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 Preface     

  This textbook is designed to be used by students following a fi rst course on stellar astro-
physics. It is mostly aimed at the advanced undergraduate students in physics or astronomy 
programs. It may also serve as a basic reference for researchers working in fi elds other 
than stellar astrophysics. 

 This work is not encyclopaedic in nature and therefore does not cover, for example, all 
type of stars that exist in the universe. This book aspires to give intermediate knowledge 
on stars in a relatively concise format. It focuses mostly on the explanation of the func-
tioning of stars by using basic physical concepts and observational results. A large number 
of graphs and fi gures are included to better explain the concepts covered. Only essential 
astronomical data are given. The amount of observational results shown is deliberately 
limited in scope since a too large quantity of observational data can be overwhelming and 
be counterproductive to newcomers to the fi eld of stellar astrophysics. 

 This book is written in the scope of the students ’  needs. Although the students using 
this book should have seen all the physical concepts needed for exploring stellar astrophys-
ics, brief recalls of the most important ones are given. No prior astronomical knowledge 
is assumed. This work can therefore be used not only by astronomy students but also by 
students in a physics program. This book aims to explain stellar astrophysics with clarity 
and is written in a manner so that it could be read and understood by a physics or astronomy 
student with little or no outside help. Detailed examples are given throughout the book to 
help the reader better grasp the most important concepts. A list of exercises is given at 
the end of each chapter and answers to a selection of these are given. A summary for each 
chapter is also presented. 

 Some historical snippets are added to give some perspective on the chronology of 
various discoveries along with giving merited acknowledgments to the researchers that 
made these advancements possible. For a complete historical review of stellar astrophys-
ics, the reader is referred to Tassoul, J. - L. and Tassoul, M.,  A Concise History of Solar 
and Stellar Physics , Princeton University Press, Princeton  (2004) . 

 The book is divided in seven chapters: basic concepts, stellar formation, radiative trans-
fer in stars, stellar atmospheres, stellar interiors, nucleosynthesis and stellar evolution and 
chemically peculiar stars and diffusion. The topics seen in the last chapter are rarely 
covered in such textbooks and distinguish it from others on stellar astrophysics. This 
chapter encompasses many concepts seen throughout the book. 

 The book is divided in core content (approximately 75 %) which is considered crucial 
for a global understanding of stars and in optional content (about 25 %). Some optional 
sections also contain more advanced topics. Sections marked   †   are optional, while those 
marked   †  †   are optional sections containing advanced topics. These sections may be skipped 
without interfering in the normal progression of the core topics. 



xii Preface

 This book is mainly designed to cover the most important aspects of stellar astrophysics 
inside a one - semester (or half - year) course. The book is, however, somewhat too lengthy 
to be covered in totality in a single semester. The professor may then choose to skip a 
certain number of the optional or advanced sections in according to the length of the course 
given. 

 Some universities have two one - semester introductory courses (or a full - year course) 
in stellar astrophysics. They are usually divided into a course on stellar atmospheres, and 
a second one, pertaining to stellar structure and evolution. This book could be used as the 
main reference book for two such courses. Chapters  1 ,  3 ,  4  along with the fi rst three sec-
tions of Chapter  2  could be given as a stellar atmosphere course, while the remainder of 
Chapter  2  and Chapters  5  and  6  could be given as a stellar interior and evolution course. 
Chapter  7  could also be seen at the end of either of these courses. 

 This book could also be used as the main reference for a fi rst course on stellar astro-
physics at the graduate level where the professor could choose to give additional selected 
readings to students to deepen their understanding of certain topics. 

   Francis LeBlanc 
 Moncton, Canada 

 October 2009 
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An Introduction to Stellar Astrophysics Francis LeBlanc
© 2010 John Wiley & Sons, Ltd

   1.1   Introduction 

 First, a defi nition must be given for what constitutes a star.  A star can be defi ned as a 
self - gravitating celestial object in which there is, or there once was (in the case of dead 
stars), sustained thermonuclear fusion of hydrogen in their core.  For example, in the Sun, 
hydrogen, which is the most abundant element in the Universe, is fused into helium via 
the nuclear reaction 4 1 H  →   4 He   +   energy. Fusion is only present in the central regions of 
stars, because there exists a minimum threshold temperature at which this exothermic 
reaction can be ignited (which is of the order of ten million degrees for this particular 
reaction). For hydrogen nuclei (protons) to be fused, they must have a close approach on 
the order of distance at which the strong nuclear force comes into play. 1  The strong nuclear 
force is responsible for binding the nucleons (protons and neutrons) in the nucleus and 
contrary to gravity, for instance, its fi eld of action is limited to a distance on the order of 
10  − 15    m. At the high temperatures found in the centres of stars, the kinetic energy of the 
protons is suffi cient to vanquish the repulsive Coulomb force between them and bring the 
protons within the distance where the attractive strong nuclear force becomes dominant. 
Protons can then fuse together while emitting energy. 

 The energy emitted by thermonuclear reactions is given by Einstein ’ s famous  E     =     Δ  mc  2  
formula, where  Δ  m  is the difference in mass between the species on the left - hand and 
right - hand sides of the arrow found in the nuclear reaction given above and  c  is the 
speed of light in vacuum. However, the hydrogen burning reaction given above can be 
a bit misleading, since it suggests that four protons meet to form a helium nucleus. 
In reality, a series of nuclear reactions is needed to give this global reaction. On another 
note, even though only a small fraction of a star ’ s mass will be transformed to energy 
during its lifetime, it will suffi ce to compensate for the energy irradiated at its surface. 

  1 

  1      Here, a simple phenomenological explanation of nuclear fusion is given. In reality, quantum tunnelling intervenes. This will 
be discussed in more detail in Chapter  6 . 
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Details concerning various nuclear reactions of importance in stars will be discussed in 
Chapter  6 . 

 Stars are formed following the gravitational collapse of cold molecular clouds found in 
the Universe. As the cloud or portions of it collapses, it can be shown (see Chapter  2 ) that 
approximately half of the gravitational energy gained is used to increase the internal tem-
perature of the cloud and the remaining energy is irradiated as electromagnetic radiation 
in space. If the mass of the collapsed cloud is suffi cient (i.e. more than approximately 8   % 
of the mass of the Sun), the central temperatures will attain a value superior to the threshold 
temperature for sustained hydrogen fusion, which would by defi nition, lead to star birth. 
The solar mass is  M   �     =   1.989    ×    10 33    g, where the symbol  �  represents the Sun. 2  The 
physical properties of stars are often given in units of the corresponding value for the Sun. 
The gravitational collapse will continue until equilibrium is reached, where the nuclear 
energy generated per unit time (or its power) at the centre of the star equals the power 
output at its surface due to radiation emission. A star at this stage of its life is commonly 
called a main - sequence star. Since gravity has radial symmetry, a star will have a spherical 
shape (unless it has a high rotational speed). More details concerning stellar formation 
will be given in Chapter  2 . 

 A star shines (or emits radiation) because of its high surface temperature. For example, 
the surface temperature of the Sun is approximately 5800   K, while its central temperature 
is approximately 16 million K. The decrease of the temperature as a function of distance 
from the centre is a natural occurrence that causes energy transport from the central regions 
to the surface of the Sun. Since the gas composing a star is characterized by an opacity 
to radiation, an observer looking at a star can only see its exterior regions, which is com-
monly called the photosphere or stellar atmosphere, having a geometrical depth of up to 
a few per cent of the stellar radius. This is similar to looking in a cloud of fog, being able 
to see only a certain distance before light signals are attenuated. The radiative fi eld exiting 
a star depends on the temperature of these outer layers and is associated to their blackbody 
spectra. The physical properties of blackbodies will be discussed in Section  1.3  and will 
lead to an explanation why stars have different colours. 

 There are three modes of transportation of energy in stars. The most important is radia-
tion. For this mode, the energy is transported when electromagnetic radiation diffuses from 
the central regions of stars towards its exterior. In regions where the radiative opacity 
becomes large, convection can dominate energy transport. Convection is the transport of 
energy by the vertical movements of cells of matter in the stars. Conduction is the third 
mode of transportation of energy in stars. However, this mode is rarely important. More 
details concerning energy transport will be discussed in Chapters  3  and  5 . 

 As mentioned above, a star begins its life by transforming hydrogen to helium in its 
core. As time passes, the abundance of hydrogen gradually decreases in the star ’ s core, 
and eventually, the fuel for this particular nuclear process, namely hydrogen, will all be 
spent. As hydrogen is transformed into helium, the structure of the star readjusts. The core 
contracts causing an increase of the central temperatures until possibly, depending on the 
initial mass of the star, helium fuses to produce carbon via the well - known triple -  α  reac-
tion: 3 4 He  →   12 C   +   energy. Meanwhile, the outer regions of the star expand. The star then 
becomes what is called a red giant. The fi nal destiny of a star depends almost solely on 

  2      Other physical properties of the Sun are given in Appendix C. 
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its initial mass; it will either become a white dwarf, a neutron star or a black hole. More 
details concerning stellar evolution will be given in Chapter  6 . 

 For massive stars, a succession of nuclear reactions will occur during their different 
stages of evolution. The thermonuclear reactions in these stars are responsible for the 
synthesis of various elements, such as carbon, oxygen, silicon, etc. up to iron. This process 
is called nucleosynthesis. As known from the Big - Bang theory, at the beginning of the 
Universe, only hydrogen, helium and trace amounts of lithium were created. The formation 
of the other elements takes place in stars. Stars can therefore be seen as the Universe ’ s 
production factories, generating all atoms heavier than helium, except for some lithium. 
In astronomy, elements heavier than helium are called metals and the fraction of the mass 
composed of metals is called the metallicity ( Z ). The metallicity of outer layers of the Sun 
is approximately  Z    =   0.0169. Meanwhile, the mass fraction of hydrogen ( X  ) and helium 
( Y  ) at the surface of the Sun are, respectively,  X    =   0.7346 and  Y    =   0.2485 (and therefore 
 X    +    Y    +    Z    =   1). All of the atoms of these heavy elements found on Earth were created in 
stars, which then exploded in the form of supernovae ejecting this enriched matter into 
space. Some of this enriched matter was later found in the primordial cloud from which 
the Sun and the Earth were created. Life itself would be impossible without the creation 
of the elements in stars. 

 This is why stars are fundamental for our existence and can be considered as the main 
building blocks of the Universe. It is then crucial to understand them via the study of 
stellar astrophysics. This fi eld of study is fascinating since it incorporates all major fi elds 
of physics (see Figure  1.1 ): nuclear, atomic, molecular and quantum physics, electromag-
netism, relativity, thermodynamics, hydrodynamics, etc. This book aims to give the reader 
an introduction to this fundamental subject by emphasising the physical concepts involved 
and their specifi c importance in stars.    

  1.2   The Electromagnetic Spectrum 

 As is known from quantum mechanics, electromagnetic radiation has two personalities. It 
sometimes behaves like waves and at other times like particles. These particles are called 
photons. These two aspects of radiation are known as the wave – particle duality. For most 
radiative processes in stars, like an atomic absorption of a photon for example, radiation 
will act like a photon, rather than a wave. The wave – particle duality also applies to matter. 

 The energy ( E ) of photons is related to the frequency (  ν  ) and wavelength (  λ  ) of the 
associated electromagnetic wave via the following expression

   E h
hc= =ν
λ

    (1.1)  

where  h  is the Planck constant and  c  is the speed of light in vacuum. 
 Even though a photon of wavelength   λ   has no mass, it possesses momentum  p  equal to

   p
E

c

h= =
λ

    (1.2)   
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     Figure 1.1     Figure illustrating the various fi elds of physics that intervene in stars.  

 As will be shown later, this physical quantity is of great importance in stars. Momentum 
transfer occurs from the radiation fi eld to the stellar plasma following atomic absorption 
of photons, and this causes what is called radiation pressure. 

 The electromagnetic spectrum can be divided into a number of regions (see Table  1.1 ). 
It should be noted that the boundaries of these regions can vary from one source to another. 
For example, in astronomy the radio region often includes microwaves (0.1   cm    <      λ      <    100   cm). 
The visible part of the electromagnetic spectrum is in the range 4000  Å     <      λ      <    7000  Å  
where  Å  represents a unit of length called the angstrom and is equal to 10  − 8    cm. Within 
the visible part of the spectrum, several colours (blue, yellow, etc.) can be observed that 
are defi ned by wavelength. The approximate (or representative) wavelengths of these 
colours are given in Table  1.2 . The most energetic photons in the visible spectrum are 
violet; whereas the least energetic are red.   

 Earth ’ s atmosphere is opaque to most wavelengths except those in the visible part of 
the spectrum and in some parts of the radio. This is why Earth - based observatories detect 
either visible or radio waves, while ultraviolet or X - ray observatories are placed in orbit 
around the Earth. Since the vast majority of the information gathered from the Universe 
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  Table 1.1    The electromagnetic spectrum. 

   Region     Wavelength range  

  Radio     > 0.1   cm  
  Infrared    7000    Å  to 0.1   cm  
  Visible    4000 to 7000    Å   
  Ultraviolet    100 to 4000    Å   
  X - ray    0.1 to 100    Å   
  Gamma - ray     < 0.1    Å   

  Table 1.2    Approximate wavelength of colours. 

   Colour     Wavelength ( Å )  

  Violet    4200  
  Blue    4700  
  Green    5300  
  Yellow    5800  
  Orange    6100  
  Red    6600  

  3      The unit erg is the unit of energy in the cgs system while sr is the unit of solid angle (see Chapter  3  for more details). One erg 
equals 10  − 7  J (see Appendix B). 

comes in the form of electromagnetic radiation, it is imperative to properly understand the 
interaction between radiation and matter.  

  1.3   Blackbody Radiation 

 In everyday life, when observing an object, what is detected is the light that it is refl ecting. 
For instance, if when looking at a red object, the reason why it is red is that the object in 
question is absorbing most colours except red, which is being refl ected. In sunlight or light 
emitted by most household bulbs, there exist all of the colours of visible part of the elec-
tromagnetic spectrum. That is why it is preferable to wear light clothing (optimally white) 
in hot weather, since it will refl ect most of the light that falls upon it. Meanwhile, black 
objects absorb most of the visible light they receive. 

 A body will also emit radiation whose spectra will depend on its temperature. By defi ni-
tion, a blackbody is a physical entity that absorbs all radiation that falls upon it. Radiation 
emanating from a blackbody is due uniquely to its thermal energy. 

 The German physicist Max Planck (1858 – 1947) showed that a blackbody with tempera-
ture  T  emits a continuous spectrum of radiation characterized by a function  B  ν   ( T ), com-
monly called the Planck function. The units of this function are 3  erg/s/Hz/cm 2 /sr and are 
those of the physical quantity called specifi c intensity ( I  ν   , see Section  3.3  for more details). 
In the fi eld of astrophysics the cgs (standing for centimetre - gram - second) unit system is 
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     Figure 1.2     Planck distributions ( B   λ  ) as a function of wavelength for  T    =   2000, 6000 and 12   000   K. 
The   λ   max  associated to each function and the visible part of the spectrum are also identifi ed in this 
fi gure.  

the norm. The main physical constants in cgs used throughout this book can be found in 
Appendix A, while both cgs and S.I. (or the international system) units and conversion 
factors are given in Appendix B. 

 The monochromatic fl ux ( F  ν   ) is defi ned as the quantity of energy in the spectral range 
between   ν   and   ν      +    d  ν   emitted per unit surface, per unit time in units of erg/s/Hz/cm 2 . In 
Chapter  3 , it will be shown that for a blackbody, this quantity is given by the simple rela-
tion  F  ν       =     π  B  ν   . It should be noted that in some physics textbooks, the Planck function given 
is the fl ux instead of the specifi c intensity and a factor  π  will then appear there. 

 The Planck function depends only on  T  and   ν   and is given by the following 
expression

   
B T

h

c h

kT

ν ν
ν( ) =

−

2 1

1

3

2

e

    
(1.3)

  

where  k  is the Boltzmann constant. This function is isotropic and thus independent of the 
direction. 

 The Planck distribution can also be written per unit wavelength ( B  λ   ). Since, for a given 
blackbody, the integration over the entire spectra of  B  ν    and  B  λ    must be equal

   B Bν λν λd d= −     (1.4)  

and

   
B B
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hc
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kT

λ ν ν

λ
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λ λ λ

= − = =
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e
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2
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2 1

1

    
(1.5)

   

 The cgs units of  B  λ    are erg/s/cm/cm 2 /sr. Sometimes, units per unit wavelength in  Å , erg/s/ 
Å /cm 2 /sr are used instead. Figure  1.2  illustrates Planck functions for several temperatures.   
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 The energy distribution emitted by a blackbody leads to two laws. The fi rst, the Stefan –
 Boltzmann law, gives the total power output per unit area  F  (or integrated fl ux in units of 
erg/s/cm 2 ) of a blackbody with temperature  T  is

   F F B T= = =
∞ ∞

∫ ∫ν νν π ν σd d
0 0

4     (1.6)  

where   σ   is the Stefan – Boltzmann constant. To obtain this result, an integration of the 
monochromatic fl ux over the entire electromagnetic spectrum has been carried out (see 
Exercise 1.1). It shows that the energy output of a blackbody increases very rapidly with 
temperature. It should be noted that a blackbody with a higher temperature emits more 
energy at  all  wavelengths than a cooler one (see Figure  1.2 ). Since a star can be approxi-
mated by a blackbody (see Figure  1.8  in Section  1.6 ), a massive star having a high surface 
temperature, will emit much more power than a low - mass star that possesses a lower 
surface temperature. Massive stars will then have a shorter lifespan than smaller ones, 
since they burn their hydrogen at a much faster rate to compensate for their high brightness 
(this higher rate of nuclear burning is actually due to higher central temperatures). This 
topic will be discussed in more detail in Chapter  6 . 

 A second law can also be derived from  B  λ   . It can be shown (see Exercise 1.2), that the 
wavelength   λ   max , at which the function  B  λ    is at its maximum, varies inversely with tem-
perature (see Figure  1.2 )

   λmax
.= 0 290K cm

T
    (1.7)   

 This equation is called Wien ’ s law. It explains why hotter blackbodies (or stars) are 
blue and cooler ones are red. For example, when a blacksmith puts a piece of iron in 
the fi re, it fi rst starts glowing red. Then, as it gets hotter, it becomes white and even 
blue, hence the term  white hot . When the piece of iron is at room temperature, it emits 
almost no visible light since the maximum of its energy distribution is found in the infrared. 
For that reason, when a person is lost in the forest, a search can be undertaken using 
infrared detectors. The body of a human being has a temperature of about 310   K (or 37    ° C) 
and is hotter than the surrounding nature with a temperature of about 293   K (or 20    ° C) 
depending on the season. A human body emits much more infrared radiation than these 
surroundings. 

 Figure  1.2  shows that a blackbody with a temperature of 2000   K has its   λ   max  in the 
infrared part of the electromagnetic spectrum, a 6000 - K blackbody has its maximum emis-
sion in the visible region of the spectrum, while a 12   000 - K blackbody has its   λ   max  in the 
ultraviolet. Since the human eye is more sensitive to photons with wavelengths in the blue 
part of the electromagnetic spectrum than those in the violet portion, the hottest stars in 
the sky seem blue, even though the maximum of the energy distribution of these stars is 
in the violet or even in the ultraviolet. They seem blue, because they emit more blue light 
than the other less energetic colours, due to the slope of the Planck distribution. The Sun 
is yellow, because its   λ   max  lies in the visible part of the electromagnetic spectrum (see 
Example  1.1 ).      
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 Special Topic  –  The Greenhouse Effect 

    The average temperature on the Earth ’ s surface is regulated by the amount of 
energy it receives from the Sun and the amount irradiated to space. The Earth ’ s 
atmosphere is transparent to the visible part of the electromagnetic spectrum. Since 
the temperature at the Sun ’ s surface is approximately 5800   K, its spectrum 
maximum is in the visible region and thus a lot of energy crosses the atmosphere 
and reaches the Earth ’ s surface. Meanwhile the Earth ’ s surface has an approximate 
temperature of 290   K and emits mostly infrared radiation. However, molecules 
such as H 2 O and CO 2  can absorb infrared radiation and thus keep some heat in the 
terrestrial system. If it wasn ’ t for the atmosphere, the temperature at our planet ’ s 
surface would be more than 30 degrees cooler than it is now. 

 Unfortunately, human activity, such as the burning of fossil fuels, has increased 
the amount of pollutants (mostly CO 2 ) in our atmosphere. The increase of the 
abundances of these gases, called greenhouse gases, amplifi es the opacity of the 
atmosphere to infrared radiation, which decreases the amount of energy lost to 
space. This process leads to a slight increase of the Earth ’ s temperature and is 
called the greenhouse effect. Even the relatively small temperature increases 
expected are predicted to have important negative ecological impacts.  

  Example 1.1:    Calculate    λ    max  for the Sun. 

  Answer: 

 The surface temperature of the Sun is approximately 5800   K. If the radiation fi eld 
of the Sun is approximated by that of a blackbody

   λmax
. .= = = × =−0 290 0 290

5800
5 10 50005K cm K cm

K
cm

T
Å     (1.8)   

 This wavelength lies in the green part of the visible region of the spectrum. But 
since the Sun also emits a lot of blue, yellow and red light, the human eye, which 
is not equally sensitive to all wavelengths, incorporates all of these colours and sees 
the Sun as yellow.  

  1.4   Luminosity, Effective Temperature, Flux and Magnitudes 

 The luminosity of a star is defi ned as the radiative power output emanating from its surface 
and is given in units of erg/s. The luminosity is an intrinsic value of a star and is not related 
to its distance from the observer. To obtain the luminosity, one must integrate the radiation 
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fi eld emitted over the entire electromagnetic spectrum and over the entire surface of the 
star. In the cases treated here, the fl ux will be assumed to be constant over the entire stellar 
surface. The luminosity is then obtained by simply multiplying the integrated fl ux ( F ) by 
the value of the star ’ s surface area. 

 The effective temperature  T  eff  of a given star is defi ned as being the temperature needed 
for a blackbody with the same radius  R   *   as this star, to have the same luminosity  L   *   as 
this star. Since the integrated fl ux at the surface of this hypothetical blackbody is   σ T  eff  4 , 
its luminosity is

   L R T* * eff= 4 2 4π σ     (1.9)  

and the effective temperature of a star is

   T
L

R
eff

*

*
=

⎛

⎝⎜
⎞

⎠⎟4 2

1 4

π σ
    (1.10)   

 The integrated radiative fl ux at the surface of a star, in units of erg/s/cm 2 , can also be 
written as a function of luminosity

   F
L

R
T= =*

*
eff

4 2
4

π
σ     (1.11)   

 At a distance  r  larger than  R   *   from the centre of the star, the integrated fl ux is

   F r T
R

r
( ) =

⎛
⎝⎜

⎞
⎠⎟

σ eff
*4

2

    (1.12)   

 Contrarily to the luminosity, the fl ux depends on the distance of the observer from the 
star. This equation shows the effect of the geometrical dilution of the fl ux as a function 
of distance from a star. This results from the fact that the luminosity is being distributed 
over a spherical surface of value 4 π  r  2 . 

 The human eye has a nonlinear response to light intensity. For example, a star that has 
an observed fl ux 10 times greater than a neighbouring star will not seem ten times brighter 
to the human eye. Thus, for practical and technological reasons, ancient astronomers 
divided the visible stars into a number of magnitude classes that better measures brightness 
with respect to the human eye than does fl ux. Unfortunately, these astronomers chose an 
unconventional scale such that the brighter stars have a lower magnitude. Magnitude is a 
relative scale that measures the logarithmic value of the radiative fl ux. A modern defi nition 
of magnitude is given by the formula

   m m
F

F
1 2

2

1

2 5− = ⎛
⎝⎜

⎞
⎠⎟. log     (1.13)   

 which gives the difference of magnitudes of two stars as a function of their observed fl ux. 
This formula was chosen so that two stars with fl ux ratio of 100 will have a magnitude 
difference of 5 and, again for historical reasons, so that magnitude decreases when 
fl ux increases. Since the magnitude depends on the fl ux, it also depends on the distance 



10 An Introduction to Stellar Astrophysics

separating the observer from the star. The magnitude  m  observed from Earth is called 
the apparent magnitude. An absolute magnitude  M  is then defi ned as the magnitude at a 
distance of 10 parsecs (1   pc   =   3.26 light years 4 ). Since the formula above is given on 
a relative scale, its usefulness is limited unless it is calibrated by fi xing a magnitude for 
a given fl ux. Historically, the star Vega was chosen to have a magnitude of zero, so any 
object brighter than this standard star will have a negative magnitude. 

 It can be easily demonstrated (see Example  1.2 ) that the difference between the apparent 
and the absolute magnitude of a star is related to its distance  d  (in parsecs) to the observer 
via the equation

   m M
d− = ⎛

⎝
⎞
⎠5

10
log     (1.14)  

    The value  m – M  is often called the distance modulus. 

  Example 1.2:    Demonstrate the distance modulus equation given above. 

  Answer: 

 The defi nition of the magnitude is

   m m
F

F
1 2

2

1

2 5− = ⎛
⎝⎜

⎞
⎠⎟. log     (1.15)   

 For a given star with an apparent magnitude of  m  and an absolute magnitude of  M , 
the magnitudes in the equation above may be defi ned as  m  1     =     m  and  m  2    =    M . Also, 
the fl ux at distance  d  from the star of luminosity  L  is  F  1    =    L  /(4 π  d  2 ). Finally, the fl ux 
at a distance  d  10    =   10   pc,  F  2    =    L  /(4 π  d  10  2 ). Therefore

   m M
d

d
− = ⎛

⎝⎜
⎞
⎠⎟2 5

10

2

. log     (1.16)  

and if  d  is expressed in parsecs, this equation becomes

   m M
d− = ⎛

⎝
⎞
⎠5

10
log     (1.17)    

  4      The parsec is a unit of distance defi ned in Section  6.9.5 , while the light year is the distance travelled by light in vacuum during 
a one - year period. 

 However, since it is impossible to observe the entire spectrum of a star, it is useful to 
defi ne a magnitude for a given portion of the electromagnetic spectrum. The study of 
radiation inside a certain range of wavelength, commonly called a photometric band, is 
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     Figure 1.3     Response of U, B and V photometric indices  (data from Arp, H.C., The Astrophysical 
Journal , 133, 874 ( 1961 )).   

  Table 1.3    Visual magnitudes of various astronomical objects. 

   Object name      m  V   

  Sun     − 26.73  
  Full Moon     − 12.7  
  Venus  #       − 4.5  
  Jupiter  #       − 2.5  
  Sirius     − 1.44  
  Rigel    0.12  
  Saturn  #      0.7  
  Deneb    1.23  
  Polaris    1.97  

    #    At maximum brightness.   

called photometry. To obtain the fl ux inside a given photometric band, a fi lter that is 
transparent to the radiation found inside this band and opaque to the photons outside of 
it, is placed in front of a photon detector. 

 Since radiation at different energies reacts with materials in different ways, telescopes 
and detectors must be adapted to the energy range of interest. Naturally, in the visible 
region of the spectrum, an optical telescope is used to accumulate the light on the detector. 
Figure  1.3  illustrates the transparency of such fi lters in the visible   (V), blue (B) and ultra-
violet (U) portions of the visible spectrum. These transparency functions must be taken 
into account when comparing observed magnitudes to theoretical values.   

 The brightest star in the sky is Sirius, while the faintest stars that are visible by the 
human eye have an apparent visual magnitude of approximately 6. Table  1.3  shows the 
apparent visual magnitudes of several well - known astronomical objects.     
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     Figure 1.4     Monochromatic fl ux ( F  λ   ) as a function of wavelength for two stars with  T  eff    =   4000 
and 15   000   K approximated by blackbody radiation. The approximate positions of two photometric 
fi lters (U and V) are also shown.  

  Example 1.3:    Knowing that the apparent visual magnitude of the Sun is  − 26.73, 
calculate its absolute magnitude. 

  Answer: 

 The Sun is by defi nition at a distance of one astronomical unit (AU) from the Earth. 
Since 1   AU   =   1.496    ×    10 13    cm   =   4.848    ×    10  − 6    pc, the distance modulus equation

   m M
d

V V− = ⎛
⎝

⎞
⎠5

10
log     (1.18)  

may be used to fi nd the solution. 
 Replacing the known values in the equation above

   − − = ×⎛
⎝⎜

⎞
⎠⎟

−

26 73 5
4 848 10

10

6

. log
.

MV
pc

pc
    (1.19)   

 leads to  M  V    =   4.84.  

 Later, it will be shown that the absolute magnitude of a star can be determined by 
spectroscopy. Spectroscopy is defi ned as the study of radiation with respect to wavelength. 
Since the apparent magnitude can be obtained by photometric observations, the distance 
to stars can then be determined with the distance modulus equation (Eq.  1.14 ). 

 The defi nition of magnitude given above (Eq.  1.13 ) can also be applied to magnitudes of 
two photometric bands of a single star. If one obtains photometric measurements of two 
photometric bands for a star, the fl ux ratio of these bands can be used to obtain its effective 
temperature. To better illustrate this, an example is shown in Figure  1.4 , where the fl ux of 
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a star is approximated by that of a blackbody with temperature  T  eff . Two photometric bands 
for two blackbodies of different temperatures are shown. From this illustration, it is found 
that the ratio  F  U / F  V  (and thus  m  V    –  m  U ) increases with temperature. Since the blackbody 
fl ux is a well - known quantity, a value  F  U / F  V  is associated to each temperature. Assuming 
that the theoretical fl uxes of stars with various effective temperatures can be calculated 
via the study of stellar atmospheres (see Chapter  4 ), the observed values of two apparent 
photometric magnitudes can be used to obtain  T  eff . If nothing obstructs the light coming 
from the stars (interstellar clouds for example),  m  V    –  m  U  is independent of distance to the 
observer. Typically, however, the presence of interstellar absorption or scattering necessi-
tates certain corrections to be brought to the observed photometric magnitudes.    

  1.5   Boltzmann and Saha Equations 

 A star is composed of gaseous plasma containing both neutral and ionised atoms as well 
as free electrons. These free electrons come from ionisation. Ionisation is a process by 
which an atom loses one or more of its bound electrons. The atoms of a given element in 
various states of ionisation are called ions. In spectroscopy, ions are represented by the 
elemental nomenclature followed by a roman number. For example, CI is neutral carbon, 
CII is singly ionised carbon, and CVII is carbon ionised six times (i.e. a bare nucleus). 
Each ion of an element has its specifi c atomic energy levels. For reasons that will become 
clearer in later chapters, it is important to know the relative population of the various states 
of ionisation for each element present as a function of stellar depth, as well as the popula-
tion among the various atomic energy levels for each of these ions. These quantities are 
critical for calculating the radiative opacity, which is the capacity of matter to absorb 
electromagnetic radiation. Opacity affects how radiation is transported from the inner to 
the outer portions of a star (see Chapter  3  for more details). 

 The fi eld of statistical physics shows that the atomic energy levels of a given ion are 
populated inversely exponentially as a function of their energy: lower energy levels are 
naturally more populated than higher - lying energy levels. This being said, a bound electron 
can be excited to a higher energy level by two processes. Firstly, the energy needed for 
the bound electron to change levels can be obtained during a collision of the atom with 
another particle, for instance, a free electron. In this case, the kinetic energy of the free 
electron is used to excite the bound electron. The second process that can cause an excita-
tion of an ion, is the absorption of a photon with energy equal to that of the electron transi-
tion (i.e. of energy equal to the difference between the two levels under consideration). 
These are called bound – bound transitions, since an electron goes from one bound state to 
another; whereas ionisation is a bound – free transition since the electron goes form a bound 
to a free state (see Figure  1.5 ). When collisions are the dominant processes that infl uence 
the energy - level populations (which is often the case in stars), the ratio of the population 
of two energy levels of a given ion in a gas at temperature  T  is given by the Boltzmann 
equation

   n

n

g

g
i
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i
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E E

kT
i j

=
−
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e     (1.20)  
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     Figure 1.5     Energy levels of hydrogen in eV. Various bound - bound transitions are also shown, as 
well as a bound – free transition from level  n    =   2 (see Section  1.6  for more details).  

where  k  is the Boltzmann constant,  n i   is the number of atoms per unit volume (or popula-
tion) in energy level  i  of the ion under consideration and  g i   is the degeneracy of this level. 
The reader is reminded that the degeneracy of an energy level is the number of quantum 
states with the same energy. The quantity  E i   is the energy of level  i  relative to the funda-
mental level,  which is set to zero . 

 However, this form of the Boltzmann equation is not often useful. Instead, the ratio of 
the population of a given energy level to the total population of the ion under considera-
tion is more useful. This quantity, which is useful for radiative opacity calculations (see 
Chapter  3 ), can be written (see Example  1.4 )

   n
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ion ion
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−     (1.21)  

with
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where  U  ion  is called the partition function of the ion under consideration, and  n  ion  is its 
total population. This form of the Boltzmann equation shows that the fraction of ions in 
a given energy level is equal to the portion of the partition function related to this level. 

  Example 1.4:    Demonstrate the equation     

   n

n
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kT
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ion ion

e=
−     (1.23)    

  Answer: 

 From the equation
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 To better understand these concepts, it is instructive to apply them to hydrogen, which 
has well - known energy levels that can be calculated analytically via Bohr ’ s atomic model. 
In units of electronvolts (eV), 5   E n   for the hydrogen atom is

   E
n

n = −⎡
⎣⎢

⎤
⎦⎥

13 6 1
1

2
.     (1.28)  

where  n  is the principal quantum number of the atomic energy level under consideration. 
Figure  1.5  shows the energy levels of hydrogen, and some transitions that can take place 
among them (see next section for more details). The degeneracy of a given level  n  is equal 
to  g n      =    2 n  2  for hydrogen. 

 To calculate the partition function, an infi nite number of terms, related to the energy 
levels, must be summed. Unfortunately, for large values of  n , the degeneracy ( g n  ) increases 

rapidly while the exponential found in the partition function equation (  e
− E

kT
n

) tends towards 
a constant value. The sum will then diverge for any temperature. Luckily, some simple 
physical considerations can alleviate this problem.     

 To better illustrate this problem, the case of hydrogen will be discussed. According to 
the Bohr model of the atom, the radius of the hydrogen atom in level  n  is  r    =    a  0  n  2 , where 
 a  0    =   0.529  Å  is the radius of the fundamental level of hydrogen (called the Bohr radius). 
The infi nite sum needed to calculate the partition function is not physical, since for high -
 lying levels, the electron will eventually be closer to another nucleus than its own. An 
infi nite sum for the partition function makes sense only if the atom in question is alone in 
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and since  E  1    =   0,  n i   with respect to the population of the fundamental level  n  1  
is written
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 Meanwhile, the total population of the ion under consideration is
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 The two equations above can be used to show that

   n
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ion ion

e=
−     (1.27)    

  5      1 eV   =   1.6    ×    10  − 12  erg. 
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the Universe, which is obviously not the case! It should also be noted that in the analytical 
development leading to the Bohr radius equation, it is usually supposed that the only force 
on the electron is the attractive Coulomb force between the nucleus and the electron. 
So here again, the Universe is approximated to be composed only of the atom under 
consideration. A cut - off level of quantum number  n  max,  where the levels superior to this 
energy level are no longer bound to the nucleus, can be defi ned and used to approximate 
the value of the partition function. This can also be interpreted as a lowering of the con-
tinuum shown in Figure  1.5 . It can be shown that for a pure hydrogen gas,  n  max    =   (2 a  0 )  − 1/2 ( N )  − 1/6  
where  N  is the number density of hydrogen atoms (see Example  1.5 ). The partition func-
tion can then be approximated by a fi nite sum

   U gn

E

kT

n

n n

=
−

=
∑ e

1

max

    (1.29)  

  Example 1.5:    Show that for a pure hydrogen gas the cut - off value of the energy 
levels can be approximated by  n  max    =   (2 a  0 )  − 1/2 ( N )  − 1/6  when calculating the partition 
function and where  N  is the number density of hydrogen atoms in the gas. 

  Answer: 

 By supposing that the average distance between two hydrogen atoms in the gas is 
2 d , the number density is thus one atom per (2 d  ) 3  volume

   N
d

=
( )

1

2 3
    (1.30)   

 The maximum value of  n  where the electron is still closer to the initial nucleus than 
a neighbouring one is  r n      ≤     d  where  r n     =    a  0  n  2 . The variable  n  max  may be defi ned by 
the following

   r a n d
N

max max= = =0
2

1 3

1

2
    (1.31)  

and thus

   n
a N

max = 1

2 0
1 6

    (1.32)    

    Since ionised hydrogen has no atomic energy levels because it has lost its only electron, 
its partition function equals unity (i.e. it may be assumed that this ion has a single state 
of energy equal to 0   eV). This partition function is necessary to solve the equations describ-
ing ionisation of hydrogen shown below. At low temperatures, the partition function of 
neutral hydrogen can be approximated by the statistical weight of the fundamental energy 
level  g  1    =   2 since the other terms in the sum (see Eq.  1.29 ) become small. 
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  Example 1.6:  Find the temperature at which the number density of hydrogen atoms 
in the fundamental state is equal to that of its second excited state ( n    =   3). 

  Answer: 

 From the Boltzmann equation

   n
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e     (1.33)  

and since  g  1    =   2,  g  3    =   18,  E  1    =   0   eV and  E  3    =   12.09   eV,
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    This becomes
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= ( )     (1.35)  

and by using the value  k    =   8.617    ×    10  − 5    eV/K, the temperature is thus  T    =   63   900   K.  

 In stars, the local temperature increases as a function of depth. Moreover, deeper inside 
the stars, more energetic collisions will take place. This is due to the fact that according 
to statistical physics, the average thermal velocity of the particles in the stellar plasma is 
proportional to  T  1/2 . These collisions will cause excitations of atoms to higher energy 
levels (as described by the Boltzmann equation) and can also lead to ionisation of these 
atoms. Another process that can lead to an atom losing an electron is the absorption of a 
suffi ciently energetic photon (see Figure  1.5 ). This process is called photoionisation. The 
freed electrons will contribute to the total gas pressure  P . The reader is reminded that for 
an ideal gas, the equation of state is  P     =     n  tot  kT , where  n  tot  is the total number density of 
particles in the gas. This number density includes both the free electrons and the ions that 
are present in the plasma. A new physical quantity   μ   called the mean molecular weight

of the particles in the gas may be defi ned by writing   n
m

tot
H

= ρ
μ

, where   ρ   is the gas mass 

density (often simply called the density) and  m  H  is the mass of the hydrogen atom. 
Therefore, since density is given by the following equation

   ρ = ∑ n mi i
i

    (1.36)   

 the mean molecular weight is

   μ = ∑1

m n
n mi i

iH tot

    (1.37)  
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where the sum over  i  runs over all types of particles present in the plasma including free 
electrons. The mean molecular weight gives the average mass of the particles in units of 

 m  H . For instance, in a completely ionised hydrogen gas,   μ =
+

≈
m m

m
p e

H2

1

2
, where  m  p  and 

 m  e  are respectively the proton and electron masses. The mean molecular weight is a useful 
concept that is used in stellar astrophysics and will be employed on several occasions in 
this book. 

 When collision processes dominate (which is often the case inside stars), the equation 
that regulates ionisation is called the Saha equation. It can be written
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where  n i   and  n i   +1  are the populations of neighbouring ions of a given element,  n  e  is the 
number density of free electrons in the gas (often called the electronic density),  T  the local 
temperature,  U i   and  U i   +1  are the corresponding partition functions and  E  ion  is the ionising 
energy of ion  i from its fundamental energy level . Here, ion  i    +   1 is the more highly ionised 
ion. 

 From this equation, it may be deduced that ionisation increases with temperature. This 
is related to the fact that more energetic collisions are possible in hotter plasma. Also, for 
a given temperature, ionisation decreases with increasing electronic density. An increase 
in  n  e  fi lls the phase space of free electrons and increases recombination of free electrons 
with ions (i.e. deionisation). 

 The equation shown above gives the relative populations of two neighbouring ionisation 
states. However, this quantity is not often useful in astrophysical applications. As will be 
discussed in Chapter  3 , to calculate the radiative opacity for a given elemental species, 
the population of each energy level needs to be known, which necessitates the knowledge 
of the population of each ionisation state. A quantity that is critical for such calculations 
is the ionisation fraction. The ionisation fraction is the portion of atoms in a given ionisa-
tion state of the element under consideration. The ionisation fraction  f i   of ionisation state 
 i  can be written
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and by dividing both the numerator and the denominator by the neutral state ’ s 
population  n  1 
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 A series of multiplications of Saha equations (Eq.  1.38 ) is thus obtained, that once calcu-
lated, will give the value of the ionisation fraction (assuming  n  e  and  T  are known).   
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 Of course, the ionisation fraction will vary with depth in stars, with more highly 
ionised ions appearing in deeper stellar layers. Figure  1.7  shows the ionisation fractions 
of the fi rst 13 calcium ions in a star with  T  eff    =   7600   K. In this fi gure, there exists a 
large plateau for CaIII and CaXI ionisation fractions. These ions have large ionisation 
energies since they are in noble - gas confi gurations (respectively, those of Ar and Ne). 
These noble - gas confi gurations stay populated for a large domain of temperatures 
compared to other electronic confi gurations because of their large ionisation energy. 
Since the atomic energy levels (and therefore the absorption transitions) are different 
for each ionisation state, the radiative opacity of a given element will also vary with 
depth.     

 Special Topic  –  Ionisation Energies 

    Ionisation energies for the fi rst fi ve ionisation stages for a large number of ele-
ments are given in Appendix D. Figure  1.6  shows the ionisation energy for 
neutral atoms as a function of atomic number. It is shown that there exists a local 
maximum of the ionisation energy for noble gases (He, Ne, Ar, etc  … ). These 
maxima are shifted to other elements for higher stages of ionisation. For example, 
for the singly ionised ion, maxima are found for LiII, NaII and KII (see Appendix 
D). These ions possess electronic confi gurations having respectively 2, 10 and 20 
electrons and have fi lled electronic shells. They are also called noble gas electronic 
confi gurations.    

     Figure 1.6     Ionisation energy (from the fundamental atomic energy state) as a function of 
atomic number for neutral atoms.  
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  Example 1.7:    For a given star, calculate the fraction of neutral atoms in a gas 
composed of pure hydrogen at a depth where  T    =   12   000   K and  n  e    =   2.0    ×    10 15    cm  − 3  
(assume that the partition function of neutral hydrogen  U  I    =   2). 

  Answer: 

 In a pure hydrogen gas, the free electrons come exclusively from hydrogen ionisation 
and therefore  n  e    =    n  II  where  n  II  represents the population of HII ions. 
 From the Saha equation
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where  E  ion    =   13.6   eV and  U  II    =   1. By inserting the appropriate values into this equa-
tion,  n  I  is obtained
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 The ionisation fraction of neutral hydrogen is then

   f
n

n n
I
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I II

or=
+

= 0 245 24 5. . %     (1.43)    

     Figure 1.7     Ionisation fractions ( f i   ) of Ca ions as a function of temperature (or depth) in the 
interior of a star with  T  eff    =   7600   K. The surface of the star is found at the left side of the horizontal 
axis.  
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  Example 1.8:    Calculate the electronic density ( n  e ) in a gas at  T    =   14   000   K composed 
of pure hydrogen where 70   % of the atoms are ionised (assume  U  I    =   2). 

  Answer: 

 Since

   
n

n n
II

I II+
= 0 7.     (1.44)  

    therefore,  n  I    =   0.428  n  II . Also, since the gas under consideration is made of pure 
hydrogen  n  II    =    n  e . 
 From the Saha equation
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where  E  ion    =   13.6   eV and  U  II    =   1. By inserting the appropriate values into this 
equation
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and  n  e    =   2.18    ×    10 16    cm  − 3 .  

 It will be shown in Chapter  4  that the application of the Saha equation in real stars is 
more complex than the relatively simple examples shown above. In stellar models, since 
a large number of elements are present a large series of Saha equations has to be solved 
simultaneously. Atomic data included in the calculation of the partition functions and the 
Saha equations must then be known for all elements present. Such calculations therefore 
necessitate considerable computing resources. 

 Finally, it should be mentioned that the Boltzmann and Saha equations, respectively, 
give, statistically speaking, the portion of atoms in a given atomic level and in the various 
ionisation states. However, a single atom ’ s state (atomic or ionisation) will constantly 
change as a function of time due to interactions with other particles. Generally, these 
interactions are induced by collisions, but radiative excitations and ionisations can some-
times be important. This will be discussed further in Chapter  3 .  

  1.6   Spectral Classifi cation of Stars 

 In astronomy, many objects, be it meteorites, galaxies or stars are classifi ed. These classi-
fi cations aim at a better understanding of the group of objects under consideration. In this 
section, one such classifi cation will be discussed, namely the spectral classifi cation of stars. 
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 As photons diffuse towards the surface of a star, they can interact with the atoms 
present in the stellar plasma. A photon can, for example, be absorbed when its energy 
is used to excite an electron from a lower to an upper bound state of an atom. The 
absorption features seen in the spectrum from these transitions are called atomic lines (see 
Figure  1.8 ). If the atomic energy levels were precisely defi ned, only photons with a single 
value of   λ   could be absorbed by the transition under consideration. The value of   λ   is 
related to the energy difference between the upper and lower levels associated to the 
transition. The photon wavelength necessary for an electronic excitation from level  n  to 
level  m  is

   λn m
m n

hc

E E
→ =

−
    (1.47)     

 However, because of the uncertainty principle of the quantum theory, the energy levels 
cannot be precisely defi ned, thus giving an absorption profi le with a certain width. 
Additionally, since the atoms in the star have a velocity distribution associated to the local 
temperature, called the Maxwell distribution, the Doppler effect as well as broadening by 
pressure (or collisions) will also play a role in the widening of the atomic lines (see Chapter 
 4  for more details). 

 For a given absorption line of an ion to be present in the spectra, the lower (or initial) 
level must be populated (i.e. Boltzmann equation) and of course, the ion must also be 
present (i.e. the Saha equation). Since a star ’ s spectrum emerges from its photosphere, its 
effective temperature will play a pivotal role in determining which atomic lines are present 
in the spectrum. 

     Figure 1.8     Theoretical monochromatic fl ux emerging form an A type star with  T  eff    =   8000   K. The 
fi rst four Balmer absorption lines, as well as the Balmer jump, are identifi ed in this fi gure. Thousands 
of other absorption atomic lines can also be seen. This theoretical fl ux was obtained with the Phoenix 
stellar atmosphere code (Hauschildt, P.H., Allard, F. and Baron, E.,  The Astrophysical Journal , 512, 
377 ( 1999 )) while using the elemental abundances found in the Sun. The fl ux at the surface of a 
blackbody with  T    =   8000   K (dotted curve) is also shown.  
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     Figure 1.9     Approximate line intensity as a function of  T  eff  for several ions. The spectral types 
(these are positioned at the coolest temperature for each class) and the intensity of the TiO molecular 
bands are also shown.  

  Table 1.4    Lyman and Balmer series. 

   Lyman Series     Balmer Series  

  Name    Transition  
   ( n  →  m )  

   Wavelength    Name    Transition  
   ( n  →  m )  

   Wavelength  

  L  α      1  →  2    1216  Å     H  α      2 →  3    6563  Å   
  L  β      1  →  3    1025  Å     H  β      2 →  4    4861  Å   
  L  γ      1  →  4    972  Å     H  γ      2 →  5    4341  Å   
   ·      ·   
   ·      ·   
   ·      ·   
  Lyman    1  →   ∞     911  Å     Balmer    2 →   ∞     3646  Å   
  jump            jump          

 Let ’ s fi rst discuss the behaviour of hydrogen lines in stellar spectra. Figure  1.5  shows the 
energy levels of hydrogen and some of the transitions that can occur. These transitions can 
be grouped as per their initial level. The lines emanating from the  n    =   1 level are called the 
Lyman lines (L  α  , L  β  , L  γ  , etc.) and are found in the ultraviolet part of the spectrum. The 
Balmer series (H  α  , H  β  , H  γ  , etc.) emanate from  n    =   2 and are in the visible part of the spec-
trum, while the Paschen lines (from  n    =   3) are found in the infrared. More details concerning 
the Lyman and Balmer series are given in Table  1.4 . At the surface of cool stars, almost all 
of the hydrogen atoms are in the fundamental level and the Balmer lines (found in the 
visible spectrum) are very weak. The Lyman lines are also weak since relatively few ultra-
violet photons exist in the spectrum of such a cool star. For hotter stars (say  T  eff    =   8000   K 
or so), the hydrogen atoms   found in the  n    =   2 level begin to be signifi cantly populated and 
the Balmer lines are then quite intense (see Figure  1.9 ). For even hotter stars, the intensity 
of the Balmer lines decreases, owing to the fact that the quantity of neutral hydrogen atoms 
contributing to the presence of the Balmer lines diminishes due to ionisation.     
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 Figure  1.10  illustrates the two contributing factor explaining why hydrogen Balmer lines 
are at their strongest for stars with surface temperatures around 10   000   K. The portion of 
neutral hydrogen atoms found in the  n    =   2 level increases with temperature, while the 
neutral ionisation fraction decreases. The line strength depends on the product of these 
two factors which has a maximum at  T     ≈    10   000   K.   

 Similar tendencies are observed for the atomic lines of the other elements (see Figure 
 1.9 ). For example, FeI lines are strong in cool stars. But for hotter stars, FeII, FeIII, etc., 
eventually dominate. The position, with respect to  T  eff , of maximum strength of the atomic 
lines of various ions is related to their ionisation energy. For example, the ionisation energy 
of FeI is 7.9   eV, while it is 24.6   eV for HeI, the FeI atomic transitions are thus at lower 
energies than those of HeI. This explains why FeI lines are more prominent in cooler stars 
than those of HeI. The relative strength of atomic lines of different ions (either of the same 
or of a different element) can be used to estimate the surface temperature of stars. Such 
studies fall in the fi eld of research called stellar spectroscopy. 

 Photons can also be absorbed during photoionisation. For hydrogen, the ionisation 
energy from its fundamental level is 13.6   eV, whereas it is 3.4   eV from its fi rst excited 
state. The synthetic spectrum of Figure  1.8  shows a large fl ux decrease near   λ     =   3646    Å , 
due to the ionisation of hydrogen from level  n    =   2. This spectral feature is called the 
Balmer jump. As mentioned previously, the minimum energy of photons that can ionise 
hydrogen from this level is 3.4   eV. When more energetic photons are absorbed by this 
bound – free transition, the excess of energy is transformed to kinetic energy transferred to 
the ejected electron. 

 Stars are generally divided into seven spectral classes or types: O, B, A, F, G, K and 
M going from hotter (bluer) to cooler (redder) effective temperatures. This classical cat-
egorization of stellar spectra, based mainly on the strength of hydrogen Balmer lines, is 
called the Harvard classifi cation. The A - type stars fall where the strongest (or deepest) 

      Figure 1.10    Illustration showing the portion of neutral hydrogen atoms found in the  n    =   2 level 

( n  2 / n  I ), the neutral ionisation fraction (  f
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n n
I
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I II

=
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) and the product of these two factors that give the 

portion of all hydrogen atoms found in the  n    =   2 level (i.e.   
n

n n
2

I II+
).  
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  Table 1.5    Spectral classes. 

   Spectral class      T  eff      Spectral characteristics     Colour     Example  

  O     > 30   000   K    HeII strong, H faint, 
multiply - ionised metals 
strong  

  blue     λ  Ori  

  B    10   000 – 30   000   K    HeI strong, H moderate    blue - white    Rigel  
  A    7500 – 10   000   K    H lines at their maximum    white    Vega  
  F    6000 – 7500   K    Singly ionised metals strong, 

H moderate  
  white - yellow    Procyon  

  G    5000 – 6000   K    Singly ionised metals strong, 
H faint  

  yellow    Sun  

  K    3500 – 5000   K    Strong neutral and Singly 
ionised metals, H faint  

  orange    Arcturus  

  M     < 3500   K    Strong molecule bands (i.e. 
TiO), strong neutral 
metals, H very faint  

  red    Betelgeuse  

hydrogen lines are observed. As discussed above, two processes, excitation and ionisation, 
conspire to give the largest portion of hydrogen atoms in the  n    =   2 level in A - type stars 
(see Figure  1.10 ). A useful mnemonic to remember the order of the spectral classes is   ‘ Oh 
Be A Fine Girl (or Guy, depending on the reader ’ s preference), Kiss Me ’  . The spectral 
features and  T  eff  of the different spectral classes are given in Table  1.5 .   

 Simple molecules (TiO, CH, H 2 O, etc.) can also exist in cooler stars and may absorb 
radiation not only through electronic transitions but also via rotational or vibrational transi-
tions. These transitions are called bands instead of lines and are found in the infrared 
region of the spectrum. In hotter stars, the molecules are destroyed by photodissociation 
due to energetic photons, or by energetic collisions; hence, no molecular bands are 
observed in the spectra of such stars. 

 Hot stars are often called early - type stars, while cooler stars are called late - type stars. 
These terms came about when astronomers erroneously thought that stars began their lives 
as hot stars and cooled down during their lifespan. 

 The spectral classes can also be subdivided into 10 partitions. These subdivisions are 
identifi ed by a single Arabic digit increasing from the hotter end to the cooler end of the 
spectral class (i.e. F0 stars are hotter than F9 stars). The spectral class of the Sun is G2. 

 All spectral types are not equally populated. There are fewer high - mass stars (i.e. type 
O and B) than less massive ones (i.e. type K and M). This is associated to the process of 
stellar formation that does not uniformly create stars with respect to their mass. This will 
be discussed in Chapter  2 . 

 Several types of stars do not fi t into the classical spectral classifi cation given above. For 
instance, ApBp stars (p standing for peculiar) are A and B type stars with strong magnetic 
fi elds and large observed abundance anomalies. Abundance anomalies, are defi ned as 
when the abundances of some elements are very different from those expected (either 
those found in the Sun, or in the vicinity of the star under consideration). These abundance 
anomalies or peculiarities strongly modify their spectra which differentiate them from 
normal A - type stars. For example, in the case of an overabundance for a given element, 
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  Table 1.6    Solar abundances of the most abundant elements. 

   Element      N  elem / N  tot   

  H    9.097    ×    10  − 1   
  He    8.890    ×    10  − 2   
  O    7.742    ×    10  − 4   
  C    3.303    ×    10  − 4   
  Ne    1.119    ×    10  − 4   
  N    1.021    ×    10  − 4   
  Mg    3.458    ×    10  − 5   
  Si    3.228    ×    10  − 5   
  Fe    3.154    ×    10  − 5   
  S    1.475    ×    10  − 5   

its lines are much stronger. Abundances are often given relative to those of the Sun. 
Table  1.6  shows the abundances of the most abundant elements found in the Sun. A more 
complete set of solar - abundance data is given in Appendix E.   

 Abundance anomalies are believed to be caused by diffusion of the elements within the 
star, caused partly by the radiative force transferred to ions. The radiative force is due to 
momentum transfer from photons to atoms during line absorption for instance. The diffu-
sion process can cause an accumulation or depreciation of certain species at different 
depths (see Chapter  7  for more details). Abundances observed at the surface of a star are 
not always indicative of the average abundances of the elements within the whole star. 

 Among other types of stars with peculiar spectra are Am (m standing for metallic) and 
HgMn stars (where Hg and Mn are generally overabundant by several orders of magni-
tudes at their surface as compared to their solar abundance). Another example of stars that 
can ’ t be classifi ed in the types shown in Table  1.5  are Be stars (e standing for emission). 
These stars are surrounded by gas, and emission lines are observed in their spectra. 
Emission lines are spectral features that resemble inverted absorption lines or spikes in 
the fl ux. Many other peculiar spectral types not mentioned here also exist. 

 Abundances found in stars are also used to defi ne their population. There are three types 
of stellar populations. Population I stars are young stars with relatively large metallicity, 
while population II stars are older stars with a smaller value of metallicity. Population III 
stars are the oldest stars that, hypothetically, have zero metallicity. However, the stars of 
this population have never been directly observed. The Sun is a population I star. The 
relation between the age of a star and its metallicity can be explained by results from 
the Big - Bang theory and stellar evolution. As mentioned previously, at the beginning of 
the Universe, only hydrogen and helium were present, with the exception of a trace 
of lithium. Therefore, the fi rst generation of stars (population III) did not contain any 
metals except for this trace element. As this generation of stars evolved, some become 
supernovae thereby enriching the interstellar medium with the newly synthesized heavy 
elements. Following generations of stars were then composed of this enriched matter, 
which translated into increasing metallicities. This process will be explained in more detail 
in Chapter  6 .  
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  1.7   The Hertzsprung – Russell Diagram 

 As discussed in Section  1.4 , the luminosity of a star depends on both its radius and effec-
tive temperature. A famous diagram, called the Hertzsprung – Russell (hereafter H – R) 
diagram, shows the relation between the luminosity and the effective temperature of stars. 
In such diagrams, the direction of the abscissa ( T  eff ) is reversed (see Figures  1.11  and  1.12 ). 
This tool for studying stars was developed by the Danish astronomer Ejnar Hertzsprung 

     Figure 1.12     The main sequence on an H – R diagram. Several values of the mass are given. The 
spectral types are also shown (these are positioned at the coolest temperature for each class).  

     Figure 1.11     A sample taken among the 1000 nearest stars on a color - magnitude H – R diagram. 
The spectral types are also shown (these are positioned at the coolest temperature for each 
class).  
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(1873 – 1967) and the American astronomer Henry Norris Russell (1877 – 1957) at the 
beginning of the twentieth century. The H – R diagram is extremely useful when studying 
the evolution of stars, since there are well - determined paths along which stars should travel 
as they evolve. These paths depend mostly on stellar mass (see Figure  6.10 ). During evo-
lution, both the  T  eff  and the radius of a star change. Its spectral type will also be time 
dependent. Observational astronomers often use an absolute magnitude scale instead of 
luminosity, and  m  B    –  m  V  instead of effective temperature. These are called colour - 
magnitude diagrams (see Figure  1.11 ). The colour index  m  B    –  m  V  is usually written as 
 B   –   V   .   

 Figure  1.11  represents an observational H – R diagram containing a sample taken among 
the 1000 nearest stars, obtained from the Gleise star catalogue. A large portion of these 
stars are concentrated on a branch called the main sequence. This is where stars begin 
their lives and stay while burning hydrogen in their core. In this fi gure, the stars found 
above the main sequence are red giants; whereas those below are white dwarfs. These 
regions of the H – R diagram are often called branches. During its evolution, a star eventu-
ally leaves the main sequence, its radius increases and its  T  eff  at fi rst decreases, giving a 
red giant star. It can then become a supergiant and possibly a white dwarf, depending on 
the value its initial mass (see Chapter  6  for more details). 

 For many reasons, a certain scatter is observed along each branch. For example, as time 
evolves, stars move in the H – R diagram. Even stars on the main sequence branch move 
slightly during their hydrogen - burning phase, their structure changes as more helium is 
produced in their core. Another factor that causes scatter is the varying metallicity among 
the stars. This leads to structural changes that modify their position on the H – R diagram. 
Observational errors can also add to the observed scatter. 

 When moving from the upper left to the lower right along the main sequence, the stars 
found there have lower masses and  T  eff  (see Figure  1.12 ). High - mass stars are more lumi-
nous because their central temperatures are higher and therefore they fuse hydrogen and 
produce nuclear energy at a higher rate. Their central temperatures are higher due to the 
large amount of gravitational energy that can be released during their formation (see 
Chapter  2 ). Figure  1.12  shows main - sequence stars of various masses within an H – R 
diagram. The range of masses for stars is approximately 0.08  M   �      ≤     M     ≤    120  M   �  . The upper 
limit is related to the fact that high radiation pressure present at the surface of such massive 
stars pushes out any additional mass that would otherwise be gravitationally attracted to 
the star during its formation. However, the value of this upper limit is quite uncertain. The 
lower limit of this range exists because the central temperature of astronomical objects 
with  M     ≤    0.08  M   �   does not attain the value needed for   substantive and sustained hydrogen 
fusion. Objects with masses just below this limit are called brown dwarfs. These astro-
nomical objects will be described in Chapter  6 . Meanwhile, the range of effective tem-
perature of main - sequence stars is approximately 2000   K    ≤     T  eff     ≤    60   000   K. 

 For main - sequence stars, the relation between the mass and radius is nearly linear (see 
Figure  1.13 ); whereas the luminosity increases much faster than mass (see Figure  1.12 ). 
This stems from the dependence of luminosity on  R   *   and  T  eff ,   L R T* * eff= 4 2 4π σ . As mentioned 
previously, more fundamentally, the luminosity of a star is determined by the nuclear 
power generated in its core, which itself depends on the central temperature. The relation 
between the luminosity and stellar mass is critical for estimating the lifespan of main -
 sequence stars (see Chapter  6 ).   
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     Figure 1.14     Luminosity classes of the H – R diagram. These are identifi ed in Table  1.7 . The spectral 
types are also shown (these are positioned at the coolest temperature for each class).  

     Figure 1.13     Relation between mass and radius for main - sequence stars (dots). Also shown is a 
curve fi tted to the data.  

 For a given  T  eff , stars can have very different luminosities due to differing radii. A star 
of a given  T  eff  can, for instance, be a white dwarf, a main - sequence, or a supergiant star. 
A supergiant can have a radius up to the order of 1000  R   �   (where  R   �     =   6.955    ×    10 10    cm), 
while white dwarfs typically have  R     ≈    0.01  R   �  . This explains their position in the H – R 
diagram vis -  à  - vis the luminosity axis. The spectral class of a star is thus not suffi cient to 
correctly specify its evolutionary status, since its spectral type depends solely on the physi-
cal properties of its photosphere. To solve this problem, luminosity classes (see Figure 
 1.14  and Table  1.7 ) are defi ned as a second parameter to the spectral classifi cation of stars. 
These luminosity classes are related to differing evolutionary stages. For example, the Sun 
has a spectral type G2V, V being the luminosity class of a main - sequence star.     
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  Table 1.7    Luminosity classes. 

  Ia    Bright supergiants  
  Ib    Supergiants  
  II    Bright giants  
  III    Giants  
  IV    Subgiants  
  V    Main - sequence stars (or dwarfs)  
  VI (or sd)    Subdwarfs  
  D (or VII)    White dwarfs  

 It should be noted that the  T  eff  range given in Table  1.5  for the spectral classes and 
shown in the fi gures found in this chapter are those of main - sequence stars. These  T  eff  
ranges are slightly shifted for other luminosity classes (see Exercise 1.14). 

 Main - sequence stars are also called dwarfs. As shown in Figure  1.14 , there exists a class 
of stars called subdwarfs found just below the main sequence. Subdwarf stars have low 
metallicities. This leads to a smaller radius and higher  T  eff  than a main - sequence star with 
the same mass. This larger  T  eff  can be explained by the fact that the outer layers are closer 
to the stellar core. In other words, the smaller radius leads to a higher fl ux, thus a larger  T  eff . 

 In conclusion, the global properties of a star can be defi ned by three fundamental param-
eters: mass, radius and luminosity. With the luminosity and the radius, the effective tem-
perature is defi ned by Eq.  1.10 . A star found at a given point in the H – R diagram (i.e. with 
known luminosity and effective temperature) isn ’ t completely defi ned since stars with dif-
ferent masses can pass at a same point in the H – R diagram during their lifetime. Its mass is 
needed to defi ne it completely. Secondary parameters such as the abundances of the ele-
ments present in the star, the presence of magnetic fi elds, stellar rotation, etc. can also come 
into play. The fundamental parameters for main - sequence stars are given in Appendix G.  

  1.8   Summary 

 Modes of energy transport in stars: radiation, convection and conduction  

   Planck distribution
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   Stefan Boltzmann law− =: F Tσ 4     (1.49)  

   
Wien s law
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Luminosity * * eff: L R T= 4 2 4π σ
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Density: ρ = ∑ n mi i
i

    

(1.57)

  

   

Mean molecular weight
H tot

: μ ρ=
m n
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 Spectral types (in order of decreasing  T  eff ): O, B, A, F, G, K and M 

 Three fundamental parameters of stars: mass, radius and luminosity      

       1.9   Exercises    

   1.1   Demonstrate the Stefan – Boltzmann law.   

   1.2   Demonstrate Wien ’ s law (numerical problem).   

   1.3   A binary star system is observed, and since the separation between the two stars is 
much smaller that the distance of the system from the observer, it can be supposed that 
both stars are found at the same distance from Earth. The absolute magnitude in a given 
photometric band of the fi rst star is determined to be  − 0.5, while its apparent magnitude 
is 3.5. If the apparent magnitude of the second star is 4.5, what is its absolute magnitude? 
At what distance (in light - years) is the binary system from the observer?   

   1.4   What is the numerical difference between the absolute magnitudes of two stars 
having the same  T  eff , where one of these stars is in the giant phase and has a radius 15 
times larger than the other star, which fi nds itself on the main sequence?   

   1.5   At what distance would the Sun have to be to have the same apparent magnitude as 
a 100 - W light bulb found 100 m away? Express your answer in ly.   
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Hγ

l

star A

star B

Fe I

F
l

     Figure 1.15     Illustration of the spectra of two stars showing the line H  γ   and an atomic line from 
the ion FeI. These spectra are vertically shifted for visual effect (see Exercise 1.13).  

   1.6   Assuming a fl ux equal that of a blackbody, calculate the percentage of the fl ux for 
stars with  T  eff    =   5000, 10   000 and 20   000   K, capable of ionising hydrogen from level  n    =   2 
(numerical problem)?   

   1.7   Calculate the temperature at which the number density of hydrogen atoms in the fi rst 
excited state is ten times less than the number density of those in the fundamental level.   

   1.8   A hypothetical ion of an element has a degeneracy equal to 4 n  2 , where  n  is the 
principal quantum number. At  T    =   40   000   K, the ratio of the number density in level  n    =   3 
to that of the fundamental ( n    =   1) is 0.25. Find the energy of level  n    =   3, assuming  E  1    =   0.   

   1.9   What is the ionisation fraction of HI at a depth where  T    =   9000   K and  P    =   140   
dyn/cm 2  in a star composed of pure hydrogen (assume  U  I    =   2)?   

   1.10   Calculate the total number density ( n  tot ) and the density (  ρ  ) at a depth in a star 
composed of pure hydrogen where  T    =   9500   K and 35   % of the atoms are ionised (assume 
 U  I    =   2). What percentage of hydrogen atoms are in the energy level  n    =   2?   

   1.11   Calculate the pressure in a pure hydrogen gas at  T    =   12   000   K that has 20   % of its 
atoms in the ionisation state HII (assume  U  I    =   2).   

   1.12   At a certain depth in a star, three ions of a given element have the following ionisa-
tion fractions:  f  1    =   0.10,  f  2    =   0.85 and  f  3    =   0.05. Their partition functions are:  U  1    =   1,  U  2    =   2 
and  U  3    =   8. The ionisation energy from the fundamental level for ion 1 is 30   eV and it is 
55   eV for ion 2. Calculate  n  e  and  T  at this depth.   

   1.13   Figure  1.15  shows a portion of the spectra for two stars named A and B. The two 
curves shown in this fi gure are vertically shifted for visual effect. Using the relative inten-
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sities of the hydrogen (H  γ  ) line and an atomic line from the ion FeI, which of these two 
stars is hotter? Why?     

   1.14   The effective temperature of a main - sequence star with spectral type B2 is approxi-
mately 22   000   K. Whereas, the effective temperature for a luminosity III class star of the 
same spectral type (i.e. with the same relative intensities of the various lines) possesses 
an effective temperature almost 2000   K lower than this value. Using the theoretical con-
cepts seen in this chapter, explain the reason for the discrepancy.     
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   2.1   Introduction 

 It is natural to begin the discussion of the various fi elds of stellar astrophysics by fi rst 
studying stellar formation. Stars are formed when interstellar gas clouds of suffi cient mass 
collapse under their gravitational pull. This collapse transforms gravitational energy into 
thermal energy, thus heating the gas. As will be seen in more detail later in the chapter, 
during the stellar formation process, approximately half of the gravitational energy liber-
ated is transformed into thermal energy and the rest of the energy is emitted in the form 
of radiation to interstellar space. The reader is reminded that when a mass collapses, the 
gravitational binding energy is increased. This process liberates energy within the star. In 
other words the system becomes more stable. This is equivalent to the well - known result 
of classical mechanics of a mass falling in a gravitational fi eld and where kinetic energy 
is gained while the potential energy of the mass is decreased (and thus the falling mass is 
more strongly bound to the body responsible for the gravitational fi eld). 

 If the mass of the collapsing body is more than approximately 0.08  M   �  , its gravitational 
energy is suffi cient so that the central temperatures will reach the critical value necessary 
for sustained hydrogen fusion and a star is born. A star in the process of formation is 
commonly called a protostar. 

 If a hypothetical homogeneous cloud contracts due to gravitation, a pressure gradient 
inside the contracted body is created. Pressure within a star or protostar is caused by the 
weight of the mass above the depth under consideration. Of course, temperature and 
density gradients will also develop during star formation. Eventually, equilibrium between 
gravity and the pressure gradient will be attained and the star may then stop contracting. 
For protostars arriving on the main sequence, another state of equilibrium must also occur, 
namely energy equilibrium. It is achieved when the rate of nuclear energy produced in 
their central regions is equal to the luminosity of the star (or in other words the rate at 
which it loses energy to interstellar space). 

  2 
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dA

(P + dP) dA

dr

grdAdr PdAr

     Figure 2.1     A mass element of thickness d r  and area d A  at a distance  r  from the centre of the star. 
The three forces acting on the mass element are shown.  

