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Some mathematical background and formalism 
The NABLA operator (or DEL) is, by definition: 

 
In which i, j, k are unit vector 

Strictly speaking is not a specific operator, but rather a convenient mathematical notation for those three 
operators, that makes many equations easier to write. 

In fact, by using     it is possible to make operations such as: 
 
   

∇ 

Gradient: grad 𝒔 =  
∂s

∂x
𝐞x +

∂s

∂y
𝐞y +

∂s

∂z
𝐞z = 𝛁s 

Divergence: div 𝒗 =
∂𝐯x

∂x
+

∂𝐯y

∂y
+

∂𝐯z

∂z
= 𝜵 ∙ 𝒗 

Curl (rotore): curl 𝒗 =  
∂𝐯z

∂y
−

∂𝐯y

∂z
 𝐞𝐱 +  

∂𝐯x

∂z
−

∂𝐯z

∂x
 𝐞𝐲 +  

∂𝐯y

∂x
−

∂𝐯x

∂y
 𝐞𝐳 = 𝜵 × 𝒗 

The divergence is roughly a 
measure of a vector field's increase 
in the direction it points; but more 
accurately, it is a measure of that 
field's tendency to converge toward 
or repel from a point. 
  

The curl at a point is proportional to 
the on-axis torque at that point. 

Divergence 
Curl 

Notice that all symbols in bold 
are related to vectors 
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Electromagnetism and Maxwell equations 
Maxwell’s equations mathematically describe the physics of electromagnetic fields. 
Constitutive relationships quantify material properties. 
Combining the two provides the foundations for electromagnetism in the media.  

From these building blocks, all classic 
electromagnetics (e.g. induction, radio waves, 
resistivity, circuit theory, …) can be derived after we 
characterize material electrical 
properties. 

𝛁 × 𝑬 (𝒓, 𝑡) = −
𝜕𝑩

𝜕𝑡
(𝒓, 𝑡) ==> Maxwell-Faraday eq. (Faraday low of induction) 

𝛁 × 𝑩  𝒓, 𝑡 = 𝜇0  𝑱 𝒓, 𝑡 +
𝜕𝑫

𝜕𝑡
(𝒓, 𝑡)  ==> Ampere-Maxwell eq. 

𝛁 ∙ 𝑫 𝒓, 𝑡 = 𝑞 ==> Gauss eq. 

𝛁 ∙ 𝑩 𝒓, 𝑡 = 0 ==> Gauss eq. for magnetism 

𝛁 ∙ 𝑱  𝒓, 𝑡 = −
𝜕𝒒

𝜕𝑡
(𝒓, 𝑡) ==> Electric charge is conserved 

In which: 

E is the electric field strength vector (V/m) 

B is the magnetic flux density vector (T) 

D is the electric displacement vector 
   (or dipole moment density) (C/m2) 

q is the electric charge density (C/m2) 

J is the current density vector (A/m2) 

r is a generic space vector (m); t is time (s) 

 Notice that all 
symbols in bold 
are related to 
vectors 
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Constitutive equations 
In addition to the Maxwell’s equations additional equations have to be introduced to relating the 
material physical properties to EM fields. For homogeneous and isotropic media they can be written 
as linear equations: 
 
1) 

 

2) 

 

3) 

𝑱 𝑟, 𝑡 = 𝜎 𝑬(𝑟, 𝑡) 

𝑫 𝑟, 𝑡 = 𝜀 𝑬(𝑟, 𝑡) 

𝑩 𝑟, 𝑡 = 𝜇 𝑯(𝑟, 𝑡) 

In which                 represent the ELECTRICAL CONDUCTIVITY, the DIELECTRIC PERMITTIVITY and the 
 
MAGNETIC PERMEABILITY, respectively. 
 
Constitutive equations provide a macroscopic (or average behavior) description of how electrons/atoms/ 
molecules/ions respond to the application of an EM field. 
 
