) → √
1 − u · φ Corr

(
X̄n:N, S2

N

) → √
u · φ.

Corr
(
X̄N , S2

N

) → φ

Result 13. As n → ∞, the correlations with the out-of-
sample variability measure are

Corr
(
X̄n, C

2
N

) → 0 Corr
(
S2

n, C
2
N

) → 0,

Corr
(
X̄n:N,C2

N

) → φ Corr
(
S2

n:N,C2
N

) → κ − 3

κ − 1
,

Corr
(
X̄N , C2

N

) → √
u · φ Corr

(
S2

N,C2
N

) → √
u.

These results show us that many of the quantities are asymp-
totically uncorrelated as n → ∞. For those pairs that are corre-
lated, most of the limiting correlations depend on the adjusted
skewness parameter φ and the unsampled proportion u. For
unskewed distributions, the pairs between the mean and vari-
ance quantities are asymptotically uncorrelated and so are the
pairs between the means and the out-of-sample variability mea-
sure. In particular, Result 12 shows that the sample mean is
correlated with the sample variance through the adjusted skew-
ness parameter and this correlation remains when n → ∞. This
result is already known in the literature and has been given
previously in Zhang (2007) and Sen (2012).

In addition to determining the asymptotic correlations be-
tween the quantities, we will also be interested in their asymp-
totic distributions. To do this, we define the degrees of freedom:

DFn ≡ 2σ 4

V
(
S2

n

) = 2n

κ − (n − 3) / (n − 1)
,

DFn:N ≡ 2σ 4

V
(
S2

n:N

) = 2 (N − n)

κ − (N − n − 3) / (N − n − 1)
,

DFN ≡ 2σ 4

V
(
S2

N

) = 2N

κ − (N − 3) / (N − 1)
,

DFD ≡ 2σ 4

V
(
D2

N

) = 2

2 + (κ − 3) (N/n (N − n) − 3/N)
,

DFC ≡ 2σ 4

V
(
C2

N

) = 2 (N − n)

2 + (κ − 3) (1 − 2/N + 1/Nn)
.

Result 14. If σ is finite then, as n → ∞ we have asymptotic
distribution:

X̄n − X̄N ∼
√

N − n

Nn
· N(0, σ 2).

If κ and σ are both finite then, as n → ∞, we have asymptotic
distributions:

S2
n/σ

2 ∼ ChiSq (DFn) /DFn, D2
N/σ 2 ∼ ChiSq (DFD) /DFD,

S2
n:N/σ 2 ∼ ChiSq (DFn:N ) /DFn:N, C2

N/σ 2 ∼ ChiSq (DFC) /DFC.

S2
N/σ 2 ∼ ChiSq (DFN ) /DFN,

(Strictly speaking these are not asymptotic distributions because
n appears in the distributional form. Though it is possible to
state a constant asymptotic distributional form for transformed
versions of these quantities, it is more useful and intuitive to
write the asymptotic form in this way. A more strict approach
with proper regard to technical niceties is shown in the proof in
Appendix A.)
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Result 15. If κ and σ are both finite, then for large n we have
the approximate distributions:

X̄n − X̄N

S2
n

Approx∼
√

N − n

Nn
· St (DFn)

S2
N

S2
n

Approx∼ n − 1

N − 1
+ N − n

N − 1
· 1

F (DFn, DFC)
.

(The St in the first result refers to the Student’s T distri-
bution. Note that this approximation ignores the fact that
Corr(X̄n − X̄N , S2

n) → √
u · φ, and it is based on treating the

numerator and denominator as being independent. It is possible
to adjust the asymptotic distribution to account for skewness in
the superpopulation distribution but we do not pursue that here;
see Chen 1995 for more on this issue.)

The two quantities in Result 15 are “quasi-pivotal” in the
sense that their distribution depends on the parameter κ only
through the degrees of freedom. The distributional results should
be quite robust to estimation of this parameter so they are
almost—but not quite—pivotal. Both of the distributions of the
quantities are based on the asymptotic marginal distributions of
the parts, which we gave in Result 14, albeit ignoring the asymp-
totic correlation in the first case. This now gives us asymptotic
distributional results, which can be used in the calculation of
interval estimates for the population mean and variance.

Special case. The general results shown above give rise to
some interesting special cases, some of which have well-known
properties. A mesokurtic distribution occurs when κ = 3, in
which case we have DFn = n − 1 and DFC = N − n. An im-
portant special case of this is the commonly used case of a
normal superpopulation. In this case, it is well known that the
means are independent of the variances, giving rise to the ex-
act distributions of the above form—that is, they are not just
approximations in this special case.

3. CONFIDENCE INTERVALS FOR THE
POPULATION MEAN AND VARIANCE

One of the main uses of the above results is to allow us to
form confidence intervals for the population mean and variance,
giving results that include a “finite population correction” and
that are also able to take account of the skewness and kurtosis of
the distribution. The moment results we have derived allow us
to deal with a finite population, and this allows us to generalize
the standard intervals for the mean and variance parameters to
obtain analogous intervals for the finite population case. (In-
terval estimation for a finite population mean is already well
understood in the literature; see, for example, Cochran (1963)
and Särndal, Swensson, and Wretman (1992). To the knowl-
edge of the present author, the present interval result for a finite
population variance is new.)

Both confidence intervals can be formed by using the “quasi-
pivotal” quantities in Result 15 to creating corresponding prob-
ability intervals with random upper and lower bounds. To form
the confidence interval for the population mean, we let tα/2,k be
the 1 − α/2 percentile of the Student’s T distribution with k de-

grees of freedom (i.e., the area in the right tail is α/2). Assuming
n is large we then have

1 − α ≈ P

(
− tα/2,DFn√

n

√
N − n

N

≤ X̄n − X̄N

S2
n

≤ tα/2,DFn√
n

√
N − n

N

)

= P

(
X̄n − tα/2,DFn√

n

√
N − n

N
· Sn

≤ X̄N ≤ X̄n + tα/2,DFn√
n

√
N − n

N
· Sn

)

= P

(
X̄N ∈

[
X̄n ± tα/2,DFn√

n

√
N − n

N
· Sn

])
.

To form the confidence interval for the population variance,
we choose some 0 ≤ θ ≤ α and we let F ∗

1−θ,k1,k2
be the θ per-

centile of the F-distribution with k1 and k2 degrees of freedom
(i.e., the area in the right tail is 1 − θ ). Assuming n is large we
then have

1 − α ≈ P

(
n − 1

N − 1
+ N − n

N − 1

1

F ∗
1−θ,DFn,DFC

≤ S2
N

S2
n

≤ n − 1

N − 1
+ N − n

N − 1

1

F ∗
α−θ,DFn,DFC

)

= P

((
n − 1

N − 1
+ N − n

N − 1

1

F ∗
1−θ,DFn,DFC

)
S2

n ≤ S2
N

≤
(

n − 1

N − 1
+ N − n

N − 1

1

F ∗
α−θ,DFn,DFC

)
S2

n

)

= P

(
S2

N ∈
[(

n − 1

N − 1
+ N − n

N − 1

1

F ∗
1−θ,DFn,DFC

)
S2

n,

×
(

n − 1

N − 1
+ N − n

N − 1

1

F ∗
α−θ,DFn,DFC

)
S2

n

])
.