 The hydrostatic equilibrium equation will be the fi rst topic discussed in this chapter. This 
equation describes the pressure gradient found in stars at equilibrium. It will then be used to 
fi nd another equation that is fundamental for understanding stellar formation called the 
virial theorem. From this equation, a criterion for the mass of clouds that is necessary for 
gravitational collapse will be found. A section pertaining to the collapse time of such clouds 
will also be presented. This chapter will conclude with an optional section discussing the 
pre - main - sequence evolution of stars where several types of young stars will be discussed.  

  2.2   Hydrostatic Equilibrium 

 Before discussing the theory of stellar formation, a fundamental equation of stellar struc-
ture called the hydrostatic equilibrium equation must fi rst be considered. This equation 
will lead to the virial theorem (see Section  2.3 ) that is crucial for understanding stellar 
formation. In a star, the gravitational force acting on the plasma causes a pressure - strati-
fi cation profi le. Since the pressure at a given point is due to the weight of the gas above 
it, pressure increases as a function of depth. At equilibrium, the pressure gradient present 
in stars counterbalances the gravitational force. 

 Figure  2.1  shows an element of matter inside a star. Supposing that the star under con-
sideration has spherical symmetry, the local gas pressure, density, temperature, etc. depend 
solely on the variable  r  that defi nes the distance from the star ’ s centre. By assuming that 
the mass element shown in Figure  2.1  is at equilibrium (i.e. that the total force acting on it 
is nil), the following equation may be written for the vertical component of the total force

   P r A P r P A r A rg r( ) − ( ) +[ ] − ( ) ( ) =d d d d dρ 0     (2.1)  

where  P ( r ),   ρ  ( r ) and  g ( r ) are, respectively, local gas pressure, 1  gas density and gravitational 
acceleration. The mass of the element is equal to   ρ  ( r )d A d r  and by defi nition, pressure is 

  1      Here only gas pressure is considered. However, under certain conditions, radiation pressure can come into play. This topic will 
be discussed in optional Section  3.12 . 
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the amount of force exerted per unit area thus explaining the various terms found in the 
equation shown above. The fi rst two terms in this equation, respectively, represent the 
upward and the downward force on the mass element due to pressure. The third term is 
simply the weight of the mass element under consideration. Since the pressure on either 
side of the mass element is equal, the horizontal component of the total force is also nil, 
but this is of no interest here. This equation can be simplifi ed to obtain the so - called 
hydrostatic equilibrium equation

   
d

d

P r

r
r g r

( )
= − ( ) ( )ρ     (2.2)     

 Since both   ρ   and  g  are positive, d P/ d r     <    0, and as expected  P  increases as  r  decreases (or 
as the centre of the star is approached). Not surprisingly, this equation shows that the 
pressure as a function of depth (with respect to the stellar surface) will increase more 
rapidly for larger   ρ   or  g . If   ρ   and  g  are known throughout the star, this differential equa-
tion can be solved to give the pressure at all depths. This equation is fundamental and is 
crucial in both stellar - structure and stellar - atmosphere calculations. 

 Classical mechanics shows that for a spherically symmetric mass distribution the gravi-
tational acceleration at a distance  r  from the centre of the mass is

   g r
GM r

r
( ) =

( )
2     (2.3)  

where  G  is the universal constant of gravitation and  M ( r ) is the mass found inside the 
radius  r . This expression will be useful in certain applications seen below and throughout 
this book. 

 As shown in the example below, the hydrostatic equilibrium can also be used to calcu-
late the pressure in the atmosphere of a planet. To obtain an analytical solution, this 
example assumes that the atmosphere is isothermal and that the gravitational acceleration 
within it is constant.   

  Example 2.1:    Show that the pressure stratifi cation in the atmosphere of a planet, 
assuming that it is isothermal (with temperature  T  ) and has a constant gravitational 
acceleration ( g ), obeys the following expression     

   P r P
m g

kT
r

( ) = ( )
−

0 e
Hμ

    (2.4)  

where  r  is the distance from the surface,   μ   is the mean molecular weight of the 
particles in the atmospheric gas (considered constant throughout the atmosphere), 
 m  H  is the mass of the hydrogen atom and  P (0) is the pressure at the surface of the 
planet.  
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  Answer: 

 The road to the solution begins with the hydrostatic equilibrium equation

   
d

d

P r

r
r g

( )
= − ( )ρ     (2.5)   

 Assuming an ideal gas

   ρ μ
r

m P r

kT
( ) =

( )H     (2.6)  

where  m  H  is the mass of the hydrogen atom, the pressure gradient then becomes

   
d

d
HP r

r

m g

kT
P r

( )
= − ( )μ

    (2.7)   

 which may be written as

   
d

dHP

P

m g

kT
r= − μ

    (2.8)   

 If this equation is integrated from the surface ( r    =   0) to an altitude  r 

   
d

dHP

P

m g

kT
r

P

P r r

0 0( )

( )

∫ ∫= − μ
    (2.9)   

 it gives

   ln lnP r P
m g

kT
r( )( ) − ( )( ) = −0

μ H     (2.10)   

 which leads to the solution

   P r P
m g

kT
r

( ) = ( )
−

0 e
Hμ

    (2.11)   

 This equation may be written as follows

   P r P
kT

m g

r

( ) = ( ) =
−

0 e where
H

H H,
μ

    (2.12)   

 The quantity  H  is called the pressure scale height and it defi nes the distance over   
which the pressure changes by a factor  e . For this solution where both the tempera-
ture and the mean molecular weight are constant, the density profi le has the same 
form as the pressure profi le

   ρ ρr
r

( ) = ( ) −
0 e H     (2.13)    
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 It might seem strange to the reader to be discussing the atmospheric characteristics of 
a planet in a book on stars. There are major differences between the example seen above 
and stars, since in stars the gravity, temperature and mean molecular weight vary with 
depth. However, such a simple example is very instructive to help understand the pressure 
(and density) stratifi cation in stars. 

 The concept of column mass  m , which is the mass per unit area above a certain point 
in a star, can be useful in stellar astrophysics. Its physical units are g/cm 2 . Let ’ s fi rst defi ne 
the mass M( r ) found inside an imaginary cylinder of area d A  and extending from the 
surface of a star to radius  r  (see Figure  2.2 ). The mass inside the cylinder is

   M r r r A
R

r

( ) = − ( )∫ ρ d d
*

    (2.14)     

 The column mass  m ( r ) is therefore given by the equation

   m r
r

A
r r m

R

r

( ) =
( )

= − ( ) =∫ ∫
M

d
d dρ

*

    (2.15)  

where

   d dm r r= − ( )ρ     (2.16)   

 A negative sign appears here because the column mass increases with geometrical depth 
(with respect to the surface). The hydrostatic equilibrium equation can then be written as 
a function of the column mass

   
d

d

P

m
g r= ( )     (2.17)   

 This equation predicts that the pressure increases as the column mass increases. In the 
exterior regions of stars the gravity can be considered approximately constant:  g ( r )   =    g  
for all values of  r , and the above equation can be integrated to give  P ( m )   =    gm,  
assuming the pressure at the surface is nil. In this case, the pressure is then simply 
the product of the column mass times the gravitational acceleration. This is due to the 

r = R
*

M(r) = – ∫r(r)drdA

r

r

R*

     Figure 2.2     Illustration of an imaginary cylinder of area d A  extending from the surface of a star 
(with radius  R   *  ) to a depth located at a distance  r  from the centre of the star. The variable M( r ) 
represents the mass found inside this cylinder.  
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fact that pressure at a given point is caused by the weight of the column mass above 
this point. 

 When radiation attempting to exit the star is absorbed by the stellar plasma, the momen-
tum of the photons is transferred to matter and it causes radiation pressure. This leads to 
a radiative acceleration ( g  rad ) of matter and its effect must be taken into account in the 
hydrostatic equilibrium equation

   
d

d
rad

P r

r
r g r g r

( )
= − ( ) ( ) − ( )[ ]ρ     (2.18)   

 This equation tells us that if conditions occur where radiative acceleration becomes larger 
than that of gravity, matter will be pushed out of the star. This equation imposes an upper 
limit for the mass of stars, since the radiation fi eld in the most massive stars can become 
large enough to expel their external layers. More information regarding radiative accelera-
tion and radiative pressure is given in the optional Section  3.12 .  

  2.3   The Virial Theorem 

 A fundamental equation necessary for proper understanding of stellar formation is the 
virial theorem. The virial theorem gives the relation between the potential and kinetic 
energies of a system of particles at equilibrium. 

 The virial theorem for a star (or an interstellar cloud) in hydrostatic equilibrium can be 
easily derived. For this case, the virial theorem gives the relation between its gravitational 
energy ( Ω ) and its thermal energy ( U ). By inserting the value of  g ( r ) for a spherically 
symmetric mass distribution in the hydrostatic equilibrium equation gives the following 
expression

   
d

d

P

r

r GM r

r
= −

( ) ( )ρ
2

    (2.19)   

 When each side of this equation is multiplied by the volume inside radius  r , namely 
 V ( r )   =   4 π  r  3  / 3, the equation above becomes

   
4

3

4

3
3π πr P r r GM r rd d= − ( ) ( )ρ     (2.20)   

 Since the mass inside a spherical shell between  r  and  r     +    d r  is 2 

   d dM r r r= ( )4 2π ρ     (2.21)  

where 4 π  r  2 d r  is the volume of the shell. Equation  (2.20)  may then be written as

  2      In Section  5.2.2  it will be shown that for spherically symmetrical stars, the mass inside a shell between  r  and  r     +    d r  is 
d M ( r )   =   4 π  r  2    ρ  ( r )d r  (see Figure  5.1 ). 
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   V P
GM r

r
Md d= −

( )
3

    (2.22)   

 This equation can then be integrated over the entire volume of the star. First, the left - hand 
side of the equation can be integrated by parts

   V P PV P V
P

V

d d
centre

centre
surface

0

0
∫ ∫= −

*

    (2.23)  

where  V   *   is the volume of the star. Since the pressure at the surface and the volume at the 
centre are nil, the fi rst term on the right - hand side of this equation is zero. The two equa-
tions above lead to

   P V
GM r

r
M

V M

d d
0 0

1

3

* *

∫ ∫=
( )     (2.24)  

where  M   *   is the mass of the star. By defi nition, the potential gravitational energy of the 
star, which has a negative value, is equal to (more details will be given below)

   Ω = −
( )

∫ GM r

r
M

M

d
0

*

    (2.25)  

and thus

   3
0

P V
V

d
*

∫ = −Ω     (2.26)   

 According to the equipartition theorem of statistical physics, the average kinetic 
energy of the particles in a gas at temperature  T  is equal to 3 kT/ 2. If  N  is the total 
number of particles in a given volume  V  inside the star small enough so that the tem-
perature is constant within it and equal to  T , the thermal energy density  ε  in units of 
erg/cm 3  is

   ε = N

V
kT

3

2
    (2.27)   

 For an ideal gas

   P
NkT

V
= = 2

3
ε     (2.28)   

 which leads to the following relation
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   3 2
0 0

P V V
V V

d d
* *

∫ ∫= = −ε Ω     (2.29)   

 Since the total thermal energy of the star  U  is

   U V
V

= ∫ εd
0

*

    (2.30)   

 the relation between the thermal energy and the gravitational energy or the so - called virial 
theorem is fi nally found

   U U= − + =Ω Ω
2

2 0or     (2.31)   

 During a contraction   –   Ω  increases, and consequently so does  U . The internal temperatures 
of the body in contraction will then also increase. The virial theorem shows that half of 
the gravitational energy is used to heat the gas (i.e.  Δ  U    =     –   Δ  Ω  /2 ). The other half is radi-
ated in the form of electromagnetic radiation into the surrounding space. However, the 
virial theorem only applies to a system of particles in equilibrium and therefore cannot 
apply to collapsing interstellar clouds. Keeping this in mind, the virial theorem can be 
used to state that  approximately  half of the gravitational energy is transformed to thermal 
energy during the collapse of a cloud. During such a collapse, the internal temperatures 
increase, and if the mass of the cloud is suffi cient, or in other words if it has enough 
gravitational energy, the central temperatures attain the critical temperature needed for 
sustained hydrogen fusion. When this occurs, a star is born. The contraction of the star 
continues until the power generated by the nuclear reactions equals the luminosity of the 
star. At that point, the star is in a stable state and fi nds itself on the main sequence of the 
H – R diagram. 

 Earlier, an equation for the gravitational energy of a star was given without further 
explanation. This equation can be easily understood with well - known results from classical 
mechanics: the gravitational energy of a two - mass system separated by a distance  r  is 
equal to   – Gm  1  m  2  /r . This result is found by calculating the work necessary to bring one of 
these masses from infi nity to a distance  r  from the other mass. Since the work needed to 
bring a spherical shell of mass d M  to a spherical mass  M  of radius  r  is   – GM d M/r , the 
potential energy of a star of mass  M   *   can be obtained with the following integral

   Ω = −
( )

∫ GM r

r
M

M

d
0

*

    (2.32)  

where d M  is the mass of a shell between  r  and  r     +    d r  and  M ( r ) is the mass within the 
radius  r . This integral measures the potential energy when progressively assembling the 
mass  M   *   shell by shell. For stars, the quantity  M ( r ) (or indirectly   ρ  ( r )) is not readily known, 
but  Ω  can be approximated by making certain assumptions (see Example  2.2 ). As stated 
earlier, for spherically symmetrical stars, the mass inside a shell between  r  and  r     +    d r  is 
d M ( r )   =   4 π  r  2   ρ  ( r )d r  (see Section  5.2.2 ).   
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  Example 2.2:    Calculate the potential gravitational energy of a star of mass  M   *   and 
radius  R   *   assuming it possesses a constant density. 

  Answer: 

 As seen above, the gravitational energy is given by the following expression

   Ω = −
( )

∫ GM r

r
M

M

d
0

*

    (2.33)   

 The average density inside the radius  r  can be expressed as

   ρ r
M r

r
( ) =

( )
4
3

3π
    (2.34)   

 Since the density is assumed constant for the star under consideration   ρ ρr( ) =  and 
 r  can then be written

   

r
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(2.35)

   

 The quantity  Ω  can be expressed in terms of  M ( r )

   Ω = − ⎛
⎝

⎞
⎠ ∫G M M

M4

3

1 3
2 3

0

πρ d
*

    (2.36)  

and once the integration is evaluated, this equation becomes

   Ω = − ⎛
⎝

⎞
⎠G M

4

3

3

5

1 3
5 3πρ *     (2.37)   

 Since the density can also be written

   ρ =
M

R

*

*
4
3

3π
    (2.38)   

  Ω  becomes

   Ω = − 3

5

2GM

R
*

*
    (2.39)    
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  Example 2.3:    With the help of the virial theorem, estimate the average temperature 
inside a star with mass  M   *   and radius  R   *  . 

  Answer: 

 With the equipartition theorem, an average temperature   T  can be defi ned such that 
the total thermal energy of the star of mass  M   *   containing  N  particles is

   U kTN= 3

2
    (2.40)   

 Since stars are made mostly of ionised hydrogen due to their high internal 
temperatures, the mean molecular weight may be approximated to be   μ      ≈    1/2, so 
 N     ≈    2 M   *  /  m  H . The thermal energy can then be written

   U
kTM

m
≈

3 *
H

    (2.41)   

 As discussed above, the gravitational energy of a star may be approximated by

   Ω ≈ −
GM

R
*

*

2

    (2.42)  

where  R   *   is the radius of the star. 
 These last two results can be inserted into the viral theorem

   2 0U + =Ω     (2.43)  

and then the average temperature may then be isolated to give

   T
Gm M

kR
= 1

6

H *

*
    (2.44)   

 The gravitational energy of a star with constant density was found in the preceding 
example. Of course, the density profi le (or   ρ  ( r )) inside a real star can only be calculated 
through a complex numerical stellar model. However, the value of the gravitational energy 

of a typical star can be estimated to be on the order of   −
GM

R
*

*

2

. This approximation is

useful to roughly approximate the gravitational energy of stars. Meanwhile, the exact value 
of  Ω  depends on the intricacies of the density profi le of the star. 

 Finally, this section will end by showing that some global characteristics of stars can 
be estimated with appropriate approximations. The two following examples will use, 
respectively, the virial theorem and the hydrostatic equilibrium equation to estimate the 
average temperature and the central pressure of a star.     
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 Some of the crude approximations made in the last two examples might seem imprudent. 
However, in astrophysics, it is sometimes useful to make such assumptions in order to 
evaluate the order of magnitude of certain physical quantities not readily known. A more 
precise evaluation often necessitates complex numerical calculations that are outside the 
scope of this book.  

  Example 2.4:    With the help of the hydrostatic equilibrium, estimate the central 
pressure in a star with mass  M   *   and radius  R   *  . 

  Answer: 

 Since the mass inside a spherical shell found between  r  and  r    +   d r  is 

d M ( r)    =   4 π  r  2  ρ ( r )d r  and   g r
GM r

r
( ) =

( )
2  the hydrostatic equilibrium equation can 

be expressed as

   d dP
GM

r
M= −

4 4π
    (2.45)   

 This equation may be integrated from the surface to the centre of the star
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where  P  c  is the central pressure and where it is assumed that the pressure at the 
surface of the star is nil. 
 The above equation may be rewritten as follows
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 The expression in brackets above gives the average value of  M ( r ) /r  4  in the star. Its 
value can be crudely approximated by  M   *  / R   *   4  as to obtain

   P
GM

R
c ≈ *

*

2

44π
    (2.48)   

 For the Sun, this equation gives a central pressure on the order of 10 15    dyn/cm 2 . In 
reality, because of the density stratifi cation in stars, the average value of  M ( r )/ r  4  is 
much larger than  M   *  / R   *   4  since the layers at small radii will contribute more to the 
integral above. Detailed modelling of the solar structure predicts that its central 
pressure is approximately 2    ×    10 17    dyn/cm 2  (or 10 11  times the atmospheric pressure 
at the Earth ’ s surface).  

 For the Sun, the average temperature found is   T = ×4 106 K. This value seems rea-
sonable since its surface temperature is 5800   K; while according to theoretical 
models its central temperature is approximately equal to 16    ×    10 6  K.  
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  2.4   The Jeans Criterion 

 In this section, a criterion will be found that can be used to predict under what physical 
conditions an interstellar cloud can collapse. This criterion is a product of the British 
scientist Sir James Hopwood Jeans (1877 – 1946). 

 As discussed previously, an interstellar cloud in hydrostatic equilibrium obeys the 
virial theorem. If the gravitational energy dominates the thermal energy such as  –  Ω     >    2 U , 
the cloud will be unstable and collapse due to gravitational pull. The quantity  Ω  is 
diffi cult to precisely calculate since the knowledge of density profi le is needed for 
its assessment. To overcome this obstacle, the gravitational energy can be approximated 
by the corresponding value for a homogeneous cloud of mass  M  and radius  R  (see 
Example  2.2 )

   Ω = − 3

5

2GM

R
    (2.49)   

 If the interstellar cloud is approximated as being isothermal (with temperature  T  ) and 
having a constant density   ρ  , the thermal energy may be written

   U NkT= 3

2
    (2.50)  

where  N  is the total number of particles contained in the cloud. The number of particles 
in the cloud may then be written as a function of the mean molecular weight   μ   of the 
particles

   N
M

m
=

μ H

    (2.51)  

and the cloud can collapse when  –  Ω     >    2 U  or
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 But since
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where   ρ   is the density of the cloud, it can easily be shown that for a cloud to be able to 
collapse, its mass must respect the following inequality
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where Jeans ’  mass  M  J  is defi ned. So, in order for a cloud to collapse, its mass must be 
larger than Jeans ’  mass:  M      >      M  J . This establishes a quantitative criterion by which the 
stability of a cloud can be evaluated. 

 It should be noted that  M  J  is smaller for clouds with larger densities since a higher 
gravitational energy is stored there. Also, clouds with higher temperatures have larger  M  J  
because internal pressure counters gravitational collapse. Similarly, an expression for 
Jeans ’  density   ρ   J  can be found. Collapse can take place when the density of the cloud   ρ   
under consideration surpasses Jeans ’  density

   ρ ρ
μ

> = ⎛
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⎞
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    (2.55)   

 Jeans ’  length (or radius) may also be defi ned by isolating the radius of the cloud 
in the above theoretical development. It can be shown (see Exercise 2.7) that this 
quantity is
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 When a given cloud with density   ρ   has a radius larger   than this value, this criterion predicts 
that it should collapse due to its gravitational pull.     

  Example 2.5:    Calculate Jeans ’  mass for an average molecular cloud. Typically, 
molecular clouds have masses on the order of 1000  M   �   or more, temperatures on 
the order of 10   K and number densities of approximately 1000 H 2  molecules per 
cm 3 . Discuss the results vis -  à  - vis star formation. 

  Answer: 

 Since the clouds under consideration are composed mainly of H 2  molecules, the 
mean molecular weight is approximately equal to 2 and the density in these clouds 
is therefore

   ρ = × ≈ ×− − −2 1000 3 103 21 3mH cm g cm     (2.57)  

and Jeans ’  mass for this type of cloud is

   M
kT

m G
MJ

H

g 20 = ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ≈ × ≈−5 3

4
5 10

3 2 1 2
34

μ ρπ �     (2.58)   

 Jeans ’  mass for molecular clouds is smaller than their actual mass. Jeans ’  criterion 
predicts that they can collapse and lead to stellar formation.  
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  Example 2.6:    Calculate Jeans ’  density for a diffuse hydrogen (or HI) cloud. 
Typically, diffuse hydrogen clouds have masses of less than 100  M   �  , temperatures 
on the order of 100   K and number densities of less than 1000   H atoms per cm 3 . 
Discuss the results vis -  à  - vis star formation. 

  Answer: 

 Since the temperature inside diffuse hydrogen clouds is low, most of the hydrogen 
atoms are in their neutral ionisation state. The mean molecular weight is therefore 
approximately equal to 1. The density of these clouds is then

   ρ = × ≈ ×− − −mH cm g cm1000 2 103 21 3     (2.59)   

 Jeans ’  density for this kind of interstellar cloud is

   ρ
μJ

H
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 Since Jeans ’  density for diffuse hydrogen clouds is larger than their typical 
densities, they will be gravitationally stable and no star formation can take place 
there.  

 It was just shown that, according to Jeans ’  criterion, stellar formation can take place 
in interstellar molecular clouds. These cold and dense clouds can collapse, thus increas-
ing their density, until smaller portions can also become unstable and collapse. This 
fragmentation process makes it possible for a large number of stars to form from a single 
molecular cloud. An example of a molecular cloud, namely M16 3  or better known as the 
Eagle Nebula, is shown in Figure  2.3 . It should be noted that in these so - called stellar 
nurseries, other molecules besides H 2  can also be present along with dust particles. 
During the star - formation process, more low - mass stars are generally formed than high -
 mass ones. The distribution of the stars relative to their mass is called the initial mass 
function and is discussed below.     

  3      This object is part of the Messier catalogue that originally contained 103 astronomical objects (mostly nebulae, stellar 
clusters and galaxies). The French astronomer Charles Messier (1730 – 1817) created this list of dim objects in order not to 
confuse them with comets. Seven other astronomical objects were later added to the Messier catalogue that now goes from M1 
to M110. 
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     Figure 2.3     Molecular clouds in the M16 nebula where star formation is present  (NASA/courtesy 
of nasaimages.org).    (see colour plate.)

 Special Topic  –  The Initial Mass Function    

 Even when using crude statistical methods with a limited sampling of stars to study 
stellar - mass distribution, it is easy to fi nd that there exist many more low - mass stars 
than high - mass ones in the Universe. In an attempt to determine the exact distribu-
tion of stars relative to their mass, a distribution function called the initial mass 
function (IMF) is used. It should, however, be clear that a single function should not 
be able to reproduce observations of all astronomical bodies (i.e. various types of 
stellar clusters, galaxies, etc.) since many variables (such as the presence of a mag-
netic fi eld, rotation or turbulence for instance) can affect the star formation process. 
An example of the IMF for the stars in the solar neighbourhood is shown below. 

 The determination of the IMF is complex since it is luminosity (within a certain 
wavelength range) that is observed rather than stellar masses. This luminosity must 
than be transformed into stellar masses. Several complications occur. For example, 
the distance to the various stars must be evaluated with pre cision. Also, absorption 
or scattering from the interstellar medium can also come into play. 

 The Austrian born astronomer Edwin Ernest Salpeter (1924 – 2008) found that 
the distribution of stellar masses varies as a power function and has the general 
shape of  M   *    − 2.35 . Salpeter ’ s power law is compared to a more detailed determination 
of the IMF for the solar neighbourhood in Figure  2.4 . The variable that defi nes the 
IMF is   ξ   and gives the normalized number of stars formed per solar unit mass. 
Salpeters ’ s power law well reproduces the results shown in Figure  2.4  for the high -
 mass tail end of the distribution. Figure  2.4  clearly shows that the star - formation 
process preferably produces stars of low mass. This confi rms the earlier statements 
about the non - uniform mass distribution of stars.    
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 Contrarily to the results from the basic theoretical framework discussed above, observa-
tions show that most interstellar molecular clouds are not collapsing. The framework 
shown above is therefore incomplete. The reader is reminded that physical phenomena 
such as rotation, turbulence or the presence of magnetic fi elds were neglected in our 
analysis and probably come into play. A triggering mechanism seems necessary to induce 
gravitational collapse in molecular clouds. Several mechanisms are possible. For example, 
a neighbouring supernova can cause a shock wave in molecular clouds and trigger collapse 
and thereafter star formation. A collision between two interstellar clouds could also lead 
to star formation. 

 Star formation is a process that is much more complex than that described in this section. 
Star formation does not simply consist of a spherically symmetrical collapse of an inter-
stellar cloud. For example, circumstellar matter can form an accretion disk around proto-
stars. Jets of matter emanating from these young astronomical objects are also observed. 
Moreover, debris (planets, asteroids, etc.) is left orbiting the newly formed stars. 

 Following the fragmentation process during star formation, newly created O -  and B - type 
stars can heat the part of the cloud left over. This hot gas is commonly called an HII 
region, since hydrogen is ionised there due to the energetic photons emitted by these hot 
stars. The typical temperature of HII regions is about 8000   K and these astronomical 
structures are stable against gravitational collapse (see Exercise 2.8). 

     Figure 2.4       The initial mass function of the solar neighbourhood (solid curve) as compared 
to Salpeter ’ s power law (dashed curve).  Figure reproduced with permission of Stahler, S.W. 
and Palla, F.,  The Formation of Stars , Wiley - VCH Verlag GmbH  &  Co. KGaA, p.125 ( 2004 ).   
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 Finally, it should be mentioned that the framework described here for star formation is 
quite rudimentary. Detailed study of star formation requires complex hydrodynamical 
computer simulations. Such advanced computations are outside the scope of this book.    

 Special Topic  –  Another Derivation of Jeans ’  Mass 

    Earlier in this section, Jeans ’  mass was found by comparing the gravitational and 
thermal energy in a spherical gas cloud. Another way of fi nding Eq.  (2.54)  is by 
using Newton ’ s second law. When a cloud is not in hydrostatic equilibrium, a force 
equation may be written for an element of mass with density   ρ   that takes into 
account gravity and the expansive force caused by the pressure gradient
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 To   simplify the problem, a constant gravitational acceleration equal to the value 
at the surface
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 is assumed throughout the cloud. Since
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and assuming an isothermal gas of temperature  T  with a constant mean molecular 
weight   μ  , the pressure gradient is equal to
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 Therefore,
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 By crudely estimating the density gradient as
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≈ −     (2.67)  
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  2.5   Free - Fall Times  †   

 In the previous section, the physical conditions under which interstellar clouds can collapse 
were considered. However, the timescale on which molecular clouds collapse was not 
discussed. This is the aim of the present section. 

 The precise evaluation of the collapse time of an interstellar cloud requires detailed 
calculations that take both the gravitational force as well as the counteracting pressure in 
the cloud into account. Other factors such as the presence of a magnetic fi eld can also 
affect the duration of gravitational collapse. Nonetheless, a simpler physical framework 
may be employed to estimate the duration of such a collapse. An expression for the com-
monly called free - fall time will be found. The free - fall time is the time it would take for 
a cloud to collapse from its original shape to a single point due to gravity while neglecting 
gas pressure that will counteract this force. 

 Figure  2.5  shows a small mass  m  at the surface of a spherical cloud of radius  R  and 
mass  M . The mass  m  is initially at rest on the surface of this cloud and then follows the 
surface of the cloud that collapses due to gravity. Under the free - fall assumption, when 
the surface is contracted to radius  r  the kinetic energy of this mass is equal to the differ-
ence of its gravitational potential energy between the fi nal and initial positions
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 The velocity of the particle  m  can then be expressed as
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where  R  is the radius of the spherical cloud and   ρ   is its average density and since
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 it is trivial to show that
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 Except for the constant 5 3/2 , this is the same expression previously found for Jeans ’  
mass (Eq.  2.54 ). This difference is not surprising since several approximations 
were made in the two methods used to estimate  M  J .  
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     Figure 2.5     A small mass m initially at rest (left - hand side of the fi gure) at the surface of a spherical 
cloud of mass  M  that collapses from a radius  R  to  r . The small inward pointing arrows on the right -
 hand side of the fi gure represents the velocity of the surface of the cloud.  

 The time variable can then be isolated and integrated to obtain the free - fall time  t  ff  (assum-
ing  t    =   0 at the onset of collapse)
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 The equation above measures the time for the cloud to collapse from its initial radius  R  
to a radius that tends towards zero (or in other words a geometrical point). The fi nal stages 
of such a theoretical collapse cannot be treated with classical physics since, in the presence 
of large gravitational fi elds, Newton ’ s law of gravity becomes invalid and the theory of 
general relativity comes into play. If such a collapse were to take place, the astronomical 
body would become a black hole (see Chapter  6  for more details). In reality, the cloud 
will stop its collapse before attaining a physical state where general relativity is required 
due to the pressure inside the protostar. However, the integral shown above gives an 
estimate for the order of magnitude for the collapse time of a cloud of mass  M  and initial 
radius  R . 

 The above integral may be calculated by performing the change of variable  x    =    r / R 
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and since the defi nite integral above equals  π /2, the free - fall time is
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where it is assumed that
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  Example 2.7:    Calculate the free - fall time for a one - solar - mass molecular cloud. 

  Answer: 

 We suppose that the collapse begins when the cloud achieves Jeans ’  density. For a 
one - solar - mass cloud  
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 The free - fall time is then

   t
G

ff
J

yr= ⎛
⎝⎜

⎞
⎠⎟ ≈3

32
50 000

1 2π
ρ

    (2.77)    

 The timescale on which stars are formed is much shorter than that of stellar evolution. 
For instance, in Chapter  6 , it will be shown that a one - solar - mass star stays approximately 
10 10  years on the main sequence before evolving towards the red giant phase. Since the 
star - formation timescale is short, it is diffi cult to obtain a large quantity of observational 
data as compared to main - sequence stars, for example.  

  2.6   Pre - Main - Sequence Evolution  †   

 In Chapter  6 , the evolution of stars from the main sequence to later stages will be dis-
cussed. During evolution, stars change position in the H – R diagram because both their  T  eff  
and luminosity vary with time. In this section, the evolutionary tracks (in the H – R diagram) 
followed by stars before they reach the main sequence will be shown. Two types of pre -
 main - sequence stars will also be introduced. 

 Figure  2.6  shows the evolutionary tracks of stars in formation of various masses up to 
their arrival on the main sequence. The vertical portions of the pathways shown in this 
H – R diagram are called Hayashi tracks named after the Japanese astrophysicist Chushiro 
Hayashi (b. 1920) who fi rst discovered these evolutionary tracks. On the vertical part of 
the curves (or on the so - called Hayashi tracks) shown in Figure  2.6 , stars are fully convec-
tive, or in other words convection dominates energy transport throughout the star. During 
the bottom and more horizontal part of the evolutionary tracks, radiative transport appears 
in these stars. At the endpoints of these curves (at the open circles), the stars are burning 
hydrogen in their core and are thus on the main sequence. However, before this stage, 
other secondary nuclear reactions occur. For example, deuterium ( 2 H) is fused into  3 He 
(via the reaction  2 H   +    1 H  →   3 He   +    γ ) while Li is fused with hydrogen (via the reaction 
 7 Li   +    1 H  →   4 He   +    4 He). These nuclear reactions diminish the quantity of deuterium and 
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lithium in these stars, and the abundance of these elements is an important diagnostic tool 
to study pre - main - sequence stars. However, the energy generated by these nuclear reac-
tions is small compared to the hydrogen fusion energy production rate in the centre of 
stars and to the radiative energy emitted at their surface. More details concerning nuclear 
reactions will be given in Chapter  6 .   

 It should be noted that the evolutionary timescales of pre - main - sequence stars are 
smaller for the more massive stars. More massive protostars possess more gravitational 
energy and can thus collapse faster. They can also dissipate the gravitational energy at 
a relatively faster rate during contraction because of their larger luminosity (via radiation 
emitted to space from their surface). For example, the time it takes for a star with a mass 
of 1 M   �   to make it to the main sequence is approximately 100 times larger than the cor-
responding time for a 4 M   �   star. This along with the fact that the formation process 
produces many fewer O -  and B - type stars than less - massive ones, leads to a selective 
effect in the observation of pre - main - sequence stars in which predominantly less - massive 
stars are observed. Two such types of pre - main - sequence stars are T Tauri and Herbig 
Ae/Be stars. 

 T Tauri stars are pre - main - sequence stars with masses of approximately  M     ≤    2 M   �   
found mainly in or near molecular clouds. Their name comes from the name of the 

     Figure 2.6     Pre - main - sequence evolutionary tracks of stars with various masses. These tracks end 
at the onset of hydrogen burning (open circles). The metallicity  Z  and helium abundance  Y  (in mass 
fractions) used to model these evolutionary tracks are given.  Figure courtesy of Salaris and Cassisi, 
 Evolution of Stars and Stellar Populations , Wiley, Chichester ( 2005 ).   
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fi rst of such stars discovered (or the prototype) that is found in the Taurus constellation. 
T Tauri stars are surrounded by an accretion disk and exhibit emission lines. Some 
emission lines found in the spectrum of a T Tauri star are shown in Figure  2.7 . The 
lines for which the ion is placed in brackets are called forbidden lines. Forbidden 
lines come from excited states that have a long life or in other words the excited electron 
has a low probability of decaying to a lower level. In dense plasma, these forbidden 
transitions are not visible since collisional de - excitations are more important than 
radiative decays. However, in low - density plasma such as circumstellar matter, such 
stable excited levels can stay intact long enough to eventually decay and produce 
a line called a forbidden line. Both infalling and outfl owing matter are detected in 
these stars, and not surprisingly, their spectra vary irregularly with time. T Tauri 
stars are therefore classifi ed as variable stars. Their spectra also exhibit an excess of 
infrared radiation that most likely comes from circumstellar matter surrounding these 
stars.   

 Another type of pre - main - sequence stars are Herbig Ae/Be stars with masses of approxi-
mately 2  M   �      ≤     M     ≤    10    M   �   and that possess similar properties to those of T Tauri stars. 
Their effective temperature ranges within approximately 8000   K    ≤     T  eff     ≤    20   000   K. These 
stars should not be confused with regular Be stars that are main sequence or more evolved 
peculiar stars. Even though both Herbig Ae/Be -  and Be - type stars possess circumstellar 
matter, the matter surrounding Herbig Ae/Be stars contains dust typically found in molecu-
lar clouds. This type of star is named after the American astronomer George Herbig (b. 
1920) who fi rst discovered these stars. Some Herbig Ae/Be stars exhibit stellar pulsations 
that are detected via temporal photometric observations. Figure  2.8  shows the pulsation 
of the Herbig Ae star V351 Ori. The best - fi t curve in this fi gure is composed by the super-
position of fi ve periodic signals, the one with the largest amplitude having a period of 
0.0841 days. More details concerning stellar pulsations and the observational determina-
tion of their period will be given in Chapter  5 .   

 The concepts seen in this chapter were given at an introductory level. For a more 
advanced and complete treatise of star formation theory and observations, the reader is 
referred to Stahler, S.W. and Palla, F.,  The Formation of Stars , Wiley - VCH, Weinheim 
( 2004 ).  

     Figure 2.7     Spectra of the T Tauri star DG Tau. Figure reproduced with permission from Hessman, 
F.V. and Guenther, E.W.,  Astronomy  &  Astrophysics , 321, 497 ( 1997 ).  
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  2.7   Summary  
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Free-fall time: fft
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     2.8   Exercises    

   2.1   The atmosphere of a fi ctitious planet has a density profi le   ρ  ( r )   =     ρ   0 (1     −    r / R  f ), where 
and  r  is the distance from the surface,  R  f  is the distance from the surface where the density 

     Figure 2.8     Photometric variability of the magnitude in the U band of the Herbig Ae star 
V351 Ori. The solid curve is a best - fi t combination of fi ve pulsation frequencies. The frequency 
of the signal with the largest amplitude has a period of 0.0841 days (or approximately 2   h).  
Figure reproduced with permission of Stahler, S.W. and Palla, F.,  The Formation of Stars , Wiley -
 VCH Verlag GmbH & Co. KGaA, p.702 ( 2004 ).   
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falls to zero and   ρ   0  being the density at the surface. If the gravitational acceleration  g  is 
constant throughout the atmosphere, calculate the pressure profi le  P ( r ).   

   2.2   Calculate  P ( r ) inside a sphere of radius  R   *   with a constant density   ρ  .   

   2.3   Calculate the gravitational potential energy of a fi ctitious star with mass  M   *   and 
radius  R   *   that has a density profi le   ρ  ( r )   =     ρ   0 (1     −    r /  R   *  ). Give your answer in terms of  M   *   
and  R   *  .   

   2.4   Show that for a star with mass  M   *   and radius  R   *   the result found in Example  2.3  can 
be written

   T M M R R= × −4 106 1( )( )* * K� �     (2.83)  

        2.5   Estimate the temperature of the interstellar molecular cloud for which the spectra is 
shown in Figure  2.9 .     

   2.6   Calculate Jeans ’  mass for diffuse hydrogen clouds (see Example  2.6 ).     

   2.7   Show that for a homogeneous cloud with temperature  T  and density   ρ  , Jeans ’  
length is

   R
kT

m G
J

H

= ⎛
⎝⎜

⎞
⎠⎟

15

4

1 2

πρμ
    (2.84)     

     Figure 2.9      Spectra of an interstellar molecular cloud (see Exercise 2.5).   
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   2.8   Assume an HII region with a radius of 10   ly,  T   ≈  8000   K and number density  n  HII   ≈  
10 3  cm  − 3 . Prove that according to Jeans ’  criterion this interstellar matter is stable against 
collapse.   

   2.9   Knowing that the energy density for a magnetic fi eld of value  B  is equal to   
B2

8π
, 

calculate the magnetic fi eld at which the magnetic energy density is comparable to the 
gravitational energy density for a molecular cloud (see Example  2.5  for the physical data 
for such a cloud).       
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   3.1   Introduction 

 Since most of the information that arrives to Earth from stars (and in fact from any astro-
nomical body) is in the form of electromagnetic radiation, it is imperative to properly 
understand how radiation emanates from the surface of stars. The frequency distribution 
of the surface monochromatic stellar fl ux depends on the physical properties of the external 
regions of stars and on how radiation crosses, and reacts with, stellar plasma. In most 
instances, the energy created by nuclear fusion in the central parts of the stars is transported 
to the outer regions by radiation. During this type of energy transport, photons making up 
the radiation fi eld can be absorbed or scattered by stellar plasma. This   modifi es its fre-
quency distribution. Since matter also emits radiation due to its thermal energy, this 
process must also be taken into account when studying radiative transfer in stars. This 
interplay between radiation and matter is fundamental in stellar astrophysics. The radiation 
fi eld in the central stellar regions is composed mostly of high - energy photons, while when 
the radiative energy emerges at the surface of stars, its spectrum depends on the tempera-
ture of the outer stellar regions and is comprised of lower - energy photons. Radiative 
transfer through the various layers in a star therefore strongly modifi es the spectrum of 
the radiation fi eld. 

 The aim of this chapter is to present the theory of radiative transfer, as it pertains to 
stars. The equation of radiative transfer will enable, among other things, the determination 
of the radiative fl ux emanating from the surface of stars. Its general solution, providing 
suffi cient information about the star ’ s structure is known, will also permit the calculation 
of the radiative fl ux at any depth. Precise knowledge of the surface radiative fl ux is critical 
for gaining physical insight regarding the exterior regions of stars by comparing, for 
example, the observed and theoretical stellar fl uxes. The radiative - transfer equation is one 
of the most important equations in the fi eld of stellar astrophysics and merits the close 
attention that will be brought to it in this chapter. It should be noted that this equation is 

  3 



62 An Introduction to Stellar Astrophysics

not only important in astrophysics, but is also of interest in several other fi elds of physics 
such as photonics. The physical principles presented in this chapter therefore apply to 
other physical entities besides stars.  

  3.2   Radiative Opacities 

  3.2.1   Matter – Radiation Interactions 

 As previously mentioned, the radiative fi eld in stars interacts with the stellar plasma and 
this affects its transfer through the star. Radiative opacity is a physical quantity that is a 
function of frequency and it measures the capability of matter to absorb or scatter photons. 
The scattering of photons is defi ned as a deviation of these particles from their trajectory 
following an interaction with matter. A scattering process does not absorb photons, but 
still takes away photons from the beams of radiation described by a physical quantity 
called the specifi c intensity (its defi nition will be given in Section  3.3 ) and must then be 
taken into account when studying radiative transfer. 

 When a photon is absorbed, let ’ s say by an atom following the photoexcitation of a 
bound electron, the energy gained by the atom is eventually redistributed to the radiation 
fi eld or to the thermal energy bath (i.e. in the form of kinetic energy of the particles in the 

     Figure 3.1     A  nonexhaustive  list of interactions between radiation and matter is illustrated. (a) A 
photon is absorbed by an atom and excites it to a higher energy level that is followed by a 
de - excitation of the bound electron to the same initial level that emits a photon. This process is 
considered as scattering. In this series of interactions the radiative energy is transformed into 
atomic energy and then back into radiative energy. (b) A photon excites an atom that is followed 
by a de - excitation due to a collision with a free electron. The energy of the photon is thus transformed 
into kinetic energy (please note that the velocity vector of the free electron increases following the 
collision). (c) A free electron excites an atom via a collision that is followed by the emission of a 
photon. In this process, kinetic energy is fi rst transformed into atomic energy (please note that the 
velocity vector of the free electron decreases following the collision) which is thereafter transformed 
into radiative energy. (d) A fi rst free electron excites an atom. This is followed by a de - excitation 
due to a collision of the atom with a second incoming free electron (that appears in the middle 
fi gure). This whole process transfers the kinetic energy from the fi rst to the second free electron 
shown in the fi gure. (e) A photon excites an atom to a high - lying energy level. This is followed by 
two successive radiative de - excitations. The energy of the original photon is then split among the 
two emitted photons. (f) A photon ionises an atom. This is followed by a recombination (or electron 
capture of an incoming free electron) which emits a photon whose energy depends on the velocity 
of the captured electron. (g) An atom is ionised by a collision of the atom with a free electron having 
a suffi ciently large kinetic energy (this free electron is represented by the one with the largest veloc-
ity vector in the fi gure on the left). This is followed by a recombination (or free electron capture of 
the second free electron shown on the fi gure on the left) to the initial energy level. A photon is 
emitted following the recombination.  
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plasma). In the fi rst case just mentioned, the excited electron may, for example, shortly 
after, fall to a lower level while emitting a photon. When this lower level is the same as 
the initial level before excitation, the energy of the absorbed photon is returned to the 
radiation fi eld and this is considered a scattering process since the energy of the absorbed 
and emitted photon is the same (see Figure  3.1 (a)). This type of scattering is sometimes 
called resonance scattering.   

 The process by which an excited electron emits a photon is called spontaneous emission. 
This is due to the fact that an excited atomic state has a fi nite lifetime and the electron 
eventually cascades to a lower level. This process will be discussed in more detail in 
Chapter  4 . In the second case mentioned above, where the energy of the absorbed photon 
is transferred to the thermal bath of the medium, the excited atom may collide with another 
particle, a free electron for instance, and the excited bound electron can cascade to a lower 
level, giving energy to the free electron that gains kinetic energy (see Figure  3.1 (b)). The 
energy of the absorbed photon is thus transferred to the thermal bath of the plasma. 

 The energy of an absorbed photon can also be fractioned by the combination of the emis-
sion of several photons of lower energy (see Figure  3.1 (e) for instance). In each step of this 
process, the bound electron that was initially excited is de - excited to a lower energy level. 

 The kinetic energy of the free particles found in the plasma can also be transformed to 
radiative energy (see Figure  3.1 (c)). Collisions can excite atoms, which in turn can emit 
photons. In this instance, a portion of the kinetic energy of the colliding particle is trans-
formed into radiation. Under most physical conditions found in stars, the collisional proc-
esses dominate radiative processes (excitations and photoionisations) and therefore, the 
atomic energy and the ionisation state populations can be obtained, respectively, with the 
Boltzmann and Saha equations. 1  

 Other examples of the interplay between the radiation fi eld and surrounding plasma are 
illustrated in Figure  3.1 . This fi gure shows examples of how atomic, kinetic and radiative 
energy can be transformed from one form to another. Precise knowledge of the interactions 
between radiation and matter is therefore critical for proper understanding of radiative 
transfer in stars. 

 The free electrons found in stellar plasma generally dominate the excitations and pho-
toionisations caused by collisions for the following reason. The equipartition theorem 
predicts that the various types of particles in an ideal gas possess the same average kinetic 
energy equal to 3 kT /2. Since the mass of the electron is much smaller than that of an atom, 
its average speed will be much larger. There will thus be a much larger number of electron –
 atom collisions than atom – atom collisions. Therefore, in stars the populations of the 
atomic energy levels and the ions are regulated by electron – atom collisions rather than 
by atom – atom collisions.   

  3.2.2   Types of Radiative Opacities 

 Radiative opacity measures the capability of matter to absorb or scatter radiation (as a 
function of frequency) and it depends on both the physical condition of the stellar plasma 

     1      The reader is reminded that these equations are valid when collisions dominate radiative processes.  
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and on the type of particles (atoms, molecules and electrons) present there. Radiative 
opacities can be divided into four types: 1) bound – bound transitions, 2) bound – free 
transitions, 3) free – free transitions and 4) scattering of photons. These various types of 
opacities, some of which were already described in Figure  3.1 , are briefl y discussed 
below. 

  1)     Bound – bound transitions: Atoms can absorb photons, their energy being used to excite 
an electron from a lower to an upper bound state. The energy of the absorbed photon 
must be equal to the difference between the initial and fi nal energy states of the excited 
electron (see Figure  1.5  for examples of such transitions for hydrogen and Figure  3.1 (b) 
for an illustration of this type of opacity). At the surface of cooler stars, where mole-
cules can exist, these entities can also absorb photons via electronic, rotational or 
vibrational transitions.  

  2)     Bound – free transitions: Atoms can absorb photons during photoionisation. In such a 
transition, an electron initially in a bound state is ejected from the atom and becomes 
a free electron (see Figure  3.1 (f) for an illustration of such a transition). The energy of 
the photon must be at least equal to the difference between the continuum and the 
initial atomic energy state of the bound electron (see Figure  1.5 ). If the photon pos-
sesses excess energy, it will be transformed into kinetic energy carried away by the 
ejected electron. Molecules can also be disassociated (i.e. destroyed) by photons, where 
one or several atoms are released from the initial molecule. In this case, the energy of 
the absorbed photon is used to dissociate the molecules.  

  3)     Free – free transitions: This process takes place when a photon is absorbed and excites 
a free electron on a hyperbolic (or unbound) orbit around an atom  A  to an orbit of 
higher energy. This is the inverse process of bremsstrahlung radiation, a well - known 
phenomenon of modern physics. This absorption interaction may be represented by

   A V A V+ ( ) + → + ( )− −e ei fγ     (3.1)  

where  V  i  and  V  f , respectively, represent the initial and fi nal velocities of the free 

electron e  −  . This reaction respects energy conservation:   
1

2

1

2
e f e im V h m V2 2= +νγ  where  

 ν   γ    is the frequency of the absorbed photon. Here, the kinetic energy of the atom  A  was 
neglected. The reader is reminded that an isolated free electron cannot absorb both the 
energy and the momentum of a photon. It needs the presence of a nearby nucleus that 
can absorb the excess momentum.  

  4)     Scattering: Photons can be scattered by free electrons (Thomson scattering) or atoms 
and molecules (Rayleigh scattering). Rayleigh scattering diffuses photons having ener-
gies lower than the transition energies of the atom or molecule. An atom can also 
momentarily absorb a photon that is followed by the emission of a photon with approxi-
mately the same energy, the excited electron returning soon after to its initial state (see 
Figure  3.1 (a)). Since the emitted photon is not necessarily in the same direction as the 
absorbed photon, the photon is taken away from the initial beam of energy (which is 
measured by a physical quantity called the specifi c intensity, which will be defi ned in 
Section  3.3 ). This type of interaction is thus considered a scattering process, sometimes 
called line scattering. The emitted photon does not necessarily possess the exact same 
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energy as the absorbed photon since the bound energy levels of atoms are not precisely 
defi ned because of the uncertainty principle of quantum mechanics (see Section  4.3  for 
more details).    

 The physical quantity that defi nes radiative opacity  k  ν    is given in units of cm 2 /g, or in other 
words, in units of cross section per unit mass. The opacity times the density is related to 
the following physical quantities

   kν ρ = ( ) ×number density of absorbers cross section per absorbeer( ) = χν     (3.2)   

 The quantity  χ   ν   is the opacity in units of cm  − 1  that is sometimes used in certain textbooks. 
It represents the inverse of the local mean free path of photons of frequency   ν   in the stellar 
plasma. However, in this book the quantity  k  ν    will be used exclusively. The opacity can 
be divided in two parts, one for the absorption processes (  κ   ν   ) and the other for scattering 
phenomena (  σ   ν   ). The total opacity then becomes

   kν ν νκ σ= +     (3.3)   

 The cross section of various opacity sources will be discussed throughout this book. For 
example, since free electrons are often present in stellar plasma, the opacity due to electron 
scattering is of importance in stars. The scattering cross section due to free electrons (  σ   T , 
T standing for Thomson scattering) is independent of frequency for the relatively low 
photon energies of importance in stellar astrophysics and is equal to   σ   T    =   6.6524    ×    10  − 25    cm 2 . 
The scattering opacity (  σ   e ) due to Thomson scattering is thus

   σ
σ
ρe

e T= n
    (3.4)   

  Beware , the variable   σ   is used for both cross section and scattering opacity,  be careful not 
to confuse these two meanings .   

 Special Topic  –  Rayleigh Scattering 

    Atoms and molecules are able to scatter radiation. This process is called Rayleigh 
scattering. The cross section of this interaction is proportional to   λ    − 4 . Therefore, 
blue light will be more scattered than red light. This has important implications 
not only for astronomy but also in everyday life. For instance, when light 
from stars traverses interstellar space it sometimes crosses interstellar clouds of 
gas. This interaction with interstellar matter reddens the light signal since, relatively 
speaking, more photons in the blue part of the spectrum than those in the red 
part will be scattered or taken away from the signal arriving at a telescope observ-
ing the signal. This interstellar reddening must be taken into account during 
observations. 

 Also, the sky is blue because more photons from the blue part of the spectrum 
coming from the Sun are scattered in the Earth ’ s atmosphere than those in the red 
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     Figure 3.2     Schematic frequency dependence of the cross section per absorber (i.e. per atom in the 
initial energy state of the transition considered) due to an atomic line (bound – bound transition). The 
natural frequency of the transition is represented by   ν   0  (see Eq.  (1.47)  in Section  1.6 ). The width of 
the atomic lines is due to three broadening mechanisms (natural, Doppler and pressure broadening) 
that will be discussed in Section  4.3 .  

portion of the spectrum. After many scattering processes, some of the scattered 
photons in the blue part of the spectrum eventually arrive on our planet ’ s surface 
from all over the sky, giving it its colour  . 

 The Sun is also sometimes reddened near sunset because sunlight must then 
travel a longer distance in the atmosphere than at noon time for example. In other 
words, at sunset, sunlight grazes the surface of the Earth and has to travel a distance 
larger than the vertical thickness of the Earth ’ s atmosphere to arrive at the observer. 
Moreover, since the atmosphere is also denser near the Earth ’ s surface, the photons 
arriving at an observer from the Sun at sunset will encounter more molecules than 
at noon. The amount of blue light that is scattered is therefore larger at sunset 
than at noon. The light arriving directly from the solar disc will then look redder 
than at noon since a larger quantity of photons in the blue part of the spectrum is 
subtracted from the observed light beam at sunset. During hot and humid days, 
water molecules and other pollutants are more prevalent in the atmosphere and this 
increases the effi ciency of Rayleigh scattering and thus causes the Sun to be sig-
nifi cantly reddened at sunset.  

 The opacity due to atomic lines (i.e. bound – bound transitions) is of great importance 
for the study of stellar spectrum. Figure  3.2  shows schematically the cross section of an 
atomic line. The manifestation of the absorption due to line opacities can be seen in the 
theoretical spectrum shown in Figure  1.8 . Since each ion of the various elements has its 
specifi c atomic energy levels, each of these ions will also have its specifi c atomic lines. 
The lines of each ion present in the plasma have to be included in any realistic opacity 
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calculation. In a typical stellar atmosphere calculation, tens of millions of atomic lines are 
normally included. The opacity due to atomic lines as well as line - broadening mechanisms 
that determine the exact shape of the line profi les will be discussed in more detail in 
Chapter  4 .   

 At the surface of cool stars, molecular absorption must also be taken into account. In 
hot stars, molecules cannot exist since they are destroyed by energetic collisions or photons 
from the more intense radiation fi eld. 

 Another important opacity source is the one due to the photoionisation of atoms. 
Figure  3.3  shows the photoionisation cross section from the fundamental energy state of 
hydrogen. For this specifi c case, one may notice that there is an energy threshold of 13.6   eV 
under which no photoionisation is possible from this atomic energy state. In other words, 
photons with energies below this threshold do not possess suffi cient energy to free the 
bound electron (in the fundamental state) from the nucleus (see discussion surrounding 
Figure  1.5  in Section  1.5 ). The frequency dependence of the cross sections for the bound –
 free transitions of hydrogen is 1/  ν   3 . Therefore, high - energy photons possess a smaller 
probability of ionising an atom than those with energies just above the ionisation threshold 
of the atomic level under consideration. The effect of bound – free opacity from the  n    =   2 
level of hydrogen (called the Balmer jump) on the radiation fi eld can be seen in Figure 
 1.8 . In this case, the radiative fl ux falls abruptly at   λ      <    3646    Å  that defi nes the threshold 
energy from the  n    =   2 level.   

 The total bound – free opacity for hydrogen is proportional to the sum of each of its 
energy level ’ s photoionisation cross section times the population of the respective level. 
A similar sum must be undertaken for each ion present of every element found in the 
plasma under consideration.   

     Figure 3.3     Photoionisation cross section as a function of energy of photons for the fundamental 
hydrogen energy state per absorber (i.e. per atom in the fundamental energy state). This cross section 
is taken from the Opacity Project database (Cunto, W.,  et al .,  Astronomy  &  Astrophysics , 275, L5 
( 1993 )).  
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 The precise calculation of the opacity spectrum  k  ν    depends not only on the thermody-
namic state of the stellar plasma (i.e. the local values of  T  and   ρ  ), but also on the abun-
dances of the species present. Such calculations also require the knowledge of atomic and 
molecular data for each of these species. The local physical conditions in the plasma are 
crucial since they infl uence the population of the various atomic energy levels as well as 
the ionisation fractions of the ions present. Saha and Boltzmann equations must then be 
solved. In this chapter, the opacity (which is a critical component of the radiative - transfer 
equation, see below) will be assumed to be a known physical quantity. A more detailed 
discussion concerning opacity calculations will be presented in Chapter  4 .  

  3.3   Specifi c Intensity and Radiative Moments 

 The radiation fi eld in stars can be characterized by a physical quantity  I  ν    called specifi c 
intensity. The specifi c intensity defi nes the directional value of the radiation fi eld. Since 
the specifi c intensity is defi ned per unit of solid angle, this section will begin with a 
reminder of this mathematical quantity. 

 A solid angle is the two - dimensional equivalent to an angle and its units are steradians 
(sr). A solid angle can be used to defi ne direction. In spherical coordinates, the solid angle 
subtended between the angles   θ   and   θ     +   d  θ  , and   ϕ   and   ϕ     +   d  ϕ   (or in other words the solid 
angle subtended by the surface d S ) is

   d
d

d dΩ = =
S

r0
2

sinθ θ ϕ     (3.5)  

 Special Topic  –  Negative Hydrogen Ion Opacity 

    Hydrogen can capture a second electron to form a negatively charge ion called H  −  . 
This ion possesses only one bound state from which the ionisation energy is 
0.754   eV. This ion can thus only exist near the surface of cooler stars (G and later 
spectral types). The threshold of the bound – free transition being at   λ      ≈    16   500    Å  
implies that its bound – free cross section is important in the part of the spectrum 
where the fl ux of these cool stars is relatively large. This ion can then signifi cantly 
contribute to the opacity not only through its bound – free transition, but also via 
free – free interactions. Since hydrogen is mostly neutral at the surface of these cool 
stars, the free electrons that intervene in H  −   opacity come mostly from metals that 
have a lower ionisation energy than hydrogen (see Appendix  D  for typical values 
of ionisation energies). Therefore, H  −   opacity is more important in stars with larger 
metallicities. It should be noted that a Saha equation, similar to those seen in 
Chapter  1 , can be written for the H  −   ion.  
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where d S  is the surface defi ned on Figure  3.4 . Here,  r  0  is the distance from the origin of 
the axis to the surface d S . Contrarily to area, a solid angle is independent of  r  0 . In one 
dimension, the equivalent equation is d  ϕ       =   d s / r  0 , where d s  is the arc length defi ned by the 
angle d  ϕ   at radius  r  0  from the origin of the axis. Please note that when d  Ω   is integrated 
over all solid angles (or directions) a value of 4 π  is obtained

   d d dΩ�∫ ∫∫= =ϕ θ θsin
00

2

4
ππ

π     (3.6)     

 Meanwhile, the one - dimensional equivalence of integrating d  ϕ   gives 2 π . 
 The specifi c intensity  I  ν    (see Figure  3.5 ) represents the quantity of energy emanating 

from the surface d A  (i.e. either being irradiated from or passing through this surface) per 
unit time in the spectral range between  ν  and   ν  +d  ν  , travelling between the solid angles 
  Ω   and   Ω     +   d  Ω  , crossing the surface d A  ′ =cos  θ  d A  perpendicular to the direction defi ned 
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     Figure 3.4     Illustration showing the solid angle subtended between the angles   θ   and   θ     +   d  θ  , and 
  ϕ   and   ϕ     +   d  ϕ  .  
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by the solid angle. Its units are erg/s/Hz/cm 2 /sr. The specifi c intensity defi nes the direc-
tional value of the radiation fi eld. The most important example for the specifi c intensity 
is that of blackbody radiation. In this case,  I  ν      =    B  ν   , where  B  ν    is the specifi c intensity of 
blackbody radiation (see Chapter  1 ). This result is of critical importance for understand-
ing the functioning of stars. The specifi c intensity per unit wavelength  I  λ    can also be 
defi ned.   

 The specifi c intensity   I r n tν
�
, ˆ,( ) generally depends on the frequency, on the position   

�
r 

(i.e. the vector   
�
r  may be defi ned as the vector between the centre of the star and the origin 

of the axis shown in Figure  3.5 ), on the direction of the unit vector   n̂   normal to the surface 
d S  (also shown in Figure  3.5 ) and on time. The vector   n̂   defi nes the direction of the specifi c 
intensity that may also be defi ned by the angles   θ   and   ϕ  . The specifi c intensity can be seen 
as a beam of photons crossing the surface d A  ′ =cos  θ  d A  in the frequency range between  ν  
and   ν  +d  ν   at point   

�
r going in the direction   n̂   within the solid angle d  Ω  . 

 Since  I  ν    is a quantity given per unit solid angle, strictly speaking, it cannot be considered 
a vector. However, it is often useful to represent it as such in fi gures to more easily visu-
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     Figure 3.5     Illustration defi ning the specifi c intensity  I  ν   .  
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alise its physical character. Since the specifi c intensity is a quantity defi ned per unit solid 
angle, in the absence of opacity or radiative sources it is independent of distance. 

 Except for when a star is in a rapid phase of evolution, the specifi c intensity may be 
assumed independent of time. This will be the case for the applications presented here. 

 For the purposes here and in the next chapter, the specifi c intensity will be applied to 
stellar atmospheres. Since the curvature of a star can often be considered negligible in its 
exterior layers, the so - called plane - parallel approximation can be adopted. In this approxi-
mation, it can be supposed that the atmosphere is composed of plane - parallel layers of 
infi nite extent in the  x  -  and  y  - axis, and semi - infi nite in the direction  –  z  (see Figure  3.6 ). 
All of the local physical properties (temperature, pressure, etc.) of the star then depend 
only on  z . As will be seen later in this chapter, the radiation fi eld at a certain depth will 
depend mostly on the physical properties of the layers relatively close it. A semi - infi nite 
atmosphere is therefore a reasonable approximation of a real stellar atmosphere that evi-
dently has a fi nite depth, since the very deep layers contribute negligibly to the radiation 
fi eld near the surface (for more details see Sections  3.4  and  3.6 ).   

 The direction   n̂   shown in Figure  3.5  can be defi ned by the angles   θ   and   ϕ  . However, in 
the plane - parallel approximation and due to its symmetrical properties relative to   ϕ  , for a 
given value of   θ   the value of  I  ν    is the same for all values of   ϕ  . The specifi c intensity 
can then be written  I v   ( z ,   θ  ). Another way of understanding this symmetry can be obtained 
by a simple mind experiment. An observer found in the atmosphere measuring the 
intensity of radiation for a given angle   θ   fi nds that it is independent of   ϕ  . The reason 
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     Figure 3.6     Diagram describing the plane - parallel approximation. The dimensions of the atmos-
phere in this approximation are infi nite in all directions except + z  that ends at the stellar surface. In 
this approximation, the specifi c intensity is independent of   ϕ  . The grey scale represents the growing 
density in the atmosphere.  
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is that since the atmosphere is infi nite in the  xy  - plane, the observer sees the same confi gu-
ration for the atmospheric matter for any value of   ϕ  . Therefore,  I  ν    is independent of   ϕ  . 
Another variable  u    =   cos  θ   is often used instead of   θ  , and the specifi c intensity is then 
written as  I v   ( z ,  u ). In the next section, the radiative - transfer equation will be introduced, 
which when solved, gives the specifi c intensity. But beforehand, quantities of great impor-
tance for stars that depend on  I  ν    are discussed. 

 A physical quantity that often intervenes in stellar astrophysics is the average intensity 
 J  ν   . It is defi ned as the average of the specifi c intensity over all solid angles (or directions)

   J z I z u I z uν ν νϕ θ θ( ) , , sin= ( ) = ( )∫ ∫∫
1

4

1

4 00

2

π π

ππ

d d dΩ�     (3.7)   

 By making the change of variable  u    =   cos  θ  , and therefore d u    =    − sin  θ  d  θ  , the second integral 
over   θ   shown above becomes

   I z u I z u u I z u uν

π

ν νθ θ, sin , ,( ) = − ( ) = ( )∫ ∫ ∫
−

−

d d d
0 1
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1

1

    (3.8)  

and since the fi rst integral (over   ϕ  ) equals 2 π , the average intensity is then simply

   J z I z u uν ν( ) = ( )
−
∫1

2 1

1

, d     (3.9)   

 The units of  J  ν    are the same as those of the specifi c intensity. 
 Another physical quantity that is of critical importance in stars and that can be calculated 

with the specifi c intensity is the monochromatic radiative fl ux  F  ν   , whose units are erg/s/
Hz/cm 2  (see Sections  1.3  and  1.4 ). The fl ux is important since it is a quantity that can be 
measured by astronomers and can therefore be used as a quantifi able entity to study stars 
and other astronomical objects. The net monochromatic fl ux of energy across a plane -
 parallel surface in the outgoing direction in a star, depends on the projection of the specifi c 
intensity in the outgoing direction   k̂  . The component of the specifi c intensity along the 
unitary vector   k̂   pointing in the direction + z , which is equal to  I v   n̂  ·  k̂   must therefore be 
evaluated for all directions. The monochromatic fl ux is then given by the integration of 
this component of the specifi c intensity over all solid angles (or directions) and since the 
scalar product   n̂  ·  k̂     =   cos  θ     =    u  the monochromatic fl ux is given by the expression

   
F z I z u n k I z u I z u uν ν ν νθ ϕ θ θ( ) = ( ) ⋅ = ( ) = ( )∫ ∫ ∫, , cos , sin� �� �d d d dΩ Ω

0

π

00

2

1

1

2
π

π∫ ∫= ( )
−

I z u u uν , d
  

  (3.10)   

 It should be noted that for the case when the specifi c intensity is isotropic, the radiative fl ux 
is nil since the quantity of radiative energy crossing a surface is the same for each opposing 
direction. More generally, when  I v   ( z ,  u ) is an even function with respect to  u , the fl ux is 
zero since the function  u  found in the integral above is odd. The physical meaning of this 
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result is that an equal amount of energy is going in the + z  and in the  −  z  directions. In a stellar 
atmosphere, the specifi c intensity is not isotropic since the temperature generally increases 
with depth. At a given depth, more energy is irradiated upwards from the layers below this 
depth than the energy irradiated downwards from layers above. This is due to the general 
increase of temperature with depth in stars. The specifi c intensity for  u     >    0 is then larger 
than for  u     <    0 and a net radiative fl ux exists in the outgoing direction.   

  Example 3.1:    In Chapter  1 , it was mentioned that the monochromatic fl ux emanating 
from the surface of a blackbody is  F v     =    π  B v  . Prove it. 

  Answer: 

 By defi nition, the specifi c intensity at the surface of a blackbody is equal to  B  ν    for 
0    ≤     u     ≤    1 and is nil for  − 1    ≤     u     <    0. The monochromatic fl ux is then

   F I u u B u u B
u

Bν ν ν ν ν= = = ⎡
⎣⎢

⎤
⎦⎥

=
−
∫ ∫2 2 2
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1 2
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  Example 3.2:    If a star possesses a specifi c intensity of the form  I v   ( z ,  u )   =    a v   ( z )   +   
 b v   ( z ) u , where the functions  a  ν   ( z ) and  b  ν   ( z ) are independent of  u , calculate  F  ν   ( z ). 

  Answer: 

 By defi nition, the monochromatic fl ux is
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(3.12)   

 The fl ux in this case only depends on the second term of the expression for  I v   ( z ,  u ) 
because this term is an odd function with respect to  u . The fi rst term does not con-
tribute because it is an even function with respect to  u .  

 As seen in Chapter  1 , and by defi nition of the effective temperature, the integrated 
radiative fl ux  F  at the surface of a star is

   F F T= =
∞

∫ ν ν σd eff

0

4     (3.13)   
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 In the plane - parallel atmosphere and assuming that the energy is solely transported by 
radiation (and not by the other two modes of energy transport: convection and conduc-
tion), the integrated radiative fl ux is constant throughout the atmosphere. This is true 
assuming that the star has reached equilibrium so that each layer irradiates as much 
energy as it absorbs. It also assumes that there are no energy sources in the atmosphere 
(i.e. no nuclear fusion) which is the case since the temperature there is too low for nuclear 
burning. 

 As will be discussed in Section  3.7  and in the next chapter, the fact that the integrated 
radiative fl ux is constant as a function of depth in the case where all of the energy is 
transported by radiation in a plane - parallel atmosphere can be useful, especially when 
calculating model atmospheres. However, in spherical stellar models, the integrated fl ux 
fi rst increases with depth since luminosity there is constant and is distributed on a smaller 
surface area (see Eq.  1.11  for instance). This is true up to the stellar core (where nuclear 
energy production takes place) since the luminosity decreases there as the centre is 
approached. More details concerning this property will be discussed in Chapter  5 . 

 It should, however, be noted that even if the integrated radiative fl ux is constant with 
depth in the case mentioned above, the monochromatic fl ux is not. In deeper and therefore 
hotter layers, the monochromatic fl ux distribution changes with depth due to Wien ’ s law. 
Also, since temperature varies with depth, so do ionisation fractions and the opacity spec-
trum. These changes lead to modifi cations in the frequency dependence of the monochro-
matic fl ux as a function of depth. The atomic lines in the spectra of various ions appear 
(or disappear) as the population of these ions change. 

 Once outside the star and supposing no more interaction with matter, the frequency 
distribution of the monochromatic fl ux will stay constant, but its intensity will decrease 
as 1/ d  2  due to geometrical dilution, where  d  is the distance from the observer to the star. 