By simplifying: 
 

ELECTRICAL CONDUCTIVITY describes how free electric charges flow to form a current when an electric field is present; 

DIELECTRIC PERMITTIVITY describes how constrained electric charges are displaced in response to an electric field; 

MAGNETIC PERMEABILITY describes how intrinsic atomic and molecular magnetic moments respond to a magnetic field. 

𝜎  , 𝜀, 𝜇   
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Constitutive equations 
 
In free-space values of these 3 parameters are constants and equal to: 
  
e = e0 = 10–9/36p=8.85x10–12  [F/m]⩳ eair    m = m0 = 4p10–7 [H/m] ⩳ mair    s = s0 = 0 [S/m] ⩳ sair  

 
The electromagnetic fields in free space can be completely described either by E and H, or by D 
and B, because e = e0 and m = m0 while in regions where the permittivity and permeability values 
vary with position (like in almost all geological materials!) both sets of vectors are needed to 
completely describe the electromagnetic fields. 
 
It is convenient to introduce some additional parameters, namely: 
 
The relative dielectric permittivity (or dielectric constant)                [dimensionless]  

 
The relative magnetic permeability                [dimensionless]  

 
Considering the two  previous relations, both parameters are pure numbers and are not “constant” 
in nature, but at the opposite the exhibit, in the general case, a dependency by the frequency (f) of 
the oscillating EM field, so: 
 
 
For increasing frequencies both parameters have a decreasing non linear and complex trend 

𝜀𝑟 =
𝜀𝑚
𝜀0

 

𝜇𝑟 =
𝜇𝑚

𝜇0
 

𝜀𝑟 𝑓 =
𝜀𝑚  𝑓 

𝜀0
 𝜇𝑟 𝑓 =

𝜇𝑚  𝑓 

𝜇0
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Constitutive equations 
In general,            are tensors and can also be nonlinear (for instance,                ). In 
this case the response of the material can be in a different direction from the exciting 
field and dependent of field strength, frequency,…. 
Moreover, an additional feature of the properties is that they can depend on the 
history of the incident field (hysteresis). To be fully correct, we should therefore 
write the constitutive equations in the form: 
 
 
 
 
 
 
 
 
that must be used when the considered physical parameters are DISPERSIVE (i.e. 
frequency dependent) and, as already stated the 3 parameters are: 
 
 
By extension, the adjective “dispersive” is used for all the other dependencies (for 
instance when the parameters are dependent by the velocity, the phase,…  

𝜎  , 𝜀, 𝜇   𝝈 = 𝜎  𝑬  

𝑱 𝑟, 𝑡 =  𝜎 
∞

0

 𝛽 𝑬(𝑡 − 𝛽)𝑑𝛽 

𝑫 𝑟, 𝑡 =  𝜀 
∞

0

 𝛽 𝑬(𝑡 − 𝛽)𝑑𝛽 

𝑩 𝑟, 𝑡 =  𝜇 
∞

0

 𝛽 𝑯(𝑡 − 𝛽)𝑑𝛽 

𝜎 = 𝜎  𝑓 ; 𝜀 = 𝜀  𝑓 ; 𝜇 = 𝜇  𝑓  
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Constitutive equations: electrical permittivity e 
The permittivity of subsurface materials can vary noticeably (but electric conductivity more and more!), especially 
in the presence of free and bound water, and dielectric permittivity is usually a complex, frequency-
dependent quantity with real (storage) and imaginary (loss) components. 

Jol, 2009 Jol, 2009 

shifting  POLARIZATION  

(ELECTRIC PULSE) 

(ELECTRIC PULSE) 

POLARIZATION occurs at both the local atomic scale 
and at the edges of the material where there are no 
neighbouring charges to balance the effect. On the rising edge of the incident pulse, energy is “transferred” to 
the particles in the form of charge separation (energy storage) and released in the trailing edge. A dipole 
moment is induced and a net dipole moment density D is generated across the polarised charges. 
In homogeneous, isotropic, non dispersive materials  D=eE 
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Constitutive equations: electrical permittivity e 

If the charges are free to move and can physically interact (as in the dipolar molecules of free water), then the 
displacement and polarisation process (f) converts some of the EM energy into heat during the particle 
interactions. As such, a component of energy loss is introduced into the polarisation process that acts out of 
phase with the energy storage and release mechanism. 
This phenomenon occurs in most materials, and therefore, the permittivity is usually described as a complex 
quantity(f), with the real component representing the “instantaneous” energy storage – release 
mechanism and the imaginary component representing the energy dissipation. 
 