The above probability statements give us corresponding con-
fidence intervals once the actual observed values x̄n and s2

n are
substituted:

CIMean
N (1 − α) =

[
x̄n ± tα/2,DFn√

n

√
N − n

N
· sn

]
,

CIvar
N (1 − α) =

[(
n − 1

N − 1
+ N − n

N − 1

1

F ∗
1−θ,DFn,DFC

)
s2
n,

×
(

n − 1

N − 1
+ N − n

N − 1

1

F ∗
α−θ,DFn,DFC

)
s2
n

]
.

With a little algebra, these can be rewritten in terms of n and
u as

CIMean
N (1 − α) =

[
x̄n ± tα/2,DFn√

n

√
u · sn

]
,
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CIvar
N (1 − α) =

[(
1 − nu

(
1 − 1

/
F ∗

1−θ,DFn,DFC

)
n − (1 − u)

)
s2
n,

×
(

1 − nu
(
1 − 1

/
F ∗

α−θ,DFn,DFC

)
n − (1 − u)

)
s2
n

]
.

The first of these intervals is similar to the standard confi-
dence interval formula for inference about a finite population
mean. The only difference from the standard interval is that we
have taken account of the kurtosis in the degrees of freedom cal-
culation. This confidence interval includes the finite population
correction term given by the square root of the unsampled pro-
portion. The result is well known for mesokurtic distributions
(e.g., a normal distribution) and is presented in standard texts
on sampling theory (e.g., Cochran 1963, pp. 20–24) as well as
introductory textbooks in statistics (see, e.g., Kault 2003, pp.
227–229; Dorofeev and Grant 2006, pp. 42–43; Wieres 2011,
p. 299).

The second of these confidence intervals gives us a general-
ized interval for the population variance, which can be used in
cases where we have a finite population. This interval also takes
account of the kurtosis in the degrees of freedom calculation.
The finite population correction in this case comes into the inter-
val calculation directly, and also comes in through the degrees
of freedom calculation. From the general form for this confi-
dence interval, we can form an equal-tail interval by choosing
θ = α/2 or we can form a minimum length interval by choosing
0 ≤ θ ≤ α to minimize the interval length (see Appendix B).

Both of the intervals can be applied when the kurtosis of the
distribution is known. If the kurtosis is unknown (as will usually
be the case), it can be replaced with a consistent estimator of
some kind (see Appendix B). Some practitioners may wish
to follow the standard method of applying the mean interval
with the assumption that they are dealing with a mesokurtic
distribution (κ = 3) for the degrees of freedom calculation.

We have been concerned in this analysis with deriving confi-
dence intervals for the mean and variance of a finite population.
However, these results also give confidence intervals for the
mean and variance of the superpopulation as a special case. To
obtain the latter, all we need to do is take N → ∞ so that the
population is the infinite superpopulation. In this case, we have
convergence in probability to

X̄n:N → X̄N → μ S2
n:N → S2

N → σ 2 D2
N → n

(
X̄n − μ

)2
.

This means that the population mean is the parameter μ and
the population variance is the parameter σ 2. We also have
DFC → ∞ so that F ∗

θ,DFn,DFC
→ χ2

θ,DFn
/DFn, which means that

our confidence intervals for μ and σ 2 are given by

CIMean
∞ (1 − α) =

[
x̄n ± tα/2,DFn√

n
· sn

]
,

CIvar
∞ (1 − α) =

[
DFn

χ2
α−θ,DFn

· s2
n,

DFn

χ2
1−θ,DFn

· s2
n

]
.

This gives us confidence intervals in accordance with the
standard intervals already in the literature for the mean and

variance parameters. (Our intervals use the more general for-
mula for the degrees of freedom, taking account of the kurto-
sis.) Again, we can form an equal-tail interval for the variance
by choosing θ = α/2 or we can form a minimum length inter-
val by choosing 0 ≤ θ ≤ α to minimize the interval length (see
Appendix B).

4. CONCLUDING REMARKS

The standard sample mean and variance quantities in simple
random sampling problems can be treated using a decomposi-
tion that decomposes the overall mean and variance into parts
attributable to the sampled and unsampled parts of the popula-
tion. Using standard moment techniques it is possible to derive
the means, variances, and covariances of these quantities to ob-
tain a good understanding of their behavior up to the second
moment.

In this article, we have derived these moment results and
used them to get simple confidence interval formulas for the
population mean and variance, including terms for finite pop-
ulation correction. This extends present results for the confi-
dence interval for a population variance and also gives another
approach to derivation of the interval for the population mean.
The results we have derived can be used in elementary sampling
problems or introductory courses to allow inferences in finite
populations.

In this article, we have mostly sidestepped complications
relating to estimating the unknown skewness and kurtosis for use
in the interval calculations. Substitution of a consistent estimator
would give good long-run properties in our confidence interval
formulas, but the exact effect on the intervals for small samples
has not been considered here. This would be an appropriate
avenue for further research.

APPENDIX A: PROOFS OF MOMENT RESULTS

In this appendix, we set out proofs of the various lemmas and
results in the main body of the article, concerning moments of
quantities of interest in our analysis. We introduce some new
lemmas where necessary to break up the proofs into simpler
pieces.

Lemma A.1. The distance measure can be written as

D2
N = n

(
X̄n − X̄N

)2 + (N − n)
(
X̄n:N − X̄N

)2
.

Proof of Lemma A.1. We have

X̄n − X̄N = 1

n

n∑
i=1

Xi − 1

N

N∑
i=1

Xi

=
(

1

n
− 1

N

) n∑
i=1

Xi − 1

N

N∑
i=n+1

Xi

= N − n

nN

n∑
i=1

Xi − 1

N

N∑
i=n+1

Xi

= N − n

N

(
X̄n − X̄n:N

)
,
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and

X̄n:N − X̄N = 1

N − n

N∑
i=n+1

Xi − 1

N

N∑
i=1

Xi

=
(

1

N − n
− 1

N

) N∑
i=n+1

Xi − 1

N

n∑
i=1

Xi

= n

N (N − n)

N∑
i=n+1

Xi − 1

N

n∑
i=1

Xi

= n

N

(
X̄n:N − X̄n

)
.

This means that

n
(
X̄n − X̄N

)2 + (N − n)
(
X̄n:N − X̄N

)2

=
[
n

(
N − n

N

)2

+ (N − n)
( n

N

)2
] (

X̄n − X̄n:N
)2

= n

N2
[(N − n)2 + (N − n)n]

(
X̄n − X̄n:N

)2

= n

N2
(N − n) N

(
X̄n − X̄n:N

)2

= n (N − n)

N

(
X̄n − X̄n:N

)2 = D2
N,

which was to be shown. �

Proof of Result 1. For the mean decomposition, we have

NX̄N =
N∑

i=1

Xi =
n∑

i=1

Xi +
N∑

i=N+1

Xi = nX̄n + (N − n) X̄n:N .

For the variance decomposition, we have

(N − 1) S2
N =

N∑
i=1

(
Xi − X̄N

)2

=
n∑

i=1

(
Xi − X̄N

)2 +
N∑

i=n+1

(
Xi − X̄N

)2

=
n∑

i=1

((
Xi − X̄n

)− (
X̄N − X̄n

))2

+
N∑

i=n+1

((
Xi − X̄n:N

)− (
X̄N − X̄n:N

))2

=
n∑

i=1

(
Xi − X̄n

)2 + n
(
X̄N − X̄n

)2

+
N∑

i=n+1

(
Xi − X̄n:N

)2 + (N − n)
(
X̄N − X̄n:N

)2

= (n − 1) S2
n + (N − n − 1) S2

n:N + D2
N .