 More generally, moments of order  n  of the radiative fi eld  M v   ( z ,  n ) may also be 
defi ned as

   M z n I z n u un
ν ν, ,( ) = ( )

−
∫1

2 1

1

d     (3.14)  

and thus,

   M z J zν ν, 0( ) = ( )     (3.15)  

   M z H z
F z

ν ν
ν,1
4

( ) = ( ) =
( )
π     

(3.16)
  

   
M z K zν ν, 2( ) = ( )

   
 (3.17)

   
 The moment of order  n    =   0 is simply  J  ν   . The moment of order  n    =   1 is called the Eddington 
fl ux  H  ν   . A simple relation exists between the Eddington fl ux and the true fl ux

   F Hν ν= 4π     (3.18)   

 The moment of order  n    =   2, represented by  K  ν   , and sometimes called the K - integral, is 
related to radiative pressure and will be discussed in (the optional) Section  3.12 .    
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 Special Topic  –  Radiative Energy Density 

    With the knowledge of the specifi c intensity, it is possible to evaluate the energy 
density of the associated radiation fi eld. The energy crossing a surface d A  from the 
specifi c intensity arriving at an angle   θ   with respect to the normal of that surface (see 
Figure  3.7 ), within an infi nitesimal solid angle d  Ω  , time d t  and frequency range d  ν   is

   d d d d dE I A tν ν θ ν= cos Ω     (3.19)     

 During the time d t , the volume d V  occupied by the radiation from the beam under 
consideration is d A cos  θ c d t  (see Figure  3.7 ). It is then trivial to write the equation 
above in terms of d V 

   d
d d d

E
I V

c
ν

ν ν= Ω
    (3.20)   

 When d V  is infi nitesimally small, the specifi c intensity inside this volume may be 
assumed to be constant. The energy density  U  ν    within the frequency interval d  ν   
can therefore be written as the following (by using the defi nition of  J  ν    given in 
Eq.  3.7 ) where the sum from the radiation coming from all directions is undertaken 
(i.e. the same argument made to fi nd the energy in an infi nitesimal volume for a 
given angle can be repeated for all directions)

   U
c

I
c

Jν ν ν= =∫
1 4

dΩ�
π

    (3.21)   

 The energy density  U  ν    at a given point is therefore proportional to the average 
intensity  J  ν    of the fi eld there.  
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     Figure 3.7     Illustration showing a beam of radiation crossing a surface d A . During the time 
interval d t , the volume d V    =   d A cos  θ c d t  is fi lled with radiation from the specifi c intensity in 
the given direction that crosses the surface d A .  
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  3.4   Radiative Transfer Equation 

 As seen in the previous section, to calculate the radiative fl ux of a star (Eq.  3.10 ), the 
specifi c intensity must be determined. To do this, one must solve a differential equation 
called the radiative - transfer equation. In this section, this equation will be introduced and 
each of its terms will be explained. Its demonstration, which is not of critical importance 
at this stage, is given in (the optional) Section  3.11 . The reader who wishes to cover that 
section may read it before continuing. 

 For the discussion here, the plane - parallel stellar atmosphere approximation will be 
used. Figure  3.8  shows schematically a beam of photons specifi ed by  I  ν    as it crosses a slab 
of matter of thickness d z . As the beam crosses the layer in question, some photons are 
absorbed or scattered by the particles of matter present. Meanwhile, others photons are 
added to  I  ν    since matter can also emit photons. The equation of radiative transfer is the 
following
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ν
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( , )
,

↑

↓
= − ( ) +

aacted from 

radiation added to 

I

I

ν

ν
↑

    (3.22)     

 The term on the left - hand side of this equation represents the variation to  I  ν    as it crosses 
the slab of stellar plasma of thickness d z . The variable  u  is present because, in reality, the 
beam travels a distance d z / u . The density is present for the simple reason that the opacity 
per unit mass  k  ν    is employed here. The fi rst term on the right - hand side of the equation 
represents the radiation subtracted from the beam due to absorption or scattering processes, 
explaining the minus sign found there. It is proportional to  I  ν    because the quantity of 
energy absorbed or scattered increases as the intensity of the beam increases. The last term 
 j  ν    is called the emissivity of matter and represents the radiation added to  I  ν    as it crosses 
the slab of matter. Its units are erg/Hz/s/ster/g. 
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     Figure 3.8     Illustration of a beam of photons characterized by  I  ν    that crosses a slab of plasma of 
thickness d z  at an angle   θ   and emerges as  I  ν      +   d I  ν   . The distance travelled through the slab is d z / u .  
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 In order to better comprehend its importance, the emissivity can be approximated by 
the following expression

   j B Jν ν ν ν νκ σ≈ +     (3.23)  

where   κ   ν    is the opacity due to absorption and   σ   ν    is the opacity due to scattering. The fi rst 
term of this expression is related to the radiation that is emitted by matter, which is set equal 
to the quantity of energy absorbed by matter. This explains why it is equal to   κ  v B v  , where 
for this approximation the radiation fi eld is simply assumed to be related to the Planck 
distribution. Meanwhile, the second term is related to the quantity of energy scattered. It 
depends on the scattering cross section and on the average intensity. This is a simplifi ed 
view of emissivity, but it is instructive and can lead to a better understanding of the interac-
tion between matter and radiation. It will be used below to gain insight into another impor-
tant physical quantity intervening in radiative transfer called the source function. 

I n
0 In(z) = ?

z

     Figure 3.9     Illustration of the problem discussed in Example  3.3  . 

  Example 3.3:    Suppose that a single beam of radiation with specifi c intensity   Iν
0 

arrives on the surface of a cold cloud of gas with no emissivity (see Figure  3.9 ). The 
cloud has a density   ρ   and an opacity  k  ν    both constant within it  . Find  I v   ( z ) (since a 
single direction is studied here,  u  is omitted from the arguments of  I v  ). 

  Answer: 

 Since for the beam in question  u    =   1 and that no emissivity exists in the cloud under 
consideration (  j  ν      =   0), the radiative - transfer equation becomes

   
d

d

I

z
k Iν

ν νρ= −     (3.24)     
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 In this last example, the specifi c intensity was found to decrease (or to be extinct) 
exponentially with respect to  z . This extinction increases as the opacity increases. The 
result found above is very useful to understand how radiation is transmitted through 
plasma. Of course, if emissivity would have been present, the dependence of the specifi c 
intensity as a function of depth would have been more complicated than the expression 
found above. This is due to the fact that in reality, as radiation is transported through a 
given layer in a star, photons are absorbed or scattered while others are emitted by the 
stellar plasma. 

 Writing the specifi c intensity as a function of  z  might at fi rst seem more natural, but it 
isn ’ t very useful. As seen in the last example, the specifi c intensity diminishes not only 
as a function of  z , but rather as a function of  k v  ρ z . A quantity defi ned by this product is a 
more natural variable to employ when studying radiative transfer in stars. The radiative -
 transfer equation may be rewritten by dividing it by  −  k  ν   
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 A new variable   τ   ν   , called the optical depth, can be defi ned such that

   d dτ ρν ν= −k z     (3.29)   

 The radiative - transfer equation then becomes
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 This equation may be directly integrated

   
d

d
I

I
k z

I

I z z
ν

ν
ν

ν

ν

ρ
0 0

( )
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and since  k  ν    and   ρ   are constants

   ln lnI z I k zν ν νρ( )( ) − ( ) = −0     (3.26)   

 which can be expressed as

   I z I k z
ν ν

ρν( ) = −0e     (3.27)   

 This is an idealized situation since emissivity is always present in plasma. By 
assuming that Eq.  (3.23)  represents emissivity, it is negligible for very low tem-
peratures or at frequencies where  B  ν    is very weak and when no scattering is present. 
However, the result found here is instructive to better understanding radiative 
transfer.  
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     Figure 3.10     Illustration of the concept of optical depth with respect to the stellar surface. The 
integration to obtain   τ   ν   ( z ) is performed from the surface to the depth  z  . 

 Note that the specifi c intensity is now written as a function of optical depth instead of  z . 
Figure  3.10  illustrates the optical depth and its relation to  z  which is

   τ ρν νz k z
R

z

( ) = − ∫ d
*

    (3.31)     

 The optical depth is nil at the surface of the star, and increases with geometrical depth. 
However, equivalently to distance the optical depth between any two points in a star can 
also be calculated. 

 The optical depth is a measure of the opaqueness of a medium at a given frequency. It 
possesses no physical units. It is a variable with greater physical signifi cance than  z  when 
studying radiative transfer. An optical depth scale may be constructed for any frequency. 
However, in stellar modelling it is customary to defi ne a standard optical depth scale at a 
single wavelength (at 5000    Å  for instance) or related to an average opacity (such as the 
Rosseland mean opacity that will be defi ned in Section  3.9 ). Each value of the standard 
optical depth scale (  τ   std ) chosen corresponds to a value of  z . To obtain a representative 
monochromatic fl ux spectrum, the following radiative - transfer equation must be solved 
for a given number of frequencies and values of  u 
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I u
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I u
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= ( ) −     (3.32)   

 More details surrounding such calculations will be given in Chapter  4 . 
 Outer stellar regions with optical depths much smaller than unity are commonly called 

optically thin regions, while deeper regions with optical depths far greater than unity are 
called optically thick regions. 

 The solution found in Example  3.3  can then be written   I z Iν ν
τν( ) = −0e  and as a con-

sequence, the original signal is attenuated by a factor e each time the optical depth 
increases by one unit. From this result, the reader may now better comprehend why 
the radiation fi eld emanating from stars comes from the external layers, i.e. those limited 
to optical depths of less than several units. This is also the reason why spectral classes 
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seen in Chapter  1  depend on the surface temperature of stars. Photons coming from 
deep regions of the atmosphere are extinct before they can reach the surface. However, 
this does not mean that the energy is not being transported to the surface. The energy 
of the photons created by nuclear fusion in the central regions is transported to the 
surface from layer to layer by photons of generally decreasing frequencies (due to 
Wien ’ s law) as the surface is approached. At a given layer, the frequency distribution 
of the radiation fi eld is related to the temperatures of the surrounding medium and is 
thus affected by the transport of energy. In Section  3.6 , the specifi c intensity at the 
surface of stars will be found to be a weighted sum of the source function  S v   (  τ  v  ) being 
defi ned as  

   S
j

k
ν ν

ν

ν
τ( ) =     (3.33)   

 Since neither the opacity nor the emissivity depends on direction, the source function is 
a function solely of depth (and of course frequency). 

 The radiative - transfer equation can then be written
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 By using the approximation for the emissivity given above (Eq.  3.23 ), the source function 
can be approximated by

   S
B J

ν
ν ν

ν ν

ν ν

ν ν

κ
κ σ

σ
κ σ

≈
+

+
+

    (3.35)   

 Therefore, when scattering processes are negligible  S  ν       ≈     B  ν   . Such an approximation can 
be very useful to gain insight into the radiative - transport process in stars. The knowledge 
of the true source function requires complex calculations. Such calculations are outside 
the scope of this book and will not be discussed here. However, the physical importance 
of the source function will become clearer in Section  3.6 , where the transfer equation will 
be solved.  

  3.5   Local Thermodynamic Equilibrium 

 In this section, the concept of local thermodynamic equilibrium (LTE) is discussed. The 
LTE concept comes in many forms. The fi rst form and the weakest, simply supposes that 
the atomic energy levels and ionic populations are determined solely by collisions in the 
plasma. Since the temperature increases with depth in stars, it is then not trivial to gauge 
the relevance of the local temperature. If the mean free path of the particles in the plasma 
is small compared to the distance scale on which the temperature changes within the 
system, the local temperature can be directly associated to the thermodynamic properties 
of the local plasma. This local value for the temperature may then be used to obtain the 
velocity distribution of the particles via the Maxwell distribution. The atomic - energy - level 
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and ionic populations can then be obtained, respectively, with the Boltzmann and Saha 
equations using the local thermodynamic conditions ( T  and  n  e ). 

 However, under certain conditions sometimes found in stars, radiative processes 
(photoexcitations and photoionisations) can become important and must be taken into 
account when calculating atomic - energy - level and ionic populations. Such calculations 
are commonly called non - LTE or NLTE. These computations are complicated since 
detailed rate equations taking into account the excitations and ionisations due to the 
radiation fi eld come into play. NLTE effects can be important in the outer regions of 
stars, because collisional processes are weaker due to the relatively lower densities 
present there. 

 A second and more stringent defi nition of LTE consists of assuming that matter emits 
radiation such that the source function is  S  ν      =    B  ν   . As shown above, this result is also 
obtained when using Eq.  (3.35)  and when scattering processes are negligible. The assump-
tion that the source function is equal to the Planck distribution is very useful for under-
standing radiative transfer in stars. For example, this approximation will be used in the 
next section for explaining the relative importance of the contribution of the various depths 
to the emerging radiative fl ux at the surface of stars. 

 A third and even stricter defi nition of LTE is assuming that the specifi c intensity is equal 
to the Planck distribution ( I  ν      =    B  ν   ), where the Planck function is determined by using the 
local temperature. This approximation also leads to  S  ν      =    B  ν   . 

 It should be noted that the last two defi nition of LTE encompass the supposition made 
in the fi rst defi nition described at the beginning of this section, i.e. that the various popula-
tions can be calculated with the use of the local physical conditions with the Boltzmann 
and Saha equations.  

  3.6   Solution of the Radiative - Transfer Equation 

 To evaluate the radiative fl ux present at a given depth inside a star and the fl ux emerging 
at its surface, one must solve the radiative - transfer equation in order to obtain the specifi c 
intensity. The aim of this section is to fi nd a general solution to the radiative - transfer 
equation. To achieve this goal, the radiative - transfer equation can be multiplied by the 
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 The terms found in this equation may be rearranged by dividing it by  u  and by transferring 
the fi rst term on the right - hand side of the equation to the left - hand side
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 The two terms on the left - hand side may be written as a derivative of   I u u
ν ν
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 From a purely mathematical point of view, this equation may be integrated between two 
points (or depths) within the star,   τ   ν ,   1  and   τ   ν    ,2 , where the subscripts 1 and 2 defi ne these 
two depths
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 In order to avoid confusion, the mute variable now employed in the integral is  t  instead 
of  τ   ν  . Integration of the left - hand side of this equation leads to
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and by rearranging the various terms this equation becomes
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 Figure  3.11  will aid in the physical interpretation of this general solution. The solutions 
for the outgoing and ingoing directions will be discussed separately. For the outgoing 

( u     ≥    0) directions (see Figure  3.11 (a)), the term   I u u
ν ν

τ τ

τ
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     Figure 3.11     Illustrative explanation of the general solution for the radiative - transfer equation for 
the outgoing (a) and ingoing (b) directions. The shaded areas represent the portion of the star that 
contributes to the intensity at depth   τ   ν    ,1  . 
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the specifi c intensity emanating from the depth   τ   ν    ,2  (i.e. the intensity due to depths larger 
than   τ   ν    ,2 ) that remains at   τ   ν    ,1  following its partial extinction while travelling between the 

two depths in question, which explains the term   e
τ τν ν, ,1 2−

u . The integral in this equation, 
which is a weighed sum of the source function, is related to the radiation emitted by the 
medium found between the depths   τ   ν    ,1  and   τ   ν    ,2  (the shaded area in Figure  3.11 (a)). In other 
words, the radiation travelling in the outgoing directions ( u     ≥    0) at depth   τ   ν    ,1  is due to the 
radiation coming from the layers below this depth. For a semi - infi nite atmosphere,   τ   ν    ,2    =    ∞ 

and the value of the intensity at   τ   ν    ,2  is therefore not necessary since   e
τ τν ν, ,1 2

0
−

→u . The 
specifi c intensity in the outgoing direction ( u     ≥    0) can then be written (see Figure  
3.11 (a))
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 For the ingoing ( u     <    0) specifi c intensity, the radiation is due to the matter above   τ   ν    ,1  (the 
shaded area in Figure  3.11 (b)). For this case (Eq.  3.41 ),   τ   ν    ,2    =   0 and  I v   (  τ  v   ,2   u )   =   0 when 
assuming that there is no incoming radiation on the stellar surface from exterior sources 
such as other stars. 2  The specifi c intensity for this case is therefore
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 The minus sign in front of the integral above assures that the specifi c intensity is 
positive since  u  is negative. These last two results enable the calculation of the 
specifi c intensity (and thus the fl ux) at all depths, providing the source function is 
known. 

 However, it should be noted that the resolution of the two equations shown above in a 
real star can be very complex since the source function depends on the emissivity of matter, 
which itself depends on the radiative fi eld. The solution of these equations is therefore far 
more complicated than a simple integration. More insight may be obtained about this 
complexity in the (advanced optional) Section  3.10 . 

 An important application of the equations found above is related to the radiation fi eld 
at the surface of stars since it offers a lot of physical insight about the stellar layers that 
contribute to the formation of this fi eld. For a semi - infi nite atmosphere, the specifi c inten-
sity at the surface can be obtained from Eq.  (3.42)  by knowing that for this case   τ   ν      =   0. 
This leads to the following expression
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   2      In a binary star system for instance, this approximation may not be valid since incoming radiation from the companion is not 
necessarily negligible. Such a process may cause heating on the portion of the star facing its companion and along with rotation 
can lead to it becoming a variable star (see Chapter  5 ).  
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 The specifi c intensity at the surface is thus a weighted sum of the source function through 
the atmosphere. If the source function is approximated by the Planck function ( S  ν       ≈     B  ν   ), the 
specifi c intensity at the surface then becomes a weighted sum of the Planck functions 
coming from the various depths. Also, since the term inside the integral above is weighted 

by the factor   e
−τν

u , only the superfi cial layers (those with optical depths of less than or 
equal to the order of unity) contribute signifi cantly to the radiation fi eld emanating from 
the stellar surface. That fact is fundamental as to why it is solely the temperatures of the 
surface layers that determine the spectral type of stars: the photons exiting a star come 
from layers with optical depths of less than a few units. 

 Since the opacity depends on frequency, radiation at frequencies with relatively large 
opacities will come from shallower layers (in  z ) than radiation at frequencies with lower 
opacities. For instance, the radiation fi eld at the central (or natural) frequency of an atomic 
line, will be formed in (or will come from) shallower layers than the photons found in the 
wings of the line. The wings of an atomic line are defi ned as the parts of the line profi le 
found farther away from, and on either side of, the natural frequency. 

 Also, note that even though there is a  u   − 1  term in the integral above, it does not diverge 

for  u    =   0 (or   θ     =    π /2). The reason being that when  u  tends toward zero, the term   e
− t

u  tends 
towards zero faster than the  u   − 1  term diverges to infi nity.    

  Example 3.4:    Calculate the specifi c intensity at the surface of an isothermal gas 
cloud (with known temperature) with the assumption  S  ν      =    B  ν   , where  B  ν    is the Planck 
function associated to the temperature of the cloud. Use the semi - infi nite atmosphere 
approximation and assume that the cloud has a very large optical depth. 

  Answer: 

 Assuming no radiation source exists outside this cloud, the specifi c intensity is nil 
for the ingoing direction. For the outgoing direction the intensity is formally
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 Since the cloud is isothermal, the source function is independent of depth and it may 
be taken out of the integral above
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 Here, since the cloud is optically thick it was assumed that the integral above could 
be summed to infi nity. The specifi c intensity for an optically thick isothermal gas is 
therefore simply equal to the Planck function.  
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 Special Topic  –  The Sun ’ s Corona and the Solar Cycle 

    The solar corona is an exterior region of the Sun that reaches several million 
kilometres outside the surface (the surface of the Sun for the purposes here may 
be defi ned as where   τ      ≈    1). It is composed of a very tenuous and hot gas that has 
a temperature of up to one to two million degrees. This gas is heated by nonthermal 
processes. A possible origin for heating the corona comes from a phenomenon 
called magnetic - line reconnection. Magnetic lines at the surface of the sun are 
continuously rearranged so as to avoid physically forbidden magnetic line 
intersections, and this process is believed to heat the corona. 

 One could think that such a hot gas would dominate the radiative fl ux emerging 
from the Sun. However, since the density of the gas composing the solar corona 
is extremely weak (and so is its optical depth) this component of the Sun does not 
contribute much to the solar fl ux (except at very high frequencies such as X - rays). 
Equation  (3.44)  shows that the contribution from very weak optical depths are not 
as important as those from optical depths of values on the order of unity (i.e. the 
atmosphere of the Sun). The intensity of the radiation coming from the corona is 
negligible as compared to the radiation coming from the solar disk, which renders 
the corona invisible in most wavelengths. However, the corona can be seen during 

  Example 3.5:    Assuming a given stellar atmosphere possesses a source function 
 S v   (  τ  v  )   =    a v     +    b v  τ  v  , where  a  ν    and  b  ν    are functions of frequency, calculate the specifi c 
intensity at its surface. 

  Answer: 

 Assuming no radiation source exists outside this star, the specifi c intensity is nil for 
the ingoing direction. For the outgoing direction the intensity is formally
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     Figure 3.12     The solar corona as seen during a total solar eclipse  (NASA/courtesy of 
nasaimages.org). (see colour plate.)   

   3      In reality, sunspots are not dark since their temperature is approximately 4500   K or more. They appear dark at the surface of 
the Sun because of the contrast with the brighter (hotter) surrounding regions.  

a total solar eclipse (see Figure  3.12 ), since the radiation coming from the photo-
sphere is blocked by the Moon. The corona then becomes visible as compared to 
the dark sky.   

 The corona can also be observed with an instrument conceived by the French 
astronomer Bernard Lyot (1897 – 1952) called a coronagraph. A coronagraph is an 
optical system in which a disk obscures the solar surface and thus mimics a solar 
eclipse. Figure  3.13  shows a picture taken while using a coronagraph to which is 
superimposed a photo of the Sun ’ s surface. Solar prominences can be observed 
near the surface. These structures are due to magnetic fi eld lines (or loops) that 
extend outside the solar surface. They are formed of charge particles (mainly 
hydrogen) following these extruding magnetic lines.   

 Dark spots, called sunspots, can also be observed on the surface of the Sun (see 
Figure  3.14 ). Sunspots are related to regions of more intense magnetic fi elds. They 
are darker than the surrounding regions due to their lower temperature. 3  This tem-
perature drop (up to approximately 1500   K) is related to the presence of large 
magnetic fi elds in sunspots. Magnetic fi elds can contribute to the total pressure via 
the so - called magnetic pressure. Therefore, the contribution of the gas pressure to 
the total pressure diminishes and leads to a lower temperature. Sunspots are tran-
sient features that last from approximately a day up to several months. They also 
appear in pairs (of opposite magnetic polarity) caused by the ingoing and outgoing 
magnetic lines from the solar surface.   
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     Figure 3.13     A picture of the solar corona taken with a coronagraph, superimposed 
on a picture of the solar surface, using a H  α   fi lter  (photo courtesy of Jacques - Clair No ë ns 
and the Associated Observers on the instrument CLIMSO from the Observatoire 
Midi - Pyr é n é es).   

     Figure 3.14     Photo of a sunspot on the solar surface. The darker central region is called 
the umbra, while the lighter region is called the penumbra where the magnetic fi eld is rela-
tively smaller than in the umbra. Also seen on this picture are hundreds of granules. These 
granules measure about 1000   km and are manifestations of convective cells of matter related 
to convective energy transport  (NASA/courtesy of nasaimages.org).   

 The number of sunspots and their position relative to the equator is a periodic 
phenomenon with a period of approximately 11 years that is commonly called the 
solar cycle. This is due to the inversion of the polarity of the Sun ’ s magnetic fi eld 
over that period. During the solar cycle, the sunspots migrate towards the solar 
equator (see Figure  3.15 ) and the number of sunspots on the solar surface also varies 
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     Figure 3.16     The number of sunspots observed over the last three centuries.  

with time with a period of 11 years (see Figure  3.16 ). The sunspots follow the mag-
netic lines that are distorted by the differential rotation of the Sun (i.e. the equator 
turns more rapidly than upper latitudes). The generally dipolar magnetic fi eld 
present at the beginning of a solar cycle is progressively transformed into a toroidal 
fi eld to eventually regenerate into a generally dipolar fi eld of opposite polarity. 
Figures showing the migration of the sunspots over time such as Figure  3.15  are 
often called butterfl y diagrams since the shape of the sunspot distribution in these 
fi gures resembles the wings of a butterfl y. They are also sometimes called Maunder ’ s 
butterfl y diagrams that are named after the British astronomer Edward W. Maunder 
(1851 – 1928). The period for a full cycle during which the solar magnetic fi eld polar-
ity returns to its original confi guration is approximately 22 years.   

 Another structure that is visible in Figure  3.14  is that of granules. Granules are 
visual manifestations of the presence of rising and sinking cells of plasma related 
to the convective transport process taking place in the outer region of the Sun.  

     Figure 3.15     Figure showing the migration of sunspots towards the equator during the solar 
cycle  (NASA/courtesy of nasaimages.org).   
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  3.7   Radiative Equilibrium 

 In Chapter  1 , three modes of energy transport were briefl y discussed: radiative, convective 
and conductive transport. Radiative equilibrium is a state defi ned as when all of the energy 
is transported by radiation. Of course, this state is not achieved in all regions or at all 
evolutionary stages of stars, since for example convection can sometimes be present (i.e. 
as in certain parts of the Sun). It should be mentioned that in stellar atmospheres, conduc-
tive transport is never important. Convection and conduction will be seen in more detail 
when discussing stellar interiors in Chapter  5 . 

 Since there exists no energy sources or sinks in a stellar atmosphere, the amount of 
energy absorbed by a given layer is equal to the energy that it emits. In the plane - parallel 
approximation, this leads to a constant integrated fl ux throughout the atmosphere since the 
energy emitted is distributed over the same area independently of depth. By defi nition of 
the effective temperature, the integrated fl ux is   F T= σ eff

4  for all depths (see Section  1.4 ). 
 To extract information for an atmosphere in the state of radiative equilibrium, the 

radiative - transfer equation
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 Since the integrated fl ux
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 is constant throughout the atmosphere, the left hand - side of Eq.  (3.51)  in nil, and this 
equation may then be written
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 The left - hand side of this equation represents the total energy absorbed or scattered by 
matter and the right - hand side represents the energy that it radiates. A simple integration 
over all solid angles, and using the defi nitions of  J  ν    and  S  ν    given earlier, leads to the fol-
lowing equation
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 If the source function is approximated by the following expression discussed in Section  3.4 
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 the integral above can be simplifi ed to give
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 Only the absorption opacities (  κ   ν   ) are present in these last two equations. Scattering proc-
esses (  σ   ν   ) are absent because no photons are destroyed or created by this process. This 
equation shows that the quantity of energy absorbed by the medium is equal to the amount 
it emits. But, it also has a deeper physical signifi cance. This equation demonstrates that 
the local properties of the stellar plasma, defi ned by the local Planck function  B  ν   , depend 
on more global (or nonlocal) properties defi ned by the average intensity  J  ν   . The value of 
 J  ν    is the directional average of the specifi c intensity, which itself is a weighted sum of the 
source functions of the surrounding area and therefore  J  ν    is nonlocal in nature. As will be 
seen in (the advanced optional) Section  4.5.4 , this equation can lead to a method for cor-
recting the temperature during the modelling of a stellar atmosphere.  

  3.8   Radiative Transfer at Large Optical Depths 

 The aim of this section is to estimate the specifi c intensity and its moments at large optical 
depths (  τ   ν       >>    1), or in other words, in the interior regions of stars. The results found here 
will be helpful to better understand radiative - energy transport in stellar interiors. This topic 
will be discussed in Chapter  5 . 

 At large optical depths, the mean free path of photons is relatively small and therefore 
the radiative fi eld depends mostly on the local conditions. In this context, the source func-
tion at each depth can be approximated by the Planck function calculated at the local 
temperature, i.e.  S  ν    (  τ   ν   )    ≈     B  ν   (  τ   ν   ). The source function at a depth  t  can then be written as a 
Taylor series of the function  B  ν    around the depth   τ   ν   
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 Using this expression for the source function leads to simple equations for  I   ν  ,  J   ν   and  H   ν   
at large optical depths. Such simple expressions are very insightful and help in better 
understanding radiative transfer in stars. These expressions can also be very useful to 
undertake calculations in stellar interiors. 
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 In Section  3.6 , it was seen that for  u     ≥    0, the specifi c intensity at depth   τ   ν    is
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 By inserting the expression for source function given in Eq.  (3.58) , the specifi c intensity 
becomes
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 By applying the following change of variable   x
t
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this equation can be written
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!, the specifi c intensity fi nally becomes
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 It can be shown (see Exercise 3.9) that the exact same result is found for  u     <    0, 
therefore
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 It is then trivial to show that at large optical depths, the average intensity is
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 The fl ux and the K - integral can also be easily obtained
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 By developing a Taylor series for  B   ν  , it can be shown (see Exercise 3.10) that its 
derivatives vary as
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 Therefore, the terms containing higher - order derivatives of  B   ν   can be neglected at large 
optical depths and approximate values for the specifi c intensity, the average intensity, the 
radiative fl ux and the K - integral are given by the following expressions
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 The fi rst term on the left - hand side of the equation for the specifi c intensity at large optical 
depths is isotropic and it does not contribute to the fl ux. In this approximation, solely the 
second term is responsible for the fl ux. The relative value of the isotropic term of  I   ν   as 
compared to its anisotropic term at large optical depths may be estimated by using the 
results found above (see Eq.  3.68  and  3.70 )
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 Here, the fact that the frequency integrals of  H   ν   and  B   ν   vary, respectively, as   Teff
4  and  T   4  

was used to estimate the dependence of   
H

B
ν

ν
 with respect to temperature (or depth). Since 

in stellar interiors  T     >>     T  eff , this result shows that the anisotropic term in  I   ν   is extremely 
small there. In other words, there is, relatively speaking, only a little more energy fl owing 
in the outgoing ( u     >    0) direction than in the ingoing direction ( u     <    0). 

 Since d  τ  v     =    −  k v  ρ  d z , the fl ux may also be written as a function of the temperature gradi-
ent as follows
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 This equation is very rich in physical insight. First, and assuming all else equal, at frequen-
cies with large opacities the monochromatic fl ux is weaker. The radiative fl ux that is 
transported through the star preferably passes through frequencies that are not too opaque. 
Secondly, the fl ux is proportional to   −  d T /d z , so the fl ux increases proportionally to the 
temperature gradient. This is a well - known result of thermodynamics. Finally, it should 
be mentioned that the monochromatic fl ux is not proportional to the local Planck function, 
but rather to its derivative with respect to temperature. 

 This approximation for the fl ux is often used in numerical models that compute stellar 
structure since high precision for the radiative fi eld is generally not warranted there. The 
equation above is commonly called the diffusion approximation since it has the mathemati-
cal form of a typical diffusion equation, i.e. the fl ux being proportional to a gradient 
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(historically called Fick ’ s law). With the knowledge of the opacity and the stellar density 
and temperature profi les (i.e. their dependence with depth), this equation enables the direct 
calculation of the monochromatic fl ux without having to solve the radiative - transfer equa-
tion. This approximation of the radiative fl ux at large optical depths is one of the so - called 
equations of stellar structure that will be discussed in Chapter  5 . However, in stellar 
atmospheres, the radiative - transfer equation must be solved in detail since the diffusion 
approximation is not valid at small optical depths. This topic will be discussed in more 
detail in Chapter  4 .  

  3.9   Rosseland and Other Mean Opacities 

 As seen earlier (see Figures  3.2  and  3.3  for example), the monochromatic opacity in stellar 
plasma has a complex frequency dependence. It is thus diffi cult to draw general conclu-
sions from the opacity at a single frequency. The defi nition of an average opacity could 
then be helpful. Several average opacities are commonly used in stellar astrophysics, but 
the most prevalent one is the Rosseland opacity, named after the Norwegian astronomer 
Svein Rosseland (1894 – 1985) who fi rst introduced it. 

 The Rosseland opacity ( k  R ) is defi ned such that the total integrated Eddington fl ux  H  is 
given by an equation similar to the one found for the monochromatic fl ux (Eq.  3.73 ) in 
stellar interiors (i.e. at large optical depths)
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where  B  is the integrated Planck function and where the monochromatic opacity found in 
Eq.  (3.73)  is replaced by  k  R . An expression for the Rosseland opacity may be found by 
integrating the fl ux given by Eq.  (3.73)  over all frequencies and by equating it to the 
expression given just above
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and this leads to the Rosseland mean opacity
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 Since   B T=
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, the Rosseland mean may also be written as follows
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 Since the Rosseland opacity depends on an integration of the inverse of  k  ν   , care must be 
taken to properly calculate this physical quantity. For instance, if missing opacity sources 
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makes it such that  k  ν    is nil or unduly small, it can skew the value obtained for the Rosseland 
opacity. 

 The Rosseland mean opacity has properties similar to the monochromatic opacity. It 
depends on both the local physical conditions of the plasma and on the abundances of the 
elements present there. Also, when the monochromatic opacity is smaller or larger, so is 
the Rosseland mean. By Eq.  (3.74) , if for certain reasons or under certain conditions the 
Rosseland mean becomes large, the temperature gradient has to increase (assuming the 
same integrated fl ux). This relates to the fact that when the opacity increases, there exists 
more resistance to radiation transport, and a larger temperature gradient is needed to 
sustain radiative - energy transport. As will be seen in Chapter  5 , this property of radiative -
 energy transport is critical for properly understanding stellar interiors. It will be shown 
that stellar regions with large opacities are prone to develop convective transport since 
radiation cannot by itself furnish the necessary fl ux to transport the energy. 

 Since Rosseland opacity calculations are time consuming, grids of this physical quantity 
can be pretabulated in order to save computing time when numerically modelling stars. 
Rosseland opacity grids are usually built on a given temperature - density grid (or variations 
thereof, see discussion below) and for a number of element mixtures (i.e. different values 
for  X ,  Y  and  Z ). Instead of showing a three - dimensional variation of the Rosseland opacity 
versus temperature and density, a two - dimensional cut of such data will be shown here. 
Figure  3.17  shows the Rosseland opacity as a function of temperature from the results of 
the Opacity Project (OP), which consists of a database of atomic data, radiative opacities 
and other astrophysical data made available for use by the scientifi c community. The OP 
opacities include H, He and 15 metals (C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe 
and Ni). The results shown in that fi gure are for densities satisfying the following relation

   log logR
T

= = −ρ
6
3

3     (3.78)     

     Figure 3.17     Rosseland mean opacity as a function of temperature from the Opacity Project data. 
The densities used are those for log  R    =    – 3. Three curves are shown for different abundances that 
are defi ned in the fi gure. Also identifi ed in the fi gure is the position of the  Z  - bump.  
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 where  T  6  is temperature in units of 10 6  K and  R  is a variable defi ned as   
ρ

T6
3  that serves 

as the second dimension for the opacity tables (the fi rst dimension being temperature). 
The value of log  R    =    – 3 is chosen because it is close to corresponding values found inside 
typical stars. The grids on which the opacities are calculated use grid variables such as 
log  R  instead of density because a  T – R  grid has a larger number of points of interest for 
the conditions encountered in stars than does a  T –  ρ   grid. In other words, choosing a rec-
tangular  T –  ρ   grid leads to a larger number of useless grid points (i.e. that are of no interest 
for applications in stars). 

 Several curves are shown in Figure  3.17 . First, the curve (dotted curve) shown for a 
pure hydrogen ( X    =   1) medium will be discussed. Two maxima can be seen between log 
 T    =   4 and 5. The fi rst maximum (found at the lower temperature) is due to the opacity 
from hydrogen found in excited states (for example the opacity due to Balmer lines and 
the Balmer jump). At even lower temperatures, H  −   opacity dominates. The second 
maximum is due to transitions from the fundamental state of hydrogen ( n    =   1). Lyman 
transitions are only of importance at these higher temperatures since the radiation fi eld is 
more intense in the ultraviolet part of the spectrum in these hotter regions. At even higher 
temperatures, the Rosseland opacity decreases due to hydrogen ionisation. Opacity there 
is mostly due to electron scattering. 

 Two other curves are shown in Figure  3.17 . The fi rst of these two curves (solid curve) 
supposes the presence of hydrogen ( X    =   0.7), helium ( Y    =   0.28) and metals ( Z    =   0.02), 
while the other curve (dashed curved) shows the Rosseland mean for a higher metallicity 
( Z    =   0.05). The reader is reminded that the metallicity for the Sun is approximately 
 Z    =   0.017. Not surprisingly, as the metallicity increases, so does the Rosseland mean. An 
interesting feature that is identifi ed in this fi gure is that of the so - called  Z  - bump. This 
bump is defi ned by a particularly large increase of the opacity beginning near log  T     ≈    5.2 
due to the opacity of the metals. It is believed that this feature might be responsible for 
the pulsations of certain types of stars (this aspect of stellar astrophysics will be discussed 
further in Chapter  5 ). For more detailed information about Rosseland mean opacities and 
the Opacity Project calculations, the reader is referred to M.J. Seaton  et al .,  Monthly 
Notices of the Royal Astronomical Society , 266, 805 ( 1994 ). 

 Other mean opacities are also occasionally used in astrophysics. Two such mean opaci-
ties are the fl ux mean

   k

k F

F
F

d

d

=

∞

∞

∫

∫

ν ν

ν

ν

ν

0

0

    (3.79)  

and the Planck mean
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 However, since these average opacities are much less prevalent and useful than the 
Rosseland mean, they will not be discussed any further in this book.  

  3.10   Schwarzschild – Milne Equations  †  †   

 In Section  3.6 , the solution for the specifi c intensity was found. In this section, these results 
will be used to fi nd general equations for the average intensity and the fl ux. These expres-
sions were, respectively, found by the astrophysicists Karl Schwarzschild (1873 – 1916) and 
Edward Arthur Milne (1896 – 1950) and are called the Schwarzschild – Milne equations. 

 First, when the general solution found for the specifi c intensity (Eq.  3.42  and  3.43 ) is 
inserted in the expression for the average intensity expression, it becomes
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    (3.81)   

 The   two integrals found on the right - hand side of this equation represent the contribution 
to the average intensity from the layers respectively found above and below the optical 
depth   τ   ν   .This equation may be simplifi ed by applying a change of variable for each of the 
two integrals found on its right - hand side. For the fi rst of these two integrals (where  u     ≤    0), 
the variable  y    =    − 1/ u  is defi ned and thus d u    =   d y/y  2 . For the second integral (where  u     ≥    0), 
the following change of variable is used:  y    =   1 /u  and thus d u    =    − d y / y  2 . The average inten-
sity then becomes
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 This expression can be simplifi ed by using mathematical functions called exponential 
integrals  E n   defi ned as
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    (3.83)   

 Special Topic  –  Properties of the Exponential Functions 

    Here are two very useful properties for  E n  ( x ):
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 The average intensity can then be written
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 Since the argument of the exponential integral is positive for both of these integrals, 
namely   τ   ν        −      t     ≥     0  for the fi rst integral and  t     −      τ   ν       ≥     0  for the second term, this expression 
may be written

   J S t E t tν ν ν ντ τ( ) = ( ) −( )
∞

∫1

2
1

0

d     (3.87)   

 which is called the Schwarzschild equation. 
 An operator  Λ , called the lambda operator, may be defi ned such as

   Λν ντf t f t E t t( )( ) = ( ) −( )
∞

∫1

2
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d     (3.88)  

and the average intensity can therefore be written in terms of the lambda operator

   J S tν ν ν ντ( ) = ( )( )Λ     (3.89)   

 A similar expression can also be found for the Eddington fl ux, called the Milne 
equation

   H S t E t t S t E t t S tν ν ν ν

τ

ν ν
τ

ντ τ τ
ν

ν

( ) = ( ) −( ) − ( ) −( ) = ( )∫ ∫
∞1

2

1

2

1

2
2

0

2d d EE t t2

0

−( )
∞

∫ τν d     (3.90)   

 or

   H S tν ν ν ντ( ) = ( )( )Φ     (3.91)  

where the phi operator  Φ   v   is defi ned as

   Φν ντf t f t E t t( )( ) = ( ) −( )
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d     (3.92)   

 It can also be shown that the K - integral is given by the following expression

   K S t E t tν ν ν ντ τ( ) = ( ) −( )
∞

∫1

2
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0

d     (3.93)   

 As mentioned previously for the case of the solution of the radiative - transfer equation 
found in Sections  3.6 , the solution of the Schwarzschild – Milne equations are not as direct 
as it may seem. The solutions of these equations depend on the source function that in 
turn depends on the radiation fi eld (Eq.  3.33  and  3.35 ). There exists a nonlocal coupling 
for the radiation fi eld since the radiation fi eld at a given depth depends on the fi eld found 
in other layers. In general, the radiative - transfer problem is therefore quite complex. For 
more information about such advanced concepts of radiative transfer, the reader is referred 
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to Mihalas, D.,  Stellar Atmospheres , W.H. Freeman and Company, San Francisco ( 1970 
and 1978 ) and Chandrasekhar, S.,  Radiative Transfer , Dover, New York ( 1960 ).  

  3.11   Demonstration of the Radiative - Transfer Equation  †   

 Figure  3.18  shows a beam of radiation, characterized by the specifi c intensity that crosses 
an element of matter of area d A  and thickness d s . The orientation of the surface d A  was 
chosen so that it is perpendicular to the direction of the specifi c intensity. From this fi gure, 
it is clear that d s    =   d z / u . This result will be used below to write the radiative - transfer 
equation as a function of  z  instead of  s . The monochromatic opacity  k  ν    is defi ned such that 
the energy taken away (either by absorption or scattering processes) from  I  ν    between the 
solid angles   Ω   and   Ω     +   d  Ω  , during the time d t , by the mass within the volume d A d s , 
between the frequencies  ν  and   ν  +d  ν   is

   d d d d d dE k I t A sν ν νρ ν= Ω     (3.94)     

 Since matter can also add energy to the radiation fi eld, we may defi ne a term called the 
emissivity  j  ν    such that the energy added by the mass within the volume d A d s , between the 
frequencies  ν  and   ν  +d  ν   and between the solid angles   Ω   and   Ω     +   d  Ω   is

   d d d d d dE j t A sν νρ ν= Ω     (3.95)   

 Since the emission of radiation by unit mass depends solely on the properties of matter and 
on the local physical conditions, the specifi c intensity is absent in this last expression. 

 When the two equations above are subtracted from one another, it gives the global 
amount of energy either added or taken away from the specifi c intensity, depending on 
the relative strength of these two terms. This leads to a variation d I  ν    of the specifi c intensity 
that may be written as follows

In

ds

dA

q

z

⎧
⎨

⎩

     Figure 3.18     Illustration of a beam of radiation defi ned by the specifi c intensity  I  ν    arriving perpen-
dicular to the surface d A  of a mass element of volume d A d s  . 
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   d d d d d d d d d d d d d d dI t A k I t A s j t A sν ν ν νν ρ ν ρ νΩ Ω Ω= − +     (3.96)   

 The differential d s  is absent from the left - hand side of the equation by virtue of the defi ni-
tion of  I  ν   . 

 As mentioned previously, since d s    =   d z/u , the equation above may be written as a func-
tion of  z  instead of  s  and rearranged to give

   
u I

z
k I j

ρ
ν

ν ν ν
d

d
= − +     (3.97)   

 which is the well - known radiative - transfer equation.  

  3.12   Radiative Acceleration of Matter and Radiative Pressure  †   

  3.12.1   Radiative Acceleration of Matter 

 Since photons possess momentum, when radiation interacts with matter, momentum is 
transferred from the photons to atoms. An element of matter found in a star absorbs and 
scatters photons coming from all directions. However, since a net fl ux of radiative energy 
exists in the outgoing direction, momentum is transferred to the mass element in this 
direction. This transfer of momentum may be expressed as an acceleration of matter, which 
is commonly called radiative acceleration. In a star, this force pushes matter outwards 
because of the outgoing radiative fl ux, in other words, because of assumed spherical sym-
metry, the only direction in which there can be a net radiative acceleration is the outgoing 
direction. This affects the pressure gradient within stars (see below). 

 In the previous section, the energy transmitted to an element of matter of volume d A d s  
(see Figure  3.18 ) from a beam of radiation travelling in the direction normal to the surface 
d A  was found to be

   d d d d d dE k I t A sν ν νρ ν= Ω     (3.98)   

 For radiation, the relation between momentum and energy is  p    =    E / c . In a star, the com-
ponent of momentum d p  ν    transferred to the element of mass in the direction  ẑ  from photons 
with frequencies between   ν   and   ν  +d  ν   contained in the specifi c intensity  I  ν    is

   d
d

d d d d dp
u E

c

u

c
k I t A sν

ν
ν νρ ν= = Ω     (3.99)   

 The momentum due to photons arriving from all directions can be obtained by integrating 
over all solid angles, and by using the defi nition of the Eddington fl ux, this gives

   d d d d dp
c

k H t A sν ν νρ ν= 4π
    (3.100)   

 By integrating over the entire spectrum, the integrated momentum d p  transferred to the 
mass element is found to be
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   d d d d dp
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 Since force is equal to the derivative of momentum with respect to time, for the case under 
consideration here, the radiative force  F  rad  can be written
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where   ρ  d A d s  is the mass of the matter element under consideration and where an accelera-
tion  g  rad  is introduced and is defi ned as the radiative acceleration of matter. From the 
equation above, the following expression is found for the radiative acceleration

   g
c

k Hrad d=
∞

∫4

0

π
ν ν ν     (3.103)   

 Radiative acceleration is proportional to both opacity and fl ux. At higher opacities, more 
photons are absorbed or scattered and this contributes to radiative acceleration. It might 
at fi rst seem strange that scattering processes intervene in  g  rad  since these photons are not 
absorbed. However, during the scattering process, momentum is transferred to matter. For 
example, when atoms absorb photons to re - emit them soon after (which is a scattering 
process, see Figure  3.1 (a)), momentum is gained during the absorption. And since the 
emission of the photons is isotropic, no net momentum is lost by matter thereafter. 
Therefore, momentum is gained by the atom during such an interaction. Also,  g  rad  is pro-
portional to the fl ux (instead of other moments of the radiation fi eld for instance) because 
only the anisotropic portion of the radiative fi eld contributes to radiative acceleration. For 
example, for an isotropic radiation fi eld, the same amount of force is exerted on the oppos-
ing sides of a given stellar plasma mass element and no net acceleration ensues. 

 The expression for radiative acceleration given above is the total radiative acceleration 
of matter. In reality, each species is accelerated by radiation and the intensity of this 
acceleration depends on its opacity spectrum. Therefore, the various species have different 
radiative accelerations. This leads to the relative diffusion of the species within a star that 
can lead to structural changes. This subject will be discussed in Chapter  7 . 

 The hydrostatic equilibrium equation must therefore include the force exerted by radia-
tion. The effective acceleration on the medium is therefore equal to the vectorial sum of 
the gravitational and the radiative acceleration. The gradient of the gas pressure  P  is thus 
equal to

   
d

d
rad

P r

r
r g r g r

( )
= − ( ) ( ) − ( )[ ]ρ     (3.104)   

 This equation leads to a very interesting and important result. In massive stars, the surface 
temperature can be large enough so that  g  rad     >     g  due to the large radiative fl ux present at 
their surface. In this case, matter is pushed out of the star and radiative acceleration of 
matter imposes an upper limit to stellar masses. The following example illustrates this 
property.    
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  Example 3.6:    Using the concept of radiative acceleration, estimate the upper limit 
for the effective temperature for stars while assuming that the opacity is dominated 
by electron scattering (assume a star with surface gravity log  g    =   4). 

  Answer: 

 The outer regions of a star with a surface gravity  g  stay bound to the star up to the 
point where radiative acceleration equals gravitational acceleration

   g
c

k H grad d= =
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∫4

0

π
ν ν ν     (3.105)  

where

   k
n

ν
σ
ρ

= e T     (3.106)   

 since only electron scattering is considered here (see Eq.  3.4 ). For stars with suffi -
ciently large  T  eff  (or mass) such as to lead to  g  rad     >     g , these outer layers are pushed 
out by radiation pressure. 

 By inserting the electron scattering opacity in the  g  rad  equation and equating 
it to the surface gravity of the star under consideration, the following relation 
ensues
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 Since the temperature at the surface is relatively large for massive stars, the assump-
tion that all of the hydrogen is ionised can be made. To estimate the maximal 
effective temperature, a star made of pure hydrogen may be considered. The density 
is then

   ρ = + ≈ =n m n m n m n mp p e e p p e p     (3.108)  

and consequently
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 The maximal effective temperature is
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    (3.110)   

 This value is a reasonably good approximation as compared to the maximum 
observed stellar effective temperatures.  
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  3.12.2   Radiative Pressure 

 As previously discussed, photons can transfer their momentum to matter and they can 
therefore participate in the total pressure in stellar plasma. The pressure caused by photons 
is called radiative pressure. In the previous section, the hydrostatic equilibrium equation 
found (Eq.  3.104 ) related the gas pressure  P  to the radiative and gravitational accelerations. 
A total pressure  P  tot  may also be defi ned as the pressure due to both gas and radiation

   P P Ptot rad= +     (3.111)  

where  P  rad  is the pressure due to radiation. Therefore, the pressure exerted by the weight 
of the mass above a certain point  r  must be counterbalanced by the total pressure
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and thus
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 With Eq.  (3.103) , the radiative - pressure gradient may be related to radiative acceleration 
on the medium via the expression
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 Using this equation, it is possible to fi nd an expression for  P  rad . To do this, the results of 
Eq.  (3.70)  and  (3.71)  may be combined to show that at large optical depths, the following 
relation exists between the fl ux and the K - integral

   H
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 Using this result and the defi nition for the optical depth (Eq.  3.29 ), the radiation - pressure 
gradient may be written as follows
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and consequently, radiative pressure is given by the expression

   P
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 A monochromatic radiation pressure  P  rad (  ν  ) can also be defi ned as

   P
c

Krad ν ν( ) = 4π
    (3.118)   
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 Since at large optical depths (Eq.  3.71 ), the K - integral is

   K
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ν
ν≈

3
    (3.119)   

 it is easy to show that this leads to
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rad =
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3
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 This equation is only valid at large optical depths. In the outer atmosphere of a star, the 
radiation pressure is more complex since the K - integral cannot be approximated by the 
simple relation used above.   

  3.13   Summary 

 Types of opacities: bound – bound, bound – free, free – free and scattering

   Solid angle d d d: sinΩ = θ θ ϕ     (3.121)  

   Average intensity d: ,J z I z u uν ν( ) = ( )
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   Eddington flux: H
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ν
ν=

4π
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   Radiative energy density:U
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   Optical depth d d: τ ρν ν= −k z     (3.126)  
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   Source function: S
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   Specific intensity at the surface of stars e: ( , )I u S tν ν0 = ( )
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   Large optical depth approximations
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   J Bν ν≈     (3.131)  
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   Rosseland mean opacity
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 3.14   Exercises    

   3.1   Assuming the specifi c intensity  I v   (  τ  ,  u )   =    a v   (  τ  ) u    +    b v   (  τ  ) u  2 , calculate  J  ν   (  τ  ) and  H  ν   (  τ  ).   

   3.2   If the source function inside a star is  S v   (  τ  v  )   =    a v     +    b v  τ  v  , where  a  ν    and  b  ν    are functions 
of   ν  , calculate the specifi c intensity  I v   (0,  u ) at the surface for the outgoing directions 
( u     ≥    0).   

   3.3   By using its defi nition (Eq.  3.21 ), calculate the radiative energy density at large 

optical depths where   I B u
B

ν ν
ν

ντ
≈ +

d

d
. Please interpret the answer.   

   3.4   Assume that at a given frequency the opacity of the stellar plasma at the surface of 
a given star is dominated by Thomson scattering. Estimate the depth (in cm) of the atmos-
phere that is visible to an outside observer at that frequency, while assuming that the 
electron density in this region is constant and equal to 10 16    cm  − 3 . What percentage of the 
solar radius is this value?   

   3.5   Assuming an interstellar cloud with a known thickness  z  0  and a density profi le 

  ρ ρ ρ( )z
z

z

z

z
= ⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟0

0

2

0
0

 (see Figure  3.19 ) and that the opacity  k  ν    within the cloud is 

constant and known, calculate the relation for the optical depth (with respect to  z    =   0) for 
 z     ≤     z  0 . Calculate the optical depth at  z    =    z  0  and physically interpret each quantity (including 
any constants) in this result.     

   3.6   Assume two adjacent interstellar gas clouds with known thickness  d  1  and  d  2  found in 
front of an astronomical light source (see Figure  3.20 ). Suppose that this source emits a 
beam of radiation with known specifi c intensity   Iν

0 as it enters the fi rst cloud of interstellar 
gas. Calculate the specifi c intensity  I v   immediately after this beam has traversed the two 
clouds of gas. Assume that the densities (  ρ   1  and   ρ   2 ) and opacities ( k  ν    ,1  and  k  ν    ,2 ) are constant 
within the clouds and are known quantities and that these clouds possess no emissivity  .     

   3.7     A beam of radiation with initial intensity   Iν
0 crosses an interstellar cloud of unknown 

thickness  z  0  (see Figure  3.21 ). The intensity on the other side of the cloud is one thousandth 
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z0

1000I n0
I n0

     Figure 3.21     Illustration for Exercise 3.7.  

I n0 In = ?

kn, 1 kn, 2r1 r2

d1 d2

     Figure 3.20     Illustration for Exercise 3.6.  

z = 0
τn = 0

z = z0

     Figure 3.19     Illustration for Exercise 3.5.  
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that of the initial intensity. Assuming that the cloud possesses no emissivity and that the 

opacity respects the following relation   k
z

νρ
ξ

=
4

 within the gas where   ξ   is a known 

constant, calculate the thickness  z  0  of the cloud.     

   3.8   A beam of radiation with initial intensity   Iν
0 enters an interstellar cloud with known 

density (  ρ  ), opacity ( k  ν   ) and emissivity ( j  ν   ) (see Figure  3.22 ) that are constant throughout 
the cloud. Calculate  I  ν   ( z ). What is its value for large values of  z  (or optical depth)? 
Physically interpret this result.     

   3.9   Similarly to the development in Section  3.8  show that for  u     <    0
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∞
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…     (3.135)     

   3.10   As mentioned in Section  3.8 , show that at large optical depths
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   3.11  †  †     Similar to the calculation shown in Section  3.10  for the average intensity, show 
that the fl ux can be written

   H S t E t t S t E t tν ν ν ν

τ

ν ν
τ

τ τ τ
ν

ν

( ) = ( ) −( ) − ( ) −( )∫ ∫
∞1
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1

2
2

0

2d d     (3.137)   

 which is called the Milne equation.     

     
 
 

I n0 In (z) = ?

z = 0

     Figure 3.22     Illustration for Exercise 3.8.  
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   4.1   Introduction 

 The atmosphere of a star is defi ned as its outer regions that determine the properties of 
the radiative fl ux that emanates from its surface. The physical properties of these outer 
regions are therefore of critical importance to properly interpret astronomical observations. 
The principal aims of this chapter are to describe the physical processes in stellar atmos-
pheres and to discuss their numerical calculations. 

 The purpose of stellar atmospheric modelling is to calculate, as accurately as possible, 
the physical structure of the outer regions of stars. The depth dependence of the various 
physical variables ( T ,   ρ  ,  n  e , etc.) defi nes the structure of a stellar atmosphere. With the 
physical structure of the outer regions, the monochromatic fl ux at the stellar surface may 
then be calculated in the theoretical framework seen in the previous chapter (assuming the 
knowledge of the required atomic data intervening in the interaction between the stellar 
plasma and the radiation fi eld). Once the monochromatic fl ux is obtained, photometric 
colours can be calculated and compared to astronomical observations. High - resolution 
monochromatic radiative fl ux can also be computed and compared to observed stellar 
spectra. Such comparisons between theoretical models and observations are invaluable for 
better understanding the physical processes taking place in the atmospheres of stars. 

 Typically, the depth chosen for the bottom of a stellar atmosphere during its numerical 
modelling is on the order of   τ      ≈    10 2  to 10 3 , where   τ   is an optical depth scale of an average 
opacity or of an opacity at a frequency in the continuum (i.e. outside any atomic line). 
This depth corresponds to a geometrical depth of the order of one per cent of the stellar 
radius and is suffi cient to assure that deeper regions do not contribute signifi cantly to the 
surface radiative fl ux. 

 The physical structure of a stellar atmosphere has to respect the various physical equa-
tions that intervene there (i.e. hydrostatic equilibrium, radiative transfer, Saha and 
Boltzmann equations, etc.). Of course, as for any physical model (or simulation), some 

  4 
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approximations are required to render the numerical problem in question feasible. The 
resolution of these equations and the approximations usually made during atmospheric 
modelling will be discussed in Section  4.5 . Such numerical simulations necessitate con-
siderable computational resources. Beforehand, analytical results while supposing that the 
opacity is independent of frequency (or the so - called grey - atmosphere approximation) will 
be shown. Thereafter, the physics related to atomic lines and their importance in stars will 
be discussed. A discussion on the formation of atomic lines will then be presented. Finally, 
and as mentioned above, a section pertaining to the intricacies surrounding the calculation 
of stellar atmosphere models will be presented. Results from detailed stellar atmosphere 
modelling will also be shown.  

  4.2   The Grey Atmosphere 

 In Section  4.5  details concerning the calculation of the structure of a stellar atmosphere 
will be discussed. Such calculations necessitate the knowledge of the detailed monochro-
matic opacity spectrum and can only be undertaken with powerful numerical capabilities 
such as those provided by modern computers. However, by making appropriate approxi-
mations, certain interesting results can be obtained analytically. For example, by supposing 
that the opacity is independent of frequency (i.e.  k  ν      =    k ), some illustrative and insightful 
results can be found. A stellar atmosphere while assuming such an opacity spectrum is 
called a grey atmosphere. Its name relates to the fact that in this approximation all wave-
lengths possess the same opacity and therefore the opacity spectrum can be considered 
 ‘ colourless ’  or grey. Nevertheless, the radiation fi eld present in such an atmosphere will 
possess a frequency distribution since matter emits a radiative spectrum associated to its 
temperature. In this section, an expression for the temperature profi le (i.e. its dependence 
with respect to depth) and the fl ux emanating from a grey atmosphere will be found. But 
beforehand, some useful results obtained from the radiative - transfer equation for a grey 
atmosphere are found. 

 For a grey atmosphere, the frequency dependence for the optical depth found at the 
denominator on the left - hand side of the radiative - transfer equation (Eq.  3.34 ) disappears 
and this equation can then be written

   u
I

I S
d

d
ν

ν ντ
= −     (4.1)   

 By integrating this equation over all frequencies, the radiative - transfer equation becomes

   u
I

I S
d

dτ
= −     (4.2)  

where

   I I S S= =
∞ ∞

∫ ∫ν νν νd and d
0 0

    (4.3)   
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 By assuming radiative equilibrium, and since the opacity is independent of frequency, Eq. 
 (3.54)  becomes

   k J k Sν νν νd d
0 0

∞ ∞

∫ ∫=     (4.4)  

which leads to  J     =     S . Now, if the source function is approximated by the Planck distribu-
tion, a simple and useful expression is found for the integrated values of the average 
intensity and the source function as a function of the local temperature  T (  τ  ) in the 
atmosphere

   J S B B
Tτ τ τ τ ν σ τ

ν( ) = ( ) ≈ ( ) = ( ) =
( )∞

∫ d
0

4

π
    (4.5)   

 These results will be applied in the next section that is dedicated to the specifi cation of 
the temperature profi le  T (  τ  ) in a grey atmosphere. 

  4.2.1   The Temperature Profi le in a Grey Atmosphere 

 Equation  (4.2)  may be integrated over all directions and this gives the moment of order 0 
(see Section  3.3 ) of this equation and leads to the following expression

   u
I

I S
d

d
d d d

τ
Ω Ω Ω� � �∫ ∫ ∫= −     (4.6)   

 Since the derivative on the left - hand side is independent of direction, it may be taken out 
of the integral. Then, by multiplying each side by 1/4 π , the equation above may be written

   
1

4

1

4π π
d

d
d d d

τ
uI I S J SΩ Ω Ω� � �∫ ∫ ∫⎡⎣ ⎤⎦ = −⎡⎣ ⎤⎦ = −     (4.7)  

and by the defi nition of the Eddington fl ux (Eq.  3.16 ), this equation gives

   
d

d

H
J S

τ
= −     (4.8)   

 Since in radiative equilibrium,  J    =    S , this equation shows that the integrated fl ux is constant 
throughout the atmosphere. By defi nition of the effective temperature, the value of  H  at 
the surface of a star (and consequently for all depths for the case under consideration) is 
equal to

   H
T= σ eff

4

4π
    (4.9)   

 A relation between  H  and  K  may be obtained with the moment of order 1 of Eq.  (4.2) . 
This moment is calculated by multiplying each side of this equation by  u  and integrating 
over all directions
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π π
d

d
d d d

τ
u I uI uSΩ Ω Ω� � �∫ ∫ ∫⎡⎣ ⎤⎦ = −⎡⎣ ⎤⎦     (4.10)   

 The integral on the left - hand side gives the integrated value of the K - integral. The 
integrals on the right - hand side, respectively, give  H  and zero. The last integral in the 
equation above is nil because  S  is isotropic. All these results lead to the following 
equation

   
d

d

K
H

τ
=     (4.11)   

 Since  H  is a constant, this equation may be integrated to give

   K H Cτ τ( ) = +     (4.12)  

where  C  is an integration constant. 
 From Eqs.  (3.69)  and  (3.71)  (see Section  3.8 ), the relation between  J  and  K  at large 

optical depths is found to be  J    =   3 K  and therefore, the average intensity  J  at large optical 
depths is

   J H Cτ τ( ) = +[ ]3     (4.13)   

 The approximation where  J    =   3 K  is also valid at small optical depths for several simplifi ed 
cases for the specifi c intensity (see Example  4.1  and Exercise 4.1, for example). This 
approximation, called the Eddington approximation, will be assumed valid throughout the 
grey atmosphere.   

  Example 4.1:    Considering a two - stream model (sometime called Schuster ’ s model) 
for the specifi c intensity, where  I (  τ ,u )   =    I  out  for  u     ≥    0, and  I (  τ ,u )   =    I  in    for  u     <    0, show 
that  J    =   3 K . 

  Answer: 

 By defi nition
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    (4.15)   

 Therefore, with these two results, it is trivial to show that  J    =   3 K.   
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 To simplify the equation above for the average intensity, the integration constant can 
be written as  C    =    yH , thus giving

   J H yτ τ( ) = +[ ]3     (4.16)  

and since

   J
Tτ σ τ( ) =

( )4

π
    (4.17)  

and

   H
T= σ eff

4

4π
    (4.18)   

 A relation may then be found for the temperature profi le in a grey atmosphere, namely

   T T yτ τ( ) = +( )⎡
⎣⎢

⎤
⎦⎥eff

3

4

1 4

    (4.19)   

 The value of constant  y  may be estimated by physical reasoning. From the discussion in 
Chapters  1  and  3  surrounding spectral types, the radiation fi eld exiting a star is associated 
to layers with  T     ≈     T  eff . The photons arising from the surface of stars come from layers 
that become transparent to radiation. It can be assumed that the layers where photons 
have a probability of 50 % of reaching the surface, before being absorbed or scattered, 
are those layers from where most of the radiation exiting a star emanates. Therefore, 
the optical depth of these layers is such that the attenuation of the radiation is e   –  τ       ≈    1/2, 
thus   τ      ≈    2/3. It might then be assumed that the temperature at   τ     =   2/3 equals  T  eff  
(i.e.  T (  τ     =   2/3)   =    T  eff ). From the equation above, it is trivial to show that under this 
assumption  y    =   2/3. The average intensity and the temperature as a function of depth 
are, respectively,

   J Hτ τ( ) = +⎡
⎣⎢

⎤
⎦⎥

3
2

3
    (4.20)  

   T Tτ τ( ) = +⎛
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⎡
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2

3

1 4

    (4.21)   

 A detailed calculation of the integration constant found in Eq.  (4.19)  is given below in an 
advanced special topics section and confi rms the physical reasoning employed above that 
leads to these last two equations. 

 It is notable to realise that with simple physical considerations and by using basic 
physical equations related to the radiation fi eld, an approximate relation giving the tem-
perature of the exterior regions of stars as a function of depth is found. Even though the 
temperature profi le found above is not very accurate when compared to detailed numeri-
cal models, it can still be quite useful and instructive. For example (see Section  4.5 ), 
this profi le can be used as a fi rst approximation when calculating detailed numerical 



114 An Introduction to Stellar Astrophysics

model atmospheres. Also, this equation shows that the temperature at nil optical depth 
is  T  (  τ     =   0)   =   0.84 T  eff . This result, as others seen previously, explains why the radiative 
fl ux at the surface of stars (and thus their spectral type) depends strongly on  T  eff . This 
is due to the fact that the contributing layers to the fl ux have a temperature value close 
to  T  eff .   

     1      This special topic requires the content seen in (the optional) Section  3.10 .  

  1 Special Topic  –  Details Surrounding the Temperature Profi le for a 
Grey Atmosphere  †  †   

    The integration constant  C  found in Eq.  (4.13)  can be obtained by calculating the 
fl ux at the stellar surface. As seen in (the optional) Section  3.10 , at an optical depth 
  τ   the monochromatic Eddington fl ux is

   H S t E t tν ντ τ( ) = ( ) −( )
∞

∫1

2
2

0

d     (4.22)   

 Therefore, a similar equation can be written for the integrated fl ux, which at the 
surface is equal to

   H S t E t t H0
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∫ d     (4.23)   

 Since it was shown (Eq.  4.5  and  4.13 ) that

   S t J t Ht C( ) = ( ) = +[ ]3     (4.24)  

the integrated fl ux can be written
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 As seen in Section  3.10 , the exponential integral has the property

   
d

d

E x

x
E xn

n
( )

= − ( )−1     (4.26)   

 Therefore, the second integral on the right - hand side of Eq.  (4.25)  becomes (while 
neglecting the constant 3 C /2)

   E t t E t E E2

0

3 0 3 3 0
1

2
( ) = − ( ) = − ∞( ) + ( ) =

∞
∞∫ d     (4.27)   

 (please note that  E  3 ( ∞ )   =   0 and  E  3 (0)   =   1/2, see Section  3.10 ). 
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     Figure 4.1     Temperature profi le of a detailed atmospheric model with  T  eff    =   10   000   K, 
log    g    =   4.0 and solar abundances (solid line) and the one for a grey atmosphere (dotted line), as a 
function of the optical depth calculated at 5000    Å.   

 Figure  4.1  compares the temperature profi le of a grey atmosphere to a detailed model 
atmosphere with  T  eff    =   10   000   K, log  g    =   4.0, while assuming solar abundances. As 
expected, the grey - atmosphere temperature profi le is different from the one from a com-
prehensive numerical model due to the various approximations made within the framework 
of the grey atmosphere.   

 The grey - atmosphere temperature profi le has several drawbacks. For example, it does 
not depend on the atomic abundances present in the atmosphere. It is also independent 

 Meanwhile, the fi rst integral on the right - hand side of Eq.  (4.25)  may be inte-
grated by parts as follows (again while neglecting the constant 3 H /2)

   tE t t tE t E t t2

0

3 0 3

0

( ) = ( ) + ( )
∞

∞
∞

∫ ∫d d     (4.28)   

 The fi rst term on the right - hand side is nil, while the second term gives 1/3. 
Equation  (4.25)  then gives

   H
H C= +
2

3

4
    (4.29)  

and consequently the integration constant is   C
H= 2

3
 

 This is the same result as the one found above by assuming that the optical depth 
at which the radiation exiting a star is formed is   τ      ≈    2/3.  
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of the surface gravity of the star that can in reality strongly affect the temperature 
profi le in stellar atmospheres. Also, it is not clear which optical depth should be chosen 
when using Eq.  (4.21) , since no singular optical depth exists in a real stellar atmosphere. 
In Figure  4.1 , the optical depth calculated at 5000    Å  was employed. However, if 
another optical depth had been used, the comparison between the grey - atmosphere 
temperature profi le and the one of the detailed atmospheric model could have been much 
different.    

 Special Topic  –  Limb Darkening 

    Observations show that the radiation intensity at the centre of the solar disc 
is larger than the corresponding intensity detected near its limb. This is called 
the limb darkening effect. The physical reason for this effect is illustrated 
in Figure  4.2 . Since the local temperature in the atmosphere (and thus the 
source function) increases with depth and the radiation leaving the star comes 
from layers with optical depth approximately equal to 2/3, the layers respon-
sible for this radiation are hotter in the centre than near the limb. The limb -
 darkening effect can be estimated with the results found for the grey atmosphere. 
As seen in Chapter  3  (see Eq.  3.44 ), the specifi c intensity at the surface of 
stars is  
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    (4.30)   

 The integrated value of the specifi c intensity at the surface of a grey atmosphere 
is given by the following expression
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 The direction of the intensity coming from the centre of the disc defi nes the angle 
  θ     =   0 or  u    =   1 (see Figure  4.2 ), while the intensity near the limb of the disc is 
related to values of  u     <    1. The ratio of these intensities is
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    (4.32)   

 At the limb ( u    =   0) this ratio gives 0.4. Therefore, this demonstrates that the inten-
sity for the grey - atmosphere approximation at the limb is 40 % of the value of that 
at the stellar disc ’ s centre.  
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  4.2.2 2    Radiative Flux in a Grey Atmosphere  †  †   

 In the previous section, it was found that the integrated average intensity and source func-
tion for a grey atmosphere can be approximated by

   J S Hτ τ τ( ) = ( ) = +⎡
⎣⎢

⎤
⎦⎥

3
2

3
    (4.33)   

 In reality, this relation gives the correct asymptotic value for the source function at large 
optical depths but is not very precise near the surface of stars. To better estimate the 
integrated average intensity and source function near the surface, they can be written as 
a function of  q (  τ  ) called the Hopf function such as

   J S H qτ τ τ τ( ) = ( ) = + ( )[ ]3     (4.34)  

and consequently the temperature profi le is

   T T qτ τ τ( ) = + ( )( )⎡
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⎤
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    (4.35)  

where  q ( ∞ )    ≈    2/3. The Hopf function was calculated in detail by the Indian astro-
physicist S. Chandrasekhar (1910 – 1995). With these results, he obtained the fl ux distribu-
tion for a grey atmosphere. In this section, the development leading to this fl ux will be 
discussed. 