The frequency dependence of the polarisation process is a manifestation of the permittivity relaxation 
phenomena where the time-dependent displacement mechanism is acting at different rates to the alternating, 
applied electric field. 
Below the relaxation frequency, the particles are able to ‘react quickly’ to the applied field and stay in phase with 
its changes. At, and above, the relaxation frequency, they cannot keep up with the rapidly changing field 
and spend most of their time in motion, therefore, producing significant loss of energy as heat to the 
surrounding matrix. 
 
Most materials display a range of permittivity relaxation  overall 
decrease in the value of the real component of the permittivity 
and a peaking in the imaginary component as frequency 
increases. The peak value of this distribution is called the 
relaxation frequency. 
There are more than one relexation frequency due to different 
relaxation mechanism involving electrones, atoms, dipole moleculas,… 
giving a complex overall response different for each material. 
Mixtures if materials and/or inhomogeneous ones exhibit an even more 
complex behaviour. 

Jol, 2009 
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Constitutive equations: electrical conductivity s 

Jol, 2009 

Simplifying, electrical conductivity s describes the ability of a material to pass free electric charges under the 
influence of an applied field. In metals, these charges relate to the free electrons of the metal atoms, whilst in 
fluids they are represented by the charges of dissolved anions and cations. These charge carriers rapidly 
accelerate to a terminal velocity generating internal conduction currents. As they propagate, they randomly 
collide against other atoms, ions or electrons, which produces energy loss in the form of heat. 
 
Depending by the frequency of the EM field, the parameter can assume peculiar behavior. 
 

At low frequencies (<~1kHz) the conductivity 
is basically a measure of the movement of charge 
carriers in response to an applied electric field, as 
described by the Ohm’s law (i.e. the 1st 
Constitutive eq. J=sE) for “ohmic conductors”: 
 
  

𝜎𝑒𝑓𝑓 = 𝜎′ = 𝜎𝐷𝐶 
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Constitutive equations: electrical conductivity s 

For intermediate frequencies (>0.1 MHz<~10GHz) the charge response is almost “instantaneous” and the 
conduction current is in phase with the electric field E so that: 
which is a real value (almost) frequency independent often referred as “STATIC CONDUCTIVITY”. 
 
 
At very high frequencies (>10GHz) the inertial effect of the accelerating charges produces a lag in the 
physical response and a conduction current that is out of phase with the electric field variations. The conductivity 
must now be described by a complex, valued quantity where the imaginary component represents the out-of-
phase component of the current. This typically increases with frequency and adds to the energy storage effect of 
the permittivity. 
 
 
 
Depending by which is the dominant behavior different geophysical methods have been exploited 
thus actually analyzing different and complementary parameters of the subsurface. 
 
 

𝜎 = 𝜎𝐷𝐶  

𝜎 𝜔 = 𝜎′ − 𝑖𝜎′ ′ 𝜔  

Let remember that all the 
approximations are valid only when the 
hypotheses on which they are based are 
matched. 
There are peculiar materials (e.g. ice, 
water, soils as mixtures of solids, liquid 
and gaseous components) for which the 
general approximations are no longer 
valid. 
Moreover, there are cases in which some 
additional parameters which usually can 
be neglected must be considered (e.g. 
pressure, temperature,…)  For instance in geothermal studies! 
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Constitutive equations: magnetic permeability m 

𝜇𝑟 =
𝜇𝑚

𝜇0
 𝜇𝑚 = 𝜇0 1 +       

Magnetic susceptibility  [dimensionless] can be anisotropic, but for weakly to moderately magnetic 
materials, the anisotropy is generally negligible. 
 