(The second last step follows from the fact that∑n
i=1(Xi − X̄n) = ∑N

i=n+1(Xi − X̄n:N ) = 0.) �
To prove the first few moment results of interest, we will

work with values that have had the mean removed. This makes
it easier to derive the results in a succinct way, without dealing

with large numbers of mean terms that cancel out in the final
calculations. To assist with our analysis, we define the values
Yi = Xi − μ, which are adjusted to remove the mean value of
the values. We also define the quantities:

Ȳn = 1

n

n∑
i=1

Yi Y n = 1

n

n∑
i=1

Y 2
i ,

Ȳn:N = 1

N − n

N∑
i=n+1

Yi Y n:N = 1

N − n

N∑
i=n+1

Y 2
i ,

ȲN = 1

N

N∑
i=1

Yi YN = 1

N

N∑
i=1

Y 2
i .

Using these quantities it can be shown that

X̄n = Ȳn + μ S2
n = n

n − 1

(
Yn − Ȳ 2

n

)
,

X̄n:N = Ȳn:N + μ S2
n:N = N − n

N − n − 1

(
Yn:N − Ȳ 2

n:N

)
,

X̄N = ȲN + μ S2
N = N

N − 1

(
YN − Ȳ 2

N

)
,

D2
N = n (N − n)

N

(
Ȳn − Ȳn:N

)2
.

Lemma A.2. We have the following moment results:

E
(
Ȳn

) = 0 E

(
Yn

)
= σ 2,

E
(
Ȳ 2

n

) = σ 2

n
E

(
YnȲn

)
= γ σ 3

n
,

E
(
Ȳ 3

n

) = γ σ 3

n2
E

(
YnȲ

2
n

)
= (κ + n − 1) σ 4

n2
,

E
(
Ȳ 4

n

) = (κ + 3n − 3) σ 4

n3
E

(
Yn2

)
= (κ + n − 1) σ 4

n
.

Analogous results hold for the quantities for the unsampled
part and the population.

Proof of Lemma A.2. We first consider the general form

E

(
Ȳ a

n Y n
b
)
,

for nonnegative integers a and b. Substituting in and expanding
out the power sums, we have

E

(
Ȳ a

n Y n
b
)

= 1

na+b
E

⎛
⎝( n∑

i=1

Yi

)a ( n∑
i=1

Y 2
i

)b
⎞
⎠

= 1

na+b

∑
α

E
(
Y

α1
1 . . . Y αn

n

)

= 1

na+b

∑
α

n∏
i=1

E
(
Y

αi

i

)
,

where the summation in the last two lines is taken over all vectors
α = (α1, . . . , αn) composed of nonnegative integers consistent
with the previous power sums. This requires the indices in the
vector α to have the following properties:

n∑
i=1

αi = a + 2b

n∑
i=1

αi

2
≥ b

αi �= 1 for all i = 1, . . . n.
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(The last requirement follows from the fact that E (Yi) =
0 for all i = 1, . . . n, which means any term of this kind can be
dropped out of the sum.) We are now able to obtain the required
moments specified in the lemma, which use particular values of
a and b.

Now, using the preliminary result above, we are able to obtain
the required moments specified in the lemma. With a = 2 and
b = 0, we have

E
(
Ȳ 2

n

) = 1

n2
nE
(
Y 2

i

) = 1

n
E
(
Y 2

i

) = σ 2

n
.

With a = 3 and b = 0, we have

E
(
Ȳ 3

n

) = 1

n3
nE
(
Y 3

i

) = 1

n2
E
(
Y 3

i

) = γ σ 3

n2
.

With a = 4 and b = 0, we have

E
(
Ȳ 4

n

) = 1

n4

(
nE
(
Y 4

i

)+ 3n (n − 1) E
(
Y 2

i

)2
)

= 1

n4

(
nκσ 4 + 3n (n − 1) σ 4

) = κ + 3n − 3

n3
σ 4.

With a = 0 and b = 1, we have

E

(
Yn

)
= 1

n
nE
(
Y 2

i

) = E
(
Y 2

i

) = σ 2.

With a = 1 and b = 1, we have

E
(
ȲnY n

) = 1

n2
nE
(
Y 3

i

) = E
(
Y 3

i

) = γ σ 3

n
.

With a = 2 and b = 1, we have

E

(
Ȳ 2

n Y n

)
= 1

n3

(
nE
(
Y 4

i

)+ n (n − 1) E
(
Y 2

i

)2
)

= 1

n3

(
nκσ 4 + n (n − 1) σ 4)

= (κ + n − 1) σ 4

n2
.

With a = 0 and b = 2, we have

E
(
Y

2

n

) = 1

n2

(
nE
(
Y 4

i

)+ n
(
n − 1

)
E
(
Y 2

i

)2)
= 1

n2

(
nκσ 4 + n(n − 1

)
σ 4) = (κ + n − 1) σ 4

n
.

Analogous results hold for the mean of the unsampled part
and the mean of the population, and these are found in the same
way. �

Proof of Result 2. Since E(Ȳn) = 0 and V(Ȳn) = σ 2/n, we
have

E
(
X̄n

) = E
(
Ȳn + μ

) = E
(
Ȳn

)+ μ = μ,

V
(
X̄n

) = V
(
Ȳn + μ

) = V
(
Ȳn

) = σ 2

n
.

Analogous results hold for the mean of the unsampled part
and the mean of the population, and these are found in the same
way. �

Proof of Result 3. Using the results in Lemma A.2 (including
analogous results for the unsampled part), we have

E
(
S2

n

) = n

n − 1
E
(
Yn − Ȳ 2

n

) = n

n − 1

(
E

(
Yn

)
− E

(
Ȳ 2

n

))
= n

n − 1

(
σ 2 − σ 2

n

)
= n

n − 1

(
1 − 1

n

)
σ 2 = σ 2.

To obtain the second raw moment, we first obtain

E

((
Y n − Ȳ 2

n

)2
)

= E

(
Y

2

n − 2Ȳ 2
n Y n + Ȳ 4

n

)

= E

[(
Y

2

n

)
− 2E

(
Ȳ 2

n Y n

)
+ E

(
Ȳ 4

n

)]

=
⎡
⎣ (κ + n − 1)

n
− 2

(κ + n − 1)

n2

+ κ + n − 1

n3
+ 2 (n − 1)

n3

⎤
⎦σ 4

= κ + n − 1

n3

(
n2 − 2n + 1

)
σ 4 + 2 (n − 1)

n3
σ 4

= (n − 1)2

n3
(κ + n − 1) σ 4 + 2 (n − 1)

n3
σ 4

= n − 1

n3
[(n − 1) (κ + n − 1) + 2] σ 4.

The second raw moment is then given by

E
(
S4

n

) = n2

(n − 1)2 E

((
Yn − Ȳ 2

n

)2
)

= 1

n (n − 1)
[(n − 1) (κ + n − 1) + 2] σ 4

= (n − 1) (κ + n − 1) + 2

n (n − 1)
σ 4.

Hence, the variance is given by

V
(
S2

n

) = E
(
S4

n

)− E
(
S2

n

)2

= (n − 1) (κ + n − 1) + 2

n (n − 1)
σ 4 − σ 4

= (n − 1) (κ + n − 1) + 2 − n (n − 1)

n (n − 1)
σ 4

= (n − 1) κ − (n − 3)

n (n − 1)
σ 4

=
(

κ − n − 3

n − 1

)
σ 4

n
.