 By approximating the monochromatic source function as a Planck function, the 
Eddington fl ux may be written (see Section  3.10 )

t ª 2/3

Ta > Tb fi Sa > Sb

t ª 2/3

b
a

⎧ ⎨ ⎩

⎧ ⎨ ⎩

     Figure 4.2     Illustration of the limb - darkening effect. The radiation from the disc ’ s centre 
(here the observer is on the right side of the star) comes from hotter layers (with a larger 
value for the source function) than the radiation coming from the portions of the disc near 
the limb.  

   2      This section requires the content presented in (the optional) Section  3.10 .  
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 Please note that the optical depth has no frequency subscript since a grey atmosphere is 
considered here. 

 The Planck function depends on local temperature that is related to the optical depth by 
Eq.  (4.35) . It can then be written
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where for conciseness, a function  p (  τ  ) is defi ned as
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 By defi ning a variable

   α
ν= h

kTeff
    (4.39)   

 a Planck function per unit   α   may be defi ned. By the fact that the total integrated fl ux must 
be the same for any unit used

   B T d B Tα να ν( ) = ( )d     (4.40)  

which leads to
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 The Eddington fl ux per unit   α   is given by the following expression
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which gives
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 It is instructive to write the ratio of the Eddington fl ux per unit   α   at depth   τ   to the total 
integrated fl ux  H 
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 The expression in brackets just above can be tabulated for given values of   α   and   τ  . These 
values were fi rst calculated by S. Chandrasekhar. The monochromatic fl ux using these 
results is shown in Figure  4.3 . As expected, the maximum of the fl ux is shifted to higher 
frequencies (or values of   α  ) as a function of depth (or temperature). This expression may 
be used to estimate the monochromatic fl ux at any depth within an atmosphere. However, 
its validity is limited since it excludes atomic lines and only gives the continuous fl ux.     

  4.3   Line Opacities and Broadening 

 Atomic line opacities play a crucial role in stellar astrophysics. First, they strongly modify 
the radiative transfer in stars and therefore impact their physical structure. Secondly, the 
detailed comparison between theoretical line spectra and observed spectra is a powerful 
diagnostic tool that may be used to better understand stars. It is then fi tting to give line 
opacities appropriate attention. This is the aim of this section. For the sake of briefness, 
some results shown here emanate from concepts of quantum physics and will be given 
without demonstration. Such demonstrations are outside the scope of this book. 

 Quantum theory shows that the opacity of bound – bound atomic transition between a 
lower atomic energy level  i  to an upper level  j  is  

   k
m c

f nij iν νρ ϕ= πe

e

2

    (4.45)  

where  f ij   is a physical quantity called the oscillator strength of the transition. Its value can 
vary from 0 to 1. It is proportional to the probability of such a transition taking place. 
Oscillator strengths can be calculated by quantum - mechanical calculations or obtained 
experimentally. For example, the oscillator strengths of the fi rst three transitions from the 

     Figure 4.3     The fl ux from a grey atmosphere at optical depths of   τ     =   0.5 and 2. The lack of smooth-
ness of the curves is due to the coarseness of the data employed. The data is taken from Chandrasekhar, 
S.,  The Astrophysical Journal , 101, 328  (1945).   
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fundamental energy state of the hydrogen atom are:  f  H α     =   0.6401,  f  H β     =   0.1193 and 

 f  H γ     =   0.04467. The quantity   
πe

m c
fij

2

e

 is the total integrated cross section of the atomic line. 

The line profi le, which will be discussed in more detail below, is represented by   ϕ   ν   . As 
expected, the opacity of the  i     →     j  transition is proportional to the number density of 
potential absorbers  n i   (or atoms in level  i ). In the equation above, the induced (or stimu-
lated) emission of radiation is not included. This topic will be discussed in Section  4.3.4 . 

 As mentioned earlier, atomic lines have a certain width defi ned by the line profi le. The 
widening of atomic lines is due to three processes: natural, Doppler and pressure (or col-
lisional) broadening. Each one of these three broadening mechanisms will be discussed 
below. 

 Spectral studies are very useful and can, for example, lead to an estimate of the abun-
dances of the elements in the atmospheres of stars. This is done by comparing the line 
intensities in the observed spectra to what is predicted by theoretical calculations. In such 
calculations, the abundance is adjusted during theoretical computations in order to maxi-
mize the quality of the fi t of the theoretical atomic lines to the observed lines of the element 
under consideration. Line widths can also give information concerning the physical condi-
tions in the line - formation regions. For example, two stars with the same spectral type but 
at different stages of evolution can be distinguished with the help of their observed line 
widths. A white dwarf, having a much larger density at its surface than a red giant star, 
has wider atomic lines because of the pressure - broadening mechanism (see Section  4.3.3  
for more details). A refi ned knowledge of spectral line widening mechanisms is essential 
to extract as much information as possible from observed stellar spectra. The remaining 
parts of this section are dedicated to describing the physical processes that intervene in 
atomic line broadening. 

 For more detailed information than given here about line opacities or more generally 
about stellar atmospheres, the reader is referred to Mihalas, D.,  Stellar Atmospheres , W.H. 
Freeman and Company, San Francisco  (1970 and 1978) . 

  4.3.1   Natural Broadening 

 Atomic energy levels can be determined by the resolution of the well - known Schr ö dinger 
equation. Such calculations are extremely complicated for all but the simplest confi gura-
tion: a nucleus with a single electron. 3  These computations determine the energy levels 
exactly, and the energy difference between two levels defi ning a given atomic line also 
gives an exact value. However, the solution found for the energy levels do not take into 
account Heisenberg ’ s uncertainty principle of quantum mechanics. An electron that fi nds 
itself in an energy level has a fi nite lifetime before transitioning to a lower energy level 
(with the exception of the fundamental energy level). Because of Heisenberg ’ s uncertainty 
principle

   Δ ΔE t
h≥

4π
    (4.46)  

   3      The levels of a single - electron atom may also be computed with Bohr ’ s model of the atom.  
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the energy levels have a certain width ( Δ  E ) or uncertainty related to their lifetime ( Δ  t ). 
The effect of the uncertainties of the atomic energy levels on the width of an atomic line 
is illustrated in Figure  4.4 . Schematically, a transition that occurs from let us say the 
bottom part of level  i  to the top part of level  j  has a higher frequency than a transition 
from the top part of level  i  to the bottom part of level  j . Atoms in level  i , can then absorb 
photons not only at the natural frequency   ν   0 , but also at frequencies surrounding it (see 
Figures  3.2  and  4.4 ). Quantum mechanics shows that the line profi le caused by this mecha-
nism, called natural broadening, is given by a Lorentz profi le

   ϕ
ν ν

ν =
−( ) + ⎛

⎝ )
Γ

Γ
4

4

2

0
2

2
π

π

    (4.47)     

 The variable  Γ , called the radiative damping constant. The value  Γ /2 π  represents the full 
width (as opposed to the half - width) of the profi le at half - intensity (see Figure  4.4 ) of the 
line profi le   ϕ   ν   . 4  Quantum theory predicts that the value of  Γ  is equal to the sum of the 
reciprocal of the mean lifetime of the two atomic energy levels under consideration. It 
should be noted that the expression for   ϕ   ν    given above is similar to the amplitude for a 
classical damped oscillator that is a topic covered in most classical mechanics textbooks. 
The line profi le given above is normalized, i.e.

   ϕ ννd
0

1
∞

∫ =     (4.48)   

 The line profi le may be interpreted in several ways. One way of construing it is that the 
number density of atoms able to absorb photon of frequency   ν   is equal to  n i  ϕ   ν   . The farther 
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     Figure 4.4     Illustration of the effect of the width of atomic energy levels due to the uncertainty 
principle on the profi le of an atomic transition between levels  i  and  j . Here, the energy levels  E i   and 
 E j   are those obtained by Schr ö dinger ’ s equation, while  Δ  E i   and  Δ  E j   are the corresponding uncertain-
ties predicted by Heisenberg ’ s uncertainty principle. The value  Γ /2  π   represents the full width of the 
profi le at half - intensity.  

   4       Γ  is the full width at half - maximum of the profi le   ϕ   ω   , where   ω     =   2πν.  
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the frequency of an incoming photon is from the natural frequency of the transition under 
consideration, the less likely it is for atoms to absorb it. 

 When the width of a line profi le is caused uniquely by natural broadening, a frequency -
 dependent cross section may then be defi ned as

   α ν
ν ν
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so that

   k niνρ α ν= ( )     (4.50)   

 Typically, the lifetime of excited electrons (i.e. in atomic energy levels other than the 
fundamental) is on the order of 10  − 8  s (see (advanced optional) Section  4.3.5  for examples). 
This leads to a line width of  Δ   ν      ≈    10 8  Hz or equivalently  Δ   λ      ≈    10  − 4     Å  for lines in the 
visible part of the spectra. This value of line width is much smaller than what is observed 
in stellar spectra. Therefore, other broadening mechanisms must come into play in stars.  

  4.3.2   Doppler Broadening 

 In most stellar plasma, atoms have a velocity distribution that depends on the local tem-
perature: the well - known Maxwell distribution, 5  (see special topic below). Atoms travel-
ling at a certain velocity along the line - of - sight of an observer in the reference frame of 
the star see a radiation fi eld that is Doppler shifted relative to the fi eld seen by the observer. 
This causes atoms to have line profi les that are wider than the naturally broadened profi le 
seen above. This line - broadening phenomenon is called Doppler broadening. The aim of 
this section is to quantify this process and compare it to natural broadening.   

   5      This is not true for all cases. For example, in very dense stellar plasma such as those found in white dwarf stars, the Maxwell –
 Boltzmann statistics are not valid there. This topic will be discussed in Chapter  5 .  

 Special Topic  –  Maxwell Distribution 

    The Maxwell distribution gives the distribution of speeds of particles within an 
ideal gas. Statistical thermodynamics predicts that particles of mass  m  inside a gas 
at temperature  T  have the probability  f ( V )d V  of having a speed between  V  and 
 V   +    d V  given by the following expression

   f V V
m

kT
V V

mV

kT( ) = ⎛
⎝

⎞
⎠

−
d e d4
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2 2 2
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π
π     (4.51)  

where    V V V Vx y z= + +2 2 2   
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     Figure 4.5     The Maxwell distribution for H and C atoms in a gas at 10   000   K. The units 
of  f  are the reciprocal of those of speed because  f ( V )d V  has no units since it is a probability.  

 The Maxwell distribution  f  (given in units of s/cm) for two types of atoms in a 
gas at  T    =   10   000   K is shown in Figure  4.5 . This fi gure shows that for a given  T , 
particles with smaller masses have a larger average speed.   

 By defi nition, the mean speed is given by the following expression

   V Vf V V
kT

m
= ( ) =

∞

∫ d
0

8

π
    (4.52)   

 As mentioned previously, the average speed is larger for less - massive particles. In 
a gas composed of several types of particles, because of their larger speeds the 
less - massive particles participate to more collisions per unit time than their more 
massive counterparts. This explains why, in stellar plasma, free electrons dominate 
collisions and their related processes such as atomic excitations by collisions for 
example. It is these collisions that determine the atomic energy - level populations 
and the ionisation fractions of the species (assuming that radiative processes are 
negligible). 

 Meanwhile, the most probable speed  V  0 , i.e. where d f/ d V    =   0, is (see Exercise 4.7)

   V
kT

m
0

2=     (4.53)   

 For a single component of the velocity,  V x   for example, the probability distribution 
is not the same as for the speed  V . It is given by the following equation

   f V V
m

kT
Vx x

mV

kT
x

x

( ) =
−

d e d
2

2

2

π
    (4.54)   

 This last probability distribution will be applied below to evaluate Doppler 
broadening of atomic lines.  
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 For a given direction (or for the case of interest here, the component along the line - 
of - sight) the velocity of atoms of mass  m  in a gas at temperature  T  is given by the 
Maxwellian distribution such as the probability of fi nding an atom with a velocity between 
 V  and  V+ d V  is

   f V V
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d e d
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2

2

π
    (4.55)   

 Note here that  V  defi nes a single component of velocity and not speed. 
 By using the Maxwellian distribution for the three - dimensional speed (see above), the 

most probable speed of an atom is found to be

   V V V V
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x y z0
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 The one - dimensional Maxwell distribution may then be written as
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 Assume an atom that at rest can absorb a photon at frequency   ν  . When travelling at a 
velocity  V  relative to the observer, this atom can absorb, according to the Doppler effect, 
a photon at frequency   ν  (1  – V/c ) (this equation for the Doppler shift is valid for  V   <<   c , 
which is almost always the case in stellar plasma). The absorption cross section at fre-
quency   ν   in the observer ’ s reference frame then consists of atoms of various velocities 
(related to the Maxwell distribution of the line - of - sight velocity) associated to various 
parts of the naturally broadened profi le. A convolution of the naturally broadened cross 
section with the velocity distribution must then be performed to obtain the true cross 
section
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 By defi nition of the absorption cross section for a bound – bound transition given in Eq. 
 (4.49) , this expression becomes
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 Several variables may be defi ned to simplify this convolution. First, the Doppler shift  Δ   ν   
at velocity  V  is

   Δν ν= V

c
    (4.60)   
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 A variable  Δ   ν   D , called the Doppler width of the line, is defi ned by the shift from the line 
centre for the most probable speed  V  0 

   Δν ν
D = V

c
0 0     (4.61)   

 Its value gives an approximate value of the width of the line due to Doppler 
broadening. 

 By defi ning three other variables v    ,  y  and  a  as follows
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 Equation  (4.59)  becomes
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where  H ( a,v ) is called the Voigt function. This function is defi ned as
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 The integration of this function over all values of  v  (or in other words over all fre-
quencies) gives   π . A normalized Voigt function  U ( a,v ) may also be defi ned (see 
Example  4.2 )
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v
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π

    (4.67)     

 The Voigt function therefore gives the shape of an atomic line profi le with both natural 
and Doppler broadening. The normalized Voigt profi le is then

   ϕ
νν =

( )U a, v
Δ D

    (4.68)   

 Figure  4.6  shows the relative importance of pure Lorentz and Doppler profi les versus a 
Voigt profi le. It shows that in the line core, Doppler broadening dominates. Meanwhile, 
the wings are determined by the Lorentz profi le.      



126 An Introduction to Stellar Astrophysics

     Figure 4.6     Lorentz, Voigt and Doppler profi les of a hypothetical atomic line.  

  Example 4.2:    With the expression found for   α   ν    for a line with both natural and 
Doppler broadening (Eq.  4.65 ), prove that, without resorting to an explicit calculation 
of this integral     

   
H a

c V

, v v( ) =
∞

∫ d
0

π
   

  Answer: 

 The total integrated cross section for an atomic line is
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 By using the Voigt profi le
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and since
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a change of variable can be performed to give
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 Since this integral is equal to   
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fij, it is trivial to show that
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 Special Topic  –  Stellar Rotation and Atomic Line Analysis 

    Stellar rotation also widens the atomic lines in observed spectra. This is caused 
by the Doppler shifts of the various regions of a star ’ s disc (see Figure  4.7 ). The 
spectra obtained are sums of the radiation coming from their entire disc. The 
radiation coming from the portion of a star ’ s disc moving away from the observer 
is redshifted, while the radiation coming from the portion of the disc moving 
towards the observer are blueshifted. The radiation coming from the centre is 
not Doppler shifted since the velocity is perpendicular to the line - of - sight. The 

+ + =

n0 n0 n0 n0

     Figure 4.7     Illustration of the effect of a rotating star on an observed atomic line width. 
The radiation coming from the portion of the star ’ s disc moving away from the observer is 
redshifted, while the radiation coming from the portion of the disc moving towards the 
observer are blueshifted. The radiation coming from the centre is not Doppler shifted since 
the velocity is perpendicular to the line - of - sight. The integrated light signal from the stellar 
disc thus gives an atomic line that is widened.  
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no rotation large rotation

     Figure 4.8     Illustration of the blending of two atomic lines. On the left, two atomic lines 
are shown in a spectrum of a star that does not rotate, while on the right, these two lines 
are blended together for a star with a large rotational velocity. Note that the blended line is 
no longer symmetric.  

integrated light signal from the stellar disc thus gives atomic lines that are 
widened. It should be noted that such line broadening is not an intrinsic physical 
phenomenon, but is an observational artefact that can, however, cause compli-
cation for line analysis. Since this process depends on an external (or nonlocal) 
aspect of the plasma, namely the rotational velocity of stars, it is thus not 
considered a fundamental line - broadening process such as natural, Doppler or 
pressure broadening.   

 For stars with large rotational velocities, some lines may become so broad that 
they blend with neighbouring lines (with respect to frequency or wavelength) of 
other species (see Figure  4.8 ). This makes line identifi cation in such spectra very 
diffi cult. It also greatly complicates the determination of the abundance of the ele-
ments through line fi tting with theoretical models since it is hard to separate the 
relative importance of each individual line within the blended line.   

 The effect of line broadening by rotation depends on the angle of the axis of rota-
tion of the star relative to the line - of - sight of the observer. For example, when the 
axis of rotation points directly towards or away from the line - of - sight, rotational 
effects are not observable. The reason being, that the bulk velocity of the atoms at 
the surface of the star is then perpendicular to the line - of - sight and no Doppler shift 
is observed. The observable rotation velocity at the equator is  V    sin    i , where  i  is the 
angle between the line - of - sight and the axis of rotation of the star and  V  is the rota-
tional velocity at the equator (see Figure  4.9 ). The value of  V    sin    i  for a given star 
can be obtained during the fi tting of the theoretical spectral lines to those observed.   

 Figure  4.10  shows the observed spectra of two stars with similar effective tem-
peratures ( T  eff     ≈    12   000   K) but very different  V    sin    i . The lines due to various ions 
are identifi ed in this fi gure. As expected, the star with the largest  V    sin    i  has much 
wider lines due to the extra widening effect caused by stellar rotation. Some lines 
that are clearly defi ned in the spectrum of the slowly rotating star are blended in 
the spectra of the fast rotating one.   

 It should also be noted that turbulent motion of matter in the stellar atmosphere 
can also broaden atomic lines. Moreover, large movements of matter such as con-
vection may also cause asymmetry in the observed line profi les. All these processes 
complicate the study of stellar spectra. 

 Another factor that can come into play when studying stellar spectra is the radial 
velocity of a star  V  r  (i.e. the component along the line - of - sight) which can cause 
Doppler shifts in its atomic lines equal to
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axis of rotation

line-of-sight
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Vi
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     Figure 4.10     Observed fl ux for two stars of similar effective temperatures ( T  eff     ≈    
12   000 K) but with different rotational velocities. The upper curve represents a star 
that has a relatively large rotational velocity ( V    sin    i    =   25 km/s) while the star represented 
by the lower curve has a small rotational velocity ( V    sin    i    =   1.5   km/s). The two spectra 
are horizontally shifted to distinguish the two curves. The lines from several ions are identi-
fi ed in the fi gure. These spectra were extracted from the European Space Organization 
(ESO) Archive, and were processed and kindly obtained from Mouhamadou Thiam.  

     Figure 4.9     Illustration showing that the component of the rotation velocity at the equator 
( V ) along the line - of - sight is  V    sin    i  where  i  is the angle between the axis of rotation of the 
star and the line - of - sight.  
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where   λ   is the observed wavelength of the centre of a given line and   λ   0  is its natural 
(or theoretical) wavelength (see Exercise 4.5). This fact must be considered when 
identifying atomic lines in stellar spectra.  
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  4.3.3   Pressure Broadening 

 A third mode of line broadening is pressure (or collisional) broadening. This process is 
due to the perturbation of the potential of the atom by neighbouring particles. Fundamentally 
speaking, when theoretical atomic energy levels are calculated, only the potential due to 
the nucleus and the bound electrons is considered (i.e. this is the potential that is inserted 
in Schr ö dinger ’ s equation). However, in real plasma, other particles may lead to perturba-
tions in this potential and thus modify atomic energy levels. Such perturbations can shift 
and sometimes split atomic energy levels and they therefore contribute to line broadening. 
Schematically, at a given time at a given depth in a stellar atmosphere, some atoms are in 
the process of colliding with other particles while others are between two collisions (and 
consequently their potential is not strongly affected by other particles in the plasma). 
Therefore, a portion of the atoms ’  energy levels is modifi ed by collisions, while other 
atoms are less affected. Similarly to the process shown in Figure  4.4 , these interactions 
cause line broadening. 

 One such pressure - broadening process is the Stark effect. This broadening effect is 
caused by the splitting of degenerate atomic energy levels due to the presence of an 
external electric fi eld. This effect can also cause a frequency shift for these levels. In 
stellar plasma, an electric fi eld created by surrounding particles can be felt within the 
atom under consideration. The lines arising from the individual split levels cannot be 
observed in stellar spectra because of the relatively small separation between them. They 
blend into one line that is, however, widened compared to the case where no Stark effect 
exists. 

 Another pressure - broadening mechanism is the Van der Waals process. This is related 
to the perturbation of an atom ’ s potential by neutral atoms. The neutral atoms ’  electric 
dipole is at the source of this interaction. Meanwhile, the broadening of a given species 
due to its interaction with the atoms of the same species is called resonance broadening. 
These last two types of interaction lead to a Lorentz profi le. Therefore, a collisional 
damping constant   Γ   coll  may be added to the radiative damping constant found in Eq.  (4.47)  
in order to take these last two types of interactions into account. 

 Figure  4.6  showed that Doppler broadening dominates the central regions of atomic 
lines. The effect of pressure broadening is mostly seen in the wings of atomic lines. An 
example of this result is shown in Figure  4.11  for the H  γ   line and is discussed in the special 
topic presented below.      

 Special Topic  –  Balmer Lines and Surface Gravity 

    As discussed in Chapter  1 , photometry can be used to estimate the effective 
temperature of stars. Meanwhile, surface gravity can be determined by spectro-
scopic means and more specifi cally by the study of hydrogen Balmer lines. These 
lines are quite sensitive to pressure broadening (in this case the Stark effect), 
and their shape depends strongly on the pressure found in the line - formation 
region and therefore on the surface gravity since the hydrostatic equilibrium 
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     Figure 4.11     The surface fl ux within the  H   γ   line at the surface of atmospheres with 
 T  eff    =   10   000   K but with different surface gravities typical of main - sequence (log  g    =   4) and 
supergiant (log  g    =   2) stars. Other atomic lines from various metals are also seen within the 
 H   γ   line.  

equation predicts larger pressures in stellar atmospheres with larger surface 
gravities. 

 Figure  4.11  shows the effect of surface gravity on the H  γ   line. Its wings are 
wider in the atmosphere with the larger surface gravity. Since supergiants have 
lower surface gravities, it is then possible, for example, to distinguish between a 
main - sequence star and a supergiant with the same effective temperature. The 
stellar surface gravities obtained in this way are commonly called spectroscopic 
gravities. 

 It should also be noted that Figure  4.11  shows that hydrogen lines are 
much wider than atomic lines of other elements. Also, some atomic lines from 
metals that are visible within the H  γ   line for the log    g    =   2 model disappear (or 
are less prevalent) for the log    g    =   4 model since the H  γ   line opacity becomes 
dominant there. This example illustrates the power of the analysis tool of stellar 
spectroscopy. 

 For a given series of hydrogen lines, Stark splitting increases with the principal 
quantum number  n  of the upper level. A fi nite number of Balmer lines is then 
visible in the spectrum of an A - type star. The reason being that lines near the 
Balmer jump (i.e. with larger  n  for the upper level) eventually merge together 
(see Figure  1.8 ) because of their larger width. Historically, the number of Balmer 
lines distinguishable in a stellar spectrum has been used to estimate the electron 
density in the line - forming region. Nowadays, more detailed comparison between 
line shapes, depths and widths from theoretical model atmospheres and those 
observed is used to gauge more precisely the physical structure of the outer 
regions of stars.  
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     Figure 4.12     Illustration of Zeeman splitting of an atomic energy level and its effect on 
the atomic transitions.  

  4.3.4   Stimulated Emission and Masers 

 There are three modes by which photons can be absorbed or emitted via transitions 
between atomic energy levels. Absorption and spontaneous emission were already 
discussed in Chapter  3 . Absorption contributes to the line opacity, while spontaneous 

 Special Topic  –  Zeeman Effect 

    Strong magnetic fi elds are detected on the surface of some stars. The presence of a 
magnetic fi eld can cause splitting of degenerate atomic energy levels by lifting this 
degeneracy. This phenomenon is called Zeeman splitting and also contributes to the 
widening of the atomic lines in observed spectra. The presence of a magnetic fi eld 
causes an atomic line to be formed by various components. For example, in the 
illustration shown Figure  4.12 , a line is composed of three components when a 
magnetic fi eld is present. Generally, since the separation of the Zeeman - splitted 
atomic levels is relatively small (except for very large magnetic fi elds), the indi-
vidual components of an atomic line cannot be separated in stellar spectra but 
instead lead to a single line that is wider than when no magnetic fi eld is present. It 
should be noted that such line broadening is not considered a fundamental broaden-
ing process such as natural, Doppler or pressure broadening, since it depends on an 
aspect external (or nonlocal) to the plasma, namely the presence of a magnetic fi eld.   

 The study of polarized line transfer can give additional information about the 
atomic lines affected by the Zeeman effect and is a powerful tool in the study of 
stars with magnetic fi elds such as Ap - type stars (see (optional) Section  7.2.2  for 
more details about these magnetic stars). Detailed observations of stellar spectra 
using a spectropolarimeter are compared to theoretical calculations. This observing 
method can be used, for example, not only to evaluate the intensity of the magnetic 
fi eld in the atmospheres of stars but also the confi guration of this fi eld on the stellar 
surface.  
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emission is counted as emissivity. A third mode, namely stimulated (or induced) emission 
can also come into play. Induced emission, is a de - excitation process due to the presence, 
near the atom, of a passing photon with same energy than the atomic transition under 
consideration. Theory predicts that the photon that is emitted following the de - excitation 
of the electron in this manner travels in the same direction than the photon that induced 
the transition (see Figure  4.13 ). The intensity of induced emission therefore depends on 
the radiation fi eld (or  I  ν   ). This process is thus not equivalent to a spontaneous emission 
that is isotropic with respect to direction and is independent of  I  ν   . Stimulated emission is 
rather treated like a negative opacity because it adds photons to  I  ν    instead of taking some 
away as for the case of opacity. Quantum theory shows that the opacity due to an atomic 
transition between a lower atomic level  i  and an upper level  j  while including stimulated 
emission is given by the following expression
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as opposed to the line opacity given in Eq.  (4.45) . The portion of Eq.  (4.76)  in parenthesis 
is related to stimulated emission. In LTE (i.e. where the Boltzmann equation applies), 
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 The correction factor due to stimulated emission   1
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 decreases the opacity. 

However, this correction factor is only valid for LTE. When nonthermal processes are 

     Figure 4.13     Illustration of stimulated (or induced) emission of radiation from a bound – bound 
atomic transition. First, a photon induces an emission from an excited atom that cascades to a lower 
level. Thereafter, the two photons can in turn induce two other excited atoms to emit two additional 
photons. If there exists a suffi cient number of exited atoms, the number of photons in the beam of 
radiation may grow exponentially.  
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present, they can invert the population (i.e. increase the population of the upper level of 
the transition relative to the lower level as compared to LTE populations) and in some 

cases lead to   
n g

n g
j i

i j

> 1, and this therefore gives a negative total opacity. In this case, the 

specifi c intensity is exponentially amplifi ed when traversing the plasma instead of being 
attenuated (such as in Example  3.3  for instance). This physical phenomenon is the source 
of the laser (light amplifi cation by stimulated emission of radiation). 

 Lasers consist of a gas whose atoms are  ‘ pumped ’  to an excited atomic state by 
a nonthermal process such as electricity (or collisions). To be effi cient, the upper level 
needs to have a suffi ciently long half - life so that a large number of excited atoms may 
exist at a given time. Such atomic energy levels are commonly called metastable levels. 
When photons at the natural frequency of the atomic transition that intervenes traverse 
the laser, the signal is amplifi ed (see Figure  4.13 ). They induce stimulated emission 
via de - excitations of electrons from the metastable level to the proper lower atomic 
level. 

 Astronomical masers (microwave amplifi cation by stimulated emission of radiation) 
naturally occur in the universe. These microwave sources are due to molecules (such as 
OH, H 2 O, SiO, etc.) found in interstellar or circumstellar gas. They are observed as emis-
sion lines. The agent pumping the molecules to the proper excited state is often due to 
collisions in the plasma or sometimes caused by radiation coming from nearby stars for 
masers in interstellar clouds or the central star for circumstellar masers. For example, H 2 O 
has a maser transition at a frequency of 22.23   GHz, while SiO has such transitions at 43.12 
and 86.24   GHz. 

 Stimulated emission discussed here was related to bound – bound transitions. However, 
the opacity due to bound – free and free – free opacities also needs to be corrected for 
induced emission.  

  4.3.5   Einstein Coeffi cients  †  †   

 As discussed previously, there are three types of transitions possible for bound – bound 
transitions: spontaneous de - excitation, radiative excitation and stimulated emission. The 
so - called Einstein coeffi cients defi ne the transition probabilities between two atomic levels 
for each of these three types of transitions. The coeffi cients  A ji  ,  B ij   and  B ji   measure the 
respective transition probability for spontaneous de - excitations, radiative excitation and 
stimulated emission. The rate of transitions in stellar plasma for each of these three types 
of transitions depend on the density of atoms in the proper level (i.e. in level  i  for radiative 
excitations, and in level  j  for spontaneous and stimulated emissions). The rate of transitions 
for both radiative excitations and stimulated emissions also depend on the strength of the 
radiative fi eld. 

 By making the approximation that at each frequency the same number of photons is 
emitted than the quantity that is absorbed (this approximation is commonly called detailed 
balancing), the following equation may be written

   n B I n A n B Ii ij j ji j jiν ν= +     (4.78)   
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 The left - hand side of this equation is proportional to the rate of absorption, while the two 
terms on the right - hand side, respectively, describe the rates of spontaneous and stimulated 
emissions. Specifi c intensity appears for radiative absorption and stimulated emission 
because these processes depend on the radiation fi eld. Relations between the Einstein 
coeffi cients can be obtained by simple algebraic manipulations and logic. First, the specifi c 
intensity may be isolated in the equation above
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 Assuming that the atomic populations respect the Boltzmann equation
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 Eq.  (4.79)  becomes
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 The relation between the Einstein coeffi cients can be found by assuming that the specifi c 
intensity is equal to the Planck function (i.e. assuming strict LTE) and since at the line 
centre
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a comparison of the two equations above gives rise to the following relations between the 
Einstein coeffi cients
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 The results were obtained by assuming Boltzmann statistics for the atomic populations 
and strict LTE ( I  ν      =    B  ν   ). However, since the Einstein coeffi cients are physical constants, 
the relations found for these coeffi cients are universal because their value does not 
depend on the physical conditions imposed. It should also be mentioned that for a given 
transition, only one Einstein coeffi cient is needed to calculate the other two. 
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 Quantum theory shows that there also exists a relation between the Einstein coeffi cients 
and the oscillator strength that is given by the following expression
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and the opacity of the atomic line  i     →     j  can thus be written
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 The Einstein coeffi cients are obtained with complex quantum - mechanical calculations. 
These quantities (or equivalent data like the oscillator strength) are given in several 
atomic data bases commonly used in astrophysics. Here are a few examples of such data-
bases: National Institute of Standards and Technology (NIST) atomic spectra database 
( http://physics.nist.gov/PhysRefData/ASD/ ), Robert L. Kurucz ’ s database ( http://www.
pmp.uni - hannover.de/cgi - bin/ssi/test/kurucz/sekur.html ) and The Opacity Project atomic 
database or TOPBase ( http://cdsweb.u - strasbg.fr/topbase/topbase.html ). Table  4.1  gives 
examples of such coeffi cients for the fi rst three lines of the Lyman and Balmer series of 
hydrogen.   

 The radiative damping constant  Γ   ij  , which defi nes the width of a naturally broadened 
line, is related to the spontaneous de - excitation Einstein coeffi cients. The radiative damping 
constant of a transition between levels  i  and  j  is

   Γij jk
k j

ik
k i

A A= +
< <

∑ ∑     (4.87)   

 The two terms on the right - hand side of this equation are, respectively, the reciprocal of 
the mean lifetime of levels  j  and  i . These sums give the total spontaneous de - excitation 
rates from each level. They include all of the channels by which an electron on a given 
level  j  or  i  may cascade to a lower level. For example, the radiative - damping constant 
of the L  α   atomic line is simply  A  21  since the spontaneous de - excitation rate is nil for the 
fundamental state (or in other words, its mean lifetime is infi nite) and only one channel 
of decay exists for the level under consideration.   

  Table 4.1    Examples of Einstein coeffi cients and oscillator strengths. 

   Transition      A ji        f ij    

  L  α      4.699    ×    10 8    s  − 1     0.4162  
  L  β      5.575    ×    10 7    s  − 1     7.910    ×    10  − 2   
  L  γ      1.278    ×    10 7    s  − 1     2.899    ×    10  − 2   
  H  α      4.410    ×    10 7    s  − 1     0.6407  
  H  β      8.419    ×    10 6    s  − 1     0.1193  
  H  γ      2.530    ×    10 6    s  − 1     4.467    ×    10  − 2   
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  4.4   Equivalent Width and Formation of Atomic Lines 

 As discussed above, the detailed study of the shape of an atomic line in a stellar spectrum 
can furnish precious information regarding the physical conditions in the line - forming 
region of the atmosphere. However, when the spectral resolution of the spectrometer is 
low or/and when the observed signal is weak, the stellar spectrum is sometimes not of 
suffi cient quality for a detail comparison between these observations and theoretical 
spectra. Also, since some parameters related to line - profi le calculations such as those 
related to pressure broadening are often not well known, detailed spectroscopic studies 
are not always valuable due to lack of accuracy. In such cases, a more general way of 
interpreting and studying atomic lines without having to measure or calculate the detailed 
shape of the atomic lines is warranted. This is one of the reasons for defi ning an equivalent 
width for atomic lines. Following a discussion dedicated to the defi nition of the equivalent 
width, its application to weak atomic lines and general results for lines of any intensity 
will be discussed. 

  4.4.1   Equivalent Width 

 The equivalent width  W  λ    of an atomic line is defi ned as the width of a hypothetical atomic 
line of rectangular shape that absorbs all of the radiation within it and the same total 
amount of energy as the atomic line associated to it. Figure  4.14  shows graphically the 
meaning of the equivalent width where  F  c  is the continuum fl ux (i.e. outside the atomic 
line) and  F  λ    is the monochromatic fl ux. Therefore, since the real atomic line and the fi cti-
tious rectangular line absorb the same amount of radiative energy

     Figure 4.14     Schematic defi nition of the equivalent width ( W  λ   ) of an atomic line. The fi ctitious 
rectangular line which absorbs all photons within it has a width such that it absorbs the same quantity 
of energy as the atomic line to which it is associated. The quantity  F  c  is the fl ux of the 
continuum.  
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where the integration is done over the entire spectrum. In reality, since the absorption of 
an atomic line falls off quickly at wavelengths far from its natural wavelength, this inte-
gration can be limited to a range of several times the value of the equivalent width on 
each side of the line centre. The quantity  R  λ    (see Figure  4.15 ) is called the residual intensity 
of the atomic line and is given by the ratio of the fl ux within a line to the value of the fl ux 
in the continuum
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while  A  λ    is called the line (or absorption) depth
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 The equivalent width is a measure of the strength of an atomic line and is normally given 
in units of  Å . It is clear that this quantity is a global property of a line, since lines with 
very different profi les can have the same equivalent width or in other words, absorb the 
same amount of energy. It will be shown below (in (optional) Section  4.4.3 ) that 
the equivalent width can be used to estimate the abundance of the element responsible for 
the atomic line under consideration.    

     Figure 4.15     Illustration of the residual intensity ( R  λ   ) and the line (or absorption) depth ( A  λ   ).  
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  4.4.2   Formation of Weak Atomic Lines 

 One of the principal aims of studying stellar atmospheres is to calculate theoretical stellar 
spectra. Such detailed calculations are complex and are outside the reach of analytical 
analysis and require numerical modelling. However, by making simple approximations, 
an analytical expression for the line depth of weak atomic lines may be found. This is the 
aim of this section. Weak atomic lines are lines for which their opacity is much smaller 
than the opacity of the continuum. Such lines are commonly called optically thin lines 
because of their relatively weak opacity. 

 The intensity of the fl ux in the core of absorption lines is weaker than in the continuum 
because the radiation near their natural wavelength   λ   0  comes from shallower regions than 
for the continuum. This is due to the fact that the opacity is larger in the core than in the 
wings. As discussed in Section  4.3 , the atmospheric layers responsible for most of the fl ux 
at a given wavelength   λ   come from optical depths   τ   λ       ≈    2/3. The value of   τ   λ       ≈    2/3 is situ-
ated at geometrically deeper (and thus hotter) regions in the wings as compared to wave-
lengths in the core. The radiation from different parts of an atomic line comes from various 
geometrical depths (of varying temperature) of the atmosphere. The intensity of the radia-
tion in the line centre is weaker than in the wings thus explaining the shape of absorption 
lines (more quantitative details are given below). 

 By approximating the monochromatic fl ux at the surface of stars by the fl ux of a black-
body  F  λ      =    π  B  λ    (see Example  3.1 ) and by supposing that all of the radiation comes from 
a single layer situated at an optical depth   τ   λ      =   2/3, the line depth may be approximated by 
the following expression
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  Example 4.3:    Calculate the equivalent width of a rectangular line with a 4 -  Å  width 
and with a fl ux in its interior that is 2/3 of that of its value in the continuum. 

  Answer: 

 The line depth for the line under consideration is
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    (4.92)   

 To calculate the equivalent width, Eq.  (4.89)  must, in theory, be integrated over the 
whole spectrum. But since the line depth under consideration is nil outside the rec-
tangular width, the integration may be done from  x  to  x    +   4    Å , where  x  is the wave-
length where the rectangular line begins
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where

   d dτ ρλ λ= −k z     (4.95)  

   d dc cτ ρ= −k z     (4.96)  

   k k kλ = +l c     (4.97)   

 The variable  k  l  is the monochromatic opacity due to the atomic line under consideration, 
 k  c  is the opacity due to continuous sources of opacities (such as electron scattering for 
example) and  k  λ    is the total monochromatic opacity. Since the total opacity in the con-
tinuum (i.e. far from any atomic line centre) is due mostly to  k  c , the total optical depth 
there is such as   τ   λ      =     τ   c  and therefore the fl ux in the continuum is proportional to the Planck 
function found at   τ   c    =   2/3 (i.e.  F  c     ≈      π B  λ   (  τ   c    =   2/3)). Meanwhile, the fl ux inside the line can 
be approximated by  F  λ       ≈      π B  λ   (  τ   λ      =   2/3). Typically, within the line widths, the continuum 
opacity can usually be considered constant (or independent of wavelength), except for 
very wide lines such as hydrogen lines. 

 The geometrical depth where   τ   λ      =   2/3 can be related to an optical depth in the continuum 
  τ   c    =   2/3   +    Δ   τ   (see Figure  4.16 ) where  Δ   τ      <    0. The line depth may then be written
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 For weak lines, the core is formed at layers not too far from those where the continuum 
radiation emanates (| Δ   τ   |    <<    1) and the Planck function in the line may be approximated 
by the following Taylor expansion near   τ   c    =   2/3
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 Since  Δ   τ      <    0 and   d

d c

Bλ

τ
> 0 (assuming that the temperature increases with depth 6 ), within 

the line  B  λ   (  τ   λ      =   2/3)    <     B  λ   (  τ   c    =   2/3), and as explained previously, the radiative intensity in 

tc = 0

tc = + Δt ⇔ tl =
2
3

2
3

tc =
2
3

     Figure 4.16     Illustration showing the depth at which the continuum is formed (  τ   c    =   2/3) and where 
the atomic line under consideration is formed (  τ   c    =   2/3   +    Δ   τ  ) where  Δ   τ      <    0. The depth   τ   c    =   2/3   +    Δ   τ   
corresponds to the depth   τ   λ      =   2/3.  

   6      Generally speaking, the temperature increases with optical depth in stellar atmospheres. However, non - LTE effects can in some 
instances cause a temperature rise in parts of the outer atmosphere. Such effects are not considered here.  
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the core is smaller than in the continuum. This gives rise to an absorption profi le for atomic 
lines in the stellar fl ux. 

 Therefore, for weak atomic lines, the line depth (Eq.  4.94 ) may be approximated by
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where  Δ   τ     =     τ   c     −    2/3 and   τ   c  is the optical depth in the continuum associated to the geometri-
cal depth where the line forms (see Figure  4.16 ). From the defi nition of the two optical 
depth scales   τ   c  and   τ   λ   , the following relation exists between the optical depth scales and 
the opacities
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 At the depth   τ   c  linked to the geometrical depth where the line forms (or where   τ   λ      =   2/3), 
the equation above leads to the expression
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 Since for weak atomic lines, the line opacity is much smaller than that of the continuum 
( k  l     <<     k  c ), the portion of the equation above found in brackets may be approximated by 
the following expression
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 Also, since  Δ  τ    =     τ   c     −    2/3, it is trivial to show that
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 The line depth can then be written
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 It was seen in Section  4.2  that the line opacity  k l   is proportional to the abundance of the 
element responsible for the atomic line. Generally speaking, the opacity of the continuum 
 k  c  is more or less independent of the abundance of a given element, except when an ele-
ment ’ s abundance is relatively large such as for hydrogen for instance. Therefore,  A  λ    and 
also  W  λ    are proportional to the elemental abundance for the case of optically thin lines 
treated here. The measurement of the equivalent width of atomic lines can then be a useful 
tool to estimate the abundance of the elements present in the atmospheres of stars. This 
topic will be discussed further in (optional) Section  4.4.3 . 
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 With the assumptions made above, for the case of an isothermal plasma   
d

d c

ln Bλ

τ
= 0, 

therefore  W  λ      =   0. Under such conditions, no atomic lines are visible in the spectrum. The 
presence of atomic lines in stellar spectra is then intrinsically linked to the variation of 
the physical conditions of the atmosphere as a function of depth.  

  4.4.3   Curve of Growth  †   

 In the previous section, it was shown that for weak atomic lines, the equivalent width 
increases linearly with the abundance of the element. In this case, the quantity of energy 
absorbed is proportional to the number of atoms of that element that is present in the line -
 forming region. Such a line is said to be unsaturated. However, if the abundance could be 
increased in the star ’ s atmosphere, the fl ux in the line ’ s core would eventually reach a 
minimum set at  π  B  λ   (  τ     =   0) (or the fl ux emitted by a blackbody of temperature  T (  τ     =   0), 
see Figure  4.17 ). The line is then said to be saturated, and the amount of energy absorbed 
by it is no longer linearly proportional to the abundance but rather it is found that 
  W Nλ ∝ ln , where  N  represents the abundance of the element. At even larger abundances, 
the absorption in the wings of the lines increases due to pressure broadening and the 
equivalent width then varies as   W Nλ ∝  (the abundance may be given for instance as 
the fraction of the total number of atoms that is of that element, see Appendix  E ). The 
dependence of the equivalent width as a function of abundance is called the curve of 
growth and is represented schematically in Figure  4.18 . This curve can be used to estimate 
the abundance of an element found in a given star by measuring the equivalent width of 
its atomic lines.     

l

F
l

pBl (t = 0)

     Figure 4.17     Illustration of the varying shape of an atomic line as the abundance increases. It goes 
from an unsaturated to a saturated condition. As the line deepens, the fl ux eventually attains a 
minimum, which when assuming LTE is equal to  π  B  λ   (  τ  = 0).  
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  4.5   Atmospheric Modelling 

 Model atmospheres are numerical models that attempt to properly estimate the structure 
of the outer regions of stars, the structure being defi ned as the various physical quantities 
such as  T ,   ρ  ,  r , etc. as a function of a chosen optical depth. Since the knowledge of the 
physical structure of atmospheres is critical for calculating precise theoretical spectra, the 
fi eld of stellar atmospheres is very important for better understanding stars. Such theoreti-
cal spectra serve as a critical link between theory and observational stellar astronomy. 

 In this section, the various aspects surrounding the numerical computation of stellar 
atmosphere models will be discussed. To render the stellar atmosphere problem numeri-
cally feasible, a number of approximations are normally assumed. Such approximations, 
along with the data necessary for atmospheric modelling will be presented. To calculate 
a stellar atmosphere model, a series of physical equations must be solved in a deliberate 
way. The algorithm typically used to achieve the goal of computing the atmospheric 
structure will be described in (advanced optional) Section  4.5.2 . Examples of stellar 
atmosphere models will then be presented. Finally, an advanced and optional section 
depicting a method for correcting the temperature in a stellar atmosphere calculation will 
be presented. As will be seen below, proper temperature correction during atmospheric 
modelling is a critical part of the stellar atmosphere algorithm. 

  4.5.1   Input Data and Approximations 

 As previously mentioned in Chapter  1 , global properties of stars can be defi ned by three 
fundamental parameters: mass, radius and luminosity. However, other equivalent physical 

     Figure 4.18     Illustration of the equivalent width ( W  λ   ) as a function of the abundance ( N ) of the 
species for a given atomic line (commonly called the curve of growth). The dependence of the 
equivalent width with respect to abundance for the various parts of the curve is given in the fi gure. 
The approximate position where the line begins to be saturated is also shown in this fi gure.  
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quantities can also be used to defi ne stars. For example, with the knowledge of the radius 
and the luminosity, the effective temperature can be obtained (see Eq.  1.10 ). Any two of 
the parameters: luminosity, radius or effective temperature, plus the mass are equivalent 
to the three fundamental parameters listed above. Also, since   g GM R= * */ 2 , the surface 
gravity can also be calculated with the knowledge of the mass and the radius. Again, a set 
composed of any two of the parameters: mass, radius or surface gravity, plus either the 
luminosity or effective temperature completely defi nes the global properties of a star. 

 For stellar atmosphere modelling, only the outer regions are of interest. We may then 
suppose that the gravitational acceleration is constant since  r  does not vary much from  R   *   
within the atmosphere. The geometrical depth of atmospheres is typically on the order of 
1 % of the stellar radius. This depth is determined by the optical depth chosen for the 
deepest layer of the atmosphere that is typically set at   τ      ≈    10 3  (see discussion below). The 
geometrical depth of atmospheres of supergiant stars are relatively larger (up to several 
percentage points of their radius) than the depth of atmospheres of main - sequence stars 
because of the lower density of their plasma. The density at the surface of supergiant stars 
is smaller due to their relatively weak surface gravity. The three main input parameters 
that must be furnished to the model can then be the radius, surface gravity and effective 
temperature. However, since the thickness of stellar atmosphere models is much smaller 
than the stellar radii, they can be modelled by plane - parallel layers. In the plane - parallel 
approximation for stellar atmospheres, the radius is of no importance and only two param-
eters remain: gravity and effective temperature. Gravity determines the pressure profi le 
inside the atmosphere via the hydrostatic equilibrium equation, assuming a star at equi-
librium or not in a quickly evolving evolutionary stage. Most atmospheric models are only 
valid for stars in a static phase; however, some more modern codes can take global move-
ments of the medium due to evolutionary effects into account. Meanwhile, the effective 
temperature defi nes the integrated fl ux at the stellar surface. 

 Typically, stellar atmosphere models are divided into 50 to 100 layers, for each of which 
the physical properties such as local temperature, pressure, density, etc. are desired. These 
layers are chosen in a way to properly sample optical depths from approximately 10  − 8  to 
10 3 . The optical depth is normally chosen at a wavelength in the visible region of the 
spectrum. 

 The resolution of the radiative - transfer equation requires the knowledge of monochro-
matic radiative opacities. The abundances of the elements present must then be given as 
input along with the pertinent atomic data for all of the ions encountered within the atmos-
phere. Since only the exterior parts of the star are modelled, only the fi rst few ions of each 
element present are of importance. The following atomic data are needed for opacity 
computations: the atomic energy levels and their degeneracy, the ionisation energies of 
the various ions, the photoionisation cross sections from the various atomic levels and the 
 gf  values of the atomic transitions. The  gf  value for an atomic transition  i     →     j  is equal to 
 g i f ij   and is sometimes called the weighted oscillator strength. The knowledge of the product 
of  g i   and  f ij   is suffi cient for line - opacity calculations because line opacity is proportional 
to this value (see Exercise 4.2). For cool stars, the relevant data for the molecules present 
there must also be given since they can contribute signifi cantly to the radiative opacity. 

 The radiative - transfer equation is solved at a given number (typically around 10) of 
directions (or values of  u ) on a chosen frequency grid. This grid is typically composed by 
on the order of 10 4  points. The frequency points are chosen so that they properly sample 
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the spectral regions where the radiation fi eld is strong. A detailed knowledge of the radia-
tive fi eld is not critical for stellar atmosphere models because their structural properties 
depend on global aspects of the radiation fi eld. Once an atmospheric model is obtained it 
can then be used to calculate the fl ux on a fi ner frequency grid that may be compared to 
observed spectra. 

 In stellar atmospheres, the equation of state chosen is normally that of an ideal gas. This 
is a good approximation except, for example, for white dwarfs, where the densities typi-
cally found in their atmosphere can necessitate a more elaborate equation of state. This 
topic will be discussed in Chapter  5 . 

 In cooler stars, where convection can occur in the atmosphere, convection must be 
included in the modelling since it participates in energy transport and can therefore modify 
the atmospheric structure. A description of convection and the physical data that intervene 
for this physical process will be discussed in more detail in Chapter  5 .  

  4.5.2   Algorithm for Atmospheric Modelling  †  †   

 Detailed numerical calculation of a stellar atmosphere necessitates a number of successive 
and purposeful steps. It is an iterative process in which, for plane - parallel atmospheres for 
example, a structure is sought such that it leads to a constant integrated fl ux   F T= σ eff

4  
throughout the atmosphere or in other words in each layer of the numerical model. Such 
numerical modelling requires powerful computing resources since a variety of equations 
must be solved and a large quantity of data is needed. 

 The algorithm begins with loading fundamental physical quantities defi ning the atmos-
phere:  T  eff , log  g  and the abundances of the elements present. The various atomic and 
molecular data required must also be loaded by the computer code. For spherical model 
atmospheres, the radius of the star is also needed. Figure  4.19  illustrates the algorithm 
discussed in this section.   

 The atmosphere is divided into a fi nite number of layers (typically 50 to 100). The layers 
of the model atmosphere are chosen in such a way that they properly sample the optical 
depths from approximately log   τ     =    – 8 to +3. The layers are usually divided using a constant 
increment  Δ   (log   τ  ), where   τ   is an optical depth scale at a predetermined wavelength. The 
hydrostatic equilibrium equation may be written (see Exercise 4.11)
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= =     (4.106)  

where  k  is the opacity associated to the chosen optical depth scale. This form of the 
hydrostatic equilibrium equation is numerically useful since it incorporates the variable 
log   τ  , which is the quantity with which the atmosphere is divided. The fi rst step for model-
ling the atmosphere is to solve the hydrostatic equilibrium equation. However, the opacity 
is not yet known. A crude estimate of the opacity profi le (i.e. as a function of depth) can 
be used during the fi rst iteration. In future iterations, the opacity is calculated more pre-
cisely and gives a more realistic solution. Also, to solve the hydrostatic equilibrium equa-
tion, the pressure at a given point in the atmosphere must be known. Usually, a more or 
less arbitrary value for the pressure in the fi rst layer (at the surface) is given in input. The 
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value chosen affects the structure of the fi rst few layers, but does not appreciably affect 
the deeper layers as long as the pressure chosen for the fi rst layer is negligible compared 
to the pressure in these deeper layers. 

 Once the pressure stratifi cation is known and assuming a given equation of state (for 
most cases the ideal - gas approximation is suffi cient), the total number density of particles 

Solve Saha and Boltzmann

equations and calculate

monochromatic opacities

Apply temperature

correction procedure

to obtain new T(t)

Output: Atmospheric structure

and monochromatic flux

Input: T(τ) from previously
converged model or

grey-atmosphere model

Input: Teff, log g, abundances
and atomic data

Solve radiative-

transfer equation

Solve hydrostatic

equilibrium equation

START

END

NO YES

for each layer?

Does ∫Fν dn = sTeff
4

∞

0

     Figure 4.19     Flowchart of the algorithm used for atmospheric modelling of a plane - parallel model. 
Once the radiative - transfer equation is solved, radiative pressure that is not mentioned in this fi gure 
or in the text may also be included in the hydrostatic equilibrium equation for subsequent iterations 
(see optional Section  3.12 ). Figure reproduced and adapted with permission from Fran ç ois Wesema ë l.  
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present in each layer may be calculated providing the local temperature is a known quan-
tity. Since at this point of the algorithm the temperature is unknown, an initial temperature 
profi le with respect to depth must be employed. This initial temperature used can be, for 
instance, the one for a grey atmosphere (Eq.  4.21 ). A previously calculated model (even 
one with different fundamental parameters) can also be used during the fi rst iteration. The 
total number density of particles and the temperature may be used to solve the Saha equa-
tions that give the ionisation fractions of the species present (see the special topic below 
for more details). The Boltzmann equations are then solved to obtain the populations of 
the various atomic energy levels that may then be used to calculate the monochromatic 
opacity spectrum. These calculations are done with the aid of the atomic data loaded at 
the onset of the computations.   

 Special Topic  –  Saha Equations: A More Realistic View 

    In Chapter  1 , several examples were shown where ionisation fractions were cal-
culated for relatively simple cases. Here, an example illustrating the complexity in 
obtaining the ionisation fractions in a more realistic case is presented. A star com-
posed of hydrogen and helium is considered here. For the calculation of a stellar 
atmosphere model, the number densities of the fi ve ions present:  n  HI ,  n  HII ,  n  HeI ,  n  HeII  
and  n  HeIII  as well as  n  e  must be obtained to enable the calculation of the radiative 
opacities. To obtain these six unknown quantities, six independent equations are 
required. At the point where the opacities are needed in atmospheric modelling, 
both  T  and  P  are known. In addition to the following three Saha equations (assum-
ing of course that the proper atomic data are known):  n  HII / n  HI ,  n  HeII / n  HeI  and  n  HeIII  /  
 n  HeII , the following equations come into play

   P n kT n n n n n n kT= = + + + + +( )tot HI HII HeI HeII HeIII e     (4.107)  

   n n n ne HII HeII HeIII= + + 2     (4.108)   

 The fi rst of the two equations above assumes the equation of state of an ideal gas. 
The second equation relates that the free electrons in the plasma come from the 
ionisation of H and He. 

 An additional equation is therefore needed to obtain the various populations 
listed above. This last equation is obtained from the abundances of the elements 
present in the star. Assuming that the fraction of hydrogen atoms is  A  H  and that 
of helium atoms is  A  He , and since only H and He is present in the star under 
consideration,  A  H    +    A  He    =   1. Two equations defi ning these abundances can then 
be written

   A
n n

n n n n n
H

HI HII

HI HII HeI HeII HeIII

= +
+ + + +     (4.109)  

   A
n n n

n n n n n
He

HeI HeII HeIII

HI HII HeI HeII HeIII

= + +
+ + + +

    (4.110)   
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 The opacity spectrum is needed to solve the radiative - transfer equation and it may be 
calculated with the populations obtained by the procedure described above (supposing that 
the proper atomic data are given as input). The radiative - transfer equation can then be 
solved for each value of  u  and   ν   of the respective grids (specifi ed by the user of the 
atmospheric code) thereby giving the specifi c intensity in each atmospheric layer. Since 
the frequency grid typically comprises of tens of thousands of points so that it properly 
samples the radiation fi eld, large numerical resources are needed for such calculations. 
The number of directions (or values of  u ) chosen for which the transfer equation is solved 
is normally on the order of 10. Once the specifi c intensity is known, the monochromatic 
and integrated fl uxes may be computed. If the integrated fl ux is equal to   σTeff

4  (within a 
certain tolerance) for each layer (which is of course never the case for the fi rst iteration!) 
the structure of the atmosphere is then considered to be suffi ciently precise and may be 
employed for various astrophysical applications. When the value of integrated fl ux is not 
within this tolerance, the temperature profi le is modifi ed via a temperature - correction 
procedure (see (advanced optional) Section  4.5.4 ) that is designed to lead to a fl ux nearer 
to the desired value. This new temperature profi le is then used to begin a new iteration 
(see Figure  4.19 ). The succession of steps described above is repeated until an atmospheric 
structure with a temperature profi le that converges towards the desired value for the inte-
grated fl ux is obtained. The atmospheric code then gives as output the structure of the 
atmosphere and its monochromatic fl ux.  

  4.5.3   Example of a Stellar Atmosphere Model 

 In this section, some results from a model atmosphere of a star with  T  eff    =   10   000   K, 
log  g    =   4.0 and solar abundances are presented. The aim here is to initiate the reader to 
the typical order of magnitudes of the various physical quantities as a function of optical 
depth in a typical stellar atmosphere. The atmospheric model shown in this section was 
calculated with the Phoenix stellar atmosphere code (Hauschildt, Allard and Baron,  The 
Astrophysical Journal , 512, 377 (1999)). This is a multi - purpose stellar atmosphere code 
that can be used to calculate atmospheres for various types of stars. 

 The temperature profi le of the model atmosphere under consideration is shown in Figure 
 4.1 . This fi gure shows that the temperature at the bottom of the atmosphere is equal to 
several times the value of  T  eff . This result is important because it permits an appropriate 
selection of the number of ions for each element that is required for proper modelling (see 
Exercise 4.13). 

 However, since a relation exists between  A  H  and  A  He , these two equations are not 
independent and in reality can be simplifi ed to only one equation with the knowl-
edge that for the case under consideration  A  H    +    A  He    =   1. This gives the sixth and 
fi nal equation needed to obtain the six unknown quantities enumerated above. 

 For the example discussed here, only two elements were considered. In typical 
atmospheric model, dozens of elements are often included. A large number of 
equations must then be solved, leading to another reason why considerable compu-
tation resources are needed for atmospheric modelling.  
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 Figure  4.20  shows the radius, density and pressure as a function of optical depth 
at 5000    Å  in the atmosphere under consideration. This fi gure spans the depths  − 8    ≤   
 log     τ   5000     ≤    2, which is a typical extent used for atmospheric modelling. As mentioned 
previously, the geometrical extension of atmosphere is on the order of one per cent of the 
stellar radius (see top part of Figure  4.20 ). The density of air at sea level on Earth is 
approximately 1.3    ×    10  − 3  g/cm 3 . The density in stellar atmospheres is typically many orders 

     Figure 4.20     The ratio of the local radius to that of the stellar radius, density and pressure as 
a function of optical depth calculated at 5000    Å  for a plane - parallel model atmosphere with 
 T  eff    =   10   000   K, log  g    =   4.0 and solar abundances. The temperature profi le for this stellar atmosphere 
model is shown in Figure  4.1.   
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of magnitudes smaller than this value (see middle part of Figure  4.20 ). A stellar atmos-
phere is thus composed of very tenuous gases. Meanwhile, the pressure within the atmos-
phere increases by several orders of magnitude and remains much smaller than the 
atmospheric pressure at sea level on Earth, which is equal to 1.01    ×    10 6    dyn/cm 2  (see 
bottom part of Figure  4.20 ) throughout most of the stellar atmosphere.   

 In Figure  4.20 , the shapes of the various curves change relatively suddenly near 
log   τ   5000    =   0. This is due to the ionisation of hydrogen which occurs in this region for 
the stellar atmosphere shown here. The excitation and ionisation of the most abundant 
element present (i.e. hydrogen) causes a considerable increase of the opacity and leads to 
a fast increase of the geometrical depth as a function of optical depth. This causes the 
abrupt slope changes seen in Figure  4.20 .  

  4.5.4   Temperature - Correction Procedure  †  †   

 In Section  4.5.2 , it was shown that a temperature correction scheme leading to the con-
servation of the fl ux throughout the atmosphere is a critical component of the algorithm 
used to calculate stellar atmospheres. In this section, a method used for modifying 
the temperature profi le during atmospheric modelling is developed. The temperature -
 correction method shown here is called the lambda - iteration procedure. Its name stems 
from the fact that the average intensity intervenes and it is calculated with the   Λ   operator 
(see (advanced optional) Section  3.10 ). Since more effi cient methods exist and are usually 
employed in modern model atmosphere codes, this procedure is mainly presented for 
illustrative and instructive purposes. 

 In Section  3.7 , when an atmosphere is in radiative equilibrium and assuming  S  ν      =    B  ν   , 
it was shown that

   κ ν κ νν ν ν νB Jd d
0 0

∞ ∞

∫ ∫=     (4.111)   

 However, during a model atmosphere calculation and before the atmospheric structure is 
properly converged, each layer  i  does not respect the equation given above. In other words, 
the following inequality ensues

   κ τ ν κ τ τ νν ν ν νi i i iB T J( ) ( ) ≠ ( ) ( )
∞ ∞

∫ ∫d d
0 0

    (4.112)   

 The temperature  T i   of a given layer must then be modifi ed by a value  Δ  T i   in the aim of 
attaining radiative equilibrium

   κ τ ν κ τ τ νν ν ν νi i i i iB T T J( ) +( ) = ( ) ( )
∞ ∞

∫ ∫Δ d d
0 0

    (4.113)   

 The Planck function at temperature  T i     +    Δ  T i   may be approximated by the following Taylor 
expansion
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and therefore, the radiative equilibrium equation becomes
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 The temperature correction   Δ T i   may then be isolated to give
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    (4.116)   

 Such temperature corrections may be applied (at each iteration) to the temperature profi le 
of the atmosphere that eventually leads to a model that converges to the desired solution 
(within a certain tolerance). This equation shows that when  T i   is such that the related Planck 
function is smaller that  J  ν   , the temperature must be increased (i.e.  Δ  T i      >    0). Inversely, when 
the local Planck function is larger than  J  ν   , the local temperature must be decreased. 

 Unfortunately, the lambda - iteration procedure has several drawbacks. For example (and 
as discussed in Section  3.8 ), the average intensity at large optical depths is approximately 
equal to the local Planck function. Therefore, at large depths  Δ  T i   is very small and this 
procedure converges very slowly. As previously mentioned, more effi cient temperature -
 correction procedures have been developed and are employed in modern stellar - 
atmosphere codes. These temperature - correction methods also have the capability of 
taking into account energy transport due to convection that was neglected in the theoretical 
development shown above. This feature is critical since convection is present in the atmos-
pheres of late - type (or cooler) stars.   

  4.6   Summary  

   Grey-atmosphere temperature profile: effT Tτ τ( ) = +⎛
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   Opacity for an atomic line:
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 Line - broadening mechanisms: natural, Doppler and pressure
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   Voigt profile natural and Doppler broadening :
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   Line depth:
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   Equivalent width: dW Aλ λ λ= ∫     (4.122)  

   Line depth for weak lines:
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 Input for plane - parallel atmosphere modelling:  T  eff , log  g , abundances and atomic data  

 4.7   Exercises    

   4.1   Show that Eddington ’ s approximation ( J  ν   (  τ  )   =   3 K  ν   (  τ  )) is valid when the specifi c 
intensity is given by  I  ν   (  τ  ,  u )   =    a  ν   (  τ  )   +    b  ν   (  τ  ) u .   

   4.2   Show that in a grey plane - parallel atmosphere in radiative equilibrium, the integrated 

fl ux is   H
S= =( )τ 2 3

4
.   

   4.3   Show that the full width at half - maximum for a Lorentzian line profi le (Eq.  4.47)  is 
equal to  Γ /2 π .   

   4.4   At what interval (in units of  Γ /4 π , or in other words the half - width at half - maximum) 
from the natural frequency does the Lorentz profi le have a value of 1 % of its central 
intensity? Calculate this interval for 0.1 % of the central intensity.   

   4.5   The atomic lines for a star are observed to be shifted relative to their normal posi-
tions. This is due to a radial velocity of the star (i.e. the component of the star ’ s velocity 
along the line - of - sight). If the shift of the H  β   line is  Δ   λ     =   +0.4    Å , what is the value and 
the direction of the radial velocity of the star?   

   4.6   Show that the opacity of an atomic line (Eq.  4.86 ) is proportional to  g i f ij   (this quantity 
is commonly called the  gf  value and is often given in atomic databases and used in astro-
physical applications).   

   4.7   Demonstrate that the most probable speed  V  0  in a gas of particles with mass  m  and 
at temperature  T  that possesses a Maxwell speed distribution is

   V
kT

m
0

2=     (4.124)     
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   4.8   Calculate the percentage of free electrons that have suffi cient kinetic energy in a gas 
at  T    =   10   000   K to ionise hydrogen atoms found in the fi rst exited state. (Numerical problem)   

   4.9   Calculate the equivalent width of an absorption atomic line of triangular shape where 
the fl ux in the centre is  ¼  of the corresponding value in the continuum and the width of 
the base of the triangle is 6    Å .   

   4.10   Assume a beam of radiation enters an interstellar cloud with a thickness of 10   AU. 
At a given frequency, a transition can cause stimulated emission in this gas. If the intensity 
when the beam exits the cloud is 20 times its initial intensity, calculate  k  ν   ρ   in this cloud 
at this frequency. Assume that the emissivity is negligible at this frequency and that the 
opacity and density is constant throughout the cloud.   

   4.11   Show that the hydrostatic equilibrium equation may be written

   d
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= =     (4.125)     

   4.12   In Figure  4.10 , for the star where  V sin i    =   1.5   km/s, the line widths are on the order 
of 0.2    Å  in the part of the electromagnetic spectrum shown. In this case, the rotational 
broadening can be considered negligible as compared to the observed line width. For 
approximately what value of  V sin i  does the widening due to rotation begin to dominate 
line broadening there?   

   4.13   In order to diminish the computing time during the modelling of stellar atmos-
pheres, only the atomic data for the ions that are present there are taken into account. By 
knowing the temperature at which certain elements ionise (see Chapter  1  and Appendix 
 D ) and by using the results for the grey atmosphere estimate the number of magnesium 
ions that need to be considered when modelling the atmosphere of a star with  T  eff    =   8000   K 
up to a depth of   τ     =   500.   

   4.14   In a star where the temperature of the atmosphere decreases with depth in the line -
 formation region, what particularity is observed concerning the atomic lines in the spectra 
formed in these depths? Explain why. According to the defi nition of the equivalent width, 
what is particular in this instance? Is this consistent with Eq.  (4.105) ?     
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   5.1   Introduction 

 The previous chapter was dedicated to modelling the outer layers of stars or its atmosphere. 
In stellar atmosphere modelling, the basic parameters ( T  eff , log    g  and  R   *  ) of the star are 
needed. Physically, these parameters are determined by the overall structure of the star. 
In the present chapter, the equations needed to properly understand the general structure 
of stars will be seen. This fi eld of stellar astrophysics is called stellar structure or some-
times stellar interiors. The precise determination of the structure of stellar interiors is 
important for several reasons. For instance, a good knowledge of the interior structure of 
stars is important to properly estimate the nuclear reaction rates in the core of stars that 
is critical for the study of their evolution. The stellar structure is also necessary for theo-
retically predicting of the oscillation frequencies of pulsating stars. On the other hand, the 
observational study of stellar pulsations can give information about the interior of stars. 

 The chapter will begin by a review of the four basic equations of stellar structure: 
hydrostatic equilibrium, mass conservation, energy transport and energy conservation. Up 
to now, it was often assumed that all of the energy in stars was transported by radiation. 
The other two energy - transportation modes sometimes present in stars, namely convection 
and conduction, will be described. Convection, which is the more prevalent of these two 
modes in stars, will be discussed in more detail. The physical conditions required for 
convective - energy transport will be reviewed. A simple theoretical framework for convec-
tion, namely the mixing - length theory, will also be presented. 

 The resolution of the equations of stellar structure requires the knowledge of the equa-
tion of state of the stellar plasma. It will be seen that a type of equation of state called a 
polytrope leads to a relatively simple solution for the stellar structure and is very instruc-
tive. In the previous chapters, the ideal - gas equation of state was assumed to be valid in 
stars. However, under certain conditions, like for example when the stellar plasma is very 
dense, the ideal - gas approximation is not suitable. This is the case for white dwarfs for 

  5 
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instance, where the gas is said to be degenerate. The equation of state there is quite dif-
ferent from an ideal gas and it strongly affects the physical structure of stars. A section 
describing the complexity of the equation of state in stars will therefore be presented. 

 Sections pertaining to the structure of the Sun and to variable stars and asteroseismology 
will also be presented in this chapter. Several types of variable stars will be discussed along 
with some of the physics behind the pulsation of stars. The importance of asteroseismology 
as a tool for better understanding stars when used in conjunction with observations will be 
outlined. The utility of using variable stars to gauge distances will also be discussed.  

  5.2   Equations of Stellar Structure 

 The structure of a star can be calculated by solving four basic equations commonly called 
the equations of stellar structure. In this section, these four equations along with other 
ingredients necessary to properly defi ne the structure of a star will be discussed. Please 
note that spherical symmetry will be assumed throughout this chapter. 