Water and most soil-forming minerals are nonferromagnetic (i.e. the real relative magnetic permeability mr is 
≈ 1). 
When ferromagnetic  impurities are present (especially  iron, nickel, cobalt  and they alloys and compounds 
like oxides) the magnetic permeability of the soil mass is proportional to the volume fraction of impurities. 
 

Total magnetization of a material is a vector such as: Mt=Mr+Mi [A/m] 
The induced component Mi  (induced magnetization) is produced in response to an applied field, 
which in geophysical investigations is the Earth’s Magnetic Field (EMF). 
The remanent component Mr (remanent magnetization) is the “permanent” magnetization that 
remains when applied fields are removed. 
 
For weakly to moderately magnetic materials (such as most earth materials), induced magnetization is aligned 
with and proportional to H, the earth’s magnetic field (the earth’s field is normally given in nT, units of the 
magnetic induction B) so: 
  

Mi= H 
 In this course we will not consider magnetic properties of materials, 
which are the base  of MAGNETIC METHOD here not described. 
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Electrical permittivity e and conductivity s 

In the general case e and s should be expressed by: 
 
 

In which real parts are noted by (‘ ) while imaginary ones by (‘‘ ). Pedex (T) refers to the “total complex” e and s 

Real and imaginary parts are also referred to as the in-phase and quadrature components, respectively.  

 

 
 

𝜀𝑇 𝜔 = 𝜀𝑇
′  𝜔 − 𝑖𝜀𝑇

′′ 𝜔  

𝜎𝑇 𝜔 = 𝜎𝑇
′  𝜔 − 𝑖𝜎𝑇

′′ 𝜔  

𝜀𝑇 =
𝜎𝑇

𝑖𝜔
 The two total parameters are related so that: 

 
Therefore, both eT and sT contain THE SAME INFORMATION are simply two different ways of expressing what is 
measured. 
 
In fact, from the physical point of view conductivity and polarization effects CANNOT be DIVIDED, so: 
 
 
 
 
 
and in terms of “Total effect”: 
 

 

 
 

𝜀𝑒𝑓𝑓  𝜔 = 𝜀′ 𝜔 +
𝜎′′  𝜔 

𝜔
 

𝜎𝑒𝑓𝑓  𝜔 = 𝜎′ 𝜔 + 𝜔𝜀′′  𝜔  

𝜀𝑇 𝜔 =  𝜀′ 𝜔 +
𝜎′′  𝜔 

𝜔
 − 𝑖  𝜀′′  𝜔 +

𝜎′ 𝜔 

𝜔
  

𝜎𝑇 𝜔 =  𝜎′ 𝜔 + 𝜔𝜎𝜀 ′′  𝜔  + 𝑖 𝜎′′  𝜔 + 𝜔𝜎𝜀 ′ 𝜔   

This way is apparent that: 
1) there is more than dielectric polarization 
contributing to what we measure as the effective 
permittivity or stored energy in the system; 
2) there is more than pure (ohmic) conduction 
contributing to what we measure as electrical 
conductivity or energy loss in the system. 
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Electrical permittivity e and conductivity s 
From the previously discussed concepts about permittivity and conductivity (dependence of frequency, complex 
nature, impossibility to “divide” the two components) we can consider different approximations taking into 
account WHICH mechanisms are more or less efficient in one specific medium and for a specific EM field. 
 

On of the most important parameter is the FREQUENCY of oscillation of E and H. 

At frequencies above approximately 100 kHz (Knigth and Endres, 2005) it is commonly assumed that: 

 

 

The expressions for the effective parameters then become: 

 

 

 

At the opposite,when                  (i.e. for low frequencies): 

 

 

 

 

 
 
 
 

𝜎′′  𝜔 

𝜔
= 0 𝜎′ 𝜔 = 𝜎𝐷𝐶  

𝜀𝑒𝑓𝑓  𝜔 = 𝜀′ 𝜔  

 