This gives the stated results. �

Proof of Result 4. Using the results in Lemma A.2 (includ-
ing analogous results for the unsampled part), we have mean
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given by

E
(
D2

N

) = n (N − n)

N
E

((
Ȳn − Ȳn:N

)2
)

= n (N − n)

N

(
E
(
Ȳ 2

n

)− 2E
(
Ȳn

)
E
(
Ȳn:N

)+ E
(
Ȳ 2

n:N

))
= n (N − n)

N

(
E
(
Ȳ 2

n

)+ E
(
Ȳ 2

n:N

))
= n (N − n)

N

(
σ 2

n
+ σ 2

N − n

)

= n (N − n)

N

(
1

n
+ 1

N − n

)
σ 2

= n (N − n)

N

N

n (N − n)
σ 2 = σ 2.

We also have

E

((
Ȳn − Ȳn:N

)4)
= E

(
Ȳ 4

n

)
+ 6E

(
Ȳ 2

n

)
E

(
Ȳ 2

n:N

)
+ E

(
Ȳ 4

n:N

)
= (κ + 3n − 3) σ 4

n3
+ 6

σ 2

n

σ 2

N − n
+ (κ + 3 (N − n) − 3) σ 4

(N − n)3

=
[

(κ − 3) + 3n

n3
+ 6

n (N − n)
+ (κ − 3) + 3 (N − n)

(N − n)3

]
σ 4

=
[

3

(
1

n2
+ 2

n (N − n)
+ 1

(N − n)2

)
+ (κ − 3)

(
1

n3
+ 1

(N − n)3

)]
σ 4

=
[

3N2

n2 (N − n)2 + (κ − 3)
N3 − 3N2n + 3Nn2

n3 (N − n)3

]
σ 4

= N2

n2 (N − n)2

[
3 + (κ − 3)

N2 − 3Nn + 3n2

Nn (N − n)

]
σ 4.

= N2

n2 (N − n)2

[
3N + (κ − 3)

(
N2

n (N − n)
− 3

)]
σ 4

N
.

Now, the second raw moment of the distance measure is given
by

E
(
D4

N

) = n2 (N − n)2

N2
E
((

Ȳn − Ȳn:N
)4)

=
(

3 + (κ − 3)

(
N

n (N − n)
− 3

N

))
σ 4.

The variance of the distance measure is given by

V
(
D2

N

) = E
(
D4

N

)− E
(
D2

N

)2

=
(

2 + (κ − 3)

(
N

n (N − n)
− 3

N

))
σ 4.

This gives the stated results. �

Proof of Result 5. The expected value follows trivially from
the fact that the unsampled variance and distance measures are
unbiased estimators of the variance parameter (see Results 3
and 4). For the variance, we can use the variance decomposition
to obtain

V

(
(N − n − 1) S2

n:N + D2
N

)
= V

(
(N − 1) S2

N − (n − 1) S2
n

)
= (N − 1)2

V

(
S2

N

)
+ (n − 1)2

V

(
S2

n

)
− 2 (N − 1) (n − 1) C

(
S2

N , S2
n

)

= (N − 1)2
V

(
S2

N

)
+ (n − 1)2

V

(
S2

n

)
− 2 (N − 1) (n − 1) V

(
S2

N

)
= (N − 1) [(N − 1) − 2 (n − 1)] V

(
S2

N

)
+ (n − 1)2

V

(
S2

n

)
= (N − 1) (N − 2n + 1) V

(
S2

N

)
+ (n − 1)2

V

(
S2

n

)
= (N − 1) (N − 2n + 1)

(
κ − N − 3

N − 1

)
σ 4

N
+ (n − 1)2

(
κ − n − 3

n − 1

)
σ 4

n

=
[ (

n (N − 1) (N − 2n + 1) + N (n − 1)2) κ
− (n (N − 2n + 1) (N − 3) + N (n − 1) (n − 3))

]
σ 4

Nn

=
[ (

n
(
N2 − 2Nn + 2n − 1

)+ N
(
n2 − 2n + 1

))
κ

− (n (N2 − 2Nn − 2N + 6n − 3
)+ N

(
n2 − 4n + 3

)) ] σ 4

Nn

=
[ (

N2n − 2Nn2 + 2n2 − n + Nn2 − 2Nn + N
)
κ

− (N2n − 2Nn2 − 2Nn + 6n2 − 3n + Nn2 − 4Nn + 3N
) ] σ 4

Nn

=
[ (

N2n − Nn2 + 2n2 − 2Nn + N − n
)
κ

− (N2n − Nn2 − 6Nn + 6n2 + 3N − 3n
) ] σ 4

Nn

=
[

(Nn − 2n + 1) κ

− (Nn − 6n + 3)

]
(N − n)

σ 4

Nn

= [
2Nn + (κ − 3) (Nn − 2n + 1)

]
(N − n)

σ 4

Nn

= (
2 + (κ − 3)

(
1 − 2

N
+ 1

Nn

) )
(N − n) σ 4.

It follows that

V
(
C2

N

) = V

(
(N − n − 1) S2

n:N + D2
N

N − n

)

=
(

2 + (κ − 3)

(
1 − 2

N
+ 1

Nn

))
σ 4

N − n
,

which was to be shown. �

Proof of Result 6. Using Lemma A.2 (with analogous results
for the unsampled part) and noting that E(Ȳn) = E(Ȳn:N ) = 0,
we have

C
(
X̄n,D

2
N

) = C

(
X̄n,

n (N − n)

N

(
Ȳn − Ȳn:N

)2
)

= n (N − n)

N
C
(
Ȳn,

(
Ȳ 2

n − 2ȲnȲn:N + Ȳn:N
))

= n (N − n)

N

[
C
(
Ȳn, Ȳ

2
n

)− 2C
(
Ȳn, ȲnȲn:N

)]
= n (N − n)

N

[
E
(
Ȳ 3

n

)− E
(
Ȳn

)
E
(
Ȳ 2

n

)− 2E
(
Ȳ 2

n

)
E
(
Ȳn:N

)
+ 2E

(
Ȳn

)2
E
(
Ȳn:N

)]
= n (N − n)

N
E
(
Ȳ 3

n

) = N − n

N
· γ σ 3

n
.