  5.2.1   Hydrostatic Equilibrium Equation 

 As seen in Chapter  2 , when a star is in hydrostatic equilibrium, a differential equation that 
relates the gas pressure 1   P  caused by the weight of the matter above point  r  to the pertinent 
physical quantities was shown to be
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    (5.1)   

 This is the fi rst of the equations of stellar structure. 
 However, when a star is in a rapid evolutionary phase such as the supernova stage or 

if a star is pulsating, it cannot be considered in hydrostatic equilibrium and therefore the 
following equation of motion must then be taken into account
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 In such instances, the hydrodynamics of the medium must be considered. For most cases 
studied in this chapter, stars are assumed to be in hydrostatic equilibrium.  

  5.2.2   Equation of Mass Conservation 

 The variable  M ( r ), which is defi ned as the mass inside the radius  r , must be known to 
solve the hydrostatic equilibrium equation. Figure  5.1  shows that the mass d M ( r ) of a 
spherical shell found between the radii  r  and  r   +    d r  is given by the equation

   d dM r r r r( ) = ( )4 2π ρ     (5.3)  

     1      Here, only gas pressure is included. However, radiation pressure can come into play in certain circumstances.  
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where 4 π  r  2 d r  is the volume of the spherical shell and   ρ  ( r ) is the local density. The equa-
tion above may be written

   
d

d

M r

r
r r

( )
= ( )4 2π ρ     (5.4)     

 This is called the equation of mass conservation. The amount of mass  M ( r ) inside radius 
 r  is obtained by integrating this equation from the centre to radius  r 

   M r M r r r r
r r
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 It is self - evident that the integration of this equation over the whole star must give the 
mass  M   *   of the star under consideration.    

dM

r
r + dr

     Figure 5.1     Illustration of the mass d M  found inside the spherical shell found between the radii  r  
and  r    +   d r  (shaded area).  

  Example 5.1:    Find the pressure stratifi cation   P  (  r  ) inside a star with mass   M    *   and 
radius   R    *   in which the density decreases linearly with   r   via the expression.     
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where   ρ   c  is the central density.  

  Answer: 

 The pressure may be calculated by integrating the hydrostatic equilibrium 
equation
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 By Eq.  (5.5) ,  M ( r ) is
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 Here, the mute variable  x  was used instead of  r  in order to distinguish it from the 
integration boundary. The central density may be evaluated with the knowledge that 
 M ( R   *  )    =   M   *  , which leads to
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    (5.9)   

 With these results, the pressure gradient can be obtained
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 The pressure at radius  r  can then be calculated by integrating this equation from the 
centre of the star to radius  r 
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 By using the value for the central density found above (Eq.  5.9 ), the pressure as a 
function of radius is
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 By assuming that the pressure is nil at the surface of the star, the central pressure is 
found to be equal to
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    (5.14)   

 Therefore, with these last two equations, an expression for  P ( r ) as a function of the 
fundamental parameters of the star may be written. The result for the central pressure 
found here is similar to the value found in Example  2.4 . The values for the central 
density and pressure found here, when applied to the Sun, are more than an order 
of magnitude smaller than the corresponding values obtained by detailed numerical 
solar models. This is not surprising since the density stratifi cation inside the Sun is 
not given by Eq.  (5.6) .  
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  5.2.3   Energy - Transport Equation 

 As discussed earlier, there are three modes of energy transport in stars: radiation, conduc-
tion and convection. In this section, a relation between the temperature gradient and the 
luminosity of the star will be found. For simplicity, all of the energy will be assumed to 
be transported by radiation. The other two modes of energy transport will be discussed 
later in the chapter. 

 The theoretical developments seen in Sections  3.8  and  3.9  lead to the integrated 
Eddington fl ux at large optical depths given by
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 The variable  r  is used in the equation above instead of  z  (Eq.  3.74 ) since spherical sym-
metry is assumed here. The integrated Eddington fl ux may also be written as a function 
of luminosity
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 Contrarily to stellar atmospheres, the integrated fl ux in stellar interiors is not constant 
because of the following two reasons. First, the surface on which the luminosity is dis-
tributed depends on  r , while for the plane - parallel stellar atmospheres discussed in Chapter 
 4 , the surface of the atmosphere is independent of depth. Secondly, in the stellar core 
where nuclear reactions take place, the luminosity in not constant and decreases as the 
stellar centre is approached (see Section  5.2.4  for more details). This therefore modifi es 
the fl ux. 

 Since the integrated Planck function is

   B r
T( ) = σ 4

π
    (5.17)  

the temperature gradient as a function of  r  using the three equations above lead to the 
following result
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 This equation is commonly called the energy - transport equation (for radiation only). To 
simplify this expression, the depth dependence of  T ,   ρ   and  k  R  is not written explicitly. The 
following physical interpretation of this equation is useful to better understand the transfer 
of radiation in stars. To have energy transfer, a temperature gradient is needed. This equa-
tion shows that the temperature gradient is proportional to luminosity. Assuming all else 
equal, if the luminosity increases, the temperature gradient increases to enable the transfer 
of the extra amount of energy. Also, when all else is equal, if the opacity increases, once 
again the temperature gradient increases in order to compensate for the higher diffi culty 
for the photons to cross the medium. 
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 A variable often used in stellar astrophysics  ∇ , commonly called the temperature gradi-
ent, is defi ned as

   ∇ =
d

d

ln

ln

T

P
    (5.19)   

 Such a temperature gradient is used when discussing convection. This topic will be pre-
sented later in this chapter. For the case of pure radiative transport and assuming hydro-
static equilibrium, this variable can be shown to be equal to (see Exercise  5.2 )
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 Where the subscript rad is used to underline that the medium is in radiative equilibrium. 
Once again, the explicit dependence of  g ,  k  R ,  T  and  P  on  r  is not written. 

 The equation above shows that when the opacity increases, so does  ∇  rad , and it will be 
shown that under certain conditions pertaining to this physical quantity convective energy 
transport can become effi cient (see Section  5.3.3 ). The temperature gradient increases 
when radiative opacity is large and it becomes increasingly diffi cult to transport energy 
via radiation. This can lead to convective transport of energy that takes over from radiative 
transport. 

 The energy - transport equation found above depends on the integrated fl ux (i.e.   
L r

r

( )
4 2π

). 

The structure of stars therefore depends on the global properties of the radiation fi eld. Even 
though it is not of critical importance for the global properties of stars, the detailed mono-
chromatic fl ux in stellar interiors will be discussed below in Section  5.3.1 . When taking into 
account more physical processes such as atomic diffusion, the monochromatic fl ux can in 
an indirect way affect the structure of stars (see Chapter  7 ) and can therefore be of interest.  

  5.2.4   Equation of Energy Conservation 

 The fi nal equation of stellar structure is related to the local luminosity  L ( r ) due to all 
sources of energy within the radius  r . When a star is gravitationally stable (not in a phase 
of contraction), its source of energy is solely thermonuclear fusion. The luminosity there-
fore depends on the thermonuclear energy production rate in the stellar core. In the equa-
tions shown here, the nuclear production rate per unit mass (i.e. the total quantity of nuclear 
energy produced per gram of matter per second) defi ned by the quantity  ε ( r ) will be 
employed. The evaluation of this quantity is quite complicated since the reaction rates of 
all important fusion reactions must be known for its calculation. This physical quantity 
depends on the local density and temperature as well as on the abundances of the atomic 
species present. More details surrounding the various nuclear reactions present in stellar 
cores will be given in Chapter  6 . 

 Similarly to the mathematical development seen above regarding the conservation of 
mass, the quantity of energy per second (or luminosity) generated inside a spherical shell 
found between the radii  r  and  r   +    d r  (see Figure  5.2 ) is given by the equation

   d dL r r r r r( ) = ( ) ( )4 2π ρ ε     (5.21)  
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where   ρ  ( r ) is the local density and   ρ  ( r ) ε ( r ) represents the energy per unit time per unit 
volume generated at radius  r . The equation above may be written as follows

   d

d

L r

r
r r r

( )
= ( ) ( )4 2π ρ ε     (5.22)     

 This equation is called the energy - conservation equation or sometimes simply the energy 
equation. Its integration (assuming the knowledge of   ρ  ( r ) and  ε ( r )) leads to the luminosity 
at a given radius
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 Since all of the variables on the right - hand side of Eq.  (5.22)  are positive (or nil), 

  
d

d

L

r
≥ 0 and therefore the local luminosity increases with  r . Not surprisingly, this equation 

shows that if the nuclear energy production rate increases (as it does during stellar evolu-
tion, see Chapter  6  for more details), so does the luminosity. As mentioned previously, 
nuclear fusion only takes place in the central regions of stars. Consequently,  ε    =   0 in the 

exterior regions, and thus   
d

d

L

r
= 0 there. In these outer regions of a star, the luminosity is 

therefore constant and equals  L   *  , the total luminosity of the star. Figure  5.3  shows the 
luminosity as a function of radius for the Sun. From this fi gure, it may be inferred that 
the rate of nuclear energy generation goes from a maximum value in the centre to zero 
near  r    =   0.25 R   �  .    

  5.2.5   Other Ingredients Needed 

 In addition to the four equations of stellar structure, other ingredients must be included 
to calculate a stellar model. The equation of state  P (  ρ ,T,X i  ) must be known, where  X i   
are the mass fractions of the various elements present (see Eq.  5.109 ). The Rosseland 

r +
 dr

L 
+ 

dL

r

L dL

     Figure 5.2     Illustration of the energy generated per unit time d L  inside the spherical shell found 
between the radii  r  and  r    +   d r  (shaded area).  
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opacity  k  R (  ρ ,T,X i  ) and the rate of thermonuclear energy production per unit mass  ε (  ρ ,T,X i  ) 
must also be known quantities. When relevant, the importance of conduction and convec-
tion relative to radiation transport of energy must also be taken into account. Similarly 
to the case of stellar atmospheres seen in Chapter  4 , the calculation of a detailed stellar 
interior model necessitates considerable computing resources along with the knowledge 
of nuclear and atomic data. Instead of loading all of the atomic data needed for opacity 
calculations, the computer codes that calculate stellar interior models often use pretabu-
lated opacity tables. This diminishes the computing time necessary for modelling stars. 

 As mentioned previously, when calculating a stellar model, the star is often assumed to 
be static. However, on longer timescales, the abundances of the elements in the stellar 
core change as a function of time due to the nuclear reactions present there. This modifi es 
the structure of the star. Computer codes specifi cally developed for studying stellar evolu-
tion take these abundance changes into account and calculate a series of stellar models at 
various times during a star ’ s life. 

 Other factors such as stellar rotation, the presence of a magnetic fi elds or the accretion 
of matter at the stellar surface from the surrounding medium can also affect the structure 
of a star. The relative diffusion of the elements within the star (see Chapter  7 ) can cause 
abundance stratifi cation and therefore also modifi es the stellar structure. All of these 
factors are usually neglected in ordinary stellar models. However, specialized stellar 
models do exist that take these physical phenomena into account. 

 To solve the four differential equations defi ning the structure of stars, proper boundary 
conditions must be imposed. At the star ’ s centre, the following conditions must be respected

   L r M r→( ) = →( ) =0 0 0 0and     (5.24)   

 Meanwhile, at the surface of the star the following conditions may be used

     Figure 5.3     Luminosity as a function of radius inside the Sun. The data used here are those found 
in Table  5.1  (see Section  5.5 ). The dotted line shows approximately the radius where  ε     →    0 or 
 L     →     L   �  .  
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   P r R r R T r R T( *) , ( *) ( *)→ = → = → =0 0ρ and eff     (5.25)   

 These last three boundary conditions are theoretical because the stellar surface is diffi cult 
to defi ne. However, since the density at the surface is very small, this diffi culty in defi ning 
a true surface does not signifi cantly affect the model obtained for the interior. Alternatively, 
the values for these physical quantities at the surface used in stellar structure modelling 
can be taken from a predetermined stellar atmosphere model (by using their value at a 
given small optical depth). Evidently, to obtain a model for a star, its mass, radius, lumi-
nosity and composition (i.e.  X i  ) must be given as input to the computer code.     

 Special Topic  –  Equations of Stellar Structure as a Function of   M  (  r  ) 

    Similarly to stellar atmospheres, the numerical process of modelling stellar interi-
ors fi rst consists of dividing the star into a number of layers (or concentric shells). 
For atmospheric modelling, it was shown that it is preferable to divide the layers 
as a function of a standard optical depth instead of geometrical depth. For stellar 
interiors, instead of dividing the layers used in the numerical model as a function 
of  r , it is often more useful to divide them relative to  M ( r ). The various physical 
quantities defi ning stellar structure can then be written as a function of  M ( r ) : 
r     =     r ( M ),  P     =     P ( M ),  L     =     L ( M ),  T     =     T ( M ),   ρ      =      ρ  ( M ) and  ε     =     ε ( M ). It can be shown 
(see Exercise  5.4 ) that the equations of stellar structure when written as a function 
of  M ( r ) are
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  5.3   Energy Transport in Stars 

 Energy transport in stars is an extremely important physical process that is critical to 
properly understand the functioning of stars. It has been previously mentioned that three 
energy transport modes exist in stars: radiation, conduction and convection. There is also 
a fourth manner by which energy can travel from the central regions of stars to interstellar 
space: neutrinos. Neutrinos are particles that are emitted by certain fusion reactions. 
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However, since neutrinos interact with matter only via the weak nuclear force, except of 
course for gravity, almost all of these particles simply traverse the star without interacting 
with the stellar plasma. Therefore, the energy transported by neutrinos is directly lost to 
the interstellar space and this energy is usually simply subtracted from the thermonuclear 
energy production rate (see Chapter  6  for more details) and is thus simply considered as 
an energy sink and not as a mode of energy transport. 

 Up until now, a lot of attention has been given to the radiative mode of energy transport. 
The aim of this section is to expand the discussion to both conduction and convection. 
After a general description of both these transport processes, a more detailed discussion 
of convection will be undertaken since it is the second most important transport process 
after radiation. Convection occurs in a large portion of certain stars, our Sun being an 
example. Convection zones may also appear (or disappear) in a star during its evolution 
due to the changes in its internal structure. Conduction is much less prevalent in stars, 
occurring only in certain stars such as white dwarfs. However, before delving into these 
last two transport modes, a section describing the monochromatic radiative fl ux in stellar 
interiors is presented. 

  5.3.1   Monochromatic Radiative Flux in Stellar Interiors 

 For the equations of stellar structure seen earlier in this chapter, only the integrated radia-
tive fl ux intervened. The reason being, that the global structure of a star does not depend 
on the detailed monochromatic fl ux (or luminosity) but rather on its integrated value. 
However, certain astrophysical applications such as diffusion of the elements in stars (see 
Chapter  7 ) strongly depend on the detailed monochromatic fl ux inside stars. It is then 
essential to be able to properly evaluate the monochromatic fl ux in the interior regions of 
stars. In this section, an approximate formula for this physical quantity will be found. 

 From the energy - transport equation (Eq.  5.18 ) for which it is assumed that all the energy 
is transported by photons, the temperature gradient (relative to  r ) in the stellar regions 
outside where nuclear reactions take place (or in other words where the luminosity is 
constant and equal to   L r R T( ) = 4 2 4π σ eff) is
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 Inserting this result into the equation of the monochromatic fl ux valid at large optical 
depths found in Eq.  (3.73)  gives
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 It can be shown (see Exercise  5.5 ) that
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where a new variable 2    u
h

kT
=

ν
 is introduced. The monochromatic Eddington fl ux outside 

the thermonuclear core may then be expressed as
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 This function gives the global shape of the fl ux and is shown in Figure  5.4 . Its maximum 
is found at  u     ≈    3.83 (see Exercise  5.6 ). The introduction of the variable  u  is useful since 
the maximum of the fl ux becomes independent of both  T  and  ν  when using it. The detailed 
frequency dependence of the fl ux is determined by the monochromatic opacity that appears 

in the denominator of Eq.  (5.33) . Also appearing in this equation is the term   
R

r
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 that 

represents the increase of the fl ux as  r  decreases. This increase of the fl ux is due to the 
fact that the luminosity is distributed on a smaller surface of the imaginary sphere with 
radius  r . Also, and not surprisingly, the fl ux is proportional to   Teff

4 .   
 The monochromatic fl ux given by Eq.  (5.33)  is quite useful. In a practical sense, it can 

be used to estimate the fl ux in a predetermined stellar model. Most stellar models give not 
only the various variables such as  T ,   ρ  , etc. as a function of  r  but also  k  R . Therefore, a 
calculation of the monochromatic opacity spectrum leads to the knowledge of  H  ν   .    

     Figure 5.4     The dependence of P( u ) as a function of  u . Its maximum is found at  u     ≈    3.8.  

   2      Beware, do not confuse the angular dependence of the specifi c intensity  u     =    cos  θ   used in previous chapters with this new 
variable.  
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  5.3.2   Conduction 

 Conduction is a mode of energy transport that is important under specifi c physical condi-
tions where particles of matter may carry energy from hotter (or deeper) to cooler (or 
shallower) regions within a star. Such physical conditions are found inside white dwarfs 
where the free electron gas is degenerate, which leads to an equation of state that is much 
different from an ideal gas (the concept of degeneracy for a gas will be discussed in Section 
 5.6.3 ). In stellar plasma, the particles participating in conduction are these degenerate free 
electrons. For conduction to be important, the mean free path of the electrons must be of 
the same geometrical scale (or larger) on which the local temperature changes. Electrons 
from hotter (deeper) layers can therefore travel to cooler (shallower) layers without being 
impeded. The kinetic energy of the electrons from the hotter layers can then be transferred 
to cooler layers. The extra energy carried by the conductive electrons arriving in these 
cooler regions is conveyed to the local plasma following collisions where these high -
 energy electrons are eventually thermalized to the local temperature. 

 As for the case of radiative transport, the fl ux of energy due to conduction is proportional 
to the temperature gradient. An opacity related to the conductive fl ow of energy  k  cond  may 
then be defi ned such that the Eddington fl ux of energy due to conduction  H  cond  is

  Example 5.2:    Find the frequency (and the related wavelength) at the maximum of 
the function  P (  u  ) for   T     =   10 4 , 10 5  and 10 7    K. In which part of the electromagnetic 
spectrum are each of these wavelengths found? 

  Answer: 

 The maximum of the function P( u ) is found at  u     ≈    3.83 (see Exercise  5.6 ). Since

   u
h

kT
=

ν
    (5.35)   

 The values for the frequency and wavelength for each temperature are then easily 
found to be

   ν λ≈ × ≈ =7 9 10 1014 4. Hz or 3800 for KÅ T     (5.36)  

   ν λ≈ × ≈ =7 9 10 1015 5. Hz or 380 for KÅ T     (5.37)  

   ν λ≈ × ≈ =7 9 10 1017 7. Hz or 3.8 for KÅ T     (5.38)   

 The fi rst two maxima found above are in the ultraviolet (the one for  T    =   10 4    K is 
very close to the visible part of the spectrum) and the third maximum is in the X - ray 
region of the electromagnetic spectrum. The largest of these three temperatures 
is on the order of the central temperature found in main - sequence stars. Therefore, 
the radiation fl ux in central regions of main - sequence stars is composed mostly of 
X - ray photons.  
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 While the Eddington fl ux due to radiation  H  rad  is
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where  k  rad  is the opacity due to radiation that is simply equal to the Rosseland mean opacity. 
The expression  k  rad  is used instead of  k  R  for clarity when comparing radiative and conduc-
tive transport. In the absence of convection, the total fl ux of energy  H  tot  is
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where a total opacity  k  tot  is defi ned as

   
1 1 1

k k ktot rad cond

= +     (5.42)   

 The energy preferably fl ows through the mode of transport with the smaller opacity. An 
analogy between these two modes of energy transport and two electrical resistors in paral-
lel may be made (the similarity of the equation above to that for two resistors in parallel 
is self - evident). In such an electrical circuit, the electrical current is larger in the branch 
containing the resistor with the smaller resistance. In most conditions found in stellar 
plasma, conductive opacity is very large as compared to radiative opacity and thus almost 
no energy is transported by conduction.  

  5.3.3   Convection 

  5.3.3.1   General Description of Convection 

 Stars are made up of plasma and are thus hydrodynamical objects. The plasma within a 
star is not static and macroscopic movements, fl ows or currents of gas can exist there. 
Since the theory of hydrodynamics is very complex and depends on physical values that 
are often not well established, a complete hydrodynamical theory for stellar plasma is not 
feasible. However, some hydrodynamic phenomena, such as convection can be modelled 
while making certain simplifying assumptions. This is the aim of this section. 

 Convection is the transport of energy by rising cells (or blobs) of matter within a star. 
For instance, if a cell of plasma is displaced within a star it can either fall back to its 
original position or may, under certain conditions, rise towards the surface due to buoy-
ancy. If such conditions exist, the plasma is said to be unstable against convection and 
convective energy transport process can take place. For the discussion in the next section, 
it will be assumed that these cells do not exchange any energy with the surrounding plasma 
during their ascension (and it is therefore an adiabatic process) until they eventually dis-
solve in shallower (and therefore cooler) regions in the star. At this point, the excess heat 
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of the cell is dispersed to the local medium and this process therefore transports energy 
from the inner to the outer regions of stars. 

 Convection may become important in stars when radiation cannot suffi ce to transport 
the energy from the central regions to the surface of stars. When the radiative fl ux, the 
opacity or both are very large, it leads to a large temperature gradient (see Eq.  5.18 ). In 
the next section, it will be shown that when the temperature gradient surpasses a certain 
limit, the medium becomes unstable and convection appears. A criterion can be estab-
lished, called the Schwarzschild criterion, as to when this situation occurs. This criterion 
was fi rst established by the German astrophysicist Karl Schwarzschild (1873 – 1916) and 
will be discussed in (the optional) Section  5.3.3.2 . 

 Regions where partial ionisation of abundant elements (such as hydrogen or helium) 
occurs are prone to induce convective transport. As discussed in Chapter  1 , when a given 
element is partially ionised, the excited atomic levels of the atoms of the less charged ion 
become relatively highly populated. This increases both the bound - bound and bound - free 
radiative opacity of the plasma. This increase in the opacity can then lead to a large tem-
perature gradient that in turn, may render the medium convective. For example, convection 
is present in the ionisation zone of hydrogen of cool stars. In hotter stars, since the ionisa-
tion of hydrogen occurs in shallower layers where the temperature gradient is relatively 
small, no convection appears in that region. 

 Convective transport is present in the Sun and this phenomenon is apparent at its surface 
by the existence of granules (see Figure  3.14 ). These surface features are related to con-
vective cells emerging at the solar surface, while cooler plasma cells sink towards the 
centre of the Sun. The solar granules have a diameter on the order of 1000   km. Convection 
is fundamentally a physical phenomenon that is hydrodynamical in nature. It is therefore 
very complex. However, a relatively simple description of convection called the mixing -
 length theory can be developed by making a number of assumptions and approximations. 
This theoretical framework of convection will be described in (the advanced optional) 
Section  5.3.3.3 . 

 Similarly to the concept of radiative equilibrium, when all of the energy is transported 
by convection it is said to be in convective equilibrium (see (optional) Section  5.3.3.4 ). 
In reality, convective equilibrium is never completely attained in stars since there is always 
some radiative transport present. However, this approximation can sometimes simplify 
certain equations (see Section  5.4  for example).  

  5.3.3.2   The Schwarzschild Criterion for Convection     †    

 To obtain a criterion under which convection can exist, several assumptions will be made. 
First, convection will be approximated by a process consisting of rising and falling cells 
of matter. If such a cell is displaced in the medium by a distance  Δ  r , the cell rises towards 
the surface (due to Archimedes ’  principle 3 ) if the density of the cell is smaller than the 
surrounding density. If the density of the cell is larger than the density of the surrounding 
medium, it falls back to its original position and no convective process takes place. 

   3      The Archimedes principle states that a buoyancy force exists on any object that is immersed in a fl uid (or gas). This force equals 
the weight of the fl uid displaced by immersing the object. An object can therefore fl oat in any fl uid with a larger density than 
itself. In reality, the buoyancy is due to the difference of the pressure between the top and bottom of the object and is therefore 
due to the presence of a pressure gradient relative to depth in the fl uid.  
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Another approximation made here is that no heat transfer occurs between the rising cell 
and the surrounding plasma during its rise in the star. Its excess energy is only dissipated 
after it travels a certain distance (see (optional) Section  5.3.3.3 ). The process is thus 
assumed to be adiabatic during the ascension of the convective cells. Also, it is assumed 
that the mean molecular weight of the particles in the plasma does not vary over the length 
on which the convective cells of matter travel. 

 Figure  5.5  illustrates a cell of plasma that is displaced in a star. It is assumed that the 
pressure inside the cell equals the pressure in the surrounding medium during its ascension. 
Therefore, the density inside the cell decreases during this displacement. If this density 
decreases faster than the decrease in the density of the surrounding medium (with respect 
to  r ), the cell becomes buoyant and convection ensues. The density within the cell changes 
by  Δ   ρ   cell  when it is displaced by a distance  Δ  r 

   Δ Δρ ρ
cell

adi

d

d
= ⎛⎝

⎞
⎠ <

r
r 0     (5.43)  

Cell dissolves and
transfers its excess of

energy to the
surrounding medium.

P2, rcell, Tcell
P2, r2, T2

P1, r1, T1

l

P1, r1, T1

Δr

if rcell < r2

if rcell > r2

     Figure 5.5     Illustration of the convection process. A convective cell found in the bottom part of 
this fi gure is displaced by a distance  Δ  r . Initially the values of the pressure, density and temperature 
inside the cell are equal to the corresponding values found in the surrounding medium. During its 
displacement the pressure inside the cell is always equal to the pressure in the medium, however, 
its density and temperature change. After the displacement, if the density in the cell is larger than 
the density of the medium the cell sinks back toward its original position. If the density in the cell 
is smaller than the density in the surrounding medium, the cell is buoyant and travels a certain 
distance  l  (called the mixing length) before dissolving. It then transfers its excess of energy to the 
surrounding medium.  
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where   
d

d adi

ρ
r

⎛
⎝

⎞
⎠  represents the gradient of the density during an adiabatic process. Since 

 Δ  r     >    0 and   
d

d adi

ρ
r

⎛
⎝

⎞
⎠ < 0, this equation shows that the density of the cell decreases 

( Δ   ρ   cell     <    0). Meanwhile, the density of the surrounding medium changes by  Δ   ρ   med  on the 
distance  Δ  r 

   Δ Δρ ρ
med

rad

d

d
= ⎛⎝

⎞
⎠ <

r
r 0     (5.44)  

where   
d

d rad

ρ
r

⎛
⎝

⎞
⎠  represents the gradient of the density in the surrounding medium that is 

assumed to be in radiative equilibrium (i.e. where all of the energy is transported by 
radiation). The density of the medium evidently also decreases along the trajectory of the 
rising cell.   

 According to the Archimedes principle, the criterion under which the convective cells 
rise is that the density of these cells must decrease more than the density of the medium: 
| Δ   ρ   cell |    >    | Δ   ρ   med |. By using Eqs.  (5.43)  and  (5.44)  and since the density gradients are nega-
tive, the criterion for convection to be present becomes

   
d

d

d

dadi rad

ρ ρ
r r

⎛
⎝

⎞
⎠ < ⎛⎝

⎞
⎠     (5.45)   

 In other words, the above criterion stipulates that if the density gradient is smaller (i.e. 
more negative) inside a cell that is displaced upwards than the density gradient of the 
surrounding medium, the cell rises upwards due to buoyancy. However, this form of the 
convection criterion is not very useful. The rest of this section is dedicated to fi nding a 
different format for this criterion that is more physically insightful and that is expressed 
in terms of variables more commonly used in stellar astrophysics. 

 During an adiabatic expansion of an ideal gas, the results from the fi eld of thermody-
namics show that the gas pressure is proportional to a power law with respect to density

   P ∝ ργ     (5.46)  

where

   γ =
c

c
P

V

    (5.47)  

defi nes the ratio of the specifi c heats at constant pressure ( c  P ) and volume ( c  V ). The type 
of equation of state used above is called a polytrope and is often used to fi nd analytical 
solutions to certain equations of stellar structure (see section  5.4  for more details). Since 
in this circumstance the pressure is proportional to a power of density, it is more useful 
to write the criterion given in Eq.  (5.45)  as

   
d

d

d

dadi rad

ln lnρ ρ
r r

⎛
⎝

⎞
⎠ < ⎛⎝

⎞
⎠     (5.48)   
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 The gradient of ln   ρ   for an adiabatic expansion can be written as a function of ln  P  with 
Eq.  (5.46)  as

   
d

d

d

dadi adi

ln lnρ
γr

P

r
⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠

1
    (5.49)   

 Meanwhile, in the radiative zone (i.e. outside the convective cells), the equation of state 
is assumed to be equal to that of an ideal gas or in other words  P     ∝      ρ T . Therefore, 
ln  P     ∝    ln   ρ     +   ln T  and the gradient of ln   ρ   in the radiative region is then
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d

d

d
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drad rad rad

ln ln lnρ
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r
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⎛
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and the convection criterion can be written
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 During its ascent, it is assumed that the cell has the same pressure as its surrounding, and 
therefore, the gradients of ln  P  in the cell and in the radiative medium are equal
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⎠     (5.52)   

 The convection criterion therefore becomes
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or taking into account that   
d

d rad

ln P
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⎠  is negative
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where  ∇  rad  is the temperature gradient in the radiative zone. Assuming that the equation 
of state in the cell is also equal to that of an ideal gas that is expanding adiabatically, it 

must respect the following relations:   P T P T∝ ∝ρ γ
1

 or   T P∝
−γ
γ

1

. The gradient of ln  T  with 
respect to ln  P  in the cell is therefore
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    (5.55)  

where  ∇  adi  defi nes the temperature gradient for an adiabatic process (in this case inside 
the convective cells). The so - called Schwarzschild criterion for convection can then be 
written as follows
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   ∇ > ∇ =
−⎛

⎝⎜
⎞
⎠⎟rad adi

γ
γ

1     (5.56)   

 For an ideal monoatomic gas   γ     =   5/3 and  ∇  adi    =   0.4. In this instance, the convection cri-
terion is  ∇  rad     >    0.4. Since stellar plasma is not monoatomic and radiation pressure is 
present, the value of   γ   is smaller than 5/3. Detailed calculations show that when radiation 
pressure completely dominates the Schwarzschild criterion is  ∇  rad     >    0.25. Meanwhile, in 
partial ionisation zones the value of  ∇  rad  for which convection can take place can be lower 
than 0.25. Convective transport is prone to occur in regions where ionisation takes place. 

 More insight can be obtained by using the detailed equation for  ∇  rad  found in Section 
 5.2.3 . The Schwarzschild criterion can be written

   ∇ = ( ) > ∇ =
−⎛

⎝⎜
⎞
⎠⎟rad

R
adi

3

64
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2 4
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r g
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L r

π σ
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    (5.57)   

 This equation shows that regions where the opacity or the fl ux is large are prone to 
convection. 

 Finally, only ascending convective cells of matter carrying energy towards the stellar 
surface were discussed here. Of course, for each rising convective cell in the star, a cell 
that has an energy defi cit descends toward its centre. This is necessary to conserve the 
amount of mass found at each depth of the star.  

  5.3.3.3   The Mixing - Length Theory   †  †    

 In the previous section, a criterion was found under which convection can occur. However, 
it does not give any information on the effi ciency of this transport process, or in other 
words, on the value of the fl ux of energy transported by it. In the presence of both radia-
tive and convective fl ux, the total fl ux  H ( r ) at radius  r  is equal to

   H r
L r

r
H r H r( ) = ( )⎛

⎝
⎞
⎠ = ( ) + ( )1

4 4 2π π rad conv     (5.58)   

 This section is dedicated to fi nding an approximate expression for the convective fl ux 
( H  conv ) by using a simplifi ed model for convection. 

 Contrarily to the assumption made in the previous section, a realistic convection process 
is not adiabatic. Therefore, the true temperature gradient in a convective cell ( ∇  cell ) is larger 
than or equal to the gradient for an adiabatic process ( ∇  cell     ≥     ∇  adi ) because some energy 
may be lost during the ascension of the convective cells. Also, in the presence of convec-
tion, the medium is not in radiative equilibrium and the Schwarzschild criterion is slightly 

different from the one given above. In general, the temperature gradients   
d

d

ln

ln

T

P
 for the 

different cases have the following relation to one another

   ∇ ≥ ∇ ≥ ∇ ≥ ∇rad med cell adi     (5.59)  

where  ∇  med  is the value of   
d

d

ln

ln

T

P
 in the medium containing both radiative and convective 

transport. The Schwarzschild criterion then becomes
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   ∇ > ∇med cell     (5.60)   

 Since convection is a hydrodynamical process, a rigorous mathematical treatment of this 
physical phenomenon is not trivial. Complex numerical simulations of such hydrodynami-
cal processes are sometimes employed in stellar astrophysics. However, a simpler descrip-
tion of convection that is often used in stellar structure or stellar atmosphere codes exists. 
It is the so - called mixing - length theory. The mixing - length theory is constructed by assum-
ing that convection consists of rising and falling cells of matter. This physical process 
transports energy from the hotter to the cooler layers of the star. Since a series of (some-
times crude) approximations is necessary to simplify this convective theory, it is only an 
approximate depiction of convective fl ow. Even though it is customarily called a theory, 
the mixing - length theory is rather more a dimensional analysis than a rigorous theory. 
However, this  ‘ theory ’  is very instructive to better grasp the concept of convective - energy 
transport. 

 First, it will be assumed that the convective cells of plasma rise a certain distance and 
then dissolve while transferring their excess of energy to the surrounding medium. A 
temperature difference

   ΔT T T= −cell med     (5.61)  

exists between the convective cell and the surrounding medium at the instant the cell 
dissolves. The energy per unit volume  E  transmitted from the convective cell to the 
medium is

   E c T= ρ PΔ     (5.62)   

 The specifi c heat at constant pressure is used here because it is assumed (see Section 
 5.3.3.2 ) that the pressure inside the cell is equal to the pressure in the surrounding medium. 

 The temperature difference  Δ  T  for a convective cell travelling a distance   Δ r  may be 
crudely approximated by the following expression
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    (5.63)   

 Assuming that the average velocity of the convective cells is   V̄   , the convective fl ux then 
becomes
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 It should be noted that the fl ux is equal to the energy density times the velocity that this 
energy travels through a given imaginary surface. 

 Now since
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    (5.65)  

and assuming hydrostatic equilibrium
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d

ln P
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g

P
= − = −

ρ 1

H
    (5.66)   

 The variable  H , which has units of length, is defi ned as the pressure scale height. In an 
isothermal gas, it is equal to the distance on which the pressure varies by a factor of e (see 
Example  2.1 ). Therefore, the derivatives of the temperature with respect to radius in the 
surrounding medium and inside a convective cell are, respectively,
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d med
med

T
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⎠ = − ∇
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and
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 A mixing length  l  may be defi ned as being equal to the average distance travelled by a 
convective cell before dissolving. When evaluating the convective energy fl ux at a given 
depth, the cells crossing a unitary imaginary surface have on average travelled a distance. 

  Δr
l

=
2

. These arguments and assumptions fi nally lead to the following expression for 

convective fl ux
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    (5.69)   

 The parameter   
l

H
⎛
⎝

⎞
⎠ is a free parameter in this theoretical framework since it is not 

possible to calculate the average distance travelled by the cells. In typical astrophysical 
applications, its value is normally chosen to be a value on the order of unity. The convec-
tive fl ux is proportional to both the mixing length and to the average velocity of the 
convective cells. Also, and as expected from the Schwarzschild criterion, when  ∇  med    =    ∇  cell  
the convective fl ux is nil. To simplify the calculations, one may wish to assume  ∇  med    =    ∇  rad  
and  ∇  cell    =    ∇  adi . 

 The average velocity   V̄    of the cells, which is up to now an unknown quantity in the 
equation above, must now be estimated. This will then lead to an equation for the convec-
tive fl ux of energy for which all of the variables may be calculated, with the exception of 

  
l

H
⎛
⎝

⎞
⎠ . To evaluate   V̄   , the work done on convective cells during their ascension will be 

calculated. The fi rst step is to evaluate the total force  F  on a convective cell. This force is 
given by the following equation

   F F= − = − = −( )Arch cell med cell cell cell med cellm g V g m g V gρ ρ ρ     (5.70)  

where  F  Arch  is the Archimedes force on a cell of mass  m  cell  and volume  V  cell  caused by the 
displacement of the gas (of density   ρ   med ) of the medium. The total force  f  per unit volume 
acting on the cell is therefore

   f = −( ) = −ρ ρ ρmed cell g gΔ     (5.71)  
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where

   Δρ ρ ρ= −( )cell med     (5.72)   

 During the ascent of the convective cells, the pressure is assumed to be the same inside 
and outside the cell. By assuming an ideal gas ( P     ∝      ρ T ) the pressure difference  Δ  P  between 
the inside and the outside of cells, which is nil, may be approximated by the following

   Δ Δ ΔP T T= = +0 ρ ρ     (5.73)  

where  Δ   ρ   and  Δ  T  are, respectively, the density and temperature difference between the 
inside of cells and the surrounding medium. The equation above may be rearranged to 
give

   Δ Δρ ρ
= −

T
T     (5.74)   

 Using this result along with Eqs.  (5.63) ,  (5.67) ,  (5.68)  and  (5.71) , the force per unit volume 
on a convective cell is found to be

   f
H

= ⎛⎝
⎞
⎠ ∇ −∇( )ρg

rmed cell Δ     (5.75)   

 For the convective cells arriving at a given depth it may be assumed that they have on 
average been accelerated over a distance of  l /2. The work per unit volume done on the 
cell can therefore be written as
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where the variable  y   =     Δ  r  is used. 
 Since the convective cells must push aside other cells while ascending in the star, they 

lose part of their energy due to this kind of friction. To take this factor into account, it 
will be arbitrarily assumed here that only half of the energy obtained above is used to 
accelerate the cells. Therefore, the kinetic energy per unit volume of a cell arriving at the 
depth under consideration is
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2 2
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W
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and the average velocity of the convective cells is therefore
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 The convective fl ux predicted by the mixing - length theory then becomes
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 Here again, it is important to mention that the ratio of the mixing length to the pressure 

scale height   
l

H
⎛
⎝

⎞
⎠  is an unknown quantity in this theory. This free parameter can be 

adjusted by comparing the theoretical results to observations. However, because of the 
various approximations and assumptions made when deriving the mixing - length theory, a 
single value for this free parameter valid for all stars does not exist.  

  5.3.3.4   Convective Equilibrium   †    

 In Section  5.2.3 , the so - called energy - transport equation was found in the case where all 
the energy is transported by radiation or in other words when the plasma is in radiative 
equilibrium. A similar equation can be written when all the energy is transported by con-
vection, a situation commonly called convective equilibrium. 

 Supposing that a star (or a portion of a star) is completely dominated by convection, it 
may be assumed that the stellar plasma is composed entirely of convective cells. In the 
schematic view of convection discussed previously, these cells are assumed to be rising 
and falling adiabatically. Therefore, the adiabatic equation of state should be valid every-
where in the region where convection completely dominates energy transport. The tem-
perature gradient is then equal to (see Section  5.3.3.2 )
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and it is trivial to show that
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 This equation gives the temperature gradient (with respect to  r ) in a medium in convective 
equilibrium. As expected, since radiative transport is not present here the opacity is absent 
from this equation (as opposed to Eq.  5.18 ). It should be mentioned that in real situations, 
convective equilibrium is never strictly achieved since there is always some amount of 
energy transported by radiation in stars. However, convective equilibrium is a useful 
approximation to estimate the temperature stratifi cation in convective regions of stars.    

  5.4   Polytropic Models 

 Solving the equations of stellar structure is an arduous task. To better appreciate this 
complexity, the link between the equations of stellar structure may be evaluated. The fi rst 
two equations of stellar structure (Eqs.  5.1  and  5.4 ) describe the mechanical structure of 
stars. These two equations may be fused together by multiplying Eq.  (5.1)  by  r   2  / ρ   and by 
deriving this result with respect to  r 
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 With the result of Eq.  (5.4) , the well - known Poisson ’ s equation is obtained
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 This equation is void of an explicit dependence on the thermal structure of the star and 
that is the reason it was mentioned that it portrays its mechanical structure. 

 Meanwhile, the other two equations of stellar structure (Eqs.  5.18  and  5.22 ) control the 
thermal properties or in other words the temperature dependence with respect to  r . However, 
these four fundamental equations are coupled together. For instance, Eq.  (5.1)  depends on 
the temperature via the equation of state  P (  ρ ,T,X i  ). Similarly, Eqs.  (5.18)  and  (5.22)  depend 
on the mechanical structure of the star via not only the equation of state (please note that 
  ρ   appears in Eqs.  (5.18)  and  (5.22) ), but also through the quantities  k  R (  ρ ,T,X i  ) and  ε (  ρ ,T,X i  ) 
that themselves also depend on the mechanical structure of the star. 

 In general, Eq.  (5.83)  cannot be solved independently from the energy - transport or the 
energy - conservation equations. However, there exists a type of equation of state that 
permits the decoupling of the mechanical structure from the thermal structure of a star and 
leads to an analytical solution for Eq.  (5.83)  (for certain cases). Such a decoupling between 
the equations just discussed above occurs for an equation of state where the pressure is 
independent of temperature. The equation of state in this case is customarily written

   P K
n

n=
+

ρ
1

    (5.84)  

where  n  is called the polytropic index and  K  is a constant. A star whose plasma obeys 
such an equation of state is commonly called a polytropic star. Using this type of equation 
of state allows the study of the mechanical structure of a star without having to deal with 
the intricacies of the equations reigning over its thermal structure. This approach is similar 
to the grey - atmosphere approximation seen in Chapter  3  that permitted the study of certain 
aspects of stellar atmospheres without having to calculate detailed monochromatic opacity 
spectra. It also leads to analytical solutions for certain cases as opposed to requiring 
complex numerical calculations. 

 There are several circumstances where the equation of state in a star can fi ttingly be 
approximated by a polytropic equation. The fi rst example is a star in convective equilib-
rium. The ascent and descent of convective cells is typically assumed to be an adiabatic 
process. Thermodynamics shows that in such a situation the equation of state for an ideal 
monoatomic gas the equation of state is  P    =    K ρ   γ   , where   γ     =   5/3. The polytropic index for 
this case is  n    =   1.5. Other instances where the equation of state is polytropic are stellar 
regions where the pressure is dominated by a completely degenerate electron gas (see 
Section  5.6.3  for more details concerning degenerate gases). This situation can occur in 
the core of evolved stars and in white dwarf stars. 

 It is customary to write a dimensionless version of Poisson ’ s equation shown above 
(Eq.  5.83 ) that leads to a well - known equation in stellar astrophysics called the Lane –
 Emden equation. To achieve this goal, a dimensionless function 4    θ  ( r ) is defi ned such that 
the density for a polytrope of index  n  is

   4      In reality, this is a family of functions for each value of the polytropic index  n . It is sometimes written with an  n  in subscript:   θ  n  ( r ). 
However, since a power  n  of this function appears in Eq.  (5.85)  and in order to avoid confusion, that subscript will not be used here.  
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   ρ ρ θr rn( ) = ( )c     (5.85)  

where   ρ   c  is the central density of the star and the function   θ  ( r ) is elevated to the power  n . 
The value of this monotonically decreasing function is 0    ≤      θ  ( r )    ≤    1. By defi nition, it has 
the value 1 at  r    =   0 for all values of the polytropic index  n . Also, since the density at the 
surface of the star is nil,   θ  ( r=R   *  )   =   0. 

 The pressure may then written as a function of   θ  ( r )
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1 1     (5.86)  

where   P K
n

n
c c=
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 is the central pressure of the star. The Poisson equation found earlier 
(Eq.  5.83 ) then becomes

   K
r r

r

r

r

r
G r

n

n
n

n
nρ

ρ θ
θ ρ θc

c
c

d

d

d

d

+ +

( )
( )⎛

⎝⎜
⎞
⎠⎟
= − ( )

1

2

2 11
4π     (5.87)  

and since
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this equation may be written
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 Since   θ  ( r ) is dimensionless, the equation above requires that the quantity   
n P
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the dimension of length squared. A new variable   α   that depends on the polytropic index 
 n  may be defi ned
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 Moreover, a new dimensionless variable   ξ   may also be defi ned for each polytropic index  n 

   ξ
α

=
r

    (5.91)   

 The use of this variable can transform the Poisson equation into what is commonly called 
the Lane – Emden equation

   
1
2

2

ξ ξ
ξ θ ξ

ξ
θ ξd

d

d

d

( )⎛
⎝⎜

⎞
⎠⎟ = −

( )n     (5.92)  

which is now written as a function of dimensionless variables. A solution for   θ  ( r ) for each 
value of  n  may then be found by solving this differential equation. This equation is named 
after Jonathan H. Lane (1819 – 1880) and Robert Emden (1862 – 1940) who were, respec-
tively, American and Swiss astrophysicists. 

 The Lane – Emden equation may also be written as
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( )
+ ( ) =n     (5.93)   

 Since the central density at the centre of stars is fi nite, the solution of this equation (for a 

given value of  n ) must respect   
d

d

θ ξ
ξ
( )

= 0  at   ξ       =   0 (that assures that the second term in 

Eq.  (5.93)  does not diverge) as well as the previously mentioned condition   θ  (   ξ     =    0)   =   1. 
Analytical solutions exist for three cases:  n    =   0, 1 and 5, while the solution for other values 
of  n  must be obtained numerically. The solutions for the three cases just mentioned are

   n = ( ) = −0 1
6

2

: θ ξ ξ
    (5.94)  

   n = ( ) =1:
sinθ ξ ξ
ξ

    (5.95)  

   n = ( ) =
+⎛

⎝⎜
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⎠⎟
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1
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2 1 2
: θ ξ

ξ
    (5.96)     

  Example 5.3:    Solve the Lane – Emden equation for   n     =   1 and show that the solution is 

  θ ξ ξ
ξ

( ) = sin
. 

  Answer: 

 It can be shown that by applying a change of variable   χ  (  ξ       )   =      ξ   θ   (   ξ   ) the Lane – Emden 
equation becomes

   
d

d

2

2 1

χ ξ
ξ

χ ξ
ξ

( )
= −

( )
−

n

n     (5.97)   

 For  n    =   1, the solution to this equation is

   χ ξ ξ ξ( ) = ( ) + ( )A Bsin cos     (5.98)  

where  A  and  B  are integration constants. Therefore

   θ ξ ξ
ξ

ξ
ξ

( ) = ( )
+

( )A Bsin cos
    (5.99)   

 The values  A    =   1 and  B    =   0 for the integration constants respect the conditions 

  θ  (0)   =   1 and   
d

d

θ ξ
ξ ξ

( )
=

=0

0. The solution of the Lane – Emden equation for  n    =   1 is then

   θ ξ ξ
ξ

( ) = ( )sin
    (5.100)    
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     Figure 5.7     The dependence of  ρ / ρ  c  as a function of  ξ  for polytropic models of various indices.  

     Figure 5.6     The dependence of  θ ( ξ  ) as a function of  ξ  for polytropic models with various indices.  

 The solutions of the Lane – Emden equation for the three cases having analytical solu-
tions are shown in Figure  5.6 . The fi rst zero (commonly written   ξ   0 ) of the functions   θ  (  ξ  ) 
corresponds to the stellar surface. For  n    =   0 (this polytropic solution corresponds to a 
hypothetical star with a constant density, see Eq.  5.85 ),   ξ0 6 2 449= = .  and for  n    =   1, 
  ξ   0    =    π . From Eq.  (5.91) , the radius of a polytropic star is

   R* = αξ0     (5.101)     

 Meanwhile, all solutions for  n     ≥    5 do not possess a zero for fi nite values of   ξ  . 
 Figure  5.7  shows the density as a function of   ξ   (that is proportional to  r , see Eq.  (5.91) ) 

for various polytropic models. The density is obtained by using the corresponding   θ  (  ξ  ) 
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functions (see Eq.  5.94 , 5,95, and 5.96). In this fi gure, the model for  n    =   0 shown has a 
constant density up to the stellar surface where   ξ = =6 2 449. , because as mentioned 
above, the  n    =   0 polytrope represents a hypothetical star with a constant density. To obtain 
such a confi guration, the fl uid must be incompressible. Since this is not the case for stars 
because they are made up of compressible gas, this solution is far from physical reality. 
For  n    =   1 the surface is found at   ξ     =    π  (where the density is nil).   

 Figure  5.8  compares the density profi le for a polytropic model with  n    =   5 to a detailed 
computation of the solar structure. The polytropic approximation in this case is reasonably 
good for approximately  r     ≤     R   �   /2 but is very far from reality in the outer regions. The 
divergence between the analytical and numerical solutions in the outer regions is not 
surprising since the analytical solution for  n   =    5 has an infi nite radius (the radius in this 
case being defi ned as the distance from the centre to where the density becomes nil).   

 From Eq.  (5.3) , the mass of a star is

   M r r r
R

*

*

= ( )∫ 4 2

0

π ρ d     (5.102)   

 This equation may also be written as a function of the variables and function found in the 
Lane – Emden equation

   M n

* = ( )∫4 3 2

0

0

πα ρ ξ θ ξ ξ
ξ

c d     (5.103)   

 Therefore, once the solution of the Lane – Emden equation is obtained for a given polytrope, 
the global mechanical properties of the star, its mass and radius (Eq.  5.101 ), can be 
calculated.    

     Figure 5.8     The dependence of   ρ  /  ρ   c  as a function of radius for a polytropic model with  n    =   5 as 
compared to a detailed numerical model of the Sun. The data for this theoretical model is found in 
Table  5.1  (Section  5.5 ).  
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  5.5   Structure of the Sun 

 In the previous sections, the equations that need to be solved to calculate the structure of 
stars were discussed. Here, a case study, namely the structure of the Sun, is presented. 

 The Sun may be divided into six regions: 

  Core:     The central regions where the thermonuclear reactions takes place. This zone 
extends from the centre to approximately 25 % of the solar radius.  

  Radiative zone:     Region where energy transport is dominated by radiation. It extends to 
about 70 % of the solar radius.  

  Convection zone:     Region above the radiative zone that extends to the surface and where 
energy transport is dominated by convection.  

  Photosphere:     The surface region of the Sun from where the radiation escapes to outer 
space. This region is convective. Its thickness is only several hundred kilometres.  

  Chromosphere:     Region extending approximately 2000   km above the photosphere and 
where the temperature rises up to  ∼ 10 5    K.  

  Corona:     Region above the chromosphere that extends to several millions of kilometres 
farther and that has temperatures that reach 1 to 2 million degrees (see Section  3.6  for 
more details concerning the solar corona).    

 Figure  5.9  illustrates the solar interior. The solar interior is composed of the core, and the 
radiative and convective zones. The photosphere cannot be accurately calculated by a 
stellar interior model and is only correctly portrayed with a detailed stellar atmosphere 
model (see Chapter  4 ). Table  5.1  gives various physical quantities for the solar interior. 
In this table, the luminosity as a function of radius  L ( r ) is nil at the centre and it increases 
as a function of  r  due to the nuclear energy production rate within this radius (see Figure 
 5.3 ). It reaches its maximum value where nuclear reactions cease (i.e. at the surface of the 

  Example 5.4:    Calculate the mass of a star with a polytropic equation of state with 
  n     =   0. Write this mass in terms of the quantities   ρ    c   and   R    *  . 

  Answer: 

 The mass of a star assuming a polytropic model is

   M n

* = ( )∫4 3 2

0

0

πα ρ ξ θ ξ ξ
ξ

c d     (5.104)   

 For  n    =   0, this equation becomes

   M R* *= = =∫4
4

3

4

3
3 2

0

3
0
3 3

0

π
π πα ρ ξ ξ α ρ ξ ρ

ξ

c c cd     (5.105)   

 As expected, the mass in this case is simply that of a sphere of radius  R   *   with a 
constant density of value   ρ   c .  
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     Figure 5.9     A cut - away diagram of the solar interior showing the radial extent of the core and the 
radiative and convective zones.  

  Table 5.1    Solar interior model   #   . 

   r   
   ( R   �  )  

   M ( r )  
   ( M   �  )  

   L ( r )  
   ( L   �  )  

   T   
   (10 6  K)  

    ρ    
   (g   cm  − 3 )  

  log  P   
   (dyn   cm  − 2 )  

  0.007    0.00003    0.0002    15.7    150    17.369  
  0.02    0.001    0.010    15.6    146    17.355  
  0.09    0.057    0.361    13.6    95.73    17.177  
  0.22    0.399    0.966    8.77    28.72    16.525  
  0.32    0.656    1.000    6.42    9.77    15.724  
  0.42    0.817    1.000    4.89    3.22    15.324  
  0.52    0.908    1.000    3.77    1.05    14.722  
  0.60    0.945    1.000    3.15    0.500    14.322  
  0.71    0.977    1.000    2.23    0.177    13.721  
  0.81    0.992    1.000    1.29    0.0766    13.119  
  0.91    0.999    1.000    0.514    0.0194    12.119  
  0.96    0.9999    1.000    0.208    4.85 × 10  − 3     11.118  
  0.99    1.0000    1.000    0.00441    2.56 × 10  − 4     9.118  
  0.995    1.0000    1.000    0.00266    4.83 × 10  − 5     8.118  
  0.999    1.0000    1.000    0.00135    1.29 × 10  − 6     6.118  
  1.000    1.0000    1.000    0.00060    2.18 × 10  − 7     4.918  

    #     Reproduced courtesy of Cox, A.N.,  Allen ’ s Astrophysical Quantities , Springer, New York  (2004).     

core, which is approximately found at  r    =   0.25 R   �  ). The central temperature and density 
of the Sun are, respectively, found to have values of 15.7 × 10 6    K and 150   g   cm  − 3 . The results 
given in Table  5.1  show that the pressure increases by more than twelve orders of mag-
nitude from the surface to the solar centre.      
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  5.6   Equation of State 

  5.6.1   Introduction 

 To calculate a stellar interior model, three main ingredients are needed. First, the nuclear 
production rate must be known. That physical quantity depends on the reaction rates 
of the various thermonuclear reactions that take place in stars. This topic will be 
discussed in Chapter  6 . Secondly, the opacity of the stellar plasma must be evaluated. 
The opacity determines how energy is transported from the core to the outer layers 
of the star and affects its thermal structure. Opacities were discussed in Chapter  4 . 
Finally, the appropriate equation of state must be known for the physical conditions 
found in the star under consideration. The aim of this section is to present some of the 
complexities that can arise in stellar interior model calculations relating to the equation 
of state. 

 Up to now, the ideal - gas approximation has been assumed to be valid in stars. 
An ideal gas is composed of noninteracting particles and leads to the well - known ideal -
 gas equation of state used previously throughout this book. An ideal gas also obeys the 
well - known Maxwell – Boltzmann statistics. However, this approximation breaks down 
when the interactions among the particles become important. Nonideal effects can then 
come into play. 

 Quantum effects must also be taken into account in certain circumstances. For example, 
in white dwarfs stars where the density is very large compared to normal stars, the pres-
sure can be dominated by the so - called degenerate electrons. Since electrons are fermions, 
according to Pauli ’ s exclusion principle two electrons cannot occupy the same quantum 
state. Pauli ’ s principle is not of importance in low - density gases since only a small portion 
of quantum states is occupied. However, when the density of free electrons in stellar 
plasma becomes comparable to the density of states available for these particles, the elec-
trons interact very differently and this leads to a very different equation of state from that 
for an ideal gas. It is therefore critical to properly evaluate the equation of state in such a 
case in order to appropriately model the structure of white dwarfs and the dense central 
regions of certain stars. 

 Another factor that can modify the equation of state is radiation pressure. The radiation 
fi eld found in stellar plasma may in some cases lead to a large radiation pressure that can 
modify the structure of stars via the hydrostatic equilibrium equation (see (optional) 
Section  3.12.2 ). Another factor that is generally less important, namely magnetic pressure, 
can also have an effect when large magnetic fi elds are present. 

 Finally, relativistic effects can also intervene in certain circumstances and must be taken 
into account in the equation of state. 

 A complete treatment of the various equations of state that can be encountered 
in stars is outside the scope of this book. Only a brief presentation of this topic is 
presented here. In this section, some results for the pressure inside stars using the 
ideal - gas approximation will be given. A discussion about the pressure inside a dege-
nerate electron gas will also be presented. The effect of radiation pressure will also be 
described.  
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  5.6.2   The Ideal Gas 

 In most instances treated up to now in this book, the ideal - gas equation of state was used, 
namely

   P n kT= tot     (5.106)  

where  n  tot  is the total number density of particles found in the gas. This equation of 
state is valid in most cases found in stars. It is also very easy to use and can help to 
understand the functioning of stars. In Chapter  1 , the mean molecular weight   μ   (in units 
of  m  H ) of the particles in the gas was defi ned and it leads to a different form for the 
pressure

   P
kT

m
=
ρ
μ H

    (5.107)   

 The pressure may also be separated into two components: the partial pressure due to ions 
and that due to free electrons

   P P P n n kT= + = +( )ions e ions e     (5.108)   

 Here, an equation for the pressure inside a star as a function of the mass fractions ( X i  ) of 
the various species that are present inside it will be found. This is useful because when 
computing stellar models, the mass fractions (or abundances) of the elements present are 
given as input. By defi nition, the mass fraction of species  i  is

   X
n m

n m
i

i i i

j j

= =
∑

ρ
ρ

    (5.109)  

where   ρ  i  ,  n i   and  m i   are, respectively, the mass density, number density and mass of the 
atoms of species  i . The sum found at the denominator runs over all atomic species present. 
To achieve the aim of expressing the pressure as a function of mass fractions, it is possible 
to defi ne a mean ionic weight   μ   ions  such that the ionic pressure is given by the following 
expression

   P
kT

m
ions

ions H

=
ρ

μ
    (5.110)   

 Since the contribution of free electrons to the mass density is negligible (i.e.   ρ      ≈      ρ   ions ), it 
is clear that   μ   ions  is the mean molecular weight of the ions in units of  m  H . 

 A mean electron molecular weight   μ   e  such that the electronic pressure is

   P
kT

m
e

e H

=
ρ
μ

    (5.111)  
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may also be defi ned. However, the physical meaning of this quantity, which is given 
below, is not as straightforward as for   μ   ions . 

 By Eqs.  (5.107) ,  (5.108) ,  (5.110)  and  (5.111) , the mean molecular weight is therefore 
equal to

   
1 1 1

μ μ μ
= +

ions e

    (5.112)   

 Expressions for both   μ   ions  and   μ   e  written as a function of the mass fractions present inside 
a given star will now be found. 

 The pressure due to ions can be written

   P n kT n kTjions ions= = ( )∑     (5.113)   

 From Eq.  (5.109) , the number density of each species as a function of its mass fraction is

   n
X

m
i

i

i

= ρ     (5.114)   

 The mass of each species may be approximated by

   m A mi i= H     (5.115)  

where  A i   is the number of nucleons in the nucleus of the species, and the pressure due to 
ions may then be written

   P
X

A

kT

m
j

j
ions

H

= ⎛
⎝⎜

⎞
⎠⎟∑ ρ

    (5.116)  

which leads to the following expression for the mean ionic weight

   
1

μions

= ∑ X

A
j

j

    (5.117)   

 To obtain a similar expression for   μ   e , complete ionisation of all of the species will be 
assumed. Although this approximation is not valid in all regions of a star, it is applicable 
for the central stellar regions. The use of such a simple expression can lead to an under-
standing of how pressure is modifi ed when the relative abundances of hydrogen and helium 
change during the hydrogen burning phase in stars (see Chapter  6 ). In the complete - 
ionisation approximation, an atom for a given species  j  will furnish  z j   electrons to the 
stellar plasma (where  z j   is defi ned as the charge of the nucleus of the species under con-
sideration) and the total electronic number density therefore becomes

   n z ne j j= ∑     (5.118)   

 Since the number density of each species is

   n
X

m

X

A m
i

i

i

i

i

= =ρ ρ
H

    (5.119)   
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 The two equations above may be combined to give the following expression for the elec-
tron number density

   n
m

z X

A
j j

j
e

H

= ∑ρ
    (5.120)  

and the electronic pressure is therefore

   P
kT

m

z X

A
j j

j
e

H

= ∑ρ
    (5.121)   

 From Eq.  (5.111) , it is easy to show that

   
1

μe

= ∑ z X

A
j j

j

    (5.122)  

and that the mean molecular weight is

   
1 1

μ μ μ
= + = +∑ ∑1
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X
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z X
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j
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j j

j

    (5.123)   

 The physical meaning of the mean electron molecular weight can be found by knowing 
that

   P
kT

m
n kTe

e H
e= =

ρ
μ

    (5.124)  

and therefore,

   
1

μ ρe

e

H

number of free electrons

number of nucleons
= =

n

m
    (5.125)   

 Consequently,   
1

μe

 measures the number of free electrons per nucleon in the plasma. 

 It can be shown (see Example  5.5 ) that for completely ionised plasma composed of an 
elemental mixture with a mass fraction of hydrogen equal to  X  and a mass fraction of 
helium equal to  Y  (and therefore, the mass fraction of the metals is equal to  Z    =   1  –   X   –   Y ) 
the mean molecular weight is approximately given by the following expression

   μ =
+ +

2

3
2

1X
Y

    (5.126)     

 It can also be shown (see Exercise  5.11 ) that for plasma in which all atoms are neutral, 
the mean molecular weight is approximately

   μ =
+

1

4
X

Y
    (5.127)   
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  Example 5.5:    Find the mean molecular weight    μ    for completely ionised plasma 
containing metals with a mass fraction of hydrogen equal to   X   and a mass fraction 
of helium equal to   Y  . 

  Answer: 

 As seen above, the mean ionic weight and mean electron molecular weight are, 
respectively,

   
1

4 2μions

= = + +∑ ∑
>

X

A
X

Y X

A
j

j

j

jj

    (5.128)  

and

   
1

2 2μe

= = + +∑ ∑
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    (5.129)   

 Therefore,
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    (5.130)   

 The sum  j     >    2 signifi es that this sum is done for the metals only. Since for most 
elements, the number of protons in the nucleus is approximately equal to the number 

of neutrons there,   
z

A
j

j

+( )
≈

1 1

2
. Also, since the fraction of mass of the metals  Z  

present in the plasma is by defi nition equal to

   Z Xj
j

=
>
∑

2

    (5.131)  

the mean molecular weight becomes

   
1

2
3

4 2μ
= + +X

Y Z
    (5.132)   

 By normalization,  Z    =   1    −     X     −     Y , and the mean molecular weight for the plasma 
under consideration is given by the following expression

   μ =
+ +

2

3
2

1X
Y

    (5.133)    
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 During the main - sequence stage, hydrogen is transformed into helium in the stellar core. 
Therefore,  Y  increases with time. This leads to an increase of   μ   and a decrease of the 
pressure (see Figure  6.9 ). The decrease in pressure induces a slow contraction of the central 
regions of the star. Therefore, even while on the main sequence, the structure of a star 
changes (or evolves) with time. More details concerning the evolution of stars on the main 
sequence and beyond are given in Chapter  6 .  

  5.6.3   Degeneracy 

 Degeneracy is a quantum - mechanical effect that modifi es the equation of state of the gas. 
In classical physics, the states of free particles have a continuous energy spectrum and 
there is no limit on the number of particles that can be found in these continuous states. 
However, under certain conditions sometimes found in stars, quantum physics can come 
into play for the free - electron gas and this gas can then become degenerate. Degeneracy 
of such a gas is due to a combination of the Heisenberg ’ s uncertainty principle and Pauli ’ s 
exclusion principle. This section aims to explain degeneracy and describe its importance 
in stars. 

 Quantum physics shows that the smallest quantum cell that contains a single state in 
the six - dimensional phase space consisting of three space and three momentum compo-
nents ( x,y,z,p x ,p y ,p z  ) is equal to

   Δ Δ Δ Δ Δ Δx y z p p p hx y z = 3     (5.134)   

 This result is consistent with Heisenberg ’ s uncertainty principle. In stars, the degeneracy 
is due to the free electrons because of their relatively low momentum (see the equations 
below for a better understanding). Since electrons are fermions, they must obey Pauli ’ s 
exclusion principle and there can only be two electrons (with opposite spins) in each of 
such quantum cells. Now, let us assume a unitary volume  Δ  x  Δ  y  Δ  z    =   1   cm  − 3 , in spherical 
coordinates the equation above leads to

   Δ Δ Δp p p p p m V V hx y z = = =4 42 2 3π πd de
3     (5.135)  

where classical physics is assumed valid for the momentum of the free electrons ( p   =   m  e  V ). 
 Since there can be two electrons in each state, the density of free electrons with momen-

tum between  p  and  p   +    d p  defi ned as  n  e ( p,p   +    d p ) must therefore respect the following 
relation

   n p p p
p p

h
e d

d
, +( ) ≤ 8 2

3

π
    (5.136)  

where   8
2

3

πp p

h

d  is the number of states per unit volume. When the number density of 

electrons is small (and clearly respects the inequality above), the statistics of the velocity 
distribution for the electrons are given by the Maxwell distribution and the equation of 
state is the one of an ideal gas. However, when the number density of electrons approaches 
this inequality (or in other words when the number density of free electrons becomes 
comparable to the density of quantum states), the velocity distribution differs strongly 
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     Figure 5.10     The approximate domains of the validity of the ideal - gas approximation, radiation 
pressure (see Section  5.6.4 ), degenerate and relativistic degenerate gases on a log  T , log  ρ  diagram. 
The solid lines show the delimitations of the various regions. Also shown in this fi gure is the position 
of the solar model.  

from the Maxwell distribution. The equation of state of a nonrelativistic degenerate gas is 
also quite different from that of an ideal gas. It is independent of temperature and only 
depends on density. Detailed theoretical considerations lead to a degenerate equation of 
state of the form

   P n∝ e
5 3     (5.137)  

for a nonrelativistic degenerate gas of electrons. This equation may also be expressed in 
terms of the density via the defi nition of the mean electron molecular weight

   P ∝ ⎛
⎝⎜

⎞
⎠⎟

ρ
μe

5 3

    (5.138)   

 Degeneracy is important in white dwarfs because of the large densities found there. It can 
also be important in the central regions of evolved stars. For example, soon after the Sun 
will leave the main sequence, its core will become degenerate. This will lead to a short 
phase where helium burns very fast. This is called the helium fl ash and will be discussed 
further in Section  6.8.3 . 

 Figure  5.10  shows under what physical conditions degeneracy is important in stars. As 
expected, this fi gure shows that for a given temperature, stellar plasma becomes degenerate 
at high densities. At even higher densities, the degenerate gas becomes relativistic. The 
reason for this is due to the exclusion principle. Because of this principle, at such high 
densities more energetic levels become occupied and these high - energetic particles are 
relativistic. The equation of state for a relativistic degenerate electron gas is slightly dif-
ferent from Eq.  (5.138)  and is given by the expression

   P ∝ ⎛
⎝⎜

⎞
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ρ
μe

4 3

    (5.139)     
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 Also shown in Figure  5.10  is the log  T   –  log   ρ   relation for the solar structure. This fi gure 
shows that inside the Sun, the ideal - gas assumption is valid.  

  5.6.4   Radiation Pressure 

 In stellar plasma, in addition to ions and free electrons, there are evidently an enormous 
number of photons. Since photons possess momentum, they can participate in the overall 
pressure. In (the optional) Section  3.12.2 , the following expression was found for the 
radiation pressure

   P
T

c
rad =

4

3

4σ
    (5.140)  

where  T  is the local temperature of the plasma. As expected, Figure  5.10  shows that the 
radiation pressure can dominate gas pressure at higher temperatures. Also, for a given 
temperature, the radiation pressure becomes important at lower densities. This behaviour 
can be understood by comparing the energy density due to photons and that due to the 
gas. The energy density due to photons is proportional to  T   4  while for gas it is proportional 
to   ρ T  (see Exercise  5.12 ). This explains why even at relatively low temperatures, the 
energy due to photons can dominate the gas energy providing the density is suffi ciently 
small. 

 When of importance, radiation pressure must be taken into account when solving the 
hydrostatic equilibrium equation. As discussed in (optional) Section  3.12 , for massive 
stars, radiation pressure eventually leads to dynamical instability as the upper limit for 
stellar mass is reached. When this upper limit is reached, the effective temperature of the 
star becomes large enough to create suffi ciently high radiation pressure to push out any 
mass exceeding the upper limit. The upper limit for the mass of stars is not a well - known 
quantity, but is approximately 120  M   �  .   

  5.7   Variable Stars and Asteroseismology 

  5.7.1   Variable Stars 

 Variable stars are those that exhibit photometric or spectroscopic temporal changes. There 
exists a virtual zoo of variable stars, each of which often constitutes a research fi eld by 
themselves. Variable stars can be divided into four categories: rotating, eruptive, explosive 
(sometimes called cataclysmic variables) and pulsating stars. Rotating variables are said 
to be extrinsically variables while the other three types are intrinsically variable stars. 

 Rotating variables can, for instance, be due to starspots (similar to sunspots) that come 
into and out of view during rotation. Other rotating variables can be due to their ellipsoidal 
shape, often caused by the tidal effects due to a companion star. A companion star can 
also cause an increase of the brightness on the side of the other star facing it by heating 
it with radiation. Variability can also be caused by eclipsing of a binary (or even multiple) 
star system commonly called eclipsing binaries. In this case, the variability is simply due 
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to the fact that one star passes in front of the other (as seen by the observer) during their 
orbiting motion. 