𝜎𝑒𝑓𝑓  𝜔 = 𝜎𝐷𝐶 𝜔 + 𝜔𝜀′′  𝜔  

𝜎′ ≫ 𝜔𝜖 ′′  

𝜎𝑒𝑓𝑓 ≅ 𝜎′ ≅ 𝜎𝐷𝐶  

Such approximations can be a source of confusion in comparing studies of low-frequency and high-frequency electrical properties: 

at low frequencies eeff is considered to be governed by the parameter that is completely neglected in defining eeff at high frequencies 

while at high frequencies eeff is considered to be equivalent to the parameter that is completely neglected in defining eeff at low 

frequencies. 
The assumptions are valid for the frequency range of the studies but result in two sets of expressions containing different 
sets of parameters. As we start to consider the value of broadband measurements of electrical properties to extract information 
about the near surface of the earth, the resulting artificial division into “high frequency” and “low frequency” can impede 
our ability to understand the underlying mechanisms governing the measured response. 
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EM fields characteristics 
Maxwell equations describe a coupled set of E and B fields 
varying with time as a corollary it is apparent that 
changing electric fields create magnetic fields which in turn 
induce electric fields. 
For instance, if we start considering a time-varing current J  it 
in turn creates a magnetic field B,  which in turn induces an 
electric field E,  which in turn causes the electric charge to move 
thus producing a current J,  … 

This continuing succession of one field inducing the other, 
results in fields that move through the medium: how? 

When material properties are 
assumed isotropic, frequency-
independent (i.e. not dispersive), 
and linear…  

Daniels, 2004 

𝛁 × 𝛁 × 𝑬 + 𝜇𝜎
𝜕𝑬

𝜕𝑡
+ 𝜇𝜀

𝜕2𝑬

𝜕𝑡2
= 0 

 

It depends on the relative magnitude of losses, and the fields may diffuse or 
propagate as waves 
Mathematically, the wave character is seen by rewriting Maxwell’s equations to 
eliminate either the electric or magnetic field. Combining Faraday’s law and Ampere’s 
law and considering the constitutive equations we obtain the transverse vector wave 
equations: 

and  

𝛁 × 𝛁 × 𝑯 + 𝜇𝜎
𝜕𝑯

𝜕𝑡
+ 𝜇𝜀

𝜕2𝑯

𝜕𝑡2
= 0 
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EM fields characteristics 

Let now consider for simplicity Maxwell equations in the free 
space and without sources: 

𝛁 ∙ 𝐄 = 0 

 

𝛁 ∙ 𝐁 = 0 
 

 

 

𝛁 × 𝐄 = −
∂𝐁

∂t
 

 

 

 

𝛁 × 𝐁 = μ0ε0

∂𝐄

∂t
 

 

 

In cartesian coordinates 

 

 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Let now search for their solutions in which (for instance) 
E is along y and B along z: 
 
 
 
 
Since Ex, Ez and Bx, Bz are null, (1) and (2) will become: 
 
  
 
 
 
 
eq. (4) does not give any contribution, while (3) and (5) 
become, respectively: 
 
 
 
 
 
 
Moreover, eq. (8) does not give any contribution, while 
(6) and (7) become, respectively: 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(1) 
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EM fields characteristics 

Let now analyze in detail the consequences of such equations: 
 
 
From eq. (11), (13) and (14) we conclude that E does not 
change in the yz plane while it varies along axis x when a 
magnetic field varying with time is present. 
 
From eq. (12), (15) and (16) we conclude that even B does not 
change in the plane xy, but it varies along axix x when an 
electric field varying with time is present. 
 
Let now derive both members of eq. (14) for coordinate x: 
 
                         
 
And similarly both members of eq. (16) for t 
 
                              
 
By comparing such two eq., rewriting                    as 
we obtain: 
 
 
 
 
Doing the same for the magnetic field B we obtain:  
 

Both equations (17) and (18) satisfy the general wave eq. 
(in this case mono-dimensional): 
 
 
 
 
 
So both E and B oscillate on planes perpendicular to axis x 
along which they propagate with a PLANAR WAVE. 
Waves are POLARIZED (in our example E along y and and 
B along z), but we can generalize the equations as:  

(17) 

(18) 

Where: 

(14)  

(16)  
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Questions? 