We also have

C
(
S2

n,D
2
N

) = C

(
n

n − 1

(
Yn − Ȳ 2

n

)
,
n (N − n)

N

(
Ȳn − Ȳn:N

)2
)

= n2 (N − n)

N (n − 1)
C

((
Yn − Ȳ 2

n

)
,
(
Ȳ 2

n − 2ȲnȲn:N + Ȳ 2
n:N

))

= n2 (N − n)

N (n − 1)

[
C

(
Yn, Ȳ

2
n

)
− 2C

(
Yn, ȲnȲn:N

)
− C

(
Ȳ 2

n , Ȳ 2
n

)
+ 2C

(
Ȳ 2

n , ȲnȲn:N
)]

= n2 (N − n)

N (n − 1)

⎡
⎢⎢⎢⎢⎣

E
(
YnȲ

2
n

)
− E

(
Yn

)
E
(
Ȳ 2

n

)
−2E

(
YnȲn

)
E
(
Ȳn:N

)+ 2E
(
Yn

)
E
(
Ȳn

)
E
(
Ȳn:N

)
−E

(
Ȳ 4

n

)+ E
(
Ȳ 2

n

)2

+2E
(
Ȳ 3

n

)
E
(
Ȳn:N

)− 2E
(
Ȳ 2

n

)
E
(
Ȳn

)
E
(
Ȳn:N

)

⎤
⎥⎥⎥⎥⎦
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= n2 (N − n)

N (n − 1)

[
E

(
YnȲ

2
n

)
− E

(
Yn

)
E
(
Ȳ 2

n

)− E
(
Ȳ 4

n

)+ E
(
Ȳ 2

n

)2
]

= n2 (N − n)

N (n − 1)

[
(κ + n − 1)

n2
− 1

n
− (κ + 3n − 3)

n3
+ 1

n2

]
σ 4

= (N − n)

nN (n − 1)
[(κ + n)n − n2 − (κ + 3n − 3)]σ 4

= (N − n)

nN (n − 1)
(κ − 3) (n − 1) σ 4

= (κ − 3) · N − n

N
· σ 4

n
.

It is a simple matter to construct analogous proofs for the co-
variances between the unsampled parts with the distance mea-
sure. (The only difference is that n and N − n are swapped in
the resulting formulas.) For brevity, we omit these proofs here.
Once we have these results, we can then obtain the covariances
for the population quantities with the distance measure using the
mean and variance decompositions. For the population mean,
we have

C
(
X̄N ,D2

N

) = n

N
C
(
X̄n,D

2
N

)+ N − n

N
C
(
X̄n:N,D2

N

)
= n

N

N − n

N
· γ σ 3

n
+ N − n

N

n

N
· γ σ 3

N − n

= N − n

N
· γ σ 3

N
+ n

N
· γ σ 3

N
= γ σ 3

N
.

For the population variance, we have

C

(
S2

N , D2
N

)
= 1

N − 1

[
(n − 1)C

(
S2

n, D2
N

)
+ (N − n − 1) C

(
S2

n:N ,D2
N

)
+ V

(
D2

N

)]

=
⎡
⎣(κ − 3)

N − n

N
· n − 1

n
+ (κ − 3)

n

N
· N − n − 1

N − n

+
(

2 + (κ − 3)
(

N
n(N−n) − 3

N

))
⎤
⎦ σ 4

N − 1

=
[

2 +
(

(n − 1) (N − n)

Nn
+ (N − n − 1) n

N (N − n)

+ N

n (N − n)
− 3

N

)
(κ − 3)

]
σ 4

N − 1

= (2 + (Part A) (κ − 3))
σ 4

N − 1
.

We have

(Part A)

= (n − 1) (N − n)

Nn
+ (N − n − 1) n

N (N − n)
+ N

n (N − n)
− 3

N

= (n − 1) (N − n)2 + (N − n − 1) n2 + N2 − 3n (N − n)

Nn (N − n)

= (n − 1)
(
N2 − 2Nn + n2

)+ (N − n − 1) n2 + N2 − 3n (N − n)

Nn (N − n)

= N2n − 2Nn2 + n3 − N2 + 2Nn − n2 + Nn2 − n3 − n2 + N2 − 3nN + 3n2

Nn (N − n)

= N2n − Nn2 − Nn + n2

Nn (N − n)
= Nn (N − n) − n (N − n)

Nn (N − n)
= N − 1

N
.

So we have

C
(
S2

N,D2
N

) =
(

2 + N − 1

N
(κ − 3)

)
σ 4

N − 1

=
(

2N

N − 1
+ (κ − 3)

)
σ 4

N
.

This gives the stated results. �

Proof of Result 7. The sample mean and unsampled mean are
independent, since their underlying values are independent. This
means that the covariance between these quantities is zero. For
the other two covariance results, we can use the decomposition
for the population mean to obtain

C
(
X̄n, X̄N

) = 1

N
C
(
X̄n,NX̄N

)
= 1

N
C
(
X̄n, nX̄n + (N − n) X̄n:N

)
= n

N
V
(
X̄n

) = σ 2

N
,

C
(
X̄n:N, X̄N

) = 1

N
C
(
X̄n,NX̄N

)
= 1

N
C
(
X̄n, nX̄n + (N − n) X̄n:N

)
= N − n

N
V
(
X̄n:N

) = σ 2

N
.

We now show the covariances for the variance quantities. As
with the mean quantities, the sample variance and unsampled
variance are independent, since their underlying values are in-
dependent. For the other two covariance results, we can use the
decomposition for the population variance to obtain

C
(
S2

n, (N − 1) S2
N

)
= C

(
S2

n, (n − 1) S2
n + (N − n − 1) S2

n:N + D2
N

)
= (n − 1) V

(
S2

n

)+ C
(
S2

n,D
2
N

)
= (n − 1)

(
κ − n − 3

n − 1

)
σ 4

n
+ (κ − 3)

N − n

N

σ 4

n

=
[

(n − 1)

(
κ − n − 3

n − 1

)
+ (κ − 3)

N − n

N

]
σ 4

n

=
[
κ (n − 1) − (n − 3) + κ

N − n

N
− 3N − 3n

N

]
σ 4

n

=
[
κ

(
n − 1 + N − n

N

)
−
(

(n − 3) + 3N − 3n

N

)]
σ 4

n

=
[
κn

N − 1

N
− n

(
N − 3

N

)]
σ 4

n

= (N − 1)

(
κ − N − 3

N − 1

)
σ 4

N

= (N − 1) V
(
S2

N

)
.

Using Result 3, we therefore have

C
(
S2

n, S
2
N

) = 1

N − 1
C
(
S2

n, (N − 1) S2
N

)
= 1

N − 1
(N − 1) V

(
S2

N

)
= V

(
S2

N

) =
(

κ − N − 3

N − 1

)
σ 4

N
.
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The covariance result for the unsampled variance and popu-
lation variance follows directly by analogy. This gives the stated
results. �

Proof of Result 8. We begin with the simplest of these results.
Since the underlying values in the sampled and unsampled parts
are independent, this gives us

C
(
X̄n, S

2
n:N

) = 0 C
(
X̄n:N, S2

n

) = 0.

Now, for the covariance between the sample mean and sam-
ple variance, we can reexpress this using the mean-adjusted
quantities:

C
(
X̄n, S

2
n

) = C
(
Ȳn, S

2
n

)
= E

(
ȲnS

2
n

)− E
(
Ȳn

)
E
(
S2

n

) = E
(
ȲnS

2
n

)
.

Using the results in Lemma A.2 (including analogous results
for the unsampled part), we have

C
(
X̄n, S

2
n

) = E
(
ȲnS

2
n

)
= E

(
Ȳn

(
Yn − Ȳ 2

n

))
= n

n − 1

(
E

(
ȲnY n

)
− E

(
Ȳ 3

n

))
= n

n − 1

(
γ σ 3

n
− γ σ 3

n2

)

= 1

n − 1

(
1 − 1

n

)
γ σ 3

= 1

n − 1

(
n − 1

n

)
γ σ 3 = γ σ 3

n
.