 Eruptive variables are stars that can eject mass nonperiodically. Explosive variables are 
stars that exhibit explosive features either quasiperiodically (as for the case of recurrent 
novae, see Chapter  6  for more details) or nonperiodically (like supernovae). Pulsating stars 
possess photometric and/or spectroscopic variations due to generally periodic physical 
changes such as a change of their stellar radius and/or surface temperature. Even though 
throughout this chapter, equations stating the mechanical and energetic equilibrium were 
often discussed, stars may fl uctuate around their true equilibrium state and pulsate. More 
information on these pulsations and how they may be measured by adequate observations 
will be discussed below. 

 Some pulsating stars are very useful in astrophysics because they can be used as distance 
indicators. Such pulsating variable stars possess a well - defi ned period – luminosity relation. 
Therefore, by measuring their period of variability, one can estimate their luminosity. 
Comparing the absolute and apparent magnitudes of such stars gives its distance from the 
observer. Such stars are sometimes referred to as standard candles since their brightness 
is well known. They can therefore be used as yardsticks to measure distances in our uni-
verse. For example, if such a pulsating star fi nds itself in a star cluster, the distance to this 
cluster can be determined. This distance is invaluable information for the study of the 
other stars found in this cluster. 

 Other kinds of variable stars such as novae or supernovae have well - established lumi-
nosities and can also be employed as standard candles. Once again, the observation of 
such phenomena can lead to an estimate of their distance from the observer. 

 Since the study of stellar pulsations may give information about the structure of stars, 
this category of variable stars is especially important. Pulsations may occur at different 
stages of evolution, or in other words in various parts of the H – R diagram. Figure  5.11  
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     Figure 5.11     Approximate position of several types of pulsating stars in the H – R diagram. Also 
shown on the fi gure is the position of the main sequence (solid curve) and the instability strip (region 
between the dashed lines). Adapted with permission from J ö rgen Christensen - Dalsgaard (private 
communication).  
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shows the position of several of types of pulsating stars in the H – R diagram. In this fi gure, 
the so - called instability strip is shown where a few types of pulsating stars are found. Stars 
that cross this region in the H – R diagram during evolution pulsate. Here is a nonexhaus-
tive list of pulsating variable stars:   

  Type - I Cepheids  ( or classical Cepheids ) are evolved stars with  T  eff    =   6000 to 8000   K 
found in the instability strip. They possess a high metallicity (these are young population - I 
stars, see Chapter  6  for more details) and periods in the range from approximately 1 to 
100 days. Classical Cepheids were named after the prototype of this type of pulsating 
stars: the star  δ  Cephei. 

  Type - II Cepheids  ( or W Virginis stars ) are evolved stars found in the instability strip. 
Typically their masses are lower than Type - I Cepheids and are on the order of 0.5  M   �  . 
They possess a low metallicity (these are old population - II stars, see Chapter  6  for more 
details) and periods from 1 to 50 days. 

  RR Lyrae stars  are pulsating horizontal - branch stars with  T  eff    =   6000 to 7500   K. They 
are found in the instability strip of the H – R diagram. Their period of pulsation is typically 
in the range of 0.1 to 1 day. 

  Rapidly oscillating Ap stars  ( or roAp stars ) are magnetic Ap stars on or near the main 
sequence that exhibit short periods of variability ranging from approximately 5 to 15   min. 
These stars are modelled by a star with a roughly dipolar magnetic fi eld that is inclined 
with respect to its axis of rotation. 

  Beta  (  β  )  Cephei stars  ( or  β  Canis Majoris stars ) are pulsating B - type stars on or slightly 
above the main sequence. Their periods of pulsations range from approximately 0.1 to 0.3 
day. This class of stars is named after its prototype the star  β  Cephei. These stars should 
not to be confused with Cepheid stars. 

  Delta  (  δ  )  Scuti stars  ( or dwarf Cepheids ) are pulsating A -  or F - type stars on or near the 
main sequence with periods ranging from approximately 0.02 to 0.3 day. This class of 
stars is named after its prototype: the star  δ  Scuti. 

  Gamma  (  γ  )  Doradus stars  are pulsating F0 -  to F2 - type stars on or near the main 
sequence with periods ranging from approximately 0.4 to 3 days. This class of stars is 
named after its prototype: the star  γ  Doradus. 

  Mira variables  are evolved (red giant) stars with periods ranging from approximately 
100 to 1000 days. They are found just outside (on the cool side) of the instability strip. 
This class of stars is named after its prototype: the star Mira or Omicron Ceti. Figure  5.12  
shows the observed light curve of the star Omicron Ceti over a decade. Mira variables are 
part of a larger class of variable stars called long - period variables (LPVs).   

  ZZ Ceti stars  are pulsating white dwarfs stars of spectral type DA (or hydrogen - rich 
white dwarfs, see Section  6.10.1 ). These may also be written DAV, V standing for vari-
able. These stars exhibit photometric variations of up to approximately 0.3 magnitude with 
pulsating periods ranging from approximately 100 to 1000   s. White dwarfs from other 
spectral types can also pulsate (i.e. DBV, DOV and DQV, see Section  6.10.1 ). 

 For a more thorough discussion of these types of variable stars (and others not men-
tioned here), the reader is referred to Percy, J.R.,  Understanding Variable Stars , Cambridge 
University Press, Cambridge  (2007) . 

 In addition to the list given above, there exist many other types of pulsating stars. For 
example, the Sun is a pulsating star. The Sun possesses a very large number of pulsation 
modes with characteristic periods on the order of 5   min. Solar pulsations have amplitudes 
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that are much smaller than those shown above for Mira and below for a classical Cepheid 
(see Figure  5.14 ). Unlike these two types of pulsating stars, most stars do not have a domi-
nant period of pulsation and a large number of pulsation modes can be present. Of course, 
the Sun also shows rotational (due to sunspots) and eruptive (solar fl ares) variability.   

 Since Type - I Cepheids are of great historical importance, this type of variable star merits 
further discussion. Both types of Cepheid stars have a well - known period – luminosity 
relation rendering these astronomical objects useful as distance indicators. This relation 
between the period  T  and the luminosity  L  is roughly given by a power law ( T     ∝     L  α   ). 
Figure  5.13  illustrates this relation for classical (or Type - I) Cepheids. Type - II Cepheids 
have a similar period – luminosity relation that lies underneath the curve shown in Figure 

     Figure 5.13     Illustration of the period – luminosity relation for classical (or Type - I) Cepheid stars. 
The dots represent individual classical Cepheid stars while the curve is the best linear fi t of the data 
points giving the relation between the period and the luminosity.  

     Figure 5.12     The observed visual magnitude for the prototype star for Mira variables, 
Omicron Ceti from 1990 to 2000. This star has a period of approximately 332 days,  M   *      ≈    0.7 M  �   
and  T  eff     ≈    3000   K. Data courtesy of the American Association of Variable Star Observers ( www.
aavso.org ).  
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     Figure 5.14     Magnitude, temperature, radius and line of sight velocity (or radial velocity) of its 
surface as a function of time for the classical Cepheid star  δ  Cephei (which is the prototype for this 
type of variable stars). The velocity given here is not corrected for the radial velocity of  δ  Cephei 
with respect to Earth, which has a value of approximately  − 16   km/s. Since the maximum of the 
velocity curve above is approximately found at 0   km/s, the velocities above  − 16   km/s represent 
contraction, while those below this value correspond to the phase of expansion.  Reproduced with 
permission from Percy, J.R., Understanding Variable Stars, Cambridge University Press, Cambridge 
 (2007).    

 5.13  because for the same period, Type - II Cepheids are less luminous than Type - I Cepheids. 
The period – luminosity relation for classical Cepheids was discovered by the American 
astronomer Henrietta Swan Leavitt (1868 – 1921) and has been a precious tool for estimat-
ing distances. This period – luminosity relation is sometimes called the Leavitt law. It 
should be noted that RR Lyrae stars are also often used as standard candles since their 
dominant pulsation period is on the order of 0.5 day and they are therefore easily identi-
fi ed. These stars are not only numerous but also have large amplitudes and well - defi ned 
absolute magnitudes.   

 Figure  5.14  shows the light curve of the prototype for classical Cepheids, namely the 
star  δ  Cephei. Its brightness varies by approximately 0.8 magnitude and its period of vari-
ability is approximately 5.4 days. Since the luminosity of a star depends on both its radius 
and effective temperature, the variation of these two quantities will determine the luminos-
ity dependence as a function of time. Figure  5.14  shows that both  δ  Cephei ’ s radius and 
surface temperature fl uctuate with time. The maximum brightness of  δ  Cephei occurs near 
the maximum of the temperature curve and near the minimum of its radius. It is therefore 
the temperature changes that dominate the light curve for this star. The velocity of the 
outer layers of the star is also shown in Figure  5.14  and clearly demonstrates the dynami-
cal pulsation of this star. This velocity can be obtained by studying the Doppler shifts of 
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atomic lines as a function of time. The maximum brightness of this star occurs when its 
expansion velocity is near its maximum. 

 To sustain a pulsating motion, a driving mechanism must be present. If not, pulsations 
would be attenuated and disappear. This is similar to what happens to a classical oscillator 
(a mass hooked up to a spring for example) vibrating in a medium with friction. In this 
simple example, a driving force is necessary to maintain oscillations. 

 It was the British astrophysicist Sir Arthur S. Eddington (1882 – 1944) who suggested a 
possible explanation for the pulsation of classical Cepheids. He suggested that certain 
layers of the star, while it is in its compression phase of pulsation, might become quite 
opaque to radiation. The increase of opacity causes an accumulation of heat under these 
layers and eventually leads to an increase of pressure that pushes them outward. Once 
pushed out, the opacity of these layers decreases and permits the accumulated heat to fl ow 
out. Thereafter, these layers can fall back towards the centre since the pressure beneath 
them has decreased and a new cycle may then begin. This physical process acts as a valve 
that releases the accumulated heat and therefore decreases the pressure. The manifestation 
of this process is seen in Figure  5.14 . When the star contracts, the surface temperature 
increases. Pressure then pushes the outer layers of the star outward. The maximum bright-
ness occurs near where the aforementioned layers attain their maximum expansion veloc-
ity, which is also correlated to the maximum of the surface temperature. 

 The relatively large opacity needed for the mechanism described above in the case of 
Cepheids is due to the ionisation zone of HeII    →    HeIII. Helium, being the second most 
abundant element in most stars, can strongly contribute to the opacity. The increase of 
opacity is due to the fact that before total ionisation occurs, a growing number of atomic 
energy levels becomes populated and this increases the number of atomic lines present in 
their absorption spectrum. This hinders the radiative - transfer process and may then cause 
an accumulation of heat beneath the HeII    →    HeIII ionisation zone, which eventually leads 
to these layers being pushed out by the increased pressure. Once the ionisation zone is 
pushed out to layers where the temperature is lower, HeIII ions recombine with free elec-
trons and the HeII ions become less excited and the opacity therefore decreases. This 
permits the accumulated heat to fl ow towards the exterior and leads to a contracting phase 
and a new cycle may begin. This is known as the   κ  - mechanism  since the Greek letter   κ   often 
represents the radiative opacity (please note that in this book   κ   represents absorption only, 
while the total opacity is represented by the symbol  k ). The HeII ionisation zone is also 
believed to be the driving mechanism for RR Lyrae stars, while the hydrogen ionisation 
zone is most likely responsible for the pulsation of Mira variables, roAp and ZZ Ceti stars. 

 Meanwhile, the driving mechanism for the pulsation of  β  Cephei stars is thought to be 
due to an increase of the opacity of the stellar medium at depths where  T     ≈    200 000   K due 
mainly to the iron - peak elements. The increase in the opacity in this region is commonly 
called the  Z  - bump,  Z  standing for the metallicity (this feature was discussed in Chapter  3  
and is illustrated in Figure  3.17 ). The opacity increase needed to sustain the pulsations 
could be due to an accumulation of iron at such depths. Since iron has a rich absorption 
spectrum, if its abundance is suffi ciently amplifi ed in that region, it can lead to a suitably 
large opacity to drive pulsations. In this scenario, the accumulation of iron is due to the 
atomic - diffusion process. Atomic diffusion is the migration of the various elements within 
a star due to the competition between gravity that causes settling of the heavy elements 
towards the stellar centre and radiative acceleration that can selectively push out elements 
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towards the surface. Diffusion is only effi cient in stable stellar regions where other mixing 
processes like convection or turbulence are not present. Atomic diffusion will be discussed 
in more detail in Chapter  7 . Not all stars that are unstable due to the  Z  - bump need diffu-
sion to pulsate. Some stars with uniform but relatively large abundances can possess 
instability due to the  Z  - bump. 

 Mira variables are also of particular historical importance since it is the prototype of 
this class of pulsating star that was the fi rst variable star to be observed. It was discovered 
by the German theologian D. Fabricius (1564 – 1617) in 1596. Mira variables have a par-
ticularly large brightness variation. As seen in Figure  5.12 , the prototype star for this type 
of pulsating stars ’  visual magnitude can vary by approximately 8 magnitudes (which is 
equivalent to a variation of the fl ux by more than a thousand!) which is much larger than 
for Cepheids for example. It is believed that when Mira variables are at maximum expan-
sion (or minimum brightness), a large amount of TiO and other metallic oxide molecules 
form in their outer layers (see Reid, M.J. and Goldston, J.E.,  The Astrophysical Journal , 
568, 931  (2002)  for more details). These molecules obstruct a large amount of visible light 
leading to a relatively weak fl ux in the visible region of the spectrum and therefore to a 
large variation in the visual magnitude.  

  5.7.2   Asteroseismology  †   

 Asteroseismology is the fi eld of research that pertains to the pulsations (or oscillations) of 
stars in the aim of gaining information about their internal structure. The fi eld of astero-
seismology has had an exponential growth during the past several decades especially since 
it can probe the properties of the interior of stars as opposed to spectroscopy, for instance, 
that only samples the photosphere. Asteroseismology has therefore become a very power-
ful diagnostic tool. Meanwhile, the fi eld of helioseismology relates to the study of the 
pulsations of the Sun. 

 Since stars can in general be considered as spheres composed of a compressible fl uid, 
they may, under proper conditions, pulsate. For example, a star may have radial oscilla-
tions where its pulsations have a radial symmetry similar to those seen earlier for classical 
Cepheids. Figure  5.15  illustrates radial modes in a spherical object such as a star. These 

     Figure 5.15     An illustration of radial pulsation modes in a spherical object. The dashed concentric 
shells are nodes of the standing waves. The fundamental mode is shown on the left in the expansion 
phase where the arrows represent the movement of the various portions of the star. The next two 
modes (sometimes called overtones) are also shown.  
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modes of oscillations are similar to those found for sound wave in a pipe of a musical 
instrument for instance.   

 Stars can also have some modes of oscillation that are nonradial. For instance, in the 
Sun acoustical waves travel are trapped within the star and rebound between the surface 
and the deeper layers (see Figure  5.16 ). These waves are refl ected by the surface and the 
deeper layers because of refraction. In this instance, refraction is caused by the fact that 
the speed of sound varies with depth due to the pressure gradient. Refraction therefore 
modifi es the direction of the waves travelling inward and eventually refl ects them upwards. 
The recoil in this type of pulsation is caused by the pressure gradient and these waves are 
commonly called pressure waves (or p - modes). Since waves of different frequencies will 
be refl ected at different depths, the study of the various modes present for a star can give 
information on the internal structure of the star. There are several million modes of pulsa-
tion that participate in the Sun ’ s oscillation.   

 Another recoil process, namely buoyancy in the stellar medium can also cause stellar 
pulsations. Since buoyancy is caused by gravity, these are commonly called gravity waves 
and the related modes are called g - modes (g standing for gravity). The g - modes have 
smaller frequencies than p - modes. 

 Generally speaking, the luminosity variation of a pulsating star is caused by three 
factors: changes in the star ’ s volume (i.e. general expansion or contraction), changes of 
the star ’ s shape (stars when they pulsate may become nonspherical) and temperature vari-
ations over the stellar surface. Stellar pulsations can be quite complex since a large 
number of modes of oscillation along with their eigenfrequencies may be present simulta-
neously in a given star. Figure  5.17  shows a nonradial mode of pulsation for a ZZ Ceti star 
that is a white dwarf (see Section  6.10.1 ). The shades in this fi gure show the variation of 
the surface temperature over its surface. For ZZ Ceti stars it is the surface temperature 
variations that dominate their variability. A detailed and complex theoretical treatment 
such as the one leading to the results shown in Figure  5.17  may be used to extract informa-
tion concerning the stellar structure by comparing the pulsation modes that are observed to 
those predicted by these numerical models. See Fontaine, G., Brassard, P., Charpinet, S., 
Quirion, P. - O. and Randall, S.K., ASP Conference Series  (in press)  for more details about 
these calculations.   

     Figure 5.16     An illustration of the propagation of a nonradial mode of oscillation. The waves 
rebound between the surface and deeper layers due to refraction. The refraction is caused by the 
gradient of the speed of sound within the star that is due to the pressure gradient. The trajectory of 
such waves is represented by the arrowed path.  
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     Figure 5.18     The pulsation frequencies observed for the roAp star HD 24712 (or HR 1217) by the 
MOST mission. This fi gure shows the intensity of the periodic signals as a function of frequency 
extracted from the photometric observations during a one - month period of the star under consideration. 
Data courtesy of Jaymie Matthews and Chris Cameron.  

     Figure 5.17     Theoretical calculations showing the surface temperature of a nonradial mode of a 
ZZ Ceti star. The shades of grey get darker as the temperature increases. Figure courtesy of Gilles 
Fontaine.  

 Pulsations lead to photometric and/or spectroscopic variations that may be measured 
with adequate observations. A common way of detecting pulsations is by photometric 
measurements. The method consists of taking a large number of measurements of the star 
of interest in a given photometric band. The integration time for each of these measure-
ments must be smaller than the pulsation periods that are desired to be detected. A Fourier 
analysis, which is a mathematical method capable of obtaining the frequencies found in a 
given signal, is then applied to the observed data in order to extract the frequencies that 
are present in the astronomical data. An example of the type of scientifi c results obtained 
by the MOST satellite is shown in Figure  5.18 . This fi gure shows the pulsation frequency 
spectra detected for the roAp star HD 24712 (or HR 1217). 5       

   5      The names of this star come, respectively, from the Henry Draper (HD) catalogue and the Harvard Revised (HR) photometry 
catalogue.  
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 Special Topic  –  Asteroseismological Observations 

  The  MOST  mission: 

 The MOST (standing for Microvariability and Oscillations of STars) satellite is a 
Canadian observation mission that aims to study several types of astronomical 
objects including roAp and Sun - like stars. This satellite was launched in 2003 and 
is in a low - Earth orbit at 820   km altitude with an orbital period of approximately 
100   min. This satellite is relatively small and contains a 15 - cm refl ecting mirror 
along with two CCD detectors (one for guiding and the other for data collection). 
This instrument has a broadband visual fi lter (3500  Å    to 7000    Å ) and a variable 
integration time from 1 to 60   s. It can observe a star for up to 58 days without 
interruption. 

 The relatively small size of this satellite is not indicative of its accuracy since it 
can detect a variability of only one part in a million. This is the equivalent of the 
variation of the amount of light received by an observer from a radiation source 1   km 
away as compared to when this observer moves closer to this source by only 0.5   mm! 

 Any naturally occurring periods such as the rotational period of the satellite must 
be accounted for when analysing the observational data. Space - based observatories 
such as MOST can detect small variabilities in stars that are not possible to detect 
from the surface of the Earth. Noise caused by the turbulence in the Earth ’ s atmos-
phere would hinder such detections from Earth - based observatories. Figure  5.18  
shows the type of results that can be extracted from MOST observations. These 
results are obtained by a Fourier analysis of photometric observations that fi nds the 
relative intensities of the periodic signals present, if any. In this fi gure, several pul-
sation frequencies are clearly found for this roAp star. For more information about 
these observations the reader is referred to Cameron, C., Ph.D. Thesis, U. of British 
Columbia  (2009)  and Cameron, C., Matthews, J.,  et al .,  in preparation   (2009) .  

  The  C  o  R  o  T    mission: 

 The CoRoT (standing for Convection  , Rotation and planetary Transits) mission 
consists of an orbiting telescope with a 27 - cm diameter with four CCD detectors. 
This mission aims to study stellar seismology and search for exoplanets. Several 
types of pulsating stars will be studied with this instrument including RR Lyrae, 
 δ  Scuti,  γ  Doradus and  β  Cephei stars. This telescope was put into orbit at an 
altitude of 896   km in 2006. This mission is composed of a consortium of several 
countries spearheaded by France.  

  5.7.3   Basic Physics Behind Period – Luminosity Relations  †   

 Figure  5.13  shows the period – luminosity relation for classical Cepheids. This relation 
demonstrates that Cepheids with larger luminosities have longer pulsation periods that can 
be explained by physical reasoning. Cepheids are evolved stars (see Figure  5.11 ) and the 
most luminous ones are supergiants with larger radii. It is therefore not surprising that 
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these larger stars pulsate at smaller frequencies (or larger periods) than the smaller (and 
less luminous) Cepheids. A simple physical development undertaken below leads to the 
same conclusion. 

 It was seen that for the Sun, acoustical waves that are refl ected from the surface to 
deeper layers are responsible for its pulsations. Therefore, for a given star, the period of 
pulsation may be approximated by the time its takes a sound wave to travel from its surface 
to its centre and back again. If  v  s ( r ) represents the speed of sound at distance  r  from the 
star ’ s centre, the period of pulsation  T  may be approximated by
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 The adiabatic speed of sound is
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 is the ratio of the specifi c heats at constant pressure ( c  P ) and volume ( c  V ) 

and  P  and   ρ   are, respectively, the local pressure and density. The ratio  P /  ρ   is not readily 
known without the calculation of the model of the stellar interior for the star under 
consideration. Since only general properties of the pulsation period are of interest here, 
simplifi cations may be made to estimate the integral found in the equation for the period 
of pulsation given above (Eq.  5.141 ). To make this integral evaluation analytically pos-
sible, the crude assumption of a constant density inside the star is made here. The pressure 
inside the star may then be found via the hydrostatic equilibrium equation
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since   M r
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 for a sphere of constant density. The equation above can then be 

integrated from radius  r  to the surface and assuming the pressure at the surface is nil 
( P ( R   *  )   =   0), it is easy to show (see Exercise  5.13 ) that this integration gives
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 This result may then be used to estimate the period of pulsation
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 Therefore, in the approximation of a star with a constant density, the period of pulsation 
is inversely proportional to   ρ . This explains why more luminous (and therefore more 
voluminous and tenuous) Cepheids have larger pulsation periods than less - luminous (and 
denser) ones (see Figure  5.13 ). This equation also explains why the different types of 
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pulsating stars seen in Section  5.7.1  have different pulsation periods. For example, the 
equation above makes it clear why compact stars such as ZZ Ceti star have periods of 
pulsation that are smaller than those of RR Lyrae stars that in turn pulsate more rapidly 
than Cepheids due to the relative position of these pulsating stars in the H – R diagram 
shown in Figure  5.11 .   

  5.8   Summary 

 Equations of stellar structure:
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   Polytropic equation of state: P K
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Lane - Emden equation:
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where   ρ  ( r )   =     ρ   c   θ  n  ( r ) and   ξ
α
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 The six regions of the Sun are: core, radiative zone, convection zone, photosphere, 
chromosphere and corona.
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 5.9   Exercises    

   5.1   Assume a star of mass  M   *   and radius  R   *   having a density profi le equal to

   ρ ρr
r

R
( ) = −

⎛

⎝⎜
⎞

⎠⎟
c 1

2

2

*
    (5.157)  

fi nd the central density   ρ   c  in terms of  M   *   and  R   *  .   

   5.2   Show that when the energy transport is purely radiative

   ∇ = ( )rad
R3

64 2 4

k

r g

P

T
L r

π σ
    (5.158)     

   5.3   Assume a star of radius  R   *   having a density profi le equal to

   ρ ρr
r

R
( ) = −
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⎞

⎠⎟
c 1
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    (5.159)  

and a nuclear production rate per unit mass equal to

   ε εr
r

R
r R( ) = −

⎛

⎝⎜
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≤c for1

0 2
0 2

. *
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and

   ε r r R( ) = >0 0 2for . *     (5.161)  

calculate the luminosity of the star at its surface in terms of  R   *  ,   ρ   c  and  ε  c .   

   5.4   Derive the four equations of stellar structure as a function of  M  given in the special 
topic found in Section  5.2 .   

   5.5   Show that    d

d

e

e

B

T

k T
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u u
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3 2
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4

2
    (5.162)     

   5.6   Find the value of  u  where the function P( u ) found in the expression for  H  ν    in stellar 
interiors (Eqs.  5.33  and  5.34 ) is at its maximum (numerical problem).   

   5.7   In the centre of cool white dwarfs composed of pure carbon, detailed calculations 
show that the conduction opacity is approximately

   k
T

cond cm g≈ × ⎛
⎝⎜

⎞
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− −5 10 7
2

2 1

ρ
    (5.163)  
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By assuming that radiative opacity is dominated by Thompson scattering, show that in the 
centre of such stars where  T     ≈    10 7    K and   ρ      ≈    10 6    g/cm 3  conduction completely dominates 
energy transport.   

   5.8   Solve the Lane – Emden equation for  n    =   0 and show that the solution is   θ ξ ξ( ) = −1
6

2

.   

   5.9   Show that if   χ  (  ξ  )   =     ξ  θ  (  ξ  ) the Lane – Emden equation becomes

   
d

d

2

2 1

χ ξ
ξ

χ ξ
ξ

( )
= −

( )
−

n

n
    (5.164)     

   5.10   Calculate the mass of a star with a polytropic equation of state with  n    =   1 in terms 
of   ρ   c  and  R   *  .   

   5.11   Show that in completely neutral plasma with a metallicity  Z  much smaller than  X  
and  Y , the mean atomic weight is approximately

   μ =
+

1

4
X

Y
    (5.165)     

   5.12   Find the temperature at which the radiation energy density is equal to the gas energy 
density when log   ρ     =    – 4. Assume a radiation fi eld with  I  ν     =   B  ν    and plasma composed of 
pure hydrogen with an ideal - gas equation of state. Compare this result to the boundary 
found in Figure  5.10 .   

   5.13   Show that the pressure inside a star of radius  R   *   with constant density   ρ   is

   P r
G

R r( ) = −
2

3

2
2 2π ρ

( * )     (5.166)       
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   6.1   Introduction 

 During their lifetime, stars dispense an enormous amount of energy. For instance, the Sun 
emits 3.9    ×    10 33  ergs (or 3.9    ×    10 26    J) every second, while stars at the supergiant stage 
irradiate up to millions of times this quantity of energy. Stars therefore need a source of 
energy to account for such a large power output. 

 Before the discovery of thermonuclear reactions, it was commonly thought that gravity 
was the energy source of stars. In Chapter  2 , it was seen that when an astronomical body 
contracts, approximately half of the gravitational energy is emitted at its surface. If the 
gravitational energy of a given star of mass  M   *   and radius  R   *   is approximated by that of 
a body with a constant density (see Example  2.2 ), the energy emitted to interstellar space 
due to gravitational energy emitted since its formation may be approximated by the fol-
lowing expression (see Section  2.3 )

   Δ
Ω

U
GM

R
= − =

2

3

10

2

*

*
    (6.1)   

 By assuming that the star ’ s luminosity  L   *   has been constant since its formation, a charac-
teristic time called the Kelvin – Helmholtz time can be defi ned as

   τKH

*

*

* *
= =ΔU

L

GM

L R

3

10

2

    (6.2)   

 For the Sun   τ   KH     ≈    10 7    yr, which gives a rough estimation of the age of the Sun assuming 
that gravity is the dominant source of energy for stars. However, its true age is approxi-
mately 4.5    ×    10 9    yr, which can be estimated by geological dating of the oldest rocks on 
Earth or of meteorites. Since the age of the Sun is much larger than its Kelvin – Helmholtz 

  6 
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time, gravity is not suffi cient to generate the enormous amount of energy irradiated by the 
Sun since its formation. 

 Another possible energy source in stars is chemical energy. However, it is also easy to 
show (see Exercise 6.1) that energy coming from chemical reactions in stars is not suffi -
cient to solve the energy problem for stars. 

 Another energy source must then be present. It wasn ’ t until the beginning of the twen-
tieth century that it was understood that the energy source responsible for the great lumi-
nosities of stars was nuclear in nature. 

 As mentioned previously in this book, a star begins its life by burning (or fusing) 
hydrogen in its core. As hydrogen is transformed into helium, the structure of the star 
readjusts. When all of the hydrogen in the stellar core is spent, the star evolves relatively 
rapidly. As will be seen later in this chapter, the star then evolves to other stages such as 
the red - giant phase, and depending on its mass, it will be able to burn (or fuse) heavier 
nuclei as time progresses. This process leads to the production of the various elements 
found in the Universe and is commonly called nucleosynthesis. 1  Nuclear burning is there-
fore an essential ingredient to understand how stars evolve. 

 In this chapter, the physics surrounding thermonuclear (or fusion) reactions and the 
energy they emit as well as their relation to the evolution of stars will be discussed. An 
optional section concerning nuclear models will be presented for the reader who wishes 
more information on the underlying physics behind nuclear fusion. For an even deeper 
understanding of nuclear fusion, an optional advanced section is also presented at the end 
of this chapter that discusses nuclear reaction cross sections and rates. 

 The various nuclear reactions taking place on the main sequence and at later evolution-
ary stages will be given. Examples of evolutionary tracks of stars in the H – R diagram will 
be shown. The relation of stellar evolution to stellar clusters, galaxies and stellar popula-
tions will then be described. The properties of the end states of stars, namely white dwarfs, 
neutron stars and black holes will be presented. The processes by which the elements 
heavier than iron are formed as well as the properties of novae and supernovae will also 
be discussed. However, before seeing these topics, general properties of thermonuclear 
reactions will be described.  

  6.2   Generalities Concerning Nuclear Fusion 

 Nuclear fusion is the union of light nuclei to produce heavier nuclei. Nuclear fusion reac-
tions are exothermic and are the principal source of energy in stars. Energy is emitted by 
these reactions because the nuclei that are produced are more stable than those that fuse 
(see Figure  6.1 ). This fi gure shows that the average binding energy per nucleon generally 
increases up to the iron - peak elements (V, Cr, Mn, Fe, Co and Ni). The iron - peak elements 
have approximately the same binding energy per nucleon. Fusion can then occur up to the 
production of iron - peak elements. The excess energy, when light nuclei are fused into 
more tightly bound nuclei, is therefore released in the core of stars. This excess energy 

     1      The discussion in this chapter relates to stellar nucleosynthesis. Shortly after the Big Bang, the light elements H, He and Li 
were formed. This is called primordial or Big - Bang nucleosynthesis.  
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( E ) is related to the mass difference between the nuclei that are fused and those produced 
via Einstein ’ s famous mass – energy equation

   E mc m m c= = −( )Δ 2 2
initial final     (6.3)  

where  Δ  m  is the difference between the total mass of the nuclei being fused ( m  initial ) and the 
total mass of the particles produced by a given thermonuclear reaction ( m  fi nal ). For thermo-
nuclear reactions the energy given by the reaction above is positive. Energy may also be 
obtained when nuclei heavier than iron split into light atoms. This process is called nuclear 
fi ssion and is the basis of nuclear power plants. It is of little or no importance for stars.   

 The average binding energy per nucleon shown in Figure  6.1  is simply the difference 
between the sum of the individual masses of the nucleons composing the nucleus and the 
mass of the constituted nucleus divided by the number of nucleons in it. For example, in 
the case of  4 He, which is composed of two protons and two neutrons, the average binding 
energy per nucleon is

   
ΔE

A
m m m c= + −( ) ≈1

4
2 2 7 074

2
p n He MeV.     (6.4)  

where   m4He is the mass of the  4 He nucleus and  Δ  E  is the total binding energy of the nucleus 
and  A  is the total number of nucleons it contains. 

 A myriad of nuclear reactions takes place in stars during their various evolutionary 
stages. On the main sequence, stars fuse (or burn) hydrogen to produce helium. Section 
 6.5  is dedicated to the thermonuclear reactions on the main sequence. It will be seen later 

     Figure 6.1     The average binding nuclear energy per nucleon  Δ  E / A  as a function of the number of 
nucleons A in the various nuclei shown. The solid curve represents the results using the semiempirical 
mass formula (see (optional) Section  6.3.1 ).  Reproduced with permission from Eisberg, R. and 
Resnick, R.,  Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles , John Wiley & 
Sons, Ltd, New York  (1985).    



208 An Introduction to Stellar Astrophysics

in this chapter that for less - massive stars, hydrogen is fi rst fused to give deuterium ( 2 H) 
via the reaction (commonly called the proton – proton reaction)

   1 1 2H H H e e+ → + ++ ν     (6.5)   

 In this reaction e +  represents a positron (or antielectron) and  ν  e  is an electron neutrino. 
These two particles are respectively an antilepton and a lepton. Leptons are elementary 
particles that interact via the weak nuclear force or possibly the electromagnetic force (if 
they are electrically charged) but not the strong nuclear force. They have a spin of  ½  (in 
units of  h̄ ) and are therefore fermions. Their name is derived from the Greek word  leptos  
meaning thin because leptons are particles with relatively small masses. There are three 
so - called generations of leptons (see Table  6.1 ). Each generation contains two leptons, 
one of which is a neutrino. There are therefore three types of neutrinos known to exist in 
the Universe: electron, muon and tauon neutrinos. Neutrinos are electrically neutral. They 
are, respectively, associated to the following leptons: electron, muon and tauon that all 
possess the charge of the electron. Therefore, in the reaction above, an electron neutrino 
is emitted due to the presence of the positron (see below for the discussion on the conser-
vation of the lepton number).   

 For each elementary particle, there exists their corresponding antiparticle. When a par-
ticle meets its associated antiparticle, they annihilate each other and their mass energy is 
transformed to energy in the form of radiation. This process must be taken into account 
when calculating the energy emitted by certain nuclear reactions. 

 Meanwhile, protons and neutrons are members of a class of elementary particles called 
baryons and are made up of three quarks. Baryons can interact not only via the weak 
nuclear force but more importantly also via the strong nuclear force that is responsible for 
keeping the protons and neutrons together in the atomic nucleus. The name baryon is 
derived from the Greek word  barys  meaning heavy. Similarly to leptons, there are three 
generations of quarks, each containing two different types of quarks. These six types of 
quarks (also called fl avours) are named: up, down, charm, strange, top, and bottom (see 
Table  6.2 ). Quarks are charged particles with charges of  − 1/3 or  + 2/3 times the fundamen-
tal charge (see Table  6.3 ) and possess half - integral spins (quarks are therefore fermions). 

  Table 6.1    Leptons. 

   First generation     Second generation     Third generation  

  electron (e  −  )    muon ( μ   −  )    tauon ( τ   −  )  
  electron neutrino ( ν  e )    muon neutrino ( ν   μ  )    tauon neutrino ( ν   τ  )  

  Table 6.2    Quarks. 

   First generation     Second generation     Third generation  

  up (u)    charm (c)    top (t)  
  down (d)    strange (s)    bottom (b)  
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A proton is composed of two up quarks and one down quark while a neutron is made up 
of two down quarks and one up quark. Quarks possess the peculiarity of interacting via 
all four fundamental forces.   

 Nuclear reactions must respect several conservation principles: conservation of electric 
charge, as well as the conservation of baryon and lepton numbers. The baryonic number 
for a proton or a neutron is +1. The lepton number for an electron or a neutrino is +1. These 
numbers are  − 1 for the corresponding antiparticles. For example, in the fusion reaction of 
two  1 H nuclei given above, the baryonic number is +2 and the lepton number is nil on each 
side of the reaction. The electric charge is also conserved during this reaction. The presence 
of the positron assures electric charge conservation, while the presence of the associated 
neutrino (i.e. the electron neutrino) assures the conservation of the lepton number. 

 On a more fundamental level, this thermonuclear reaction is the result of the following 
reaction: p    →    n   +   e +    +    ν  e . Since leptons are involved, it indicates that the weak nuclear 
force intervenes in this reaction. Protons are composed of three quarks: uud, while neutrons 
are made up of a udd quark trio. Therefore, on an even more fundamental level, the reac-
tion p    →    n   +   e +    +    ν  e  is in reality a transformation of an up quark into a down quark via 
the reaction u    →    d   +   e +    +    ν  e . The reader who desires more information on the properties 
of quarks and other fundamental particles is referred to Martin, B.R. and Shaw, G.,  Particle 
Physics , John Wiley & Sons, Ltd, Chichester  (2008) . 

 Another similar reaction that is critical for the formation of the elements heavier than 
iron is the decay of neutrons into protons via   n p e e→ + +− ν  where   νe  represents an 
antielectron neutrino. On a more fundamental level, this reaction transforms a down quark 
into an up quark via the reaction   d u e e→ + +− ν . The importance of this decay reaction 
relative to the formation of elements heavier than iron will be discussed in (optional) 
Section  6.12 . 

 The energy emitted by the reaction  1 H   +    1 H    →     2 H   +   e +    +    ν  e , while neglecting the energy 
due to the annihilation of the positron and that of the neutrino (more details are given 
below), is

   E m m c m m m c= −( ) = − −( ) =initial final H H e MeV2 22 0 4201 2 .     (6.6)  

where  m  e  is the mass of the positron (which is equal to the mass of the electron). 
 The masses found above are  nuclear  masses and not atomic ones. The atomic mass 

of several species is given in Appendix  F . For calculations such as that done above, 
the total mass of the electrons found in the atom must be subtracted from the atomic 
mass to obtain the appropriate nucleus mass. To obtain exact nuclei masses, the binding 

  Table 6.3    Electric charge of quarks. 

   Quark     Charge (units of  e )  

  up (u)    +2/3  
  down (d)     − 1/3  
  charm (c)    +2/3  
  strange (s)     − 1/3  
  top (t)    +2/3  
  bottom (b)     − 1/3  
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  Example 6.1:    Calculate the energy emitted by the reaction  3 He   +    3 He    →     4 He   +   2 1 H 
(this reaction intervenes in the fusion of hydrogen via the proton – proton chains, see 
Section  6.5.1 ). 

  Answer: 

 The energy liberated by the reaction under consideration is found by using Einstein ’ s 
mass – energy equation

   E m m c m m m c= −( ) = − −( )initial final He He H
2 22 23 4 1     (6.8)   

 The masses found in this equation are those of the nuclei. Appendix  F  gives the 
atomic masses for the neutral ionisation state. Even though these nuclei are com-
pletely ionised in stellar cores, the atomic masses can still be used in this case. 
Assuming that the reacting nuclei are neutral atoms, there is the same number of 
electrons (i.e. four) on either side of the nuclear reaction under consideration. The 
atomic masses may then be used because the electron masses cancel (as discussed 
above, the binding energy of the electrons may be neglected). Therefore, by using 
the data in Appendix  F , the energy emitted is

       
  (6.9)    

E c c= × − − ×( ) = =2 3 0160293 4 0026032 2 1 0078250 0 0138054 122 2. . . .u u u u ..860 MeV

energy of the electrons must be added. However, since such energies are on the order 
of 10   eV to 10   keV, except for the heavier nuclei they may be neglected when compared 
to typical nuclear masses and binding energies (which are on the order of 1   MeV or 
more). 

 Two other factors must be considered to precisely evaluate the total energy emitted by 
the reaction under consideration. First, the positron emitted in this reaction is quickly 
annihilated when it interacts with a free electron in the stellar plasma. This annihilation 
process emits 2 m  e  c  2    =   1.022   MeV of energy. Secondly, since neutrinos interact very little 
with matter, most neutrinos emitted by stellar thermonuclear reactions can cross the upper 
layers of stars without interacting with the stellar plasma. These neutrinos take away 
energy and diminish the effi ciency of such nuclear reactions. On average, the neutrino 
emitted by the nuclear reaction under consideration possesses an energy of 0.263   MeV 
(see Table  6.4  in Section  6.5.1 ). Therefore, the  total  energy emitted by the fusion of two 
 1 H nuclei is

   E = + − =0 420 1 022 0 263 1 179. . . .MeV MeV MeV MeV     (6.7)     

 To obtain the value of the nuclear energy produced per gram of matter per second  ε ( r ), 
the energy taken away by neutrinos is subtracted and counted as a loss of energy directly 
to interstellar space.    
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  6.3   Models of the Nucleus   †    

 The aim of this optional section is to give basic knowledge about the nucleus to the reader 
who is not well acquainted with nuclear physics and who desires more information on this 
topic. This is done by presenting two models for the nucleus: the liquid - drop model and 
the shell model. The results from these models can explain certain properties of the nucleus 
that are important for a deeper understanding of nuclear reactions. 

  6.3.1   The Liquid - Drop Model 

 The liquid - drop model of the nucleus can give insight on how and why the masses of 
nuclei vary with the number of protons ( Z ) and neutrons ( N    =    A    –    Z ) they contain. For 
this model, it is assumed that the nucleus has properties similar to those of a drop of liquid. 
For instance, Figure  6.1  shows that when  A  is large, the average binding energy per 
nucleon is approximately constant ( Δ  E / A      ≈     8   MeV). For a drop of liquid, this property is 
equivalent to the fact that the heat of vaporization is proportional to its mass. Also, assum-
ing that a nucleus is composed of nucleons coalescing in a spherical shape, the density of 
the nucleus may be assumed to be constant, just as it is inside a drop of liquid. Such a situ-
ation would arise if nucleons are approximated as mutually attracting hard spheres. 

 This model of the nucleus can lead to an equation estimating the mass of nuclei that 
contains several terms. This equation is called the semiempirical mass formula and was 
fi rst established in 1935 by the German physicist Carl Friedrich Freiherr von Weizs ä cker 
(1912 – 2007). It is written in units of atomic mass units u (u   =   1.661    ×    10  − 24    g   =   931.5   
MeV/ c  2 ). Since the mass of the proton is 1  .0072765u and that of the neutron is 1.0086649u, 
the mass of a nucleus with  A  nucleons (containing  Z  protons and  N  neutrons) is given by

   m Z A Z N
E

c
, . .( ) = + −1 0072765 1 0086649

2

Δ
    (6.10)  

where  Δ  E  is the binding energy of the nucleus in units of  uc  2 . This binding energy is 
due to the strong nuclear force that binds the nucleons together in the nucleus. The fi rst 
two terms of this formula give the sum of the individual masses of the nucleons that 
constitute the nucleus in question. In the liquid - drop model, the binding energy comprises 
fi ve terms

   ΔE E E E E E= + + + +vol surf coul asym pair     (6.11)   

 namely the volume, surface, Coulomb, asymmetry and pairing terms. Each of these terms 
will now be described. The liquid - drop model is a mixture of a classical model (volume, 
surface and Coulomb terms) in which quantum effects are taken into account in a purely 
phenomenological manner (asymmetry and pairing terms). 

 In the hard - sphere approximation for the nucleons, the volume of the nucleus is directly 
proportional to  A . As the number of nucleons increases, the total binding energy also 
increases. The volume term, which represents this portion of the binding energy, may be 
written as
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   E a Avol vol=     (6.12)  

where  a  vol  is a free parameter to be fi tted to data that will be given below. This dependence 
is different from the gravitational potential energy, which is proportional to mass square 
(see Section  2.3 ). The reason for this is that the gravitational force has an infi nite extent 
while the strong nuclear force only acts locally (at distances on the order of 10  − 15    m or 
less). A given nucleon in the nucleus mostly feels the attractive force of its neighbouring 
nucleons. This property explains why the total binding energy due to the volume term is 
proportional to the number of nucleons in the nucleus. The fact that nucleons near the 
surface have fewer near neighbours will be considered below in what is called the surface 
term. Since the strong nuclear force is attractive, the volume term in the semiempirical 
mass formula decreases the mass of the nucleus (i.e.  E  vol     >    0) by a value determined by 
Einstein ’ s mass – energy relation. 

 In the depiction of a spherical nucleus, the nucleons at the surface have fewer near 
neighbours than those closer to the centre of the nucleus. These surface nucleons are 
therefore more loosely bound to the nucleus. Since the volume of the nucleus is propor-
tional to  A , its radius is proportional to  A  1/3 . The number of nucleons at the surface is 
proportional to the nucleus ’  surface ( ∝  A  2/3 ) and the average binding energy per nucleon 
is decreased by the so - called surface term

   E a Asurf surf= −
2

3     (6.13)   

 This term renders the nucleus less stable and thus increases its mass. 
 The repulsive electric force among the protons also plays a role in the stability of the 

nucleus. The potential energy related to the Coulomb force is proportional to  Z  2 / R , where 
 R  is the radius of the nucleus ( R     ∝     A  1/3 ). This decreases the stability of the nucleus and 
the following term in the semiempirical mass formula ensues

   E a
Z

A
coul coul= −

2

1

3

    (6.14)   

 Experimentally, it is observed that stable isotopes of light elements lie near the line 
 Z   =   A /2. There must then be a physical reason why isotopes lying far away from this line 
of stability are not stable and therefore cannot exist. This property is related to the shell 
model of the nucleus (the explanation will be given below in Section  6.3.2  describing the 
shell model of the nucleus). Therefore, a term in the semiempirical mass formula must be 
included to take this factor into account. A term with the following dependence is used in 
the semiempirical formula

   E a
Z A

A
asym asym= − −( )2 2

    (6.15)   

 Therefore, as  Z  deviates from the value  A /2, this expression decreases the binding energy 
and eventually renders the isotope unstable. In reality, as  A  increases the number of neu-
trons become relatively large with respect to the number of protons (i.e.  Z      <      A /2). The 
nuclear attraction force due to a larger number of neutrons serves to dilute the Coulomb 
repulsion and therefore somewhat destabilizes the nucleus. The factor 1/ A  in the term 
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     Figure 6.2     The relative importance of the volume, surface, Coulomb and asymmetry term of the 
semiempirical mass formula for the average binding energy per nucleon ( Δ  E / A ).  Reproduced with 
permission from Eisberg, R. and Resnick, R.,  Quantum Physics of Atoms, Molecules, Solids, Nuclei 
and Particles , John Wiley & Sons, Ltd, New York  (1985).    

above, diminishes this correction factor for heavier elements and is present to assure that, 
as observed experimentally, a larger number of stable isotopes exists for such elements. 

 It is also observed that more than half of the stable nuclei have an even number of both 
protons and neutrons, while only four nuclei have an odd number of protons and neutrons 
( 2 H,  6 Li,  10 B and  14 N). A pairing effect must therefore be present to take into account this 
preference of even - numbered proton and neutron nuclei (this property is also explained 
by the shell model). A pairing term of the type

   E
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Z N

Z N Zpair
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    (6.16)   

 fi ts the experimental data for the nuclear masses relatively well. This correction factor 
increases the stability of the nucleus when both  N  and  Z  are even and decreases it when 
both  N  and  Z  are odd. When only one of these numbers is odd, no correction factor is 
applied. 

 The following set of fi tted values for the parameters used in the semiempirical mass 
formula (in units of u c  2 ) gives good results as compared to experimental nuclear masses: 
 a  vol     =    0.01691, a surf    =   0.01911,  a  coul    =   0.000763,  a  asym    =   0.10175 and  a  pair    =   0.012. These 
parameters can be used to estimate the mass of the nuclei and study the relative importance 
of the various terms found in the semiempirical mass formula. 

 Figure  6.2  shows the relative importance of the terms found in the semiempirical mass 
formula (with the exception of the pairing term). In the context of the liquid - drop model, 
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the combination of the surface, Coulomb and asymmetry terms conspires to give a 
maximum of stability for nuclei around iron. This fact is of critical importance for the 
evolution of stars (see Sections  6.7  and  6.8.4 ), since fusion is no longer effi cient (i.e. 
exothermic) past this point of maximal stability.    

  6.3.2   The Shell Model 

 Since the nucleons inside a nucleus are found in a potential well due to the attractive strong 
nuclear force among protons and neutrons and since quantum mechanics applies to such 
systems, the nucleons are found in quantised energy levels similar to the electronic energy 
levels of atoms. For atoms, it is found that the ionisation energy varies as a function of  Z  
and that it has a local maximum when electronic shells are full (see Figure  1.6 ). Similar 
shells are also present for the nuclear energy levels of the nucleus. This quantum - 
mechanical model of the nucleus is commonly called the shell model. 

 The numbers of nucleons necessary to fi ll energy shells are commonly called the magic 
numbers of the nucleus. Similarly to the inert gases found in the periodic table of the ele-
ments, nuclei with fi lled shells are particularly stable. Because of their high stability, these 
nuclei are generally less prone to fuse with other nuclei. 

 There are several manifestations of the nuclear energy shells. For example, the energy 
needed to extract a single neutron from a nucleus (which is equivalent to the extraction 
of an electron from an atom or an ionisation) varies greatly as a function of  N . There are 
local peaks for this extraction energy (similarly to those seen in Figure  1.6  for the ionisa-
tion energy of atoms) for the values  N    =   2, 8, 20, 28, 50, 82 and 126. These quantities are 
the so - called magic numbers mentioned above. Also, elements that possess a number of 
protons equal to a magic number typically have a greater number of stable isotopes than 
the neighbouring elements. 

 It should be noted that the magic numbers are different from the number of electrons 
needed to fi ll electronic confi gurations of the atom. This should not be surprising because 
the strong nuclear force is very different from the electric force that is responsible for 
binding the electrons in the atom. 

 Additional evidence for the presence of magic numbers for the nucleus can be seen in 
Figure  6.1 . The  4 He and  16 O nuclei that are doubly magic (i.e. both the number of protons 
and neutrons are magic numbers), have average binding energies per nucleon larger than 
their immediate neighbours. 

 Other supporting facts for the validity of the shell model of the nucleus can be observed 
by studying the relative abundances of the elements found in our Universe. Figure  6.3  
shows the abundances of various elements found in the Sun. The abundances for fl uorine 
( Z    =   9) and scandium ( Z    =   21) have much lower abundances than their respective neigh-
bours, namely oxygen and calcium. These last two elements possess a number of protons 
that equals a magic number (respectively,  Z    =   8 and 20). The reason for this difference in 
the abundances of these neighbouring elements is due to the high stability of nuclei with 
a magic number of protons. Once these nuclei are produced via nucleosynthesis, they are 
less reactive than their neighbouring elements and therefore less susceptible to destruction 
via nuclear reactions.   
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 Also, the most abundant isotope for both O and Ca are doubly magic (i.e.  16 O and  40 Ca) 
or in other words both the number of protons and neutrons are magic. Meanwhile, fl uorine 
and scandium only have a single stable isotope ( 19 F and  45 Sc) while other neighbouring 
elements have several. All of these properties for the abundance of the elements give more 
proof for the existence of a shell structure for the nucleus. 

 The asymmetry factor found in the semiempirical formula discussed in the previous 
section can also be explained by the shell model of the nucleus. Since protons and neutrons 
are fermions, they will independently fi ll up their respective nuclear energy levels, while 
respecting Pauli ’ s exclusion principle. If there is a large asymmetry between the number 
of protons and neutrons, the energy of the nucleus becomes large and this gives an unstable 
confi guration (see Figure  6.4 ). Such confi gurations where there are many more neutrons 
than protons can decay via the reaction   n p e e→ + +− ν  (where   νe represents an antielectron 
neutrino). Such decays increase the number of protons in the nucleus (and therefore 
changes the nature of the element) and augment its stability. The importance of this decay 
process will be discussed in (optional) Section  6.12 .   

 The pairing effect discussed earlier for the liquid - drop model is also clearly visible in 
Figure  6.3 . Elements with an even number of protons are more abundant because these 
nuclei are more stable than their immediate neighbours in the periodic table with an odd 
number of protons. It is also found experimentally that the energy needed to extract a 
single neutron from a nucleus is larger when the number of neutrons in this nucleus is 
even as compared to when it is odd. Both of these experimental facts are manifestations 
of the pairing effect that can be explained by the shell model. In a classical - physics picture, 
the two paired identical nucleons have  ‘ orbits ’  in opposite directions. Therefore, they are 
on average closer to one another than to other nucleons in the nucleus. This effect increases 
the binding energy of these nucleons.   

     Figure 6.3     The abundance (in number of atoms of each species relative to the total number of 
atoms) of various elements in the Sun. The most abundant isotopes of O and Ca are doubly magic 
and are identifi ed on the fi gure. The sole stable isotopes of F and Sc are also shown.  
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  6.4   Basic Physics of Nuclear Fusion 

 To properly understand the physics surrounding nuclear fusion, quantum - mechanical 
principles must be applied. Figure  6.5  shows schematically the approach of an incoming 
nucleus towards a second nucleus for which the nuclear potential is approximated by 
a square well. This well has the geometrical dimension on the order of the size of 
the nucleus (i.e. on the order of several fermis 2 ). Besides the nuclear potential, there 
also exists a repulsive Coulomb force between the two interacting nuclei. In order for 
the incoming nucleus in Figure  6.5  to enter the nuclear potential of the other nucleus 
(and therefore fuse with it), it must penetrate the barrier potential that it encounters. 
Barrier - potential penetration is a well - known quantum effect (also called quantum 
tunnelling).   

 Contrary to classical physics, quantum theory predicts that when a particle with energy 
less than the barrier potential it encounters, it has a nonzero probability of tunnelling 
through this barrier and fi nding itself on the other side. The probability that the incoming 
nucleus penetrates the barrier increases as the energy of the incoming nucleus increases, 
since the width of the encountered barrier decreases. Therefore, in stellar plasma, since 
the kinetic energy of particles increases with temperature, the nuclear reaction rate also 
increases with temperature. Also, because the Coulomb repulsion increases when the 
reacting nuclei are more highly charged, fusion for low - charged nuclei generally occurs 
at lower temperatures than for highly charged nuclei. This has important implications for 
stellar evolution, correctly predicting that the lowest charged nuclei are the fi rst to burn. 
As the star evolves and its central temperature increases, heavier (and thus more highly 
charged) nuclei burn at later stages of evolution (more details are given later in this 

protons neutrons

n → p + e–  + νe

     Figure 6.4     A schematic picture of the nuclear potentials felt by protons and neutron inside 
a nucleus. When the number of neutrons in the nucleus is much larger than the number of 
protons, one or several decays, commonly called   β    −   decays (n    →    p   +   e  −     +      v̄  e ), may occur that 
transform a neutron to a proton that fi nds itself on a lower energy level. This increases the stability 
of the nucleus.  

   2      1 fermi   =   10  − 15    m.  
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chapter). There are exceptions to this general rule. For example, deuterium and lithium 
burn at a lower temperature than hydrogen. The reason for this is that for the proton – proton 
reaction ( 1 H   +    1 H    →     2 H   +   e +    +    ν  e ), the weak nuclear force intervenes (which manifests 
itself by the presence of the positron and the neutrino), leading to a relatively small nuclear 
cross section. The burning of deuterium and lithium is discussed below in a special topic 
concerning brown dwarfs. 

 Generally, the energy of the incoming particle will not   coincide with a bound 
nuclear level 3  of the nucleus inside the nuclear potential. These are called nonresonant 
reactions. This case is illustrated in Figure  6.5 . The reactions occurring when the energy 
of the incoming particle is equal to a given nuclear energy level are called resonant 
reactions. 

 The energies at which fusion reactions occur in stars are relatively small as compared 
to, for example, the energies attained in laboratory (i.e. in particle accelerators). Even 
though during such a low - energy collision, the probability of tunnelling through the 
barrier potential is very small for the conditions found in stellar cores, the large number 
of nuclei found there leads to a large rate of nuclear energy production. The fact that 
the typical energies are much less than those that can be used to observe fusion in 
particle accelerators makes the gathering of experimental data of cross sections for stellar 
fusion reactions impossible. The rate of reaction is too low at the densities attained 
in particle accelerators for typical energies encountered in stellar cores. More details 
concerning nuclear reaction cross sections are given in (the advanced and optional) 
Section  6.13 .  

     Figure 6.5     A schematic view of the potential of a nucleus (solid line). The potential due to the 
strong nuclear force is approximated by a square well. Outside this well the potential is due to the 
Coulomb repulsion force. The dashed line represents the energy of an incoming nucleus that is 
attempting to fuse with the nucleus, or to tunnel through the potential illustrated in the fi gure. Also 
shown in the fi gure are nuclear energy levels found inside the well.  

   3      For the reader who has chosen to skip Section  6.3 , the nucleus has energy levels (and related shells) similar to those found for 
the electronic levels of atoms.  
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  6.5   Main - Sequence Burning 

 To achieve stellar status, a collapsing interstellar cloud must have suffi cient gravitational 
energy (or mass) to be able to heat up the interior of the protostar to attain the tempera-
ture needed for sustained hydrogen fusion. The lower limit of the mass for stars is 
approximately 8   % of  M   �  . Collapsed celestial bodies with masses just below this limit are 
called brown dwarfs (see special topic below). As mentioned previously, stars that burn 
hydrogen in their centre are found on the main sequence in the H – R diagram. This evo-
lutionary phase of stars is the lengthiest and therefore merits special attention since, due 
to the length of this stage of evolution, the vast majority of stars observed are on the main 
sequence. 

 In this section, the detailed nuclear reactions that transform hydrogen to helium in the 
central regions of main - sequence stars will be discussed. Two sets of such reactions will 
be seen. The fi rst, the proton – proton chains are responsible for energy generation for 
main - sequence stars with masses below approximately 1.5    M   �  . Meanwhile, the reactions 
of the CNO cycles dominate energy production for the stars with larger masses. A section 
pertaining to the duration of the lifetime of stars on the main sequence will also be pre-
sented. Finally, this section will conclude with an optional section on the famous solar 
neutrino problem.   

 Special Topic  –  Brown Dwarfs 

    Brown dwarfs are bodies with masses lying between those of large planets and 
stars. These substellar astronomical bodies have relatively small luminosities ren-
dering their observation diffi cult. This is why they were fi rst detected only in the 
mid - 1990s. Since brown dwarfs have no sustaining energy source (i.e. suffi cient 
thermonuclear reactions to account for their luminosity over time), eventually 
their luminosity diminishes with time after their formation. A search for these 
astronomical objects was undertaken in young stellar clusters so that they could 
more easily be detected because of their relatively large luminosity during their 
youth. 

 The upper limit for brown dwarf mass is 0.08    M   �   or roughly 80 times the 
mass of Jupiter ( M  JUP ). In other words the mass at which hydrogen can burn. 
In reality, a small amount of hydrogen burns in the most massive brown dwarfs 
( M     >    60  M  JUP ) during a short - lived period following the deuterium - burning 
phase (see below for details concerning deuterium burning). Detailed calculations 
show that hydrogen ceases to burn because the central temperature needed 
for this reaction to take place cannot be maintained. Since hydrogen burning 
is not sustained, these objects are not considered stars. The lower limit for brown 
dwarf mass is approximately 13  M  JUP  (this is the mass where deuterium can 
burn, see below for more details). Below this mass, no fusion reactions take 
place. 
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 Lithium can fuse with hydrogen (via the reaction  7 Li   +    1 H    →     4 He   +    4 He) at a 
lower temperature than that needed for hydrogen fusion. Brown dwarfs with 
masses between 60  M  JUP  and 80  M  JUP  burn their lithium in about 10 8    yr. Even though 
lithium only burns in the central regions of such brown dwarfs, since these objects 
are convective, the lithium found at their surface is eventually brought to the centre 
where it can be destroyed by nuclear fusion. 

 Massive brown dwarfs are not easily distinguishable from lower - mass stars. 
However, since brown dwarfs with masses less than 60  M  JUP  never attain 
the temperature needed for Li burning, 4  which has an ignition temperature of 
app roximately 3    ×    10 6    K (while the critical temperature for burning hydrogen 
in low - mass stars is approximately 10 7    K, see Table  5.1 ), the detection of Li in 
the spectra of astronomical bodies with substellar masses gives an indication 
that these might be brown dwarfs (with masses below 60  M  JUP ). An additional 
way of confi rming the status of brown dwarfs is the presence of methane (CH 4 ) 
in their spectra. Methane molecules cannot exist at the surface of even the coolest 
stars, but such molecules can, however, exist at the surface of cool brown dwarfs.   

 The lower limit for the mass of brown dwarfs is defi ned by the mass below 
which deuterium cannot fuse with hydrogen via the reaction  2 H   +    1 H    →     3 He   +    γ . 
The critical temperature needed for this reaction to take place is approximately 
1    ×    10 6    K, which corresponds to the central temperature of brown dwarfs with 
masses of approximately 13  M  JUP . Astronomical bodies with masses smaller than 
this value are simply large exoplanets (assuming they are orbiting a star) and no 
thermonuclear activity exists there. 

 The effective temperatures of brown dwarfs are in the range from roughly 750 
to 2200   K. This range of effective temperature is relatively uncertain because, for 
instance, since these astronomical bodies cool down as a function of time, cooler 
brown dwarfs than this lower limit should theoretically exist. Also, when they are 
young and are still burning their deuterium, their effective temperature can be 
larger than the upper limit given above. As mentioned earlier, brown dwarfs fade 
with time because they only have a limited amount of nuclear energy at their dis-
posal due to the exothermic reactions of deuterium and lithium burning. After a 
certain time, the heat accumulated in brown dwarfs comes mainly through the 
contraction phase during their formation. Therefore, since the effective temperature 
of brown dwarfs is a function not only of their mass but also varies with time, it 
complicates their study. Four spectral classifi cations for brown dwarfs have been 
defi ned: M, L, T and Y. These spectral types are given as a function of decreasing 
temperature. The M - type brown dwarfs are hottest, while Y - type brown dwarfs are 
the coolest.  

   4      The abundance of Li in the Universe can be predicted by the Big - Bang theory and may therefore be used as a test for this 
theory. However, since the fusion process can destroy Li in stars, when comparing the observed Li abundance in the Universe 
and the one predicted by the cosmological model, this destruction of Li in stars must be taken into account to properly interpret 
observations.  
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  6.5.1   Proton – Proton Chains 

 The proton – proton chains consist of a series of thermonuclear reactions by which hydro-
gen is transformed into helium in stars. These chains are so - called because they begin by 
the fusion of two protons (or  1 H nuclei). There are three distinctive proton – proton chains 
given by the following reactions

   

1H + 1H → 2H + e+ + νe
1H + 2H → 3He + γ

3He + 3He → 4He + 21H

3He + 4He → 7Be + γ

7Be + e– → 7Li + νe
7Li + 1H → 24He

7Be + 1H → 8B + γ
8B → 24He + e+ + νe (PPIII)

(PPI)

(PPII)

99.7 % 0.3 %

31 %

69 %

    (6.17)   

 In the Sun ’ s core, the  3 He nucleus has a probability of approximately 69   % of fusing with 
another  3 He nucleus (completing the PPI chain) and has a 31   % chance of reacting with a 
 4 He nucleus (leading to the PPII or PPIII chains). Meanwhile, the  7 Be nucleus reacts 99.7   % 
of the time with a free electron, thus leading to the PPII chain and it has a 0.3   % chance 
of reacting with a proton, thus completing the PPIII chain. Even though most of the ther-
monuclear energy produced in the Sun comes form the proton – proton chains, the CNO 
cycles (see below for more details) contribute almost a third of the total amount of hydro-
gen burning. 

 To gain more insight into these nuclear reactions, the PPI chain will be studied in more 
detail. In order to produce a  4 He nucleus, two  3 He nuclei must fi rst be formed. 5  Therefore, 
two proton – proton fusion reactions must be followed by two proton – deuterium reactions

   

1 1 2

1 1 2

1 2 3

1 2 3

3 3

H H H e
H H H e
H H He
H H He
He He

e
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+ → + +
+ → + +
+ → +
+ → +

+ →

+

+
ν
ν

γ
γ

44 12He H+

    (6.18)   

 The two  2 H and the two  3 He nuclei that are created by these reactions are later fused (and 
consequently destroyed). The net result is that these reactions fuse six  1 H nuclei (or 
protons) from the stellar plasma into a single  4 He nucleus and two  1 H nuclei, while also 

   5      In reality, since  3 He nuclei were produced during the Big Bang, some exist within stars at their birth. However, to calculate the 
quantity of energy produced by a complete PP chain, it is assumed that all of the nuclei that are needed (except  1 H) are previ-
ously formed by thermonuclear reactions in the star.  
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creating two positrons and two electron neutrinos. Globally, the reactions of the PPI chain 
can be summarised as

   6 2 2 2 21 4 1H He H e e→ + + + ++ ν γ     (6.19)   

 or simply

   4 2 2 21 4H He e e→ + + ++ ν γ     (6.20)   

 It is easy to show that the PPII and PPIII chains also lead to similar global reactions that 
fuse four protons into a  4 He nucleus. 

 The energy emitted (neglecting positron annihilation and the energy carried away by 
the neutrinos, see below for more details) is

   E m m c m m m c= −( ) = − −( ) =initial final H He e MeV2
4

24 2 24 6881 .     (6.21)   

 The two positrons eventually interact with two free electrons in the stellar plasma leading 
to their annihilation. An amount of energy of 4 m  e  c  2    =   2.044   MeV is released and must be 
added to the energy gain of this thermonuclear reaction giving a total energy of 26.732   MeV 
minus the energy carried away by the neutrinos. The energy of the neutrinos is subtracted 
here because they can easily leave the star without interacting with matter. Detailed cal-
culations show that the average energy taken away by each of the neutrinos emitted in the 
PPI reaction is approximately 0.263   MeV. Meanwhile, the second neutrino emitted during 
the PPII and the PPIII chains, respectively, carry away approximately 0.80 and 7.2   MeV 
(see Table  6.4 ). In other words the proton – proton chains lose, on average, respectively 
2.0, 4.0 and 27.9   % of their energy due to the neutrinos leaving the star.  

  6.5.2    CNO  Cycles 

 The CNO cycles are made up of reactions in which protons are fused with C, N and O 
nuclei to produce helium. Since C, N and O nuclei are highly charged as compared to 
protons, the critical temperature needed for these reactions being able to take place is 
larger than for proton – proton chains. The reason for this is that the protons interacting 
with C, N and O nuclei must penetrate a stronger Coulomb potential and they therefore 
need larger velocities to fuse. This explains why the CNO cycles dominate energy genera-
tion in main - sequence stars only for masses larger than approximately 1.5    M   �  . It should 
be noted that both proton – proton and CNO reactions are present in such stars but their 
contribution to the overall energy production varies with their central temperature, which 
in turn depends on the stellar mass (see Figure  6.7  in the special topic presented below).   

  Table 6.4    Neutrino energies for proton – proton chains. 

   Reaction     Average neutrino energy     Maximal neutrino energy  

   1 H   +    1 H    →     2 H   +   e +    +    ν  e     0.263   MeV    0.420   MeV  
   7 Be   +   e  −      →     7 Li   +    ν  e     0.80   MeV    0.862   MeV  
   8 B    →    2 4 He   +   e +    +    ν  e     7.2   MeV    14.02   MeV  
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 The reactions of the three CNO cycles are given below. The large arrows between the 
different cycles point to reactions that are in common among the various cycles. A more 
graphic way of illustrating the CNO cycles is shown in Figure  6.6 .    
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     Figure 6.6     Illustration of the CNO cycles. The catalysts are circled.  Figure reproduced with 
permission from Pearson, J.M.,  Nuclear Physics: Energy and Matter , Adam Hilger, Bristol   
(1986).     
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 Since the various C, N and O isotopes are produced and destroyed in equal amounts by 
fusion during a complete cycle of CNOI, II and III, globally each of these cycles may be 
simplifi ed to the following reaction

   4 2 2 31 12 4 12H C He C e e+ → + + + ++ ν γ     (6.23)   

 or simply

   4 2 2 31 4H He e e→ + + ++ ν γ     (6.24)   

 In each of the CNO cycles presented above, four protons are transformed into a  4 He 
nucleus to produce energy. The energy emitted is the same as for the proton – proton chains 
except for the portion of the energy carried away by the neutrinos, which is different due 
to the differing nature of the reactions producing these leptons. 

 In these cycles, the CNO nuclei serve as catalysts. During a complete cycle, globally, 
no C, N, or O nuclei are either produced or destroyed. However, since the various reac-
tions in the CNO cycles have different reaction rates, the amounts of C, N and O are 
modifi ed until they achieve a steady state some time after the reactions of the CNO cycles 
are ignited. An example of such a steady state attained during nuclear reactions is given 
in (the advanced optional) Section  6.13 . 

 It should be noted that in reality, there is an additional cycle not shown here. This fourth 
cycle fuses hydrogen with  19 F nuclei. This series of four cycles is commonly called the 
CNOF cycles. Since this fourth cycle is less prominent than the others, it is not discussed 
here. 

 Evidently, these cycles require the presence of CNO nuclei. However, since the heavy 
elements weren ’ t formed during the Big - Bang nucleosynthesis, the fi rst generation of stars 
formed in the Universe did not contain such elements. Therefore, the evolution of stars 
with no (or little) metals is different from the evolution of stars containing metals because 
only proton – proton chains may occur on the main sequence when no C, N and O atoms 
are present.    

 Special Topic  –  Energy Production Rates of the PPI Chain and CNO Cycles 

    Detailed calculations of the nuclear reaction rates for hydrogen burning show that 
the nuclear energy production rate per unit mass for the PPI chain and the CNO 
cycles are approximately given by the following expressions
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where  T  9  is the temperature in units of 10 9    K,  X  is the mass fraction of hydrogen 
and  Z  is the mass fraction of the metals. Since protons react with one another, the 
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  6.5.3   Lifetime of Stars on the Main Sequence 

 To use knowledge about stellar evolution in practical applications such as determining the 
age of stellar clusters (see Section  6.9.4 ), it is critical to be able to evaluate how long a 
star stays on the main sequence (or in other words how long hydrogen burning lasts in the 
centre of stars). The lifetime of stars on the main sequence can be estimated by comparing 
the available nuclear energy to its power output (or luminosity) on this branch of the H – R 
diagram. This is the aim of this section. 

 During the creation of a  4 He nucleus by either the proton – proton chains or the CNO 
cycles, a fraction of the mass  F  m  of the four fused protons is transformed to energy. This 
energy is eventually emitted at the star ’ s surface. This fraction is approximately (while 
neglecting the energy taken away by the neutrinos)

   F
m c

m
p

MeV≈ ≈26 7

4
0 007

2

.
.     (6.27)   

     Figure 6.7     The temperature dependence of the nuclear energy production rate per unit 
mass (  ε  ) for the PPI chain and the CNO cycles.  

PPI rate depends on the square of  X . Meanwhile, the CNO rate depends on  XZ  
because protons react with CNO nuclei (here it is supposed that the CNO abundances 
scale with  Z ). Also, these rates increase linearly with density. The temperature 
dependence for the nuclear energy production rate is more complicated. Figure  6.7  
compares these two rates and shows that the PPI chain dominates for lower 
temperatures, while the CNO cycle dominate energy production for higher 
temperatures. As discussed previously, higher temperatures (or in other words, 
higher velocities for the reacting nuclei) are needed for hydrogen fusion via the 
CNO cycles since a larger Coulomb barrier exists between the reacting nuclei. The 
crossover of the two curves shown in Figure  6.7  occurs for main - sequence stars 
with mass of approximately 1.5    M   �  .  
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 Since hydrogen only fuses at temperatures of approximately 10 7    K or more, only a portion 
of a star ’ s mass is found in regions where the physical conditions needed for hydrogen 
fusion to occur exist. Therefore, only these stellar regions can participate in thermonuclear 
energy production. For a rough estimate of the duration of the hydrogen - burning phase, 
it is assumed that 10   % of the mass of a star can be fused. Supposing that this mass is 
composed of pure hydrogen, the total energy  E  tot  available through hydrogen burning for 
a star of mass  M   *   can be estimated to be

   E M ctot *≈ 0 0007 2.     (6.28)   

 Assuming that the luminosity of the star  L   *   remains constant during the entire main -
 sequence phase, the time  t  ms  it will stay in this evolutionary phase is approximately
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* yr≈ ≈ ≈ ( )( )−0 0007 102 10 1. � �     (6.29)   

 This result predicts that the Sun will stay on the main sequence for 10 10  years, which is 
close to more detailed evaluations for this quantity. Since the luminosity of stars and thus 
the rate at which they expend their energy increases much faster than stellar mass, this 
equation predicts that stars with large masses, even though they possess more nuclear fuel 
or hydrogen, have a shorter lifespan on the main sequence than less - massive stars (see 
Example  6.2 ). Massive stars therefore evolve much faster than less - massive ones. This is 
a very important result of stellar evolution and can be used as a tool to determine, for 
example, the age of stellar clusters (see Section  6.9.4 ).   

  Example 6.2:    Calculate the lifespan on the main sequence for a B - type star with 
 M   *     =   16    M   �   and  L   *     =   8000    L   �   and an M - type star with  M   *     =   0.1    M   �   and  L   *     =   8    ×    10  − 4     L   �  . 

  Answer: 

 Using the equation for  t  m   s   given above

   tms yr yr for the B-type star≈ × = ×16

8000
10 2 1010 7     (6.30)  

and

   tms yr yr for the M-type star≈
×

× = ×−
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.     (6.31)   

 As expected, the hotter (or more massive) star has a shorter lifespan on the main 
sequence than the cooler one. It should also be noted that the lifespan of the M - type 
star studied here is larger than the age of the Universe (which is approximately equal 
to 13    ×    10 9    yr). Therefore, the coolest stars that were formed shortly after the Big 
Bang are still on the main sequence today, while the high - mass stars formed at these 
early times have all had enough time to evolve away from the main sequence.  
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 A fi nal note concerning the results shown in this section is warranted. The portion of a 
star ’ s mass that is transformed to energy during its evolution through the various evolu-
tionary stages is negligible. The total mass of a star can then be considered as constant 
during its lifetime, with the exception that some mass loss at the surface often occurs. A 
star can, however, also eject considerable amounts of mass to interstellar space during 
explosive stages such as the supernova phase (see Section  6.11 ). On the other hand, stars 
in binary systems can gain mass through mass transfer from their companions. This 
modifi es their evolution and renders the study of the evolution of binary systems quite 
complex.  

  6.5.4   The Solar Neutrino Problem  †   

 As seen above, the thermonuclear reactions taking place inside the Sun emit a large amount 
of electron neutrinos. Due to their low probability of interaction, the vast majority of these 
neutrinos exit the Sun without being absorbed. Therefore, if astronomers were able to 
detect these neutrinos, such measurements could provide some direct information about 
the Sun ’ s centre and the nuclear reactions taking place there. Gathering information 
directly from the inner portions of stars is impossible by normal astronomical observations 
that detect electromagnetic radiation since the radiation fi eld emanates from the outer 
layers of stars. 

 Neutrinos emitted by the proton – proton reaction  1 H   +    1 H    →     2 H   +   e +    +    ν  e  have a differ-
ent energy spectrum from those emitted by the reaction  7 Be   +   e  −      →     7 Li   +    ν  e  (the second 
neutrino emitted during the PPII chain) or those coming from the reaction  8 B    →    2 4 He   +   e +    +    ν  e  
(the second neutrino emitted during the PPIII chain). Therefore, the detection of the neu-
trinos and interpretation of these observations could serve to verify the relative reaction 
rates of the different nuclear reactions in the Sun. A method by which these neutrinos 
could be detected would be very useful to study the Sun ’ s centre. 

 The fi rst neutrino observatory was constructed in the US and is known as the Brookhaven 
Solar Neutrino Experiment. This observatory, which was built in a mine at a depth of 
approximately 1500   m, used  37 Cl as the target (or detection agent) and aimed to study 
neutrinos coming from the Sun. The nucleus of the  37 Cl atom can react with an electron 
neutrino via the reaction

   νe Cl Ar e+ → + −37 37     (6.32)   

 This reaction has a threshold energy of 0.814   MeV. It cannot detect the neutrinos emitted 
by the proton – proton reaction ( 1 H   +    1 H    →     2 H   +   e +    +    ν  e ) since its neutrinos are not energetic 
enough (see Table  6.4 ). It is, however, sensitive to the neutrinos emanating from  7 Be and 
 8 B during, respectively, the PPII and PPIII chains. Since neutrinos do not interact strongly 
with matter, about 600 tons of C 2 Cl 4  molecules were used as the target. Even with such a 
large amount of  37 Cl this neutrino observatory can only detect less than one neutrino 
interaction per day! The chief scientist for the Brookhaven Solar Neutrino Experiment 
who fi rst suggested using  37 Cl to detect neutrinos, the American chemist Raymond Davis 
Jr. (1914 – 2006), shared the 2002 Nobel Prize in physics for the detection of the elusive 
electron neutrino and the fi rst measurement of the solar neutrino fl ux that lead to the so -
 called solar neutrino problem (see below). The Japanese astrophysicist Masatoshi Koshiba 
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(b. 1926) also shared the 2002 Nobel Prize for confi rming the solar neutrino problem with 
results from the Kamiokande neutrino observatory in Japan. 

 Neutrino observatories are built deep underground in order to avoid false detections 
from interactions with cosmic rays. Cosmic rays are blocked by the crust of Earth above 
the neutrino observatory. Meanwhile, neutrinos have no diffi culty in traversing this crust. 

 Other atoms have also been used to detect neutrinos. For example,  71 Ga also reacts with 
electron neutrinos via the reaction

   νe Ga Ge e+ → + −71 71     (6.33)   

 This reaction has a threshold energy of 0.2332   MeV that is lower than for the  37 Cl reac-
tion. Observatories using  71 Ga can therefore detect not only the neutrinos from  7 Be and 
 8 B but also those emitted by the proton – proton reaction. An example of such an observa-
tory was the GALLEX experiment that was built in Italy and that collected data from 
1991 to 1997. It consisted of about 30 tons of gallium as its target. Gallium was also used 
in the SAGE neutrino observatory in Russia. Water was used in the Kamiokande and 
Super - Kamiokande detectors in Japan and neutrinos were detected there through light 
produced by energetic electrons from elastic scattering of neutrinos from the Sun (more 
details given below). 

 The unit used to measure the quantity of neutrinos detected is the SNU standing for 
solar neutrino unit. The SNU unit measures the quantity of neutrino captures par target 
atom in units of 10  − 36    s  − 1 . While using  37 Cl as a target, the predicted neutrino capture rate 
by using the theoretical production rates of neutrinos in the Sun according to the most 
precise solar models at hand is 7.9    ±    2.6 SNU. However, the results of the Brookhaven 
Solar Neutrino Experiment gave a value for neutrino captures of 2.1    ±    0.9 SNU. The 
observed rate is therefore much lower than the predicted rate and constitutes what is com-
monly called the  solar neutrino problem.  Too few neutrinos compared to predictions were 
also observed by Gallex, SAGE, Kamiokande and Super - Kamiokande experiments. 

 Several possible sources for this discrepancy have been suggested and are listed below: 

  Experimental errors:     The lower observed rate could be due to experimental errors so that 
some detections are not counted, or due to the uncertainty of the reaction rate between 
the neutrinos and the target.  

  Uncertainties in nuclear reaction rates:     If the nuclear reaction rates used for the theoreti-
cal calculations are wrong, or if other reactions take place, this would make the theoreti-
cal estimation of the predicted neutrino count uncertain.  

  Uncertainties in the solar model:     If the model for the structure of the Sun is not accurate, 
this would also modify the theoretical estimation of the predicted neutrino count since 
nuclear reaction rates depend on the temperature, density and composition of the stellar 
plasma in the core of the Sun.  

  Neutrino absorption in the solar medium:     If the solar medium captures a large number 
of neutrinos by some unknown reactions, the neutrino fl ux leaving the Sun would be 
lower than predicted.  

  Neutrino oscillation:     Elementary particle theory or more specifi cally electroweak theory 
predicts that if neutrinos possess mass, they can change from one type to another. 
Consequently, the electron neutrinos emitted by the proton – proton chains in the Sun ’ s 
central regions could change into tauon or muon neutrinos before reaching Earth. Since 
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the neutrino observatories discussed above solely or predominantly detect electron 
neutrinos, this could explain the missing neutrino captures.    

 The fi rst four of these fi ve possibilities were gradually ruled out over the past decades 
due to intensive experimental and theoretical work. Experimental errors suffi cient to 
explain the solar neutrino problem can be confi dently eliminated since the results from 
different neutrino experiments are consistent with one another. Also, more precise experi-
mental estimations of the cross section of the target ( 37 Cl for example) relative to 
neutrino absorption have been obtained over the past several decades rendering the 
observations more reliable. The next three possibilities given above are unlikely to 
explain the solar neutrino problem in the light of improvements in our understanding of 
neutrino physics and solar physics (i.e. more precise experimental nuclear reaction cross 
sections and better solar structure modelling). For example, the standard solar model 
used to evaluate the solar neutrino fl ux was confi rmed to be quite precise in predicting 
the results of helioseismology. As discussed in (the optional) Sections  5.7.2  and  5.7.3 , 
helioseismology can probe the solar interior and give valuable information about its 
physical structure. The standard solar model is also calculated with the most precise 
nuclear and atomic data (including opacities) and physics available and is therefore 
relatively accurate. 

 To verify if the last possibility, namely neutrino oscillation, can explain the solar neu-
trino problem, a neutrino observatory using heavy water as a target was constructed near 
the city of Sudbury (Canada). This observatory is called the Sudbury Neutrino Observatory 
(SNO). It is situated at a depth of about 2   km in an active nickel mine and contained 
approximately 1000 tons of heavy water. It is illustrated in Figure  6.8 . Heavy water is 
composed of deuterium ( 2 H) instead of  1 H. The electron neutrinos from  8 B (or the PPIII 
chain) can be detected via the reaction

   νe H H H e+ → + + −2 1 1     (6.34)     

 This reaction is commonly called the charged current reaction because charged W bosons 
act as the intermediary for the weak nuclear force. It is also sometimes called a W exchange 
process (or WEP). The reaction at the base of this interaction is  ν  e    +   n    →    p   +   e  −  , or more 
fundamentally a down quark is transformed into an up quark via  ν  e    +   d    →    u   +   e  −  . However, 
since this reaction is only sensitive to electron neutrinos, it is not by itself suffi cient to 
prove that a portion of solar electron neutrinos is transformed into the other two types. 

 The advantage of SNO is that it can also measure the total fl ux of the neutrinos (i.e. 
due to all three types of neutrinos). This is done with deuterium because it can interact 
with all three neutrino types via the reaction

   ν νx x+ → + +2 1H H n     (6.35)  

where  x    =   e,  τ  or  μ . This reaction is equally sensitive to all three types of neutrinos. It is 
commonly called the neutral current reaction because in this instance neutral Z 0  bosons 
act as the intermediary for the weak nuclear force. It is also sometimes called a Z exchange 
process (or ZEP). Measurements of the appropriate interactions given in the two reactions 
above can be used to determine the proportion of neutrinos coming from the Sun in the 
form of electron neutrinos. If there is no neutrino oscillation, this fraction should be equal 
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to unity because no tauon or muon neutrinos are produced in the Sun. If this fraction is 
less than unity, it means that neutrino oscillation takes place. 

 Another interaction that is also sensitive to all three types of neutrinos is the elastic 
scattering of neutrinos on electrons via

   ν νx x+ → +− −e e     (6.36)   

 However, this reaction is much more probable for electron neutrinos than for the other 
two types. The electrons created by this process emit Cerenkov radiation that may be 
measured by detectors. Cerenkov radiation occurs when the scattered electrons have a 
velocity larger than the speed of light in the medium. 

 SNO operated from 1999 to 2006. In 2001, the scientifi c team of SNO found clear 
evidence of neutrino oscillation from a comparison of their results with those of the Super -
 Kamiokande neutrino detector in Japan. In 2002, with the help of the results from SNO 
related to the neutral current reaction seen above, it was shown that when the neutrino 
oscillation process is taken into account (assuming neutrinos possess mass), the total 
neutrino solar fl ux (including electron, tauon and muon types) is consistent with theoretical 
predictions. They found that only about one third of the electron neutrinos produced in 
the Sun ’ s centre survive the trip to Earth, the other two thirds being transformed into the 

     Figure 6.8     An artist ’ s conception of the Sudbury Neutrino Observatory (photo courtesy of SNO). 
(See colour plate.)  
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other two neutrino types. The mystery behind the missing neutrino counts of previous 
observational studies, such as those of the Brookhaven Solar Neutrino Experiment dis-
cussed above, had therefore fi nally been solved. The SNO observations answered one of 
the most important unresolved questions in the fi eld of astrophysics of the late twentieth 
century. This discovery is a major triumph for modern science that has implications not 
only for our understanding of solar and stellar physics but also of particle physics.   

  6.6   Helium - Burning Phase 

 During the hydrogen - burning phase, four protons are transformed into  4 He nuclei and 
therefore the composition of the core gradually changes (i.e. the He abundance increases 
while the H abundance decreases). This process leads to an increase of the mean molecu-
lar weight in the stellar core. An increase of the mean molecular weight in the core leads 
to a decrease of gas pressure there. The weight of the layers above the core therefore 
leads to its contraction. The core progressively (and slowly) contracts during the core 
hydrogen - burning phase thereby increasing the density and the temperature (and there-
fore the pressure) there. Meanwhile, the global structure of the star readjusts and its 
radius increases. The star eventually becomes a red giant star. The reason it is called a 
red giant is that its effective temperature decreases slightly during this expansion and 
according to Wien ’ s law (Eq.  1.7 ) it becomes redder. The position of the star in a 
Hertzsprung – Russell diagram changes during this process. This will be discussed in more 
detail in Section  6.8 . 

 If the mass of the star is suffi ciently large (approximately  M   *      ≥    0.5    M   �  ), the core will, 
following its contraction, attain the critical temperature ( ≈    10 8    K) needed for the fusion of 
helium. Once the hydrogen contained in the core has burned, helium burning eventually 
dominates the nuclear energy production rate. It should be noted that stellar layers that 
were initially at temperatures too low to burn hydrogen may, after core contraction, possess 
the critical temperature needed for such reactions. Hydrogen may then burn in a certain 
layer (or a shell) outside the core. This process is commonly called shell burning. 

 Helium in the core of the evolved star can burn via the following chain of reactions 6 

   

4 4 8

8 4 12

12 12

He He Be
Be He C*
C* C

+ → +
+ → +
→ +

γ
γ

γ
    (6.37)   

 Here, the symbol  12 C *  represents a carbon nucleus found in an excited nuclear energy 
state. The fi rst nuclear reaction above is an endothermic reaction and requires an input of 
at least approximately 92   keV of energy (see Example  6.3 ). This is one of the reasons why 
the critical temperature for this reaction is relatively high compared to hydrogen fusion. 
At these temperatures, the average kinetic energy (3 kT /2) of the particles in the gas is 
roughly the same order of magnitude as the energy input needed for the fusion of two  4 He 

   6      The simplest way to burn helium would theoretically be to fuse it with protons. Unfortunately, no stable nuclei exist with fi ve 
nucleons.  
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nuclei. There is therefore a considerable portion of particles with a kinetic energy larger 
than 92   keV. This input energy can then easily be found in the thermal bath of the plasma. 
The  8 Be nucleus is unstable to decay (into two  4 He nuclei) and has a short lifespan. 
However, this lifespan is large enough to allow for a second capture of a  4 He nucleus. 
Since the energy of the  8 Be   +    4 He combination is almost equal to the total energy of the 
excited  12 C *  nucleus, this fusion reaction is a so - called resonant interaction that has a rela-
tively large cross section.   

 The global reaction of the chain given above is

   3 34 12He C→ + γ     (6.38)   

 It is commonly called the triple -  α  reaction since three  α  particles (i.e.  4 He nuclei) fuse to 
create a carbon nucleus. Each triple -  α  reaction furnishes 7.275   MeV of energy to the star 
(see Exercise 6.4). 

  Example 6.3:    Calculate the energy needed as input for the reaction 
 4 He   +    4 He    →     8 Be   +    γ . 

  Answer: 

 The energy can be calculated by using Einstein ’ s mass – energy equation and the data 
given in Appendix  F  (note that since for this reaction, an equal number of electrons 
is present on each side of the equation for neutral ions, the atomic masses may be 
used instead of the nuclear masses)

   
E m m c m m c= −( ) = −( ) = × −initial final He Be u2 22 2 4 0026032 8 0053054 8 . . 11

9 87 10 91 9

2

5 2

u

u keV

( )
= − × = −−

c

c. .     (6.39)   

 Since the answer is negative it signifi es that this reaction is endothermic and needs 
91.9   keV of energy to take place.  

 The energy emitted by the triple -  α  reaction is smaller than the energy emitted by hydro-
gen burning. Also, since 12 nucleons are involved in this reaction, the mass fraction 
transformed into energy is much smaller than for hydrogen fusion. Moreover, since helium 
burning occurs at the red - giant phase, where the star has a much larger luminosity than 
on the main sequence, the helium - burning phase lasts much less than the main - sequence 
lifespan (see Exercise 6.7). 

 This tendency, in which the timescales of evolutionary phases related to the burning of 
nuclei with larger masses are shorter, can be partly explained by examining Figure  6.1 . 
This fi gure shows that the difference of binding energy between the nuclei that are fused 
together from those formed becomes smaller as  A  increases. Also, since the advanced 
stages of nuclear burning occur when the stars are in a giant or supergiant state (i.e. stars 
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with large radius and consequently large luminosities), the nuclear production rate is much 
larger than at earlier phases such as the main sequence. The higher rate of nuclear reac-
tions, due to high central temperatures, explains why advanced nuclear - burning phases are 
of relatively short duration. 

 There are other ways in which helium may burn in stars. Similar to main - sequence 
burning, as helium is transformed into carbon, the core progressively contracts. As the 
carbon abundance increases, helium may also eventually burn via the reaction

   12 4 16C He O+ → + γ     (6.40)   

 Helium can also burn in several other ways including

   16 4 20O He Ne+ → + γ     (6.41)  

   20 4 24Ne He Mg+ → + γ     (6.42)   

 At higher temperatures helium may also fuse with several other types of nuclei. However, 
due to the small reaction rates of these nuclear reactions, helium burning mostly creates 
carbon and oxygen.  

  6.7   Advanced Nuclear Burning 

 In this section, the major phases of nuclear burning and the related fusion reactions occur-
ring during the advanced evolutionary phases of stars are presented. The reactions shown 
here are not only important for energy generation but also for the nucleosynthesis of some 
of the most abundant elements found in the Universe and on Earth. A multitude of second-
ary reactions, that are generally not important for energy production, but that do create 
other elements up to iron - peak elements, are unfortunately too numerous to be presented 
here. For a more comprehensive presentation of the thermonuclear reactions occurring in 
stars, the reader is referred to Iliadis, C.,  Nuclear Physics of Stars , Wiley - VCH, Weinheim 
 (2007) . 

 Big - Bang and stellar nucleosynthesis cannot explain the abundances of all the elements. 
For example, some light elements like Li, Be and B, whose abundances are much smaller 
than other light elements (see Appendix  E ), can be formed by a process called spallation. 
Astrophysical spallation is a process by which heavy nuclei found in the interstellar 
medium are hit by high - energy particles (cosmic rays composed mostly of protons) and 
are split into lighter nuclei. Since this topic is outside the fi eld of stellar astrophysics, it 
will not be discussed any further. 

 Table  6.5  enumerates the elements produced (sometimes called the ashes) during 
each of the major phases of nuclear burning in massive stars. The central temperature at 
these phases and their duration for a 25    M   �   star are also given. As discussed previously, 
the duration of these nuclear - burning phases decreases as the evolution of the star 
advances, because less energy per unit mass is available during nuclear fusion and the 
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  Table 6.5    Major phases of nuclear burning  #  . 

   Burning phase     Elements produced     Central temperature     Timescale  

  H    He    6.0    ×    10 7    K    7    ×    10 6    yr  
  He    C, O    2.0    ×    10 8    K    5    ×    10 5    yr  
  C    O, Ne, Mg    9.0    ×    10 8    K    600   yr  
  Ne    O, Mg, Si    1.7    ×    10 9    K    0.5   yr  
  O    Si, S    2.3    ×    10 9    K    6   d  
  Si    Fe - peak    4.0    ×    10 9    K    1   d  

    #    Theoretical results for a 25 -  M   �   star from Arnould, M. and Samyn, M., La physique nucl é aire en astrophysique, 

 EDP     Sciences , Les Ulis  (2002) .   

nuclear energy production rate and therefore the luminosity become larger. The timescale 
of the various phases vary enormously. For the case shown in Table  6.5 , these timescales 
vary from 7    ×    10 6    yr for the main - sequence stage to one day for the silicon - burning phase. 
Each of these advanced nuclear - burning phases will now be discussed. 

  6.7.1   Carbon - Burning Phase 

 The next phase of nuclear burning after helium fusion is the burning of carbon, provided 
of course, that the mass of the star is suffi cient to attain central temperatures that can ignite 
such reactions. In the previous section, it was mentioned that carbon may fuse with helium 
via the reaction

   12 4 16C He O+ → + γ     (6.43)   

 However, as the carbon abundance increases due to helium burning, carbon burning is 
eventually dominated by the reaction

   12 12 20 4C C Ne He+ → +     (6.44)   

 Carbon may also burn in several other ways including

   12 12 24C C Mg+ → + γ     (6.45)   

 Other reactions may also occur, although they are endothermic,

   12 12 16 42C C O He+ → +     (6.46)  

   12 12 23C C Mg n+ → +     (6.47)   

 This last reaction also emits a free neutron. Such free neutrons may be absorbed by heavier 
nuclei to produce elements heavier than iron via the so - called s process (see discussion 
below in Section  6.7.4  and in (optional) Section  6.12 ).  
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  6.7.2   Neon - Burning Phase 

 Carbon burning leads to the creation of oxygen, neon and magnesium. It would seem 
natural that the next phase of nuclear burning would be fusion reactions related to oxygen. 
However, the critical temperature for neon fusion with  α  particles, provided that  α  parti-
cles are present, is lower than for oxygen burning. At the high temperatures found at this 
stage of evolution, a suffi cient number of energetic photons are present that can lead to 
photodisintegration of a portion of the neon nuclei

   20 16 4Ne O He+ → +γ     (6.48)   

 Photodisintegration is an endothermic reaction where a photon is absorbed by a nucleus 
that is broken into two or more parts. Such reactions are also sometimes called photonu-
clear reactions. This particular reaction takes away at least 4.73   MeV of energy from the 
star. However, these photodisintegration reactions create  α  particles that can then react 
with the remaining neon via the reaction

   20 4 24Ne He Mg+ → + γ     (6.49)   

 which emits 9.316   MeV of energy. 
 Other secondary thermonuclear reactions can also occur during this stage. As magne-

sium accumulates, it can also fuse with  α  particles to produce silicon

   24 4 28Mg He Si+ → + γ     (6.50)   

 As the core contracts and the central temperatures increase, neon may also burn via the 
following reaction

   20 20 16 24Ne Ne O Mg+ → +     (6.51)    

  6.7.3   Oxygen - Burning Phase 

 The next major phase of nuclear burning is oxygen fusion. Oxygen accumulates in the 
core following the carbon -  and neon - burning phases (see Eq.  6.43 ,  6.48  and  6.51 ). The 
most prevalent reactions by which oxygen may burn are

   16 16 30 12O O Si H+ → +     (6.52)  

   16 16 28 4O O Si He+ → +     (6.53)  

   16 16 31 1O O P H+ → +     (6.54)   

 Oxygen can also burn via a reaction that creates sulfur

   16 16 31O O S n+ → +     (6.55)   

 This last reaction also emits a free neutron that can then participate in the formation of 
the heavier elements via the s process (more details are given in the next section and in 
(optional) Section  6.12 ).  
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  6.7.4   Silicon - Burning Phase 

 As seen above, photodisintegration (see Eq.  6.48  for instance) can create  α  particles in 
stellar cores. These  α  particles can then fuse with heavier nuclei. Silicon may then burn 
via the reaction

   28 4 32Si He S+ → + γ     (6.56)   

 This reaction can then be followed by successive captures of  α  particles
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    (6.57)   

 Since  56 Ni is unstable, it may disintegrate to give  56 Co, which in turn can disintegrate to 
produce  56 Fe via the reactions

   
56 56
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e

e

→ + +
→ + +

+

+
ν
ν

    (6.58)   

 The nuclei  56 Ni and  56 Co can also, respectively, produce  56 Co and  56 Fe by electron capture 
(i.e.  56 Ni   +   e  −      →     56 Co   +    ν  e ). As observed in Figure  6.1 ,  56 Fe is one of the most stable 
nuclei found in nature. Energy generation via nuclear fusion essentially ends at the 
creation of iron (and other iron - peak elements). The chain of reactions shown above 
explains why iron is among the most abundant elements in the Universe (see Table  1.6 ). 
The accumulation of iron in the stellar core leads to an energy crisis that can have 
dire results for stars. This energy crisis eventually induces the destruction of the star 
via an explosion (called a supernova). This calamity will be discussed in Sections  6.8.4  
and  6.11 . 

 There also exist many other reactions present at this stage that create the other elements 
(and their isotopes) not mentioned here up to the iron - peak elements. However, these 
reactions do not contribute signifi cantly to the nuclear energy production rate and are 
therefore not of critical importance for studying the evolution of stars. 

 In addition to the nuclear reactions seen above, there is also another way in which silicon 
may burn and produce iron. This chain of reaction begins with the fusion of two silicon 
nuclei

   28 28 56Si Si Ni+ → + γ     (6.59)   

 which is followed by the same two successive disintegrations seen above, namely
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ν     (6.60)   
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 or by electron capture. Because of the Coulomb barrier, the reaction  28 Si   +    28 Si    →     56 Ni   +    γ  
is much less prevalent during the silicon - burning phase than the reactions in which  α  
particles intervene. However, during the supernova phase (see Section  6.11 ), the condi-
tions are such that this chain of reactions becomes important. The thermonuclear reactions 
taking place under such physical conditions are different from regular stellar nucleosyn-
thesis and this process is commonly called explosive nucleosynthesis. Explosive nucleo-
synthesis does not only   produce iron, but leads to the formation of other elements. 

 The various thermonuclear reactions taking place in stars can therefore create most 
elements up to the iron - peak elements. However, heavier elements are found on Earth and 
elsewhere in the Universe but cannot be accounted for by these nucleosynthesis processes. 
Another formation process must then take place to create these heavier nuclei. Some of 
these elements are formed when nuclei like iron absorb free neutrons. As the number of 
neutrons increases in the absorbing nuclei, they become unstable and neutrons can decay 
to produce protons via the reaction

   n p e→ + +− νe     (6.61)   

 This reaction therefore transforms the original element that absorbed these free neutrons 
into elements containing more protons. 

 Some elements are formed through a weak fl ux of neutrons. This is called the s (or 
slow) process. These neutrons are emitted during some of the nuclear reactions taking 
place during evolution, some of which were presented earlier in this section (i.e. 
 12 C   +    12 C    →     23 Mg   +   n). Other elements heavier than iron are produced when a large fl ux 
of neutrons exists (the so - called r (or rapid) process). Such large fl uxes of neutrons can 
exist in later stages of stellar evolution namely when the central portion of a massive star 
is transformed into a neutron star (see Sections  6.8.4  and  6.10.2 ). The topic of r and s 
processes is covered in (optional) Section  6.12 .   

  6.8   Evolutionary Tracks in the  H  –  R  Diagram 

  6.8.1   Generalities 

 When a star is born, it is situated on the so - called zero - age main sequence (or ZAMS). 
Therefore, the ZAMS curve represents the position of the stars in the H – R diagram at the 
onset of hydrogen fusion in their centre. While on the main sequence and as the hydrogen is 
progressively fused into helium in the star ’ s central regions, the structure of stars readjusts 
and they slowly move away from the ZAMS. This structural change can be explained by 
the results found in Section  5.6.2 . In the stellar core (where nuclear burning takes place), 
the mean molecular weight may be approximated by the molecular weight   μ   found in a 
completely ionised plasma (see Section  5.6.2 ) that is given by the following expression

   μ =
+ +

2

3
2

1X
Y

    (6.62)  
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where  X  and  Y  are, respectively, the hydrogen and helium mass fractions. As hydrogen is 
progressively transformed into helium the mean molecular weight of the medium in the 
stellar core increases (see Figure  6.9 ). By using the ideal - gas approximation for the equa-
tion of state

   P
kT

m
= ρ

μ H

    (6.63)     

 the pressure therefore decreases because of the increase of   μ   (assuming all else is equal). 
The core then slowly contracts due to the weight of the matter above the core. The local 
density increases because of this contraction, while the temperature increases due to the 
virial theorem. The structure of the star therefore readjusts. This partly explains why the 
observed main sequence has a certain width in the H – R diagram since stars with the exact 
same mass but with slightly different ages are found at slightly different positions in this 
diagram. Other factors such as different stellar composition can also account for scatter 
on the main sequence. 

 Figure  6.10  shows the partial (i.e. for a certain portion of a star ’ s life) evolutionary 
tracks for stars of various masses in the H – R diagram obtained by the American astro-
physicist Icko Iben Jr. (b. 1931). The numbers found in this fi gure represent different 
time steps. The point denoted as 1 defi nes the position of the zero - age main sequence. 
In this fi gure, the Sun at the present day is found between points 1 and 2 for the 1    M   �   
curve.   

 At fi rst, when a star arrives on the main sequence, its core slowly contracts as hydrogen 
is transformed to helium. As mentioned above, the density and temperature in the core 
increase with time. Since the nuclear energy production rate in a one - solar - mass star is 
approximately

     Figure 6.9     The variation of the mean molecular weight in completely ionised plasma as hydrogen 
is fused and the mass fraction of helium ( Y ) increases. A metallicity of  Z    =   0.02 was used here.  
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where  T  9  is the temperature in units of 10 9    K, the decrease of this quantity due to 
the diminishing hydrogen mass fraction  X  that occurs in the stellar core in the early 
stages of the main sequence will be more than compensated by the increase of the density 
and temperature. The nuclear production rate therefore increases as the core contracts 
and the luminosity of the star consequently increases. The surface temperature and the 
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radius of the star gradually increase during this slow contracting phase of the core on 
the main sequence. Hydrogen can also start burning in layers above the initial core of 
the star as the temperature there becomes large enough to ignite these thermonuclear 
reactions. 

 Stars follow different evolutionary paths in the H – R diagram according to their mass. 
As stars with various masses evolve they have their individual particularities. For example, 
they can go through phases of sudden increases of nuclear burning (this is commonly 
called helium fl ashes when helium burns rapidly, or carbon fl ashes for carbon burning). 
They can also become pulsating stars if they, for example, cross the instability strip (see 
Section  5.7.1 ). They can also go through so - called dredge - up phases where the nuclear 
ashes (or synthesised material) can be brought to the surface of the stars by mixing. All 
of these details concerning the evolution of stars with various masses are outside the scope 
of this book. For a more complete discussion of the evolution of stars, the reader is referred 
to Kippenhahn, R. and Weigert, A.,  Stellar Structure and Evolution , Springer - Verlag, 
Berlin  (1990) . 

 To simplify the discussion of stellar evolution, stars may be divided into three evolu-
tionary groups. Stars with approximately  M   *      ≤    0.5    M   �   can only burn hydrogen before 
evolving into white dwarfs. These stars do not possess suffi cient gravitational energy to 
heat the core to the temperature necessary for helium fusion. Stars within the range 
0.5    M   �      ≤     M   *      ≤    10    M   �   fi rst burn hydrogen and then go on to burn helium (and possibly 
other elements depending on their mass). Stars with approximately  M   *      ≥    10    M   �   are able 
to burn all elements up to the production of iron - peak elements, eventually leading to 
supernovae. Following the evolution of these massive stars, they leave either a neutron 
star or a black hole as remnants. The exact lower limit for the mass of stars where iron 
production occurs is somewhat uncertain. Here, it is assumed to be equal to 10    M   �  . 

 Since nuclear fusion requires high temperatures, stellar nucleosynthesis takes place in 
the central regions of stars. As time passes, the metallicity in the core is enhanced due to 
fusion reactions occurring there. Generally speaking, this increase of metallicity is not 
observable since it occurs in the core of stars. However, after leaving the main sequence, 
certain stars have phases where the medium enriched by nucleosynthesis can be dredged -
 up to the stellar surface and can therefore be detected by spectroscopy. An example of 
such stars is classical carbon stars that exhibit a large abundance of this element at their 
surface. The carbon found at their surface has been dredged - up from the central regions 
during a phase of evolution called the asymptotic branch phase (see Figure  6.13  and dis-
cussion below for the position of the asymptotic - giant branch in the H – R diagram). Such 
details concerning the evolution of stars will not be discussed here.   

 Also, it should be noted that in this section only isolated (or singular) stars are consid-
ered. The evolution of binary systems is more complicated since mass transfer can occur 
during their evolution. An example of such a case leading to a nova or supernova will be 
discussed in (optional) Section  6.11 . 

 Since the evolution of stars for each mass value has its specifi c features, a limited 
number of cases will be discussed here. Since the Sun is of particular interest to humans, 
the details surrounding its evolution will be described below. The evolution of a typical 
high - mass star that fuses the elements up to iron and eventually produces a supernova will 
also be presented. But fi rst, a short description of the evolution of very low - mass stars is 
given.  
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  6.8.2   Evolution of Low - Mass Stars (  M    *      ≤    0.5     M    �  ) 

 In this section, the evolution of very low - mass stars will be discussed briefl y. The lowest -
 mass stars ( M   *      ≈    0.08 M   �  ) have a lifetime on the main sequence of approximately 10 13    yr, 
while those with  M   *      ≈    0.25 M   �   will stay approximately 10 12    yr on the main sequence. Since 
the length of the lifetime of stars with  M   *      ≤    0.5    M   �   is longer than the age of the Universe, 
none of these stars have had time to leave the main sequence since their formation. It is 
then impossible to obtain observational data to study the evolution of such stars, and this 
fi eld of study is purely theoretical. However, since a relatively large portion of stars found 
in the Universe are low - mass stars (see Figure  2.4 ), these stars merit their own study. 

 Following the hydrogen - burning phase, very low - mass stars do not have suffi cient 
gravitational energy to heat up their core to temperatures capable of helium fusion. Stars 
with masses lower than approximately 0.5    M   �   can therefore never achieve helium burning. 
Detailed calculations show that very low - mass stars are completely convective for a large 
portion of their lifetime. Since hydrogen from the surface layers can be brought to the 
core, a large portion of the hydrogen in these low - mass stars can be burned during their 
journey on the main sequence. This lengthens their stay on the main sequence. For 
instance, when a 0.08    M   �   star leaves the main sequence, its hydrogen mass fraction will 
only be about 0.11. 

 Another peculiarity of very low - mass stars is that some of these astronomical objects 
never achieve red - giant status (see Section  6.8.3 ). Figure  6.11  shows the radius of very 
low - mass stars as a function of time. These evolutionary models show that stars with 

     Figure 6.11     The radius of stars with masses between 0.08 and 0.25    M   �   as a function of time during 
their evolution. In this fi gure, a maximum radius is reached for all stars except for the 0.25    M   �   star. 
 Reproduced by permission of the AAS from Laughlin, G., Bodenheimer, P. and Adams, F.C.,  The 
Astrophysical Journal , 482, 420  (1997)   . 
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     Figure 6.12     Hydrogen mass fraction ( X  H ) as a function of distance from the centre of the star 
(written in units of  r / R   �  ) for times of 0.0, 1.39, 3.02, 4.53, 5.75 and 8.07   Gyr after the onset of 
hydrogen burning for a 1    M   �   star.  Data courtesy of Mathieu Vick, Jacques Richer and Georges 
Michaud obtained with the Montr é al stellar evolution code  . 

masses lower than  M   *      ≈    0.16 M   �   do not appreciably expand and go from the main sequence 
directly to the white - dwarf branch without becoming a red giant. The stars shown in Figure 
 6.11  will eventually produce white dwarfs composed mostly of helium. White dwarfs are 
dense stellar remnants where nuclear energy is no longer produced. These objects will 
therefore cool off with time. As mentioned in Section  5.6.3 , white dwarfs are supported 
by the pressure due to a degenerate electron gas. More details concerning white dwarfs 
will be given in Section  6.10.1 .   

 The vast majority of stars has relatively low mass (see Figure  2.4 ) and end their life as 
white dwarfs. This has dire effects on galaxies. On a very long timescale (i.e. much longer 
than the age of the Universe), once all stars of a given galaxy have evolved and not enough 
interstellar matter exists for further star formation, that galaxy will eventually have a very 
low luminosity. It is estimated that the luminosity of such a galaxy will be on the order 
of a single typical star like the Sun. This is much lower than the characteristic luminosity 
of average galaxies. For example, the luminosity of our galaxy, The Milky Way, has a 
value of approximately 3.6    ×    10 10     L   �  .  

  6.8.3   Evolution of a 1     M    �   Star: Our Sun 

 It is natural for humans to seek to understand how the central star in our planetary system 
will evolve with time. This is the aim of this section. However, it is clear that since the 
evolutionary times of stars (e.g. see Section  6.5.3 ) are much longer than the times of inter-
est for humanity, such studies will have no direct impact on our society. 

 Similarly to all other stars, a 1    M   �   star begins its life on the main sequence while burning 
hydrogen in its core. Hydrogen is depleted faster in the centre of the star than in the outer 
core because of the dependence of nuclear reaction rates on temperature. Figure  6.12  
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shows the depletion of hydrogen as it is progressively transformed into helium during the 
evolution of a 1    M   �   star. This fi gure shows that approximately 8   Gyr after the onset of 
hydrogen burning, all of the hydrogen in the star ’ s centre is depleted. The curve for 
4.53   Gyr after the onset of hydrogen burning, shown in this fi gure, approximately repre-
sents the Sun at its present age.   

 The slow evolution taking place on the main sequence has already been discussed in 
Section  6.8.1 . It was shown that as hydrogen is fused into helium, the core of the star 
slowly contracts because of the increase of the mean molecular weight there. This contrac-
tion leads to an increase of the central temperatures so that hydrogen then burns at a faster 
rate and may also start burning in regions outside the core where before this physical 
readjustment of the star, the temperature was too low to sustain fusion. This process leads 
to an increase in the luminosity of the star. 

 As the amount of hydrogen is progressively depleted in the core of the star, hydrogen 
starts burning in a growing shell outside the core. A larger portion of the star ’ s mass 
therefore participates in the nuclear processes. When hydrogen is completely exhausted 
in the central region of the star, the temperature there is not yet suffi cient to go to the next 
phase of nuclear burning, namely helium fusion. The critical temperature for helium fusion 
is approximately 10 8    K. However, hydrogen is still burning at an ever - increasing pace in 
a growing shell outside the core. The energy produced in this shell - burning phase causes 
the outer portion of the star to expand, leading eventually to a red - giant star. During this 
expansion, the surface temperature of the star decreases so that the star becomes redder. 
This decrease of the effective temperature is due to a readjustment of the temperature 
gradient in the star that maintains proper energy transport. The star will fi rst move to the 
subgiant branch and then become a red - giant star (see Figure  6.13 ). The red - giant phase 
lasts for approximately 10 9    yr for a 1 -  M   �   star. 

 Meanwhile, the core continues contracting, which causes an increase of its temperature. 
For the star under consideration here (i.e.  M   *     =   1    M   �  ), when the critical temperature for 
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     Figure 6.13     Illustration of the approximate evolutionary track of a 1    M   �   star in the H – R diagram. 
The dotted lines show the position for various values for the radius . 
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helium fusion is reached, detailed modelling shows that the equation of state in the core 
describes degenerate matter. The degenerate free - electron gas now dominates the pressure 
there. This state of degeneracy leads to a strange phenomenon. In normal plasma, where 
the equation of state is that of an ideal gas, the contraction of the core leads to higher 
temperatures and a higher nuclear energy production rate that is self - regulated in the fol-
lowing way. The increase of the energy production in the core leads to a higher temperature 
that increases the pressure and eventually stops the contraction   of the core. This process 
regulates the energy production rate, since the core collapse ceases when suffi cient energy 
is produced. 

 However, the situation is quite different when the gas is in a degenerate state. As seen 
in Section  5.6.3 , the gas pressure in a degenerate gas is independent of temperature. 
Therefore, when the core contracts, the temperature increases, which leads to more nuclear 
energy production from helium fusion. However, the temperature increase due to this 
production of energy does not affect pressure, and the core continues to collapse, increas-
ing even more the central temperature and the energy production rate. This has a runaway 
effect that leads to a very large rate of helium fusion that is commonly called the helium 
fl ash. During this helium fl ash the luminosity of the star is greatly increased (see Figure 
 6.13 ). The helium - fl ash phase is short lived. Detailed study shows that the temperature 
increase in the central regions eventually lifts the degeneracy of the stellar plasma. The 
core and the star as a whole then stabilize on what is commonly called the horizontal 
branch (its name coming from the fact that this branch of the H – R diagram is approxi-
mately horizontal). On this branch, the star burns helium in its core while hydrogen is still 
burning in a shell outside the helium - burning core. The horizontal branch is the equivalent 
of the main - sequence branch for helium burning in low - mass stars. 

 After a stay of approximately 10 8    yr on the horizontal branch (or only approximately 
one hundredth the time it stayed on the main sequence), the star runs out of helium in its 
core that is now composed mostly of carbon nuclei. Figure  6.14  illustrates the internal 
structure of a 1 -  M   �   star near the end of its nuclear energy production phase. The core is 
carbon rich and is surrounded by a helium - burning shell. Above this shell, there is a 
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     Figure 6.14     Illustration of the central region of a 1 -  M   �   star near the end of its nuclear - burning 
life. It is composed of a carbon core and nuclear - burning shells (He -  and H - burning shells) separated 
by an inert helium - rich shell. This drawing is not to scale . 
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helium - rich and nuclear inert shell where the temperature is not suffi cient for helium 
burning. Above this inert region there is a hydrogen - burning shell. An energy crisis is at 
hand. The core contracts (both helium and hydrogen continues to burn in distinctive shells 
outside the core) while the radius of the star increases. The star then climbs the asymptotic -
 giant branch in the H – R diagram (see Figure  6.13 ) and becomes a supergiant. It will stay 
approximately 2    ×    10 7    yr on this branch. However, a 1 -  M   �   star is not massive enough to 
contract the core and increase the central temperature suffi ciently to fuse carbon. The end 
of the nuclear - burning phase of the star is nearing. The core once again becomes degener-
ate and the pressure from the free electrons eventually stops the contraction of the core. 
A white dwarf composed mainly of carbon is forming in the centre of the star.   

 The star then enters a phase in its life called a planetary nebula. The outer layers of the 
star continue to expand, therefore permitting an observer to see deeper (i.e.  T  eff  increases, 
see Figure  6.13 ) in the star. The central white dwarf eventually becomes visible. The mass 
of the white dwarf left after the evolution of a 1 -  M   �   star is approximately 0.6    M   �  . The 
exact value of this mass depends on the mass - loss rate during the various phases of evolu-
tion and the quantity of mass expelled during the planetary nebula phase. A planetary 
nebula is a white dwarf that is surrounded by a tenuous shell of gas expelled during the 
evolutionary process. An example of a planetary nebula, namely M57 is shown in Figure 
 6.15 . The expanding shell shown in this fi gure has a temperature of approximately 10   000   K. 
The typical value for the velocity of the expanding matter from a planetary nebula is on 
the order of 10   km/s. It should be noted that planetary nebulae are not an explosive phe-
nomena like supernovae. The planetary phase lasts approximately 5    ×    10 4    yr.   

     Figure 6.15     M57 (also called the Ring Nebula) is a well - known planetary nebula. The central 
white dwarf is the pinpoint body visible in the middle of the expanding shell of matter. This object 
has a diameter of approximately 2.4   ly and is situated 2300   ly from Earth. (NASA/courtesy of 
 nasaimages.org ). (See colour plate.)  
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 Since the radius of a white dwarf is relatively small, the luminosity of the star plummets 
as it moves to the white - dwarf branch. White dwarfs are the stellar remnants from the 
evolution of low -  to intermediate - mass stars and will be discussed in more detail in Section 
 6.10.1 . Also, since white dwarfs do not produce any nuclear energy, they will cool off on 
a very long timescale and become cold inert objects commonly known as black dwarfs 
(see Figure  6.13 ). 

 White dwarfs possess an upper limit for their mass whose value is approximately 
1.43    M   �  . Stellar remnants above this mass collapse to form a neutron star. Meanwhile, 
neutron stars with a mass above approximately 3    M   �   become black holes. It is important 
to realise that since stars lose mass during evolution (during the planetary nebula phase 
for example), stars with masses above 1.43    M   �   can become white dwarfs as long as they 
lose suffi cient mass to bring the remnant below this upper limit.  

  6.8.4   Evolution of Massive Stars (  M    *      ≥    10     M    �  ) 

 Above a certain mass, stars are able to fuse elements up to iron as described by the nuclear 
reactions seen in Section  6.7 . The exact value of this mass is not known with precision, 
but for our purposes here will be estimated as 10    M   �  . Such massive stars go through suc-
cessive core - burning phases. As with all other stars, they begin their lives on the main 
sequence while burning hydrogen. When the hydrogen found in the core is spent, the star 
evolves and then burns helium to produce carbon and oxygen (see Sections  6.6  and  6.7  
for details surrounding the various nuclear reactions at play). Once this burning phase is 
fi nished, the core contracts and then successively burns carbon, neon, oxygen and silicon. 
During each of these burning phases, the fusion reaction from the previous phase occurs 
in a shell outside the core. Near the end of the nuclear - burning period of massive stars, 
the star has an onion - like structure made out of various burning shells (see Figure  6.16 ) 
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     Figure 6.16     Onion - like structure of a massive star ( M   *      ≥    10    M   �  ) near the end of its life. The buffer 
regions (or nuclear inert shells) where no or little nuclear burning takes place that are found between 
the nuclear - burning shells are not shown here (like in Figure  6.14 ). Calculations show that at the 
late stages of the evolution of a 25    M   �   star, over 50   % of its mass is found within the boundaries of 
the nuclear - burning process. This drawing is not to scale.  
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and nuclear inert shells. At this stage, the star is a supergiant, and its radius can attain 
more than 1000    R   �   and its luminosity up to approximately 10 6     L   �   (the exact values depend 
on the mass of the star).   

 As shown in Table  6.5 , each successive burning phase is of shorter extent. For example, 
a 25 -  M   �   star stays 7    ×    10 6    yr on the main sequence, while the silicon - burning phase only 
lasts 1 day! The evolution of stars therefore accelerates as they advance in the nuclear 
burning sequences. The reason for the shortening of the successive phases is that when 
stars evolve their central temperature increases, thereby increasing the nuclear reaction 
rates. Since the nuclear fuel burns at a very high rate, it shortens the lifetime of each suc-
cessive burning phase. From an observational point of view, since the luminosity during 
advanced stages of evolution is very large and the quantity of energy per nucleon that can 
be liberated is small when fusing heavier elements (see Figure  6.1 ), the nuclear reaction 
rate must then be very large at these advanced stages. Therefore, the lifetime of these 
advanced burning stages is relatively small. 

 A critical situation occurs when the core of the star is composed of iron following the 
silicon - burning phase. Since the iron nucleus is one of the most stable nuclei of the periodic 
table of the elements, it cannot be further fused to produce energy. At this point of the 
evolution of massive stars, an energy crisis occurs in the core. When silicon burning 
ceases, the core contracts and the central temperatures increase. However, contrary to 
previous phases of evolution, its content (i.e. iron) can no longer produce thermonuclear 
energy. Contraction therefore continues until the temperatures in the central regions are 
so large that there exist photons of energy suffi cient to destroy iron nuclei by photodisin-
tegration reaction in which the energy of the photons is used to break up iron. An example 
is the following reaction

   56 413 4Fe He n+ → +γ     (6.65)   

 This process takes energy away from the radiation fi eld found in the star and leads to an 
acceleration of the core collapse that in turn increases the local temperature even more. 
When the temperature is suffi ciently large, even helium can be photodisintegrated via the 
reaction

   4 2 2He p n+ → +γ     (6.66)   

 At this point, the core of the star is composed mainly of protons, neutrons and free elec-
trons. As the core continues its collapse, the densities become so large that even protons 
and electrons may fuse to give neutrons via the reaction

   p e n e+ → +− ν     (6.67)   

 This is commonly called the neutronization of the medium. The disappearance of the free 
electrons takes away their contribution to the pressure in the medium and once again, leads 
to an acceleration of the core collapse. A new type of astronomical body called a neutron 
star (composed mainly of neutrons) is therefore created by the collapsing core of massive 
stars. If the mass of the remnant is more than approximately 3    M   �  , the neutron star becomes 
a black hole. This upper limit for the value for neutron stars, which is not precisely known, 
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is called the Tolman – Oppenheimer – Volkoff limit. It is similar to the upper limit for the 
mass for white dwarfs (called Chandrasekhar ’ s limit, see Section  6.10.1 ). Black holes are 
stellar remnants that are so dense that not even light can escape their gravitational pull, 
therefore rendering them black (see Section  6.10.3 ). The term black hole for describing 
these dense objects was fi rst used by the American physicist John Archibald Wheeler 
(1911 – 2008) in 1967. 

 During the core collapse, the iron nuclei that were created in the most central parts of 
the star are destroyed by photodisintegration. However, not all the iron is destroyed; the 
iron found outside the region where photodisintegration takes place survives. 

 The death of massive stars is much more violent than the demise of lower - mass stars. 
When the core collapses toward becoming a neutron star, the core eventually rebounds 
when its density surpasses the typical density of nuclei. Since neutrons are fermions 
they obey Pauli ’ s exclusion principle and this explains why the core cannot attain an 
infi nite density. This core bounce produces a shock wave that propagates to the outer 
layers of the star. This shock wave violently ejects the outer layers of the star. This 
process is called a supernova. The energy generated by a supernova can also trigger 
what is commonly called explosive nucleosynthesis in the layers outside the core. 
It is believed that some of the neutrinos emitted during the neutronization process 
can be absorbed and transfer energy to the stellar medium to maintain the shock wave 
propagating in the star. Also, the large number of free neutrons present in the centre of 
exploding stars can create elements heavier than those of the iron peak. The procedure 
of producing heavy elements is called the r process (r standing for rapid) and is discussed 
in (optional) Section  6.12 . Finally, numerical simulations of the fi nal collapse and 
explosion of the stellar core causing a supernova show that this is a very rapid process 
that lasts on the order of a second. This period of time is extremely small as compared 
to the evolution timescales of stars at the various stages of nuclear burning (see 
Table  6.5 ). 

 During the supernova, the star ’ s luminosity becomes as large as that of an entire galaxy 
(on the order of 10 10     L   �  )! Since supernovae have similar maximum brightness they can be 
employed to estimate the distances to distant galaxies. It should also be noted that there 
are several types of supernovae that will be discussed in (optional) Section  6.11 . 

 To confi rm the presence of a supernova, neutrino observatories are employed since a 
large number of neutrinos are emitted during the neutronization of the core. More informa-
tion concerning neutrino observatories was given in (optional) Section  6.5.4 . 

 Supernovae are rare phenomena because massive stars are not common. For example, 
less than 0.1   % of stars have a mass larger than 15    M   �  . Supernovae are, however, very 
important for the chemical evolution of galaxies since they eject matter enriched in heavy 
elements. This enriches the metallic content of the interstellar medium. Therefore, future 
generations of stars (i.e. formed at later times) have a larger metallicity. This enrichment 
of the metallicity as a function of time will be discussed in Section  6.9.1 . 

 An example of a well - known supernova, namely M1 or the Crab nebula, is shown in 
Figure  6.17 . This supernova was recorded by Chinese and Arab astronomers in the year 
1054. In its centre, a pulsar is observed. A pulsar is composed of a rotating neutron star 
with a large magnetic fi eld (see Section  6.10.2  for more information concerning these 
astronomical objects).     
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  6.9   Stellar Clusters 

 Even though only a small portion of stars in our galaxy are found in stellar clusters, they 
are important astronomical objects that can be very useful for gaining a better understand-
ing of stars. For example, since stellar clusters contain stars of various masses they are 
excellent  ‘ laboratories ’  where stellar evolution theory may be verifi ed. There are two types 
of stellar clusters: open (sometimes also called galactic clusters) and globular clusters. 
Open clusters are relatively young, while globular clusters are older astronomical objects. 
More information about the properties of these clusters is given below. However, before 
discussing stellar clusters, it is important to examine in more detail stellar populations that 
were very briefl y introduced in Chapter  1 . Also, since galaxies contain stars, it is instruc-
tive to study them to gain insight about certain aspects of stellar astronomy. Therefore, 
the various types of galaxies found in the Universe will be described. 

  6.9.1   Stellar Populations, Galaxies and the Milky Way 

 Stars can be divided into three types of populations: I, II and III. These populations are 
related to the quantity of metals they contain. Population - I stars have large metallicities 
while population - II stars have relatively low metallicities. Population - III stars theoretically 
have a nil metallicity (i.e.  Z    =   0). The Sun is a population - I star. 

 The metallicities of the various stellar populations are related to their age. During the 
Big Bang, only hydrogen, helium and a small amount of Li was created. Therefore, the 
fi rst generation of stars (or population - III stars) that formed in our Universe did not contain 

     Figure 6.17     The Crab nebula (M1), which is a supernova remnant. This object is composed of a 
central pulsar surrounded by the matter ejected during the supernova. It has a diameter of 
approximately 10   ly and is found at a distance of 6300   ly from Earth. It is expanding at a velocity 
of 1800   km/s. (NASA/courtesy of  nasaimages.org ). (See colour plate.)  
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metals (expect for the small amount of Li formed during the Big Bang mentioned above). 
These stars did not contain elements such as C, N, O,  …  Fe. As time elapsed, the more -
 massive stars of this fi rst generation evolved to create the various elements and ended up 
as supernovae. During their explosion, elements formed during nucleosynthesis were 
expelled to the interstellar medium. Therefore, as the Universe ages, more metals are found 
in the interstellar medium and the following generations of stars formed contain a growing 
amount of metals. Consequently, stars formed recently (i.e. population - I stars) contain 
more metals than older stars (i.e. population - II stars). Since only the outer layers of stars 
are probed during spectroscopic observations, the metallicity detected in stars, even those 
that have left the main sequence (with a few exceptions 7 ), is determined by the metallicity 
of the primordial cloud in which these stars were formed. 

 No stars have yet been detected with zero metallicity. One reason for this anomaly could 
be that population - III stars might have been contaminated with enriched interstellar matter 
that has been accreted by these stars. For instance, a neighbouring star that has gone 
through the supernova phase and expelled enriched material could be the source of such 
contamination. 

 There are three types of normal (as opposed to active) galaxies in the Universe: ellipti-
cal, spiral and irregular galaxies (see Figure  6.18 ). The classifi cation of galaxies is prima-
rily based on their morphological properties. The colour of galaxies depends strongly on 
the quantity of gas they contain. Generally, the proportion of gas in galaxies relative to 
their total mass varies among these three types of galaxies. Elliptical galaxies generally 
contain very little gas, while irregular galaxies are those that contain the larger proportion 
of gas among the three types of galaxies. Since interstellar gas is necessary for star forma-
tion, more star - formation events take place in irregular galaxies than in spiral galaxies. 
Very little or no star formation occurs in elliptical galaxies. It is believed that for these 
galaxies, a very rapid star - formation rate early in their lifetime gobbled up the whole 
amount of gas they contained.   

 Irregular galaxies are generally bluer than spirals, which are in turn bluer than elliptical 
galaxies. The reason is that early - type stars are still present in irregular and spiral galaxies 
because they contain interstellar gas so that star formation continues taking place. In 
elliptical galaxies, the more - massive stars have already evolved and since these galaxies 
contain no or little gas, star formation has ceased. Therefore, elliptical galaxies contain 
only lower - mass stars and are less blue than other types of galaxies. 

 The different types of galaxies also differ by the type of stellar populations they contain. 
Elliptical galaxies contain population - II stars (i.e. relatively old stars), while irregular and 
spiral galaxies contain both population - I and population - II stars (i.e. both young and old 
stars). 

 Our galaxy, the Milky Way, is a spiral galaxy. Spiral galaxies can be divided into three 
parts: the central bulge, the disk (containing the spiral arms) and a halo (see Figure  6.19 ). 
The disk contains both gas and population - I and  - II stars. The halo is composed of popu-
lation - II stars (most of which are found in globular clusters, see Section  6.9.3  below).   

 Table  6.6  shows the general approximate properties of population - I and  - II stars in the 
Milky Way. Population - I stars have a relatively low scale height (horizontally from the 

   7      For instance, there is a class of stars called carbon stars that contain a large abundance of carbon at their surface. This carbon 
comes from helium fusion and is brought to the surface by convection during its evolution.  
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(a) (b)

(c)

(d)

     Figure 6.18     Examples of the various types of normal galaxies: (a) a spiral galaxy seen face on: 
the Whirlpool galaxy (M51) along with its companion galaxy, (b) a spiral galaxy seen edge on: the 
Sombrero galaxy (M104), (c) an elliptical galaxy:  # NGC1132 and where a host of other galaxies 
can also be seen on this picture, (d) an irregular galaxy: M82 also known as the cigar galaxy. (NASA/
courtesy of  nasaimages.org ). (See colour plate.) 
    # NGC stands for the New General Catalogue that contains deep sky objects.    

disk) and are therefore found in or near the galactic disk. Population - II stars are on average 
farther away from the galactic plane and form the halo of the Milky Way. Also, their 
average velocities perpendicular to this plane (  σ   w ) are relatively large. This may be 
explained by the fact that halo (or population - II) stars are older and have had time to be 
subjected to a large number of gravitational interactions with other stars for instance. These 
old stars (and old clusters), that were originally in orbit in the plane of our galaxy have 
been deviated from their initial trajectory and now orbit the galaxy in a plane inclined 
from the galactic disk. Since globular clusters (composed of population - II stars) are older 
than open clusters (see Section  6.9.2  below), they are distributed spherically with respect 
to the centre of our galaxy. Meanwhile, open clusters (composed of population - I stars) are 
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  Table 6.6    Typical properties of population -  I  and  -  II  stars in the Milky Way. 

        Population I     Population II  

   very young     young     old     very old  

   Scale height 
(kpc)   

  60    100    500    2000  

    σ    w      (km   s  − 1 )     8    10    25    75  
   Z      > 0.02    0.01    0.005     < 0.002  
   Age (relative to 

the Universe)   
   < 0.05    0.25    0.75    1  

   Distribution     generally found in aggregates       spherical distribution       

halo

position
of sun

central
bulge

disk

2 kpc

30 kpc

     Figure 6.19     The three components of the Milky Way galaxy: the central bulge, the disk (containing 
the spiral arms) and the halo. The halo is composed of globular clusters and individual stars that 
have a spherical distribution. The position of the Sun is also shown. The diameter of the disk is 
approximately 30   kpc, while its thickness is 2   kpc. The unit pc standing for parallax - second (see 
Appendix  C ) will be defi ned in Section  6.9.5 . This drawing is not to scale.  

found in the galactic disk and are generally found in aggregates mostly in the spiral arms 
of the Milky Way.    

  6.9.2   Open Clusters 

 Open clusters are typically comprised of roughly 10 2  to 10 3  loosely bound stars. Their 
dimension is up to approximately 10   pc  . They are relatively young objects composed of 
population - I stars. These clusters may therefore contain early - type stars because these stars 
haven ’ t had time to evolve yet. In our galaxy, they are mainly found in the spiral arms of 
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the galactic disk. Figure  6.20  shows an example of a very well - known open cluster, the 
Pleiades or M45. There are over 1000 known open clusters in our galaxy.    

  6.9.3   Globular Clusters 

 Globular clusters typically contain on the order of 10 5  stars. Their dimension is up to 
approximately 100   pc. They are much more tightly bound than open clusters leading to 
their spherical shape (see Figure  6.21 ) with a much larger concentration of stars in their 
central region. They are very old objects that no longer contain early - type main - sequence 

     Figure 6.20     The open cluster M45 commonly called the Pleiades. It is found at a distance of 
approximately 440   ly from Earth. (NASA/courtesy of  nasaimages.org ). (See colour plate.)  

     Figure 6.21     The globular cluster M4. It is found in the Scorpio constellation at a distance of 
approximately 7200   ly from Earth. (NASA/courtesy of  nasaimages.org ). (See colour plate.)  
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stars. They are therefore composed of population - II stars. Globular clusters have a spheri-
cal distribution with respect to the centre of our galaxy (see Figure  6.22 ) and are conse-
quently mostly found in the halo. Detailed accounting shows that there are probably less 
than 200 globular clusters in our galaxy.    

  6.9.4   Age of Stellar Clusters 

 The age of stellar clusters may be estimated with the theoretical concepts of stellar evolu-
tion seen previously in this chapter. As a basic premise, it is assumed that all of the stars 
composing a cluster were created at roughly the same time. Generally, stars with various 
masses make up stellar clusters. The time a star may stay on the main sequence depends 
on its mass. The early - type (or more massive) stars have a shorter stay on the main 
sequence than late - type stars. Therefore, as time elapses, stars with progressively smaller 
masses leave the main sequence (see Figure  6.23 ). The age of the stellar cluster may be 
approximated as the time the most massive stars of this cluster still observed to be on the 
main sequence stay at this evolutionary phase. According to Eq.  (6.29) , a cluster for which 
the most massive stars that remain on the main sequence are stars with  M   *     =   5 M   �  , is 
approximately 10 8    yr old.   

 Figure  6.24  shows a colour - magnitude diagram for the M3 globular cluster. In this case, 
the turn - off point where stars are about to leave the main sequence is found at  M   *      ≈    1    M   �   
giving an estimated age of 10   Gyr according to Eq.  (6.29) .   

     Figure 6.22     The distribution of globular clusters in the Milky Way. This drawing of the Milky 
Way is not to scale.  Figure reproduced with permission from Cox, A. N.,  Allen ’ s Astrophysical 
Quantities , Springer, New York  (2004).    
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     Figure 6.24     Colour - magnitude diagram for the M3 globular cluster. Shown in the fi gure are the 
main - sequence (MS), the turn - off point (TO), the subgiant (SGB), red - giant (RGB), horizontal (HB), 
asymptotic - giant (AGB) and postasymptotic (P - AGB) branches. Also seen in the fi gure are blue 
stragglers (BS).  Figure reproduced with permission from Renzini, A. and Fusi Pecci, F.,  Annual 
Review of Astronomy and Astrophysics , vol. 26, 199    (1988)   . 

     Figure 6.23     The time stars spend on the main sequence according to Eq.  (6.29)  for various stellar 
masses. The dots are main - sequence stars of various masses.  

 In this fi gure, one may notice that there is a small number of stars still on the main 
sequence above the turn - off point. Such stars are called blue stragglers. The presence of 
these stars that should have theoretically left the main sequence according to the estimated 
age of the cluster pose a problem for the standard evolutionary theory of stars. However, 
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there are several possible circumstances that can explain the presence of these stars without 
casting doubt on our understanding of the evolution of stars. The most probable explana-
tion is that these stars are in binary systems. In such a system, a low - mass star could have 
gained mass by accretion of matter from the other member of the binary system. Therefore, 
a blue straggler could have started its life as a lower - mass star and stayed on the main 
sequence longer than predicted for an isolated star with a mass equal to the new mass of 
the blue straggler. Another possibility that could explain blue stragglers is that these stars 
might have formed more recently than the other stars found in the cluster.  

  6.9.5   Distance to Stars and Stellar Clusters 

 Since the Earth revolves around the Sun once a year, the stars near us move back and forth 
in the sky during the year (relative to very distant stars that remain fi xed). The distance to 
these stars can be obtained by measuring the angle (related to the angle of parallax, see 
below) by which they move over a six - month period. This angle is obtained by measuring 
the angle by which a telescope ’ s direction must change to keep the star in its sight over that 
six - month period. This assumes that the angular displacement of the star under considera-
tion due to its tangential velocity of its proper motion is negligible. For any star, a six - month 
period can be found where an isosceles triangle can be defi ned with the star under consid-
eration at the peak of the triangle and the position of the Earth at the beginning and end of 
the six - month period forming its base (see Figure  6.25 ). In this fi gure, the angle of parallax 
  α   that is used below is that of half of the angle at the summit of the isosceles triangle.   

 Since the distance between the Sun and the Earth is a known quantity (i.e. 1 AU), the 
distance  d  to the star is found by simple trigonometry. Assuming that  d  is given in AU,

   sinα = 1

d
    (6.68)  

where   α   is defi ned as the angle of parallax. Since the distance to stars is much larger than 
the astronomical unit, the angle of parallax is very small. It is easy to show (see Exercise 
6.6) that for small angles (i.e. sin   α      ≈      α  , where   α   is in radians), when   α   is expressed in 
arcsec the distance  d  in units of parsecs is

d

*

Earth

1
A

U

a

a

a
a

Sun

     Figure 6.25     Illustration showing the angle of parallax   α   of a star. The angle by which a telescope ’ s 
direction on Earth must move over a six - month period in order to keep the star in its sight is 
equal to 2  α   . 
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   d = 1

α
    (6.69)   

 A parsec (name taken from parallax - second or the distance for a parallax angle of one 
arcsec) is equal to 3.26   ly or 206264 AU. This method of measuring distances to stars is 
called the parallax method. Stars near the Earth have a larger angle of parallax than those 
farther away. 

 However, this method of measuring distances to stars has its limitations. Since tele-
scopes have a limited resolution, they cannot measure arbitrarily small angles. The dis-
tance to stars far away from the observer that possess   angles of parallax too small to be 
detected due to the limit of resolution of the telescope cannot be measured with this 
method. In other words, such stars do not move observably in the sky during a six - month 
period. 

 As discussed in Chapter  1 , with the knowledge of the absolute magnitude  M  of a given 
star and by measuring its apparent magnitude  m , its distance  d  (in units of pc) can be 
obtained by using the equation for the distance modulus

   m M
d− = ⎛

⎝
⎞
⎠5

10
log     (6.70)   

 This method of measuring distances to stars is especially useful for stellar clusters. With 
proper photometric measurements, stars of a cluster can be positioned in a H – R diagram. 
Meanwhile, the absolute magnitude of zero - age main sequence stars can be calculated 
theoretically. The difference between the absolute magnitude of the ZAMS and the appar-
ent magnitude of main - sequence stars of the star cluster gives its distance by using the 
distance modulus equation given above (see Figure  6.26 ). This method of measuring the 
distance to stars is commonly called the spectroscopic parallax method. The distance to 
stars with well - known luminosities such as certain pulsating stars that possess a well -

     Figure 6.26     Illustration of the difference between the absolute magnitude of the zero - age main 
sequence (ZAMS) and the apparent magnitude of the main sequence of a star cluster.  
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 determined period – luminosity relation (see Figure  5.13 ), can also be obtained with this 
method. In this specifi c case, the measurement of the dominant pulsating period gives the 
luminosity of the star in question and consequently its absolute magnitude.     