We then have

C
(
X̄N , S2

n

) = n

N
C
(
X̄n, S

2
n

) = n

N

γσ 3

n
= γ σ 3

N
,

and

C
(
X̄n, S

2
N

) = 1

N − 1

[(
(n − 1) C

(
X̄n, S

2
n

)+ C
(
X̄n,D

2
N

))]
= 1

N − 1

[
(n − 1)

γ σ 3

n
+ N − n

N
· γ σ 3

n

]

= 1

N − 1

[
(n − 1) + N − n

N

]
γ σ 3

n

= 1

N − 1

(
Nn − n

N

)
γ σ 3

n
= n

N

γσ 3

n
= γ σ 3

N
.

Analogous results hold for the unsampled part and the popu-
lation, and these are found in the same way. This gives the stated
results. �

Proof of Result 9. For the sample quantities, we have

C
(
X̄n, C

2
N

) = 1

N − n
C
(
X̄n,D

2
N

)
= 1

N − n

N − n

N
· γ σ 3

n
= γ σ 3

Nn
,

C
(
S2

n, C
2
N

) = 1

N − n
C
(
S2

n,D
2
N

)
= 1

N − n
(κ − 3) · N − n

N
· σ 4

n
= (κ − 3) · σ 4

Nn
.

For the unsampled quantities, we have

C
(
X̄n:N,C2

N

)
= 1

N − n

[
(N − n − 1) C

(
X̄n:N, S2

n:N

)+ C
(
X̄n:N,D2

N

)]
= 1

N − n

[
(N − n − 1)

γ σ 3

N − n
+ n

N
· γ σ 3

N − n

]

= 1

(N − n)2

[
(N − n − 1) + n

N

]
γ σ 3

= 1

(N − n)2

[
N2 − Nn − N + n

] γ σ 3

N

= 1

(N − n)2

[
(N − n)2 + Nn − N + n − n2

] γ σ 3

N

= 1

(N − n)2

[
(N − n)2 + (N − n) (n − 1)

] γ σ 3

N

= N − 1

N − n
· γ σ 3

N
,

C
(
S2

n:N,C2
N

)
= 1

N − n

[
(N − n − 1) V

(
S2

n:N

)+ C
(
S2

n:N,D2
N

)]
= 1

N − n

[
(N − n − 1)

(
κ − N − n − 3

N − n − 1

)
σ 4

N − n

+ (κ − 3) · n

N
· σ 4

N − n

]

=
[ (

N − n − 1 + n
N

)
(κ − 3)

+ (N − n − 1)
(
3 − N−n−3

N−n−1

) ] σ 4

(N − n)2

=
[ (

N2 − Nn − N + n
)

(κ − 3)
+ (3 (N − n − 1) − (N − n − 3))

]
σ 4

N (N − n)2

=
[ (

N2 − Nn − N + n
)

(κ − 3)
+ (3N − 3n − 3 − N + n + 3)

]
σ 4

N (N − n)2

=
[

(N − n) (N − 1) (κ − 3)
+2 (N − n)

]
σ 4

N (N − n)2

= (2 + (κ − 3) (N − 1))
σ 4

N (N − n)
.

For the population quantities, we have

C
(
X̄N , C2

N

)
= n

N
C
(
X̄n, C

2
N

)+ N − n

N
C
(
X̄n:N,C2

N

)
= n

N

γσ 3

Nn
+ N − n

N

N − 1

N − n
· γ σ 3

N

= γ σ 3

N2
+ (N − 1) · γ σ 3

N2
= γ σ 3

N
.

C
(
S2

N,C2
N

)
= 1

N − n
C
(
S2

N, (N − n − 1) S2
n:N + D2

N

)
= 1

N − n

[
(N − n − 1) C

(
S2

N, S2
n:N

)+ C
(
S2

N,D2
N

)]
= 1

N − n

[
(N − n − 1)

(
κ − N − 3

N − 1

)
σ 4

N
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+
(

2N

N − 1
+ (κ − 3)

)
σ 4

N

]

=
[

(N − n − 1)

(
κ − N − 3

N − 1

)
+ 2N

N − 1
+ (κ − 3)

]

× σ 4

N (N − n)

=
[

(N − n − 1)

(
κ − 3 + 3 − N − 3

N − 1

)

+ 2N

N − 1
+ (κ − 3)

]
σ 4

N (N − n)

=
[

(N − n) (κ − 3) + (N − n − 1)

(
3 − N − 3

N − 1

)

+ 2N

N − 1

]
σ 4

N (N − n)

= (κ−3)
σ 4

N
+ [(N−n−1) (3 (N−1) − (N−3)) +2N ]

× σ 4

N (N − n) (N − 1)

= (κ − 3)
σ 4

N
+ [2N (N − n)]

σ 4

N (N − n) (N − 1)

= (κ − 3)
σ 4

N
+ 2σ 4

N − 1
=
(

2N

N − 1
+ (κ − 3)

)
σ 4

N
.

This gives the stated results. �

Proof of Results 10–13. The proofs of these results all follow
along the same lines. Each of the correlation expressions follows
trivially from the previous moment results and these can then
be reframed in terms of n and u using the fact that

N = n

1 − u
N − n = nu

1 − u
.

Once the correlation results are in this form, it is then a simple
matter to take limits as n → ∞ noting that we refer implicitly
to the limiting value of u, which is a proportion. This allows us
to obtain each of the asymptotic correlation results. We give one
example here:

Corr
(
X̄n,D

2
N

) = C
(
X̄n,D

2
N

)
√

V
(
X̄n

)
V
(
D2

N

)
=

N−n
N

· γ√
2n + (κ − 3)

(
N

N−n
− 3 n

N

)
= u · γ√

2n + (κ − 3) (1/u − 3(1 − u))
→ 0.

This shows the first result in Result 10. The remaining proofs
are omitted, but follow along the same lines. �

Lemma A.3. If κ and σ are both finite then, as n → ∞ we
have

√
n

(
1

n

n∑
i=1

(
Xi − μ

σ

)2

− 1

)
Dist−→N (0, κ − 1) .

Proof. We define the standardized values:

Zi = Xi − μ

σ
.

We now look at the sequence of iid values Z2
1, . . . , Z

2
n which

have moments:

E
(
Z2

i

) = 1 V
(
Z2

i

) = κ − 1.

The quantity under analysis in the lemma is the sample mean
of the Z2

i quantities, minus their true mean, and multiplied by√
n. The distribution therefore follows directly from the central

limit theorem for iid random variables (see, e.g., Bartoszyński
and Niewiadomska-Bugaj 1996, pp. 431–432). �

For convenience, we split the proof of Result 14 into two
parts, first looking at the distribution of the mean difference,
and then looking at the scaled variance quantities. Both of these
results appeal to the central limit theorem.

Proof of Result 14 (Mean difference). In this proof, we will
look only at the asymptotic distribution of the mean difference
quantity. With a little algebra, it can easily be shown that

X̄n − X̄N = 1

n

[
u

n∑
i=1

Xi − (1 − u)
N∑

i=n+1

Xi

]
.

The random variables uX1, . . . , uXn are iid and so are
(1 − u) Xn+1, . . . , (1 − u) XN . From the CLT this means that
both sums converge to independent normal random variables as
n → ∞ and N − n → ∞ (which is what occurs in our limiting
analysis). Since sums of independent normal random variables
are also normally distributed this means that the mean difference
is asymptotically normal. It remains only to note that

E
(
X̄n − X̄N

) = 0 V
(
X̄n − X̄N

) = N − n

Nn
· σ 2.

By taking the first part out of the distribution as a scaling
constant, this then gives the required distributional result. �

Proof of Result 14 (Scaled variances). We now look at the dis-
tributions of the various scaled variance quantities. For brevity,
we will do this only for the sample variance, since the other
proofs are all analogous. With a little algebra it is easy to show
that

(n − 1) S2
n =

n∑
i=1

(
Xi − X̄n

)2 =
n∑

i=1

(Xi − μ)2 − n
(
X̄n − μ

)2
.

Rearranging, we obtain

S2
n = 1

n

n∑
i=1

(Xi − μ)2 − (
X̄n − μ

)2 + 1

n
S2

n.

This means that

√
n ·
(

S2
n

σ 2
− 1

)
= √

n

[
1

n

n∑
i=1

(
Xi − μ

σ

)2

− 1

]

− 1√
n

(
X̄n − μ

σ/
√

n

)2

+ 1√
n

S2
n

σ 2
.
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Using Slutsky’s theorem (see, e.g., Bartoszyński and
Niewiadomska-Bugaj 1996, pp. 421–422), it is easy to show
that the second term converges in distribution to zero and the
third term converges in probability to zero, which means that
the limiting distribution of the quantity of interest is equal to
the limiting distribution of the first term in the expansion. From
Lemma A.4 this means that

√
n ·
(

S2
n

σ 2
− 1

)
Dist−−−−→ N (0, κ − 1) .

Hence, we have

S2
n

σ 2

Asymp∼ N

(
1,

κ − 1

n

)
.

Now, to complete the proof it remains only to note that the
chi-squared distribution is asymptotically normal with variance
equal to twice its mean. Hence, as DF → ∞ we have

ChiSq (DF)

DF
→ 1

DF
N (DF, 2DF) = N

(
1,

2

DF

)
.

This means that we can reexpress the asymptotic normal form
as a scaled chi-squared. Since DFn → 2n/ (κ − 1) the asymp-
totic distribution above can equivalently be written as

S2
n

σ 2

Asymp∼ ChiSq (DFn)

DFn

.

(In fact, we know from Result 8 that the mean and variance
in this asymptotic distribution are exact for all n.) Although
both forms are asymptotically equivalent, it is more sensible to
use the chi-squared distribution rather than a normal distribu-
tion, since the latter quantity is nonnegative and is exact in the
case of a normal superpopulation. The remaining proofs for the
other scaled variance quantities are all analogous to the above
proof. �

Lemma A.4. As n → ∞, we have Corr(X̄n − X̄N , S2
n) →√

uφ.

Proof. The variance of the mean difference is given by

V
(
X̄n − X̄N

) = V
(
X̄n

)− 2C
(
X̄n, X̄N

)+ V
(
X̄N

)
= σ 2

n
− 2

σ 2

N
+ σ 2

N
= σ 2

n
− σ 2

N
= u

σ 2

n
.

We therefore have

Corr
(
X̄n − X̄N , S2

n

) = C
(
X̄n − X̄N , S2

n

)
√

V
(
X̄n − X̄N

)
V
(
S2

n

)
= C

(
X̄n, S

2
N

)− C
(
X̄N , S2

N

)
√

V
(
X̄n − X̄N

)
V
(
S2

n

)
=

γ σ 3

n
− γ σ 3

N√
uσ 2

n

(
κ − n−3

n−1

)
σ 4

n

=
(

1
n

− 1
N

)
γ

1
n

√
u
(
κ − n−3

n−1

)

=
N−n
N

γ√
u
(
κ − n−3

n−1

) = √
u · γ√

κ − n−3
n−1

.

As n → ∞ we have Corr
(
X̄n − X̄N , S2

n

) → √
u · φ. �

As with Result 14, we split the proof of Result 15 into two
parts, first looking at the approximate distribution of the stu-
dentized mean difference, and then looking at the variance ratio
quantity. Both of these results appeal to the previous asymptotic
marginal distributions of the parts going into the quantity.

Proof of Result 15 (Studentized mean difference). The ap-
proximate distribution in this result is based on appeal to
the asymptotic marginal distributions in Result 14 when n →
∞. From Lemma A.4, we know that as n → ∞ we have
Corr(X̄n − X̄N , S2

n) → √
u · φ. If we ignore this dependence

for purposes of our approximation, we obtain

X̄n − X̄N

S2
n

= X̄n − X̄N

σ 2

/
S2

n

σ 2

Approx∼
√

N − n

Nn

· N (0, 1)

ChiSq (DFn) /DFn

=
√

N − n

Nn
· St (DFn) .

As stated in the result, this approximation ignores the correla-
tion between the numerator and denominator in the expression.
This gives us the approximate distribution for the studentized
mean difference between the sample and population. �

Proof of Result 15 (Variance ratio). The approximate distri-
bution in this result is also based on appeal to the asymptotic
marginal distributions in Result 14 when n → ∞. Using the
decomposition for the population variance, we have

S2
N

S2
n

= (N − 1) S2
N

(N − 1) S2
n

= (n − 1) S2
n + (N − n) C2

N

(N − 1) S2
n

= n − 1

N − 1
+ N − n

N − 1
· C2

N/σ 2

S2
n/σ

2

Approx∼ n − 1

N − 1
+ N − n

N − 1
· ChiSq (DFC) /DFC.

ChiSq (DFn) /DFn

= n − 1

N − 1
+ N − n

N − 1
· 1

F (DFn, DFC)
.

This approximation makes use of the fact that the numerator
and denominator in this case are asymptotically uncorrelated
(though not necessarily independent). �

APPENDIX B: FURTHER MATERIAL

In this appendix, we set out some extensions to the material
in the body of the article. This material is ancillary to the main
results in the article, but may be of interest to practitioners in
giving some further detail on the meaning and interpretations of
quantities, and some additional issues that arise in applications
of the present material.
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The distance measure. In the body of the article, we defined
the distance measure:

D2
N = n (N − n)

N

(
X̄n − X̄n:N

)2
.

The easiest way to understand the meaning of the distance
measure is by considering a population with N = 2 objects,
giving us population values X1 and X2. In this case, we have
population variance given by

S2
N = 1

N − 1

N∑
i=1

(
Xi − X̄N

)2

=
(

X1 − X1 + X2

2

)2

+
(

X2 − X1 + X2

2

)2

=
(

X1 − X2

2

)2

+
(

X2 + X1

2

)2

= 2

(
X1 − X2

2

)2

= 1

2
(X1 − X2)2 .

If N = 2 and n = 1, we then have

D2
N = 1

2
(X1 − X2)2 = S2

N .

In this special case, the distance measure is equivalent to the
two-point population variance. In the more general case, the
distance measure extends this idea to allow the comparison of
two sets of points, compared by using their means. As with
the sample and population variances, we have E(D2

N ) = σ 2 so
that the distance measure is centered around the variance of the
superpopulation. The variance of the distance measure is quite
high, owing to the fact that it is similar to a two-point estimator.

(It is actually possible to use a distance measure of this form
to estimate variance in the pathological situation where you
have a sample of values where the only known information is
the mean of two groups partitioning the sample. This yields a
very inaccurate interval estimate, but that is not surprising given
that it is a two-point estimator.) �

Minimum length variance intervals. In the body of the article,
we derived the variance interval by choosing a value 0 ≤ θ ≤
α to obtaining the confidence interval. The general form of the
resulting confidence interval allows any value of θ in this range.
One obvious way to proceed is to choose θ to minimize the
length of the interval. To do this, we will let Q be the quantile
function of the F-distribution with the appropriate number of
degrees of freedom. This gives us

F ∗
1−θ,DFn,DFC

= Q (1 − θ ) F ∗
α−θ,DFn,DFC

= Q (α − θ ) .