  6.10   Stellar Remnants 

  6.10.1     White Dwarfs 

 White dwarfs are stellar remnants of low to intermediate - mass stars. The name of these 
stars is related to the fact that they are relatively hot (or white in colour) and compact. 
Well over 90   % of stars will end up as white dwarfs. However, since less - massive stars 
live longer than their more massive counterparts, most of them have not yet become white 
dwarfs, and therefore white dwarfs now only account for a few per cent of the stars found 
in our galaxy. White dwarfs are compact objects with a typical radius on the order of 1   % 
of the solar radius (or roughly equal to the Earth ’ s radius) and they have an average density 
of roughly 10 6    g/cm 3 . This density is six orders of magnitude larger than the average 
density of the Sun. White dwarfs have relatively small luminosities because of their size 
and are found on the lower portion of the H – R diagram (see Figures  1.11  and  1.14 ). The 
surface gravity of white dwarfs is several orders of magnitude larger than for typical main -
 sequence stars. This leads to large values of pressure at their surface and to wide atomic 
lines in their spectra. These large atomic line widths simplify the observational identifi ca-
tion of white dwarfs. 

 Table  6.7  gives the fundamental parameters of the well - known white dwarf Sirius B. 
In reality, the star Sirius is a binary - star system. Sirius A is the star visible with the naked 
eye while Sirius B is its companion, which happens to be a white dwarf. Sirius B is too 
faint to be seen with the naked eye.   

 The internal pressure in white dwarfs is due to a degenerate electron gas. The equation 
of state of such a gas leads to a pressure that depends on the number density of the free 
electrons in the stellar plasma but that is independent of local temperature. Detailed cal-
culations show that a white dwarf ’ s radius decreases as a function of its mass. It is found 
that a white dwarf with a mass of approximately 1.43    M   �   has a radius that theoretically 
tends towards zero. This mass, which is called Chandrasekhar ’ s limit, is the upper limit 
for the mass of white dwarfs. In the late stages of evolution of massive stars, if the degen-
erate core ’ s mass reaches this value, it collapses and leads to the neutronization of matter 
where protons and electrons fuse to generate neutrons via the reaction

  Table 6.7    Fundamental parameters of the white dwarf Sirius  B.  

   M   *      1.05    M   �    
   T  eff     27   000   K  
   L   *      0.03    L   �    
   R   *      0.008    R   �    
  log    g     8.65  
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   p e n e+ → +− ν     (6.71)   

 This process consequently produces a neutron star (see Section  6.10.2 ). 
 The core of white dwarfs is mostly formed of He or C and O. As seen in Section  6.8.2 , 

stars with very low masses can only burn hydrogen since they cannot attain the central 
temperature needed for He burning. However, since the lifetime of stars with very low 
masses on the main sequence is larger than the age of the Universe, these stars are still 
on the main sequence at the present time and cannot account for white - dwarf cores made 
of helium. Another way of obtaining a white dwarf with a helium core is via the evolution 
of a binary - star system. A star that has burned the hydrogen in its core and is in the process 
of becoming a red giant may have its outer shells stripped by the gravitational pull of its 
companion star. If this mass loss occurs before helium has started to fuse, it can stop 
further evolution of the star and leave a white dwarf made up mostly of helium. As men-
tioned previously, the evolution of binary systems can strongly modify the way stars in 
such a system evolve. Meanwhile, the evolution of an intermediate - mass star such as the 
Sun, leaves behind a white dwarf with a core made mostly of C and O. Its outer layers 
may contain hydrogen and/or helium depending on the quantity of mass lost during its 
evolution. 

 White dwarfs are divided into spectral classes that are related to the composition of 
their outer layers (see Table  6.8 ). The system of classifi cation of white dwarfs is symbol-
ised by a D (standing for degenerate) followed by second letter that defi nes the spectral 
features. Contrarily to main - sequence stars classifi cation that is directly related to  T  eff , the 
classifi cation of white dwarfs are associated to their composition. Therefore, the  T  eff  range 
for certain spectral classes can overlap. Some white dwarfs pulsate and are therefore vari-
able and in this case a V is added to their spectral class such as DAV stars (these stars are 
also called ZZ Ceti stars after the name of the fi rst of this type of star discovered). Some 
white dwarfs also show hybrid spectral characteristics. For example, some have hydrogen -
 rich atmospheres but also show neutral helium lines in their spectra and are classifi ed as 
DAB white dwarfs.   

 Magnetic fi elds are detected for a small portion (a few per cent) of white dwarfs by the 
Zeeman splitting of their spectral lines. Some of these magnetic white dwarfs have fi eld 
strengths of up to 10 9    G. These magnetic fi elds are enormous compared to the average fi eld 
at the surface of the Sun (or the Earth) which is equal to approximately one G, while it is 
on the order of a couple of kG in sunspots. It is believed that the magnetic fi elds in white 
dwarfs are remnants from the evolution of magnetic ApBp stars (see Section  7.2.2 ). 

  Table 6.8    Spectral classifi cation of white dwarfs. 

   Spectral Class     Spectral characteristics  

  DA    Hydrogen - rich atmosphere (strong HI lines)  
  DB    Helium - rich atmosphere (with strong HeI lines)  
  DC    No strong lines present  
  DO    Helium - rich atmosphere (with strong HeII lines)  
  DQ    Carbon - rich atmosphere  
  DZ    Metal - rich atmosphere (e.g. CaI, MgI, FeI lines)  
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Magnetic fi elds at the surface of ApBp stars can reach values of more than 10   kG. When 
the stellar core contracts to form such white dwarfs, the magnetic fi eld lines follow the 
condensing plasma that intensifi es the value of the magnetic fi eld found in the original 
main - sequence stars. 

 Since white dwarfs have no thermonuclear energy source, they cool down with time. 
They will eventually become very faint objects commonly called black dwarfs. Theory 
predicts that these black dwarfs will ultimately crystallize. Since most black dwarfs are 
made predominantly out of carbon, these objects are sometimes called the Universe ’ s 
diamonds.  

  6.10.2   Neutron Stars, Pulsars and Magnetars 

 As discussed in Section  6.8.4 , neutron stars are created by the collapse of the cores of 
stars with relatively high masses. The lower limit for the mass of neutron stars is equal to 
the Chandrasekhar limit since below this mass a white dwarf is obtained. The upper limit 
for the mass of neutron stars is more uncertain, mostly because of the limited knowledge 
of the equation of state inside neutron stars, but this upper limit is approximately 3 M   �  . 
Above this upper limit, the core remnant collapses to form a black hole (see Section  6.10.3  
for properties of such bodies). 

 The typical radius of neutron stars is on the order of 10   km and these objects are there-
fore much denser than white dwarfs. The average density of neutron stars is on the order 
of 10 14    g/cm 3  (this value is estimated below from simple physical considerations in a 
special topic) and their central density may reach 10 times this value. To put the average 
density of neutron stars in perspective, one cubic centimetre of neutron - star matter contains 
as much mass as all the humans on our planet! 

 The outer crust of neutron stars is made of solid matter composed of nuclei (most likely 
iron formed during the advanced stages of evolution) and free electrons. Some theoretical 
models predict that the core of neutron stars might be composed of quarks. Since obser-
vational and experimental data for the inner structure of neutron stars is not available, it 
is diffi cult to confi rm the validity of theoretical models for these astronomical objects. 

 A pulsar is composed of a fast rotating neutron star with an intense and largely dipolar 
magnetic fi eld that is inclined with respect to the axis of rotation of the neutron star (see 
Figure  6.27 ). A typical magnetic fi eld in pulsars is on the order of 10 14    G.   

 Pulsars emit a large amount of radiation via a physical process called synchrotron radia-
tion. Free electrons with high velocities (near the speed of light) surrounding the neutron 
star have curved trajectories in the magnetic fi eld due to the Lorentz force. The magnetic -
 fi eld lines therefore accelerate these relativistic particles that in turn causes synchrotron 
radiation (see Figure  6.28 ). The emission spectrum of the synchrotron process emits more 
radiation energy in the short -  (X - ray) and especially the long -  (radio) wavelength portions 
of the electromagnetic spectrum as compared to blackbody (or thermal) radiation. Pulsars 
therefore emit a relatively large amount of radio radiation. Two cones of radiation, simi-
larly to lighthouse beacons, sweep across space as the neutron star rotates. Pulsars may 
be observed if one of the paths of these cones of radiation crosses the position of the Earth 
(see Figure  6.27 ). Pulses of radiation can then be detected, which is why these astronomi-
cal objects are called pulsars.   
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path of the cone
of radiation

     Figure 6.27     Schematic model of a pulsar. It is composed of a rapidly rotating neutron star that 
has a strong dipolar magnetic fi eld that is inclined with respect to the axis of rotation of the neutron 
star. A large amount of radiation is emitted in a cone emerging from both magnetic poles.  

 The rotation periods of the neutron stars that make up pulsars, measured as the periods 
of the observed pulses, vary from about 1   ms to 10   s. As pulsars emit energy, their rota-
tional velocity decreases. The detection of the rate at which their rotational period increases 
can be compared to the predicted rate given by theoretical models in order to extract 
information on pulsars. 

 The type of pulsars discussed above is often called radio pulsars. There also exist X - ray 
pulsars. The large amount of X - radiation emitted by these objects is thought to be due to 
the accretion of matter from a binary companion. 

magnetic

field line

trajectory of electron

     Figure 6.28     Illustration of the deviation of a free relativistic electron ’ s trajectory by the presence 
of a magnetic fi eld. This process emits radiation that is commonly called synchrotron radiation.  
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 The fi rst pulsar was discovered in 1967 by the British astronomers Anthony Hewish 
(b. 1924) and Jocelyn Bell Burnell (b. 1943) with observations in the radio region of the 
electromagnetic spectrum. Up to now, over 1500 pulsars have been identifi ed. Most of 
these pulsars have been detected in the radio region of the electromagnetic spectrum, while 
some were detected with X - rays. The best - known pulsar is the one at the centre of the 
Crab nebula (M1) found in the constellation Taurus (see Figure  6.17 ). M1 is the remnant 
of a supernova observed in 1054 and recorded by Chinese and Arab astronomers.   

 Special Topic  –  Average Density of Neutron Stars 

    Simple physical considerations can lead to an estimation of the minimum average 
density of a neutron star. A spherical neutron star of mass  M  and radius  R  with a 
rotational frequency   ω     =   2 π / T  (where  T  is the period of rotation), will be torn apart 
unless the gravitational acceleration is larger than the centrifugal acceleration

   G
M

R
R

2
2> ω     (6.72)   

 The minimum average density of the neutron star needed to keep matter at its 
surface from being fl ung out into space by the centrifugal force so that the neutron 
star is stable against rotation is therefore

   ρ >
3

2

π
GT

    (6.73)  

where the average density is   ρ = M

R
4
3

3π
. Since the fastest pulsing pulsars have a 

period on the order of 1   ms, this means that the central neutron star rotates up to 
approximately 1000 times a second. Using this value as an upper limit, the above 
equation gives   ρ ≈ 1014 3g cm . This is in agreement with the typical average 
densities of neutron stars given by theoretical models.  

 In 1979, the fi rst of several sporadic gamma - ray signals were observed. These were 
named soft gamma - ray repeaters (SGR) and some of them were eventually found to be 
associated with supernova remnants. However, it was only in 1992 that the American 
astrophysicist Robert Duncan (b. 1955) and his Canadian counterpart Christopher 
Thompson (b. 1961) theorised the existence of a new class of astronomical objects, namely 
magnetars, which could be responsible for SGRs. Magnetars are pulsars that possess 
magnetic fi elds up to 1000 times stronger than normal. It is hypothesised that magnetars 
are born with very short rotation periods with a dynamo process inside the neutron star 
that produces these large magnetic fi elds. 
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 The large magnetic fi elds in these dense objects causes stress on their surface that may 
sporadically lead to cracks. This process causes seismic tremors commonly called star-
quakes. The magnetic fi eld is deformed and charged particles can be accelerated and emit 
the gamma - rays observed. It is believed that roughly 10   % of supernovae caused by the 
evolution of massive stars might lead to a magnetar remnant. The rotation rate of magne-
tars decreases relatively quickly and after a period of approximately 10 4    yr, these objects 
are no longer as active. Due to the short timescale for their activity, it is not surprising 
that only a few SGRs have been detected. 

 For a portion of the magnetars that have been associated with supernova remnants some 
are not exactly where the centre of the corresponding supernovae remnant is expected to 
be. It is hypothesised that during a stellar explosion, the strong magnetic fi eld present can 
redirect the energy preferentially in the direction of one of the magnetic poles, thus giving 
the star a velocity  ‘ kick ’  so that the magnetar is not always found in the centre of the 
supernova remnant. Observations show that the velocity of the central remnant may reach 
1000   km/s. 

 Since magnetar astronomy is a relatively new fi eld of study and only a small number 
of these objects have been detected, much uncertainty still remains concerning the physical 
processes involved.  

  6.10.3   Black Holes 

 Black holes are the densest and least voluminous of the three types of stellar remnants. 
Since black holes possess large gravitational fi elds, the general relativity theory of gravita-
tion proposed by the renowned German - born physicist Albert Einstein (1879 – 1955) must 
be employed to study these objects since classical gravity fails there due to the large 
gravitational fi elds involved. This theory treats gravity not as an attractive force between 
particles as in Newton ’ s classical formulation, but as a distortion of spacetime. This theory 
correctly predicts (see special topic on spacetime curvature below) that even photons are 
affected by gravity due to the curvature of spacetime. 

 In this section, classical mechanics will be used to obtain certain properties of black 
holes. Even though classical physics is not valid under the physical conditions encountered 
near black holes, it gives the same exact results as general relativity for certain aspects 
because some relativistic terms cancel in certain theoretical developments. 

 Consider a spherical object of mass  M  and radius  r  from which a mass  m  at its surface 
is trying to escape at velocity  V . The total energy of mass  m  is

   E mV G
Mm

r
= −1

2
2     (6.74)   

 The mass  m  is able to escape to infi nity when  E     ≥    0, or in other words when the kinetic 
energy is larger than or equal to the potential energy due to gravitation. The escape veloc-
ity  V  esc  is obtained by assuming  E    =   0, which gives

   V
GM

r
esc = 2

    (6.75)   



Nucleosynthesis and Stellar Evolution 263

 If the mass  M  is progressively compressed into a shrinking volume, the escape velocity 
can eventually equal the speed of light. At that point, the radius is defi ned as the so - called 
Schwarzschild radius

   R
GM

c
Sch = 2

2
    (6.76)   

 Since special relativity imposes a speed limit of  c  on all particles, a particle at the surface 
of a body that is compressed within the Schwarzschild radius can never escape. Such a 
dense object is called a black hole since nothing is able to escape once it enters the horizon 
defi ned by the surface of the sphere of radius  R  Sch . The horizon is the point of no return 
for an object approaching a black hole. 

 In general relativity, the horizon defi nes what is called a singularity. This singularity 
exists because terms in certain equations of general relativity cannot be defi ned there due 
to the fact that a nil value appears at the denominator. For example, the Schwarzschild 
metric that measures the distance d s  surrounding a massive spherical body of mass  M  is 
given (in spherical coordinates) by the equation
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 This metric has a singularity for   r
GM

c
= 2

2
 (i.e. for the Schwarzschild radius) since the 

second term on the right - hand side gives an infi nite value. 
 Current physical theories cannot give any information about the inside of black holes 

(i.e. inside the horizon). Therefore, it is not known, for example, to what point the mass 
inside a black hole collapses and its internal structure is therefore completely unknown. 
Only global properties can be defi ned for black holes. Black holes have three independent 
fundamental properties: mass, angular momentum and electric charge.   

 Special Topic  –  Spacetime Curvature and Gravitational Redshift 

    The theory of general relativity predicts that gravity distorts the geometry of space-
time. One of the ways to experimentally verify the presence of spacetime curvature 
is to observe stars near the limb of the Sun during a total solar eclipse. During such 
an eclipse, stars can be seen in the sky due to the darkness that ensues. It has been 
verifi ed that the known position of stars changes slightly when these stars are found 
near the limb of the Sun. Figure  6.29  shows the path of photons coming from a 
star that is found behind the Sun (and therefore should not be observable). The 
trajectory of photons is bent due to the curvature of spacetime near the solar surface 
caused by the gravity of the Sun. This beam of light can then be observed on Earth 
during a total solar eclipse (which is needed to darken the sky) and its apparent 
position in the sky is slightly shifted. The measurement of such shifts confi rms the 
presence of spacetime curvature predicted by the theory of general relativity. 
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   8      Quasars are active galaxies that are young and extremely luminous. The energy source responsible for their power output is 
believed to be related to a supermassive black hole (with a mass up to approximately 10 10     M   �  ) at their centre.  

     Figure 6.30     An image of Einstein ’ s cross. This system is made up of a distant quasar that 
is found behind another galaxy that is seen in the centre of this image. This central galaxy 
serves as a gravitational lens that bends the light coming from the quasar and giving four 
distinct images of the distant quasar. (NASA/courtesy of  nasaimages.org ). (See colour 
plate.)  

     Figure 6.29     Illustration of the apparent displacement of the position of a star observed 
near the limb of the Sun. Such observations are made during a solar eclipse in order for the 
stars near the solar limb to be visible. This illustration is not to scale and the angle of 
deviation is greatly exaggerated.  

Sun
toward
Earth

trajetory
of photons

* apparent position
of star

* real position
of star

 There exists other observational proof of spacetime curvature. For example, a 
distant quasar 8  that is found behind another less - distant galaxy is seen as four 
distinct images in the astronomical object called Einstein ’ s cross (see Figure  6.30 ). 
The central galaxy acts as what is called a gravitational lens by bending the light 
coming from the distant quasar. The geometry of the system therefore gives four 
images of the distant quasar. If for instance, both the lensing and the distant galaxy 
were spherical and perfectly aligned, the image of the quasar would be a circular 
disk seen around the central galaxy. Some galaxies that are lensed by galaxies for 
which their position is slightly offset from the line of sight are observed as being 
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horizon

g

 Table  6.9  gives values of the Schwarzschild radius and the average density for various 
masses having reached black - hole status. The density for less - massive black holes is larger 
than for more - massive ones (see Exercise 6.12). For example, to produce a black hole 
from a proton, it must be compressed within a radius on the order of 10  − 52    cm and to a 
density of approximately 10 130    g/cm 3 ! There exists no natural process, except possibly 
under the conditions found in the very early Universe, which can create such mini black 
holes. Furthermore, if such mini black holes were created in the early Universe they would 
very quickly evaporate (see below). A natural process that can create black holes with 

     Figure 6.31     Illustration of the curved path of a photon (  γ   ) emitted (by an atom for 
instance) near the horizon of a black hole. The effect of gravity on photons illustrated here 
is relativistic in nature and does not occur in classical physics.  

arced or stretched and their image resembles a crescent. The curvature of spacetime 
caused by astronomical objects such as galaxies and black holes can therefore 
distort astronomical observations. 

 Since photons are affected by the gravitational distortion of spacetime, those 
emitted near the surface of a black hole do not follow a linear path. The photons 
follow the curvature of spacetime and can fall back towards the surface (see Figure 
 6.31 ). Even photons having a trajectory perpendicular to the black hole surface are 
not able to escape. General relativity predicts that a photon of wavelength   λ   0  at a 
distance  r  from a spherical mass  M  is redshifted when travelling in a radial direc-
tion away from the mass according to the following equation

   λ λ λobs
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where   λ   obs  is the wavelength observed when the photon is far away from the mass 
 M  and  R  Sch  is the Schwarzschild radius of this mass. Photons therefore lose energy 
when exiting a gravitational fi eld and are redshifted. This redshift is negligible for 
photons exiting a normal star, but is important when photons try to exit the strong 
gravitational fi elds around black holes. This equation shows that the redshift is 
infi nite when the photon is emitted at  r    =    R  Sch . Therefore, a photon that attempts to 
exit a black hole perpendicularly to the surface loses all of its energy and does not 
exit the black hole, even if the direction of its trajectory is not affected by gravity.  
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masses larger than approximately 3 M   �   does exist, namely the evolution of massive stars 
(see Section  6.8.4 ). These stars possess enough gravitational energy to compress their 
central regions suffi ciently to form black holes. It should also be noted that it is very prob-
able that a supermassive black hole (with a mass up to approximately 10 10     M   �  ) exists at 
the centre of all galaxies. The presence of such supermassive black holes can, for instance, 
explain the large amount of energy emitted by a class of galaxies called active galaxies. 
Recent observations seem to confi rm that a supermassive black hole exists in the centre 
of the Milky Way. Contrary to black holes formed by the evolution of massive stars, 
supermassive black holes have very low average densities (see Table  6.9 ).   

 In addition to stellar black holes and supermassive black holes it is theorised that a third 
type exists, namely, primordial black holes. Primordial black holes are those that could 
have been formed in the extreme conditions following the Big Bang. Since these black 
holes are not formed by the collapse of stars, they can have masses much lower than 3    M   �  . 

 Several strange phenomena occur near black holes. For example, if a body ventures 
near the horizon of a black hole it will be stretched by tidal forces. Tidal forces responsible 
for the tides on Earth are due to the gradient of the gravitational acceleration due to the 
Moon from the side of our planet facing it to the opposite side of the Earth. The stretching 
of physical bodies approaching a black hole may be illustrated by a simple example using 
classical gravity. At the surface of the Earth, the gravitational force acting on a person 
standing is approximately the same at his or her feet as at the top of his or her head. If 
the height of this person is represented by  h , the relative change of gravitational force felt 
from his or her feet to his or her head is
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where  R   �   is the radius of the Earth (6378   km). Since  h     ≈    1.5   m, this proportion is extremely 
small ( ≈ 10  − 7 ) and therefore the gravitational acceleration can be considered constant over 
this length. When nearing a black hole, the distance to which an astronaut (for instance) 
could approach before crossing the horizon is on the order of 100   km. The relative change 
given by an equation similar to Eq.  (6.79)  in this case is on the order of 10  − 5 , which is 
still quite small. However, since the gravitational acceleration in this case is very large 
(for example for a black hole with a mass of 10    M   �  , the acceleration is, according to clas-
sical physics, 10 13    cm/s 2 ) and therefore a small proportion of this acceleration is enough 

  Table 6.9    Schwarzschild radius and average density for several masses of black holes. 

   Mass      R  Sch      Average density  

   m  p     2.5    ×    10  − 52    cm    3    ×    10 130    g/cm 3   
  1   kg    1.5    ×    10  − 25    cm    7    ×    10 76    g/cm 3   
   M   �      0.89   cm    2    ×    10 27    g/cm 3   
  3    M   �      8.9   km    2    ×    10 15    g/cm 3   
   M  Galaxy     0.4   ly    1    ×    10  − 8    g/cm 3   
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to stretch and destroy any body that approaches a black hole. Therefore, no astronaut could 
survive such a journey near the horizon of a black hole. 

 Even though it was shown earlier that nothing can escape a black hole, in the discussion 
leading to this conclusion quantum effects were neglected. In 1974, the renowned British 
physicist Stephen Hawking (b. 1942) predicted that black holes can emit energy and 
eventually evaporate (see Hawking, S.W.,  Nature , 248, 30  (1974)  for more details). This 
may be explained by quantum tunnelling. Therefore, there is a nonzero probability for a 
particle trying to escape a black hole to emerge outside by quantum tunnelling. This phe-
nomenon may be explained in another way. In the vacuum surrounding a black hole, 
quantum theory predicts that particle – antiparticle pairs can appear and quickly annihilate 
themselves. As long as the time  Δ  t  they exist is shorter that what is prescribed by the 
Heisenberg uncertainty principle (here  Δ  E  is the energy of the particles created)

   Δ
Δ

t
h

E
=

4π
    (6.80)   

 such pair creation remains unobservable. In this case these particles are called virtual 
particles. In other words, there exist fl uctuations in a quantum vacuum. For example, for 
an electron – positron pair,  Δ  E    =   2 m  e  c  2  and  Δ  t     <    3    ×    10  − 22    s. When such a phenomenon 
occurs near the horizon of a black hole, one of the two particles may fall into the black 
hole and the second one can sometimes escape. This is equivalent to a quantum tunnelling 
of a particle coming from inside the black hole. A black hole can consequently evaporate. 
Stephen Hawking associated a temperature with such an evaporating black hole and 
developed a theoretical framework commonly called the thermodynamics of black holes. 
The value of this temperature depends on the mass  M  of the black hole according to the 
following equation

   T
hc

kGM
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3

216π
    (6.81)   

 Black holes emit energy known as Hawking radiation with a blackbody spectrum related 
to this temperature. Since the temperature of black holes is inversely proportional to their 
mass, the timescale on which black holes produced by stellar evolution evaporate is much 
larger than the age of the Universe (see Exercise 6.13). The temperatures of such black 
holes are very low (see Example  6.4 ).   

  Example 6.4:    Calculate the temperatures of black holes with a mass equal to  m  p , 
1000   kg,  M   ⊕   and 5    M   �  . 

  Answer: 

 Since the temperature of a black hole is

   T
hc

kGM
=

3

216π
    (6.82)   
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 Since the temperature of black holes produced by stellar evolution is very low, the 
radiation they emit is too weak to detect. It is thus impossible to directly observe such 
black holes. However, when black holes are accreting mass (for instance when they are 
found in a binary system), the matter falling in emits X - rays and this radiation may be 
detected. The fi rst black - hole candidate, Cygnus X - 1, was detected in the mid - 1960s. This 
is a binary system composed of a B - type supergiant star and a second component that 
emits no radiation in the visible part of the spectrum but does emit a large amount of 
X - rays. By estimating the mass of the supergiant star and by measuring the rotation period 
of the system, the mass of the invisible component was estimated to be between 5 and 
10    M   �  . The invisible component is therefore too massive to be a neutron star. All of these 
observational facts may lead us to conclude that the companion of the supergiant star is 
a black hole towards which matter coming from the supergiant is being accreted.   

  6.11   Novae and Supernovae   †    

 The word  nova  is derived from a Latin word meaning new. Novae and supernovae are 
stars that suddenly become visible due to a sudden increase of their luminosity. Such 
astronomical phenomena have been detected and registered by human beings for the past 
several millennia. In the modern era, when supernovae are discovered, they are named SN 
followed by the calendar year and then by one or two letters in order of their discovery. 
For example, the well - known supernova SN 1987A was the fi rst supernova detected in 
1987. It took place in the Large Magellanic Cloud that is a neighbour galaxy to our own 
Milky Way. This supernova is a Type - II supernova (see below for the defi nition of the 
various types of supernova) and is believed to be the product of the evolution of a 20    M   �   
star. It was fi rst discovered by visual observations. The neutrinos emitted by the supernova 
were also detected as an initial burst of neutrinos lasting less than three seconds. This 
gives an indication of the timescale of the fi nal phase of a massive star ’ s life, leading to 
its explosion. 

 In Section  6.8.4 , it was seen that supernovae are created by the evolution of 
massive stars that explode at the end of their life. However, a supernova can also occur 
when a white dwarf explodes. In this section, several types of supernovae will be dis-
cussed. Various types of supernova light curves (i.e. their luminosity as a function of 
time) will also be shown. But fi rst, the physical processes leading to nova will be 
revealed. 

 simple substitution fi nds respective temperatures of approximately 7    ×    10 49 , 1    ×    10 20 , 
0.02 and 1    ×    10  − 8    K for the four values of the masses given above. This leads us to 
conclude that mini black holes evaporate much faster than those produced by stellar 
evolution. Also, since the temperature of black holes from stellar remnants (i.e. those 
with masses on the order of several  M   �  ) is so small, the energy they emit is negligible 
and thus not observable.  



Nucleosynthesis and Stellar Evolution 269

 Up to now, only the evolution of isolated (or single) stars has been considered. The 
evolution of binary stars is more complicated since mass transfer can occur from one 
companion to the other. Two particular cases of evolving binary stars consisting of a white 
dwarf and a companion will be discussed here. The fi rst case described below gives what 
is called a nova, while the second case seen later in this section leads to a Type - Ia 
supernova. 

 A nova is an astronomical event that occurs when an accretion disk is formed around 
a white dwarf in a binary system (see Figure  6.32 ). When relatively small amounts of 
matter (not enough for the white dwarf to approach the Chandrasekhar limit as for the 
case of SN Ia, see below) falls from the companion star onto the white dwarf, it causes a 
fl are up of thermonuclear reactions that emits a large amount of radiation thereby giving 
a nova. A nova does not lead to the destruction of the system and can occur on a periodic 
basis within the same system. Typically, the luminosity of a nova is on the order of 10 4     L   �  .   

 Supernovae are astronomical events that emit an extremely large amount of energy (on 
the order of 10 51  erg or more) on a very short timescale. This energy is emitted in the form 
of neutrinos, radiation and kinetic energy of the matter ejected by the explosion. A large 
portion of the neutrinos are emitted during the fi rst seconds of this phenomenon, while 
radiation is emitted over several months or years following the explosion. A considerable 
portion of the exploding star is ejected at speeds on the order of 10 4    km/s. These speeds 
are detected by the Doppler shifts of the atomic spectral lines of supernovae. For example, 
some recent observations of SN 2008D show expansion speeds of more than 10 4    km/s. 
This supernova was discovered by NASA ’ s Swift satellite in the X - ray portion of the 
electromagnetic spectrum. This satellite was observing another supernova in the galaxy 
NGC 2770 (situated 88   Mly away from Earth) that had exploded weeks earlier when it 
detected SN 2008D. The probability of having two supernova events in a host galaxy 
separated by such a short period is extremely small (estimated to be less than 1 in 10   000). 
This fortuitous discovery of a supernova explosion at the early stage of the process should 
shed light on the physics of these fascinating astronomical events. Normally, supernovae 
are detected in the visible part of the spectrum. The maximum visible brightness typically 

     Figure 6.32     Illustration of mass transfer from a giant star to a white dwarf. An accretion disk is 
shown around the white dwarf. Such mass loss can lead to nova or supernova.  
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occurs a few weeks after the explosion and therefore, such detection does not give direct 
information about the early phase of the supernova phenomenon. 

 The ejected matter causes shock waves in the interstellar matter surrounding the super-
nova. This process can heat the interstellar matter up to approximately 10 8    K, which leads 
to the emission of a large amount of X - rays. Since the interstellar medium is much more 
tenuous than the ejected mass, the ejected matter will at fi rst progress with little impedi-
ment. After about 10 2    yr, the shock wave will be slowed down considerably and the local 
temperature will also decrease. 

 Supernovae can be divided into two spectral types related to the strength of the hydrogen 
lines observed in their spectra. Type - I (or SN I) supernovae show no hydrogen lines in 
their spectra while Type - II (or SN II) supernovae have strong hydrogen lines (see Table 
 6.10 ). SN II supernovae are due to the explosion of massive stars at the end of their lives 
(see Section  6.8.4 ). At the time of their explosion, the supernovae of this type have a large 
amount of hydrogen in their outer layers, which explains the strong hydrogen lines.   

 Type - I supernovae come in three types named SN Ia, Ib and Ic. SN Ib and Ic super-
novae are also thought to be due to the explosions of massive stars. It is believed that 
the outer layers of these stars are lost either by strong stellar winds or to stripping of 
these layers by a binary companion. Type - Ib supernovae have lost most of their hydrogen 
in their outer layers but still have a considerable amount of helium in their envelopes. 
Meanwhile, SN Ic are believed to have lost most of their hydrogen and helium before 
exploding. 

 Type - II,  - Ib and  - Ic supernovae are due to the explosion of relatively young (or popu-
lation - I) stars. A clue to the population of these stars is also obtained by knowing that 
these types of supernovae are never observed in elliptical galaxies. As seen in Section 
 6.9.1 , elliptical galaxies are composed of old (or population - II) stars and therefore, all 
massive stars have already evolved and died giving neutron stars or black holes as rem-
nants following their explosion. No   massive stars are available for supernovae production 
in such galaxies. 

 Type - Ia supernovae are considerably different from the other types discussed above. 
They are due to the explosion of a white dwarf found in a binary - star system. A con-
traction of the white dwarf occurs when mass transfer from the companion star to the 
white dwarf is suffi cient to lead to a mass approaching the Chandrasekhar limit. This 
contraction leads to runaway thermonuclear reactions and the ensuing supernova. 
Since little or no hydrogen is found in white dwarfs, no hydrogen atomic lines are 
observed in their spectra. Also, because of the nucleosynthesis taking place during 
the explosive stage of Type - Ia supernovae, a considerable amount of Si is produced 
leading to the presence of strong Si lines in their spectra (while Si lines are absent for 

  Table 6.10    Types of supernovae. 

   Type     Precursor     Spectral characteristics  

  SN Ia    White dwarf in binary system    No H lines and strong Si lines  
  SN Ib    Evolution of a massive star    No H lines and no Si lines  
  SN Ic    Evolution of a massive star    No H lines, no Si lines and no He lines  
  SN II    Evolution of a massive star    Strong H lines  
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     Figure 6.33     The light curve of SN I showing the magnitude in the blue part of the spectrum below 
maximum brightness as a function of time. This fi gure is composed of a large number of Type - I 
supernovae.  Reproduced by permission of the AAS from Doggett, J. B. and Branch, D., The 
Astronomical Journal, 90, 2303  (1985).    

Type - Ib and  - Ic supernovae, see Table  6.10 ). Contrary to the other types of supernovae, 
during the explosion, the white dwarf is completely destroyed leaving no central remnant. 
The heavy elements produced during the thermonuclear reactions in SN Ia are ejected 
to interstellar space and this contributes to the enrichment of the metallicity of interstellar 
matter. 

 In addition to the spectral types of supernovae, it is also very instructive to study their 
light curves. Figure  6.33  shows the light curve for SN I. After the initial increase of lumi-
nosity, two distinctive downward slopes are observed and can be explained by the decay 
of the elements produced during the explosive nucleosynthesis that takes place in the shock 
wave that disrupts the star. Several radioactive elements are formed during the supernova 
and their decay determines the shape of the light curves of supernovae. The most important 
one is  56 Ni. This element can decay via two modes. It can decay via the emission of a 
positron or a so - called  β  +  decay (with a half - life of 6.1   d)

   56 56Ni Co e e→ + + ++ ν γ     (6.83)     

  56 Ni can also be destroyed by electron capture

   56 56Ni e Co e+ → +− ν     (6.84)   

 Detailed calculations show that during supernovae the decay of  56 Ni is completely domi-
nated by electron capture. The emission of energy by this process explains the fi rst down-
ward slope of the light curve of SN I. 

 As  56 Ni is progressively transformed into  56 Co, this nucleus, which is also unstable, can 
in turn decay via the following reaction
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     Figure 6.35     The light curve of SN II - P showing the magnitude in the blue part of the spectrum 
below maximum brightness as a function of time. This fi gure is composed of a large number of 
Type - II - P supernovae.  Reproduced by permission of the AAS from Doggett, J. B. and Branch, D., 
 The Astronomical Journal , 90, 2303  (1985).    

     Figure 6.34     The light curve of SN II - L showing the magnitude in the blue part of the spectrum 
below the maximum brightness as a function of time. This fi gure is composed of a large number of 
Type - II - L supernovae.  Reproduced by permission of the AAS from Doggett, J. B. and Branch, D., 
 The Astronomical Journal , 90, 2303  (1985).    
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   56 56Co Fe e e→ + + ++ ν γ     (6.85)   

  56 Co has a half - life of 77.7   d. Again, calculations show that electron capture dominates 
the decay of  56 Co in supernovae ( 56 Co   +   e  −      →     56 Fe   +    ν  e ). The decay of  56 Co explains the 
presence of the second (and less steep) of the two slopes observed on the light curves of 
SN I (see Figure  6.33 ). 

 The light curves of SN II come in two distinctive types. Type II - L (L standing for linear) 
shows a similar time dependence to those of SN I (see Figure  6.34 ). Meanwhile, a second 
type of light curve for SN II is found (see Figure  6.35 ) where a sort of plateau is observed 
on the  56 Ni slope. This type of supernova is called SN II - P (P standing for plateau). The 
plateau is due to the nontransparency of the envelope to outgoing radiation. The mass loss 
in Type - Ib and  - Ic supernovae makes it easier for radiation to exit the system and no 
plateau exists for their light curves. A certain amount of mass loss for SN II - L is assumed 
to have taken place and to have suffi ciently diminished the opacity of its outer layers. For 
SN II - P, the change of slope (from  56 Ni to  56 Co decay) occurs about 200   d after the explo-
sion, while it occurs in less than 100   d for SN II - L. Finally, Type - Ia supernova light curves 
are similar to those of Type - II - L because the medium of the outer portions of the explod-
ing white dwarf is relatively transparent to radiation. No plateau therefore exists in light 
curves of SN Ia.   

 Supernovae are rare occurrences. It is estimated that in our galaxy, about three SN I 
and two SN II per century take place. Only a small number of supernovae have been 
visible to the naked eye in recorded history. One of the best - known is the Crab nebula 
Type - II supernova shown in Figure  6.17 . Another example of a supernova discovered in 
early times is the Type - I supernova detected by the famous Danish astronomer Tycho 
Brahe (1546 – 1601) in 1572. 

 As for other astronomical objects classifi cations, the classifi cation of supernovae is 
not an exact science. Some supernovae with peculiar properties cannot be explained by 
the classifi cation system described above. More theoretical and observational investiga-
tion is therefore needed to completely grasp the behaviour of supernova and the related 
physics.  

  6.12   Heavy Element Nucleosynthesis:  s ,  r  and  p  Processes   †    

  6.12.1   The Slow and Rapid Processes 

 As discussed earlier, the elements up to the iron peak can be produced in stars by nuclear 
fusion. Another physical process is therefore needed to explain the existence of the ele-
ments heavier than those of the iron peak. Most of the isotopes of these heavier elements 
can be explained by the capture of neutrons by nuclei followed by the emission of an 
electron via the reaction n    →    p   +   e  −     +     v̄   e . This decay (sometimes called a  β   −   decay) 
increases the number of protons in the nucleus and consequently produces a new element. 
It should be noted that these processes are effi cient since neutrons can generally interact 
more easily with nuclei compared to charged particles (i.e. other nuclei) because they do 
not need to overcome the Coulomb repulsion of the nucleus. 
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 The formation of the heavier elements via neutron capture can occur by two processes: 
the s and the r processes. The s (standing for slow) process is present when there is a weak 
fl ux of neutrons, while the r (standing for rapid) process is due to a strong fl ux of neutrons. 
The s process will be introduced fi rst. 

 During the various evolutionary or nuclear - burning stages of stars seen in Section  6.7 , 
it was shown that during certain nuclear reactions such as

   12 12 23C C Mg n+ → +     (6.86)  

   16 16 31O O S n+ → +     (6.87)   

 free neutrons are emitted in the stellar plasma. Several other reactions not seen here 
can also emit neutrons. The fl ux of neutrons created by such reactions is relatively 
weak and can create what are commonly called the s isotopes. Figure  6.36  describes 
this process for several different elements. To illustrate the s process, the production 
of the heavy elements starting from the stable  114 Cd nucleus will be discussed. The 
fi rst step in this illustration is the absorption of a neutron by a  114 Cd nucleus (see 
Figure  6.36 )

   114 115Cd n Cd+ → + γ     (6.88)     

 This creates a heavier isotope of cadmium, namely  115 Cd. However,  115 Cd is an unstable 
isotope with a half - life of approximately 54   h. Therefore, if there is only a weak neutron 
fl ux, this isotope will  β   −   decay before being able to absorb a second neutron. This process 
will create a  115 In nucleus via
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     Figure 6.36     Synthesis of the elements Cd through Sb. The stable isotopes are hatched. The solid 
line shows the path of the s process.  Figure reproduced and adapted with permission from Pearson, 
J.M.,  Nuclear Physics: Energy and Matter , Adam Hilger, Bristol  (1986).    
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   115 115Cd In e e→ + +− ν     (6.89)   

 A portion of the  115 In nuclei created by this process can also react with the weak neutron 
fl ux and create  116 In nuclei via the reaction

   115 116In n In+ → + γ     (6.90)   

 Again, since  116 In is unstable (with a half - life of approximately14   s) it will decay to give 
 116 Sn nuclei in the following manner

   116 116In Sn e e→ + +− ν     (6.91)   

 before it is able to capture an additional neutron. The stable isotopes  117 Sn,  118 Sn,  119 Sn 
and  120 Sn can then be created by successive neutron captures. The s process can then 
continue to create a large number of heavier elements (and their isotopes) as illustrated in 
Figure  6.36 . 

 Some neutron - rich isotopes shown in Figure  6.36  such as  116 Cd,  122 Sn,  124 Sn and  123 Sb 
cannot be produced by the s process. For these isotopes to be created, a large fl ux of 
neutrons is needed. When a large fl ux of neutrons is present, the nuclei can absorb several 
neutrons rapidly (i.e. the r process) before decaying. As more neutrons accumulate in the 
nucleus, its half - life generally decreases. Eventually, the neutron - rich nucleus will  β   −   
decay when the half - life of the isotope is smaller than the time needed for an additional 
neutron capture (which itself depends on the intensity of the neutron fl ux). For example, 
if  115 In nuclei absorb seven neutrons on timescales smaller than the half - lifetime of the 
various isotopes along the way, and if for the  122 In has a half - life relatively small as com-
pared to the average time for another neutron capture to occur, it will then decay to give 
 122 Sn, which is by defi nition an r isotope. 

 Some isotopes, such as  119 Sn for example, can be created by both the s and r processes. 
The path by which it is created by the s process was discussed above. It can also be created 
by the r process when, for example, the fl ux of neutrons is such that a  115 In nucleus absorbs 
four neutrons before suffering a  β   −   decay, thus creating a  119 Sn nucleus. 

 Large fl uxes of neutrons can occur at the more advanced stages of stellar evolution. 
They can occur when the central temperatures attain large values (i.e.  T     >    10 9    K) so that 
the high - energy photons present in the radiation fi eld can interact with the nuclei and eject 
free neutrons via the reaction

   m mZ ZEl El n( ) + → ( ) +−γ 1     (6.92)   

 The symbol El represents the element (containing  Z  protons) with which the high - energy 
photons interact. 

 A second way by which large neutron fl uxes can be created in stars is during the neu-
tronization phase of evolution of massive stars. As seen earlier, if the star is massive 
enough it will attain a state in which the protons and electrons in its centre fuse to give a 
large number of free neutrons

   p e n e+ → +− ν     (6.93)   

 The large neutron fl ux created by this process can then cause the r process discussed 
above. 
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 Finally, it is important to point out that the s process reaches an impasse at  209 Bi. The 
reason being that when  209 Bi absorbs a neutron from a weak neutron fl ux it enters the 
following cycle of reactions

   

209 210

210 210

210 206 4

206 207

Bi n Bi
Bi Po e
Po Pb He
Pb n

e

+ → +
→ + +
→ +
+ →

−
γ
ν

PPb
Pb n Pb
Pb n Pb
Pb Bi e e

+
+ → +
+ → +
→ + +−

γ
γ
γ

207 208

208 209

209 209 ν

    (6.94)   

 To overcome this gridlock at  209 Bi and to produce heavier isotopes, the r process is 
required. A large fl ux of neutrons produced at the most advanced phases of evolution is 
therefore critical for the presence of the heaviest elements of the periodic table.  

  6.12.2   The p Process 

 As seen in Figure  6.36 , some proton - rich isotopes such as  113 In and  112 Sn cannot be 
explained by the s or r processes. There are 33 such naturally occurring isotopes and they 
have an abundance about two orders of magnitude lower than the s and r isotopes of the 
same element. Another mechanism must then be invoked to explain these isotopes. This 
mechanism is called the p process, p standing for protons because these isotopes are 
proton rich. 

 There exists several different reactions that can create p isotopes (i.e. isotopes that are 
caused by the p process). Therefore, the p process is in reality several different types of 
interactions that give proton - rich isotopes. First, when the temperature is large (in the 
central regions of stars at the advanced phases of evolution for instance), energetic photons 
can eject neutrons from nuclei via the reaction

   m mZ ZEl El n( ) + → ( ) +−γ 1     (6.95)  

where  Z  represents the number of protons in the nucleus of some element El. This reaction 
decreases the relative number of neutrons and as a consequence increases the relative 
number of protons in the nucleus. It should be noted that the s and r elements serve as 
seeds for the formation of the p isotopes. Also, since high temperatures are needed for 
such reactions, it is generally believed that the p process occurs during the explosive stage 
of massive stars. Since such evolutionary phases are short lived, it assures that photodis-
integration of the seeds (i.e. s and r process elements) is not too important. 

 The reaction above can, for example, transform  116 Sn into  115 Sn

   116 115Sn Sn n+ → +γ     (6.96)   

 Nuclei can also absorb free protons found in the stellar plasma

   m mZ ZEl p El( ) + → +( ) ++1 1 γ     (6.97)   
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 This reaction also increases the relative number of protons in the nucleus and produces a 
new element with an extra proton as compared to the original nucleus   m  El( Z ). 

 Another process that is less probable is the fusion of a proton with a nucleus that then 
emits a neutron via the reaction

   m mZ ZEl p El n( ) + → +( ) +1     (6.98)   

 Finally, the number of protons in nuclei can be increased by positron capture. At the 
high temperatures reached during the later stages of stellar evolution, electron – positron 
pairs can be created from energetic photons. The positrons can then be captured by the 
following reaction

   m mZ ZEl e El e( ) + → +( ) ++ 1 ν     (6.99)   

 This reaction transforms a neutron into a proton and can thus create proton - rich nuclei.   

  6.13   Nuclear Reaction Cross Sections and Rates   †  †    

 In this section, the physics surrounding nuclear reaction rates will be discussed. To better 
understand the physical dependence of the nuclear reaction rates, an ideal situation illus-
trated in Figure  6.37  will fi rst be considered. In this fi gure, the nuclear reaction between 
two types of nuclei  A  and  B  is studied. Nuclei  A  are travelling with velocity  V  with respect 
to nuclei  B  that are considered stationary. The reaction rate per unit volume  r AB   is propor-
tional to the fl ux ( F A  ) of particles  A  (i.e. the number of particles  A  crossing a surface 
perpendicular to the velocity per unit area, per unit time), to the number density of particles 
 B  ( n B  ) and the cross section (  σ  ( V )) of the nuclear reaction in question. As discussed in 
Section  6.4 , the cross section depends on the velocity of the incoming particles. The reac-
tion rate per unit volume is therefore

   r V F n V Vn nAB A B A B= ( ) = ( )σ σ     (6.100)  

where the fl ux of particles  A  is  Vn A  . The numerical value of  n A n B   is equal to the number 
of interacting pairs (i.e. pairs of  A – B  particles) per unit volume. Therefore, when the 

A

V

B

     Figure 6.37     Nuclei  A  incoming with velocity  V  upon stationary nuclei  B  . 
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incoming particles are identical to the stationary ones, the number of pairs is   nA
2 2 and not 

  nA
2. The nuclear reaction rate may then more generally be written

   r
V Vn n

AB
A B

AB

= ( )
+

σ
δ1

    (6.101)  

where   δ  AB   is Kronecker ’ s delta function (i.e.   δ  AB     =   0 when  A   ≠   B  and   δ  AB     =   1 when  A    =    B ).   
 This equation gives the rate of reaction for a single value of velocity. In stellar plasma, 

an integration taking into account the velocity distribution of the nuclei must be undertaken 
because both particles  A  and  B  possess a Maxwellian velocity distribution (assuming that 
the equation of state is that of an ideal gas). It can be shown that the relative velocity 
between two types of particles having a Maxwellian distribution, is itself Maxwellian in 
nature. This Maxwell distribution is represented by the function  Φ ( V ) where  V  is the rela-
tive velocity of the two interacting particles. The rate of reactions per unit volume may 
then be written

   r
n n

AB
AB A B

AB

=
+

λ
δ1

    (6.102)  

where

   λ σAB V V V V= ( ) ( )
∞

∫ Φ d
0

    (6.103)   

 The variable   λ  AB   is used in order to separate the terms related to the nuclear physics of 
the reaction from those depending on the number densities of the reactants in  r AB  . This 
physical quantity, which is called the reaction rate per pair of particles, will be useful when 
writing nuclear reaction rate equations (see below). The reduced mass of the reacting 
nuclei intervenes in the distribution  Φ ( V ). This distribution also depends on the total 
kinetic energy ( E ) of these nuclei in the centre - of - mass frame
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where   μ   is the reduced mass. The Maxwellian distribution  Φ ( V ) is given by the following 
expression
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and it can be shown that   λ  AB   may be written in the form
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 Nuclear physics shows that nuclear cross sections have the following energy 
dependence
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   σ E
S E

E

b

E( ) = ( ) −
e     (6.107)  

where

   b
Z Z

h
A B= 23 2 2π μ     (6.108)   

 Here,  Z A   and  Z B   are the charges of the nuclei under consideration. Their appearance in 
the cross section formula given above is related to the presence of the barrier potential 
penetration of the Coulomb potential. Therefore, for a given reaction,  b  is a constant that 
depends only on the physical properties of the reacting nuclei. For nonresonant reactions, 
 S ( E ) is a slowly varying function of energy that will be considered constant here. This 
function is normally obtained experimentally. As mentioned previously, since the nuclear 
cross sections at the energies found in stellar cores are very small, the value of  S ( E ) at 
these low energies cannot be obtained in particle accelerator experiments. However, the 
value of  S ( E ) may be approximated by extrapolating the experimental data to lower 
energies. 

 Figure  6.38  shows the dependence of the cross section for the proton – proton reaction 

in the centre of the Sun. The term   e
− E

kT  represents the high - energy tail of the Maxwell 
distribution. Since particles with higher energies more easily penetrate the barrier, the 

number of particles at high energies is critical for fusion. The term   e
− b

E  represents the 

     Figure 6.38      The dependence of the nuclear cross section of the proton – proton reaction in the 

centre of the Sun. The curve    e
− E

kT   represents the high energy tail of the Maxwell distribution while 

the curve    e
− b

E   measures the probability of quantum tunnelling. The dotted curve (commonly called 
the Gamow peak) is the product of these two terms (it is multiplied by 1000 in this fi gure for visual 
effect)  . 
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probability of barrier penetration as a function of energy. The product of these two functions 
gives a function commonly called the Gamow peak, named after the Ukrainian - born physi-
cist George Gamow (1904 – 1968). This scientist was the fi rst to propose that nuclear fusion 
occurs due to quantum tunnelling (a concept he had introduced in his theory of alpha -
 decay). The energy related to this peak is commonly called the Gamow energy. In the Sun ’ s 
centre, the peak for the proton – proton reaction rate is at approximately 6   keV. The reaction 
rate is therefore determined by a combination of the need for a suffi cient number of high -
 energy nuclei and the need for a relatively large probability of barrier penetration.   

 Assuming the knowledge of the reactions rates, rate equations (see Eq.  6.111  below) 
may be written that can give the abundances of the isotopes that intervene in fusion reac-
tions. To illustrate this, deuterium ( 2 H) will be discussed. On the main sequence, deuterium 
is created via the reaction

   1 1 2H H H e e+ → + ++ ν     (6.109)   

 while it is destroyed when it is fused with hydrogen

   1 2 3H H He+ → + γ     (6.110)   

 By defi ning  r  pp  and  r  pd  (where the indices p and d, respectively, represent protons and 
deuterium) as the respective reaction rates per unit volume of these two nuclear reactions 
and assuming that deuterium does not react by means other than the two reactions above, 
the rate of change of the deuterium number density is

   
d

d
d

pp pd
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pp p d pd
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r r
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n n= − = −

2
λ λ     (6.111)   

 When the number density of deuterium nuclei ( n  d ) is large,  r  pd  is the dominating term and 
 n  d  decreases with time. On the other hand, when  n  d  is small the proton – proton reaction 
rate becomes larger than the proton – deuterium rate and  n  d  therefore increases. This equa-
tion is thus self - regulating and eventually attains a steady state where

   
d

d
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 which leads to
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    (6.113)   

 This gives the number of deuterium atoms relative to protons (or hydrogen). Nuclear 
physics can show that in the centre of stars   λ   pd     >>      λ   pp  and consequently deuterium is 
destroyed there. For example, for the conditions found in the Sun ’ s centre the relative 
steady - state abundance of deuterium to that of hydrogen is

   
n

n
d

p

≈ −10 18     (6.114)   

 From measurements, this ratio is on the order of 10  − 4  in the water found on Earth. 
Therefore, the abundance of deuterium created at the beginning of the Universe is much 
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larger than the quantity found in stars because of the effi ciency of its destruction during 
the proton – proton chains. 

 The nuclear energy production rate per unit mass  ε  that intervenes in the calculation of 
stellar structure (as seen in Chapter  5 ) depends on the rate of the nuclear reactions that 
take place in stars. For example, for the PPI chain, the nuclear energy production rate per 
unit mass (in units of MeV per gram per second) is given by the following expression

   εPPI pp pdMeV MeV MeV= × + × + ×r r r1 179 5 493 12 86033. . .     (6.115)  

where  r  33  is the rate of the reaction  3 He   +    3 He    →     4 He   +   2 1 H and the various numerical 
values in this equation are equal to the energies emitted by the three corresponding reac-
tions making up the PPI chain. For the fi rst of these reactions ( 1 H   +    1 H    →     2 H   +   e +    +    ν  e ), 
the average energy taken away by the neutrino was subtracted and the energy due to the 
positron annihilation was included. Therefore, by calculating the cross sections of the three 
reactions involved, one may obtain the energy production rate due to the PPI chain. An 
approximate equation for this quantity was given in Eq.  (6.25) .  

  6.14   Summary  

   Einstein s mass energy equation initial final’ :− = = −( )E mc m m cΔ 2 2     (6.116)  

   Hydrogen burning H He e where depends on the che: 4 2 21 4→ + + ++ ν γn n aain reaction( )      
 (6.117)  

   Helium burning triple- He Cα γ( ) → +: 3 34 12     (6.118)  

   Lifetime of stars on main sequence * * yms: ( )t M M L L≈ ( )−
1010 1

� � rr     (6.119)   

 Three end states for stars:   white dwarf, neutron star and black hole

   M Mwhite dwarf Chandrasekhar s limit≤ ( )1 43. ’�     (6.120)  

   
1 43 3. M M M� �< ≤

− −( )
neutron star

Tolman Oppenheimer Volkoff limit     (6.121)  

   M Mblack hole > 3 �     (6.122)  

   Distance to near stars parallax method( ) =: d
1

α
    (6.123)  

   Schwarzschild radius Sch: R
GM

c
= 2

2
    (6.124)      

 6.15   Exercises    

   6.1   Assuming that 10   eV of energy per atom found in the Sun is emitted during some 
chemical reaction taking place there, calculate the time the Sun could shine at its present 
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intensity if the only energy source was this chemical process. Assume that the Sun is 
composed of pure hydrogen. Is it then possible that the energy source of the Sun is chemi-
cal in nature? Why or why not?   

   6.2   Complete the following nuclear reactions

   23 1 20Na H Ne+ → + ___     (6.125)  

   17 17F O e→ + ++ ___     (6.126)  

   22 4 26Ne He Mg+ → + ___     (6.127)  

   21 4 24Ne He Mg+ → + ___     (6.128)     

   6.3   Verify that the global reaction for the PPII and PPIII chain is similar than for the 
PPI chain.   

   6.4   Calculate the energy emitted by the triple -  α  reaction.   

   6.5   Calculate the energy emitted by the reaction  1 H   +    2 H    →     3 He   +    γ .   

   6.6   Calculate the energy emitted by the reaction  12 C   +    4 He    →     16 O   +    γ .   

   6.7   Estimate the time the Sun will spend on the horizontal branch supposing that helium 
burns via the triple -  α  reaction (note that at this phase of evolution the luminosity of the 
Sun will be approximately equal to 100    L   �  ).   

   6.8   By making the appropriate unit transformations, show that when the parallax angle 
of a star is given in units of arcsec, its distance in units of pc is given by the following 
equation

   d = 1

α
    (6.129)     

   6.9   You fi nd yourself on a distant planet circularly orbiting a star. You observe a 
given star and determine its distance through spectroscopic means to be 4   pc. You measure 
the position of the star in question twice, the second measurement delayed by an interval 
of time equal to half of the orbital period of the planet. For your second measurement, 
you measure that you must move the telescope by 6 arcsec to keep the star in the 
centre of the fi eld of view of the telescope. Calculate the radius of the orbit of the planet 
in AU.   

   6.10   A planetary nebula is found at a distance of 140   pc from Earth has an angular 
diameter of 20 arcmin (see Figure  6.39 ). What is the geometrical diameter of this nebula? 
If the measured expansion velocity of the nebula is 22   km/s and assuming that it is 
spherical, by making proper approximations, estimate its age (i.e. the time since it 
started expanding).     
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20′

     Figure 6.39     Illustration showing the angular dimension of the planetary nebula discussed in 
Exercise 6.10. The white dwarf is located at the centre of the expanding shell of gas . 

   6.11   Which type of stellar cluster is bluer? Explain why?   

   6.12   Find the equation showing the dependence of the average density of black holes 
with respect to their mass.   

   6.13   Assuming that Hawking emission obeys the Stefan – Boltzmann law for blackbodies, 
fi nd an expression for the lifespan of black holes as a function of their mass. Calculate 
the lifespan for the black holes with masses of  m  p , 1000   kg,  M   �   and 5    M   �  .   

   6.14   A spectral line coming from a quasar is observed to be redshifted due to the super-
massive black hole found at its centre. The redshift is such that the observed wavelength 
is 0.6   % longer than the theoretical value. Assuming that the mass of the supermassive 
black hole is 10 9     M   �  , at what distance (in ly) from the centre of this galaxy is the source 
of the photons forming the line?   

   6.15  †     An astronomer claims to have discovered a Type - II supernova in a globular cluster. 
Is this possible? Why or why not?   

   6.16  †  †     Assuming that  3 He is solely created and destroyed by the following reactions of 
the PPI chain

   1 2 3H H He+ → + γ     (6.130)  

   3 3 4 12He He He H+ → +     (6.131)   

 calculate the ratio of the  3 He and  4 He abundances in terms of the reaction rate per pair of 
particles (or  λ ) of these two reactions.     
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   7.1   Introduction and Historical Background 

 At the end of the ninetieth and at the beginning of the twentieth centuries, astronomers, 
such as the American researchers Annie Jump Cannon (1863 – 1941) and Antonia Maury 
(1866 – 1952), noticed that the atomic lines in the spectra of certain stars were abnormally 
strong or weak as compared to typical (or normal) stars. It is now known that these spectral 
peculiarities are due to the abundances of the elements that can sometimes be very large 
or very small at the surface of certain stars. These stars are commonly called chemically 
peculiar stars. Since the radiation fi eld received from stars is formed in the outer layers 
of stars, the overabundances or underabundances observed are only symptomatic of the 
surface composition and are not indicative of the average abundances for the star as a 
whole. 

 Several theories have been put forth to explain chemically peculiar stars. One of the 
possibilities to explain the chemically peculiar star phenomenon was the existence of an 
abnormal atmospheric structure instead of invoking abundance anomalies. It was thought 
that a modifi cation (of unknown origin) of the physical structure of the atmosphere could 
cause the presence of abnormal line strengths in the spectra of such stars. However, this 
potential solution was discarded since it could not adequately explain the spectra of chemi-
cally peculiar stars. 

 A more logical solution to explain chemically peculiar stars is that they possess abnor-
mal elemental abundances. Several processes have been proposed to explain the presence 
of peculiar abundances required to explain the spectra of these stars. It was fi rst thought 
that nuclear physics was the source of these abundance anomalies. A theory by which the 
abundance anomalies were formed by the capture of free neutrons by nuclei was proposed. 
The nuclei would then decay to give other elements via the decay reaction

  7 
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   n p e e→ + +− ν     (7.1)   

 Such decay reactions were discussed in (optional) Section  6.12 . 
 Another nuclear theory was also proposed to explain chemically peculiar stars. In this 

theory,  α  particles would react with nuclei at the surface of stars, thereby changing the com-
position of the elements there. In this model, the high velocities of the  α  particles needed to 
interact with nuclei (i.e. to be able to penetrate the repulsive Coulomb potential) are obtained 
by the acceleration of the  α  particles by very large magnetic fi elds. However, the magnetic 
fi elds needed for such nuclear reactions are much larger than those observed at the surface 
of magnetic stars. Also, since not all chemically peculiar stars possess magnetic fi elds, this 
process cannot be the source of the abundance anomalies observed for nonmagnetic stars. 

 Unfortunately, the nuclear theories proposed above are unable to explain the variety of 
chemically peculiar stars and the dependence of the observed surface abundances on their 
effective temperature. Such nuclear theories therefore fail to properly explain the well -
 established observational anomalies. 

 Another theory attempting to explain the abundance anomalies by an accretion of 
enriched matter at the surface of the stars under consideration was also not successful in 
explaining chemically peculiar stars. 

 In 1970, the Canadian astrophysicist Georges Michaud (b. 1940) proposed that the 
abundance anomalies observed in chemically peculiar stars are the result of atomic proc-
esses rather than nuclear ones (see Michaud, G.  The Astrophysical Journal , 160, 641 
 (1970)  for more details). In this theory, the elements are segregated at various depths in 
the star according to their capability of absorbing photons from the radiation fi eld. When 
an atom absorbs a photon (following a photoexcitation or photoionisation) the momentum 
of the photon is transferred to the atom and leads to what is called a radiative force on the 
atom. Since there exists a positive radiative fl ux in the outgoing direction in stars, this 
momentum transfer pushes the atoms toward the surface of the star, while gravity acts in 
the opposite direction. In this simple description of this theory, when the radiative force 
is larger than gravity the atoms diffuse towards the surface of the star, while they sink 
towards the centre when gravity dominates the radiative force for the species under con-
sideration. This can cause elements to accumulate (or depreciate) at certain depths. This 
process is commonly called atomic diffusion. 

 Since different species have different absorption capabilities, the species diffuse relative 
to one another and some elements can become overabundant at the surface while others 
can become underabundant. A large number of studies have shown that diffusion theory 
can explain most abundance anomalies observed at the surface of chemically peculiar stars. 
The diffusion of the elements in stars is not only of importance for the abundances 
observed at their surface but it can also modify the structure and the evolution of stars. 
The accumulation (or depreciation) of the elements at various depths in a given star modi-
fi es the opacity spectrum, which in turn alters the transfer of radiation. This can have a 
non - negligible effect on the structure of the star and consequently on the position of its 
evolutionary track in the H – R diagram. 

 Atomic diffusion can also play a role in asteroseismology. For example (see Section 
 5.7.1 ), the accumulation of iron - peak elements is believed to be responsible for the pulsa-
tions of  β  Cephei stars. These pulsations are driven by radiation that is trapped due to the 
increase of the opacity caused by this accumulation. 
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 In this chapter, a section describing the different types of chemically peculiar stars will 
fi rst be presented where the main properties of these stars are reviewed. This will be 
followed by an advanced section where a simplifi ed version of the diffusion theory is 
given. Since a major ingredient in the diffusion theory is the radiative acceleration on 
the atomic species, this physical entity will be discussed in (the advanced) Section  7.4 . 
Finally, other physical processes that can also transport chemical elements in stars will be 
described. 

 This chapter has a goal of not only initiating the reader to the fi eld of chemically peculiar 
stars, but also serves as an excellent application of the various concepts seen earlier in this 
book. Concepts such as opacity, ionisation, radiative transfer, convection, stellar evolution, 
etc., all come into play when studying the various types of chemically peculiar stars.  

  7.2   Chemically Peculiar Stars 

 Chemically peculiar stars come in many varieties. For example, chemically peculiar stars 
with different  T  eff  can have very different abundance anomalies. Also, some of these stars 
possess large magnetic fi elds while others are nonmagnetic. As will be discussed below, 
the presence of large magnetic fi elds has an important effect on the diffusion of the 
elements in stars. Abundances observed for magnetic stars are therefore different from 
their nonmagnetic counterparts (with the same  T  eff ). A classifi cation of these astronomical 
objects is therefore in order. 

 Besides having abundance anomalies, chemically peculiar stars possess the commonal-
ity of having low rotational velocities (typically  V sin i     <    100   km/s, see Figure  4.9  for the 
defi nition of this quantity) as compared to normal stars. Low rotational velocities assure 
the stability of the stellar medium that is needed for atomic diffusion to take place. For 
example, when large scale mixing processes such as convection are present in stars, atomic 
diffusion cannot be effi cient there. 

 Historically, the term chemically peculiar star was associated to upper main - sequence 
stars. The American astrophysicist George W. Preston (b. 1930) divided these stars into 
four groups (see Preston, G.W.,  Annual Review of Astronomy and Astrophysics , 12, 257 
 (1974)  for more details). These groups are described below. However, some stars not 
found in these groups and lying outside the main sequence also possess abundance anoma-
lies. For example, some white dwarfs as well as some horizontal - branch stars have abun-
dance anomalies thought to be due to atomic diffusion. Such stars are also sometimes 
called chemically peculiar. They will not be discussed here. 

 The four groups of chemically peculiar stars, were originally named CP1, CP2, CP3 
and CP4 stars. However, more prevalent nomenclature used in scientifi c literature is 
employed here. CP1 stars are Am -  (and Fm - ) type stars, m standing for metallic because 
some metals are overabundant. CP2 stars are Ap (and Bp) stars, p standing for peculiar. 
These stars have large magnetic fi elds. CP3 stars are HgMn stars that are stars that are 
characterised by large overabundances of Hg and Mn. Finally, the CP4 group contains 
what are called the He - weak stars that are stars with a low He abundance at their surface. 
Here, we took the liberty to add He - strong and  3 He stars in a group called He - abnormal 
stars. Each of these four groups of stars will now be described. 
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  7.2.1    A  m  Stars 

 Am (and Fm) stars are nonmagnetic main - sequence stars in the effective temperature range 
7000   K    <     T  eff     <    10 000   K. Their main characteristic is the underabundance of the elements 
Ca and Sc in their atmosphere. They possess low rotational velocity believed to be due to 
tidal forces from their companion since most of these stars are found in binary groups. 

 The outer region of these stars is convective and the abundance anomalies observed at 
the surface emanate from deeper regions. The fi rst scenario that was thought to be respon-
sible for the observed anomalies is that they are formed by atomic diffusion at the bottom 
of a surface convective zone due to hydrogen ionisation. Contrarily to normal A - type stars, 
no helium convection zone exists in Am stars because helium settles to deeper regions of 
these stars. Helium settling in Am stars is due to the fact that it is not suffi ciently supported 
by radiation as compared to gravity (see Sections  7.3  and  7.4 ). The elements that accu-
mulate at the bottom of the hydrogen convection zone due to atomic diffusion are then 
dredged - up and brought to the surface by the convective process. At the bottom of this 
mixing zone, Ca is not strongly supported by radiation since it is in the Ar - like confi gura-
tion (i.e. it is twice ionised). As will be seen in Section  7.4 , the radiative force of species 
in noble - gas confi gurations is relatively weak and they diffuse toward the centre of the 
star due to gravity. This explains the low abundance of calcium observed at the surface 
of Am stars. 

 Recent modelling of the evolution of stars while including atomic diffusion shows that 
iron accumulation at certain depths of AmFm stars can lead to a convection zone. 
Convection is triggered there due to the increase of the opacity caused by the overabun-
dance of iron. The depth of the surface convective zone is therefore larger than in the 
scenario initially proposed to explain the AmFm stars. Because of the high temperature 
at that depth, Ca is more highly ionised and found in the Ne - like confi guration (as opposed 
to the Ar - like confi guration for the scenario described in the previous paragraph). This 
fact can explain the underabundance of this element since the Ne - like (noble gas) confi gu-
ration has a relatively small radiative force (see Figure  7.3  for an example of such an 
occurrence).    

  7.2.2    A  p  Stars 

 Ap (and Bp) stars are strongly magnetic main - sequence stars in the effective temperature 
range 7000   K    <     T  eff     <    15 000   K. They possess magnetic fi elds reaching values up to 
approximately 10 4  G at their surface. The iron - peak elements are strongly overabundant 
in the atmosphere of these stars (i.e. up to 100 times the solar abundance) while the rare -
 earth 1  elements have overabundances that reach 10 5  times their solar values. Helium is 
underabundant in their atmosphere. The magnetic fi elds at the surface of these stars have 
complex confi guration but are often approximated by a dipolar fi eld that is inclined with 
respect to the axis of rotation. This is commonly called the oblique rotator model. 

 The presence of a strong magnetic fi eld possibly inhibits the convective movements in 
the atmosphere of these stars. Assuming this is true, as opposed to Am stars where the 

     1    Rare - earth elements are the elements from lanthanum ( Z    =   57) to lutetium ( Z    =   71).  
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abundance anomalies emanate from deep inside the star, the atomic diffusion process can 
be at work in atmospheres of Ap stars. The presence of a magnetic fi eld also modifi es the 
diffusion of the species since the velocity of charged ions is modifi ed via the Lorentz force. 
The Zeeman effect can also come into play (see Section  7.4 ). Complex magnetic - fi eld 
confi gurations detected at the surface of Ap stars can also lead to patches at their surface 
where certain elements can be over -  or underabundant. 

 The effi ciency of the diffusion process in the atmosphere is also thought to lead to verti-
cal abundance stratifi cation there. A growing amount of observational evidence confi rms 
this tendency. Such abundance stratifi cations (both horizontal and vertical) modify the 
atmospheric structure and must be taken into account in detailed spectroscopic studies of 
these stars. 

 To conclude this section, a discussion surrounding magnetic fi elds in stars is in order. 
Stellar magnetic fi elds are thought to be of two origins depending on the type of star under 
consideration. The magnetic fi eld of some stars, such as the Sun, seems to be generated 
by the currents of plasma inside them. This is commonly called the dynamo theory. 
Another possibility for the presence of magnetic fi eld in stars is simply a manifestation of 
a galactic magnetic fi eld found in the original nebulae where the star formed. The contrac-
tion of the protostar condenses the magnetic fi eld lines of this galactic fi eld that is therefore 
intensifi ed by the time the star is born. This theory, which explains the presence of mag