To minimize the interval length, we want to minimize the
objective function:

Hα (θ ) = 1

Q (α − θ )
− 1

Q (1 − θ )
.

Differentiating with respect to θ we obtain

dHα

dθ
(θ ) = − Q′ (α − θ)

Q (α − θ )2 + Q′ (1 − θ)

Q (1 − θ )2 .

We therefore obtain the critical point equation:

Q′ (α − θ̂
)

Q′ (1 − θ̂
) =

(
Q
(
α − θ̂

)
Q
(
1 − θ̂

)
)2

.

Solving for θ̂ in the allowable range gives us the appropriate
value to form the minimum length interval. Since the quantile
function for the F-distribution cannot be written in closed form,
in practice this will require numerical solution. �

Variance interval with unknown kurtosis. The application of
the variance interval in this article requires us to estimate the
kurtosis of the underlying superpopulation distribution, to obtain
the appropriate degrees of freedom for the interval. By way of
reminder, we note that we have E((Xi − μ)4) = κσ 4, so that

κ = E
(
(Xi − μ)4

)
(
E
(
(Xi − μ)2

))2 .

(Note that we have not adjusted to measure “excess kurtosis.”
This means that κ = 3 for a normal distribution.) The kurtosis
κ gives a scale-adjusted measure of the heaviness of the tails of
the superpopulation distribution (see Dodge and Rousson 1999).

In this article, we do not give lengthy consideration to es-
timates of kurtosis. An examination of various estimators of
skewness and kurtosis can be found in Joanes and Gill (1998).
For our purposes, it will suffice to set out some examples of
these estimators, which are taken from that article. A simple
estimator that is unbiased for normal samples is

Kn = n (n + 1)

(n − 1)

∑n
i=1

(
Xi − X̄n

)4(∑n
i=1

(
Xi − X̄n

)2
)2 .

More complicated estimators are used in various statistical
software packages:

KMINITAB
n = KBMDP

n = (n − 1)2

n

∑n
i=1

(
Xi − X̄n

)4(∑n
i=1

(
Xi − X̄n

)2
)2 ,

KSAS
n = KSPSS

n = KEXCEL
n = n (n + 1) (n − 1)

(n − 2) (n − 3)

×
∑n

i=1

(
Xi − X̄n

)4(∑n
i=1

(
Xi − X̄n

)2
)2 − 9 (n − 5/3)

(n − 2) (n − 3)
.

Joanes and Gill (1998) looked at the mean square error of
these kurtosis estimators for various distributions. They found
that the estimators used in MINITAB and BMDP have lower
mean square error for a normal distribution, but the estimator
used in SAS, SPSS, and EXCEL has a lower mean square error
for highly skewed distributions. It is easy to see that as n →
∞ all of these estimators converge to the same limiting value.
All are weakly consistent, in the sense that they converge in
probability to the true kurtosis parameter κ .

Any of these estimators can be substituted into the confidence
interval formulas set out in this article, and all should perform
adequately for large n. The optimal estimator will depend on
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the particular distribution one is working with, which of course,
is unknown. �

Fitting the moment results together. We noted in the main body
of this article that the moment results fit together according to the
rules for moments of linear functions using our decomposition
results for the population mean and variance. Although this is
quite cumbersome to do, we set out the details here as a useful
check on our working, or as an alternative derivation of some
of the moment results. The simplest of the two cases is the
decomposition for the population mean, which is

NX̄N = nX̄n + (N − n) X̄n:N .

Taking the variance of both sides of this equation should es-
tablish a relationship between the various variance and covari-
ance quantities applicable to the terms in the decomposition.
Taking the variance of the left-hand side, we have

V (LHS) = V
(
NX̄N

) = N2
V
(
X̄N

) = N2 σ 2

N
= Nσ 2.

Taking the variance of the right-hand side, we have

V (RHS) = V
(
nX̄n + (N − n) X̄n:N

) = n2
V
(
X̄n

)
+ (N − n)2

V
(
X̄n:N

)
= n2 σ 2

n
+ (N − n)2 σ 2

N − n

= nσ 2 + (N − n) σ 2

= Nσ 2 = V(LHS).

The more complicated case is the decomposition for the pop-
ulation variance, which is

(N − 1) S2
N = (n − 1) S2

n + (N − n − 1) S2
n:N + D2

N.

Taking the variance of both sides of this equation should es-
tablish a relationship between the various variance and covari-
ance quantities applicable to the terms in the decomposition.
Taking the variance of the left-hand side, we have

V(LHS) = V
(
(N − 1) S2

N

)
= (N − 1)2

V
(
S2

N

) = (N − 1)2

(
κ − N − 3

N − 1

)
σ 4

N
.

Taking the variance of the right-hand side, we have

V (RHS)

= V
(
(n − 1) S2

n + (N − n − 1) S2
n:N + D2

N

)
= (n − 1)2

V
(
S2

n

)+ (N − n − 1)2
V
(
S2

n:N

)+ V
(
D2

N

)
+ 2 (n − 1) C

(
S2

n,D
2
N

)+ 2 (N − n − 1) C
(
S2

n:N ,D2
N

)

=

⎡
⎢⎣

(n − 1)2
(
κ − n−3

n−1

)
N
n

+ (N − n − 1)2
(
κ − N−n−3

N−n−1

)
N

N−n

+2N + (κ − 3)
(

N2

n(N−n) − 3
)

+2 (n − 1) (κ − 3) N−n
n

+ 2 (N − n − 1) (κ − 3) n
N−n

⎤
⎥⎦ σ 4

N

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(
(n − 1)2 N

n
+ (N − n − 1)2 N

N−n
+ N2

n(N−n) − 3
+2 (n − 1) N−n

n
+ 2 (N − n − 1) n

N−n

)
κ

−

⎛
⎜⎝ (n − 1) (n − 3) N

n
+ (N − n − 1) (N − n − 3) N

N−n

−2N + 3 N2

n(N−n) − 9
+6 (n − 1) N−n

n
+ 6 (N − n − 1) n

N−n

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

σ 4

N
.

= [(Part A) · κ − (Part B)]
σ 4

N
.

With a little algebra it can be shown that

(Part A)

=

⎛
⎜⎝ (n − 1)2 N

n
+ (N − n − 1)2 N

N − n
+ N2

n (N − n)
− 3

+2 (n − 1)
N − n

n
+ 2 (N − n − 1)

n

N − n

⎞
⎟⎠

= (N − 1)2 ,

(Part B)

=

⎛
⎜⎜⎜⎜⎜⎝

(n − 1) (n − 3)
N

n
+ (N − n − 1) (N − n − 3)

N

N − n

−2N + 3
N2

n (N − n)
− 9

+6 (n − 1)
N − n

n
+ 6 (N − n − 1)

n

N − n

⎞
⎟⎟⎟⎟⎟⎠

= (N − 1) (N − 3) ,

which gives us

V(RHS) = [(Part A) · κ + (Part B)]
σ 4

N

= [(N − 1)2κ + (N − 1)(N − 3)]
σ 4

N

= (N − 1)2(κ − N − 3

N − 1
)
σ 4

N
= V(LHS).

This confirmation of the moment rules for linear functions
operates as a check on our moment results, to confirm that they
fit together as they should.
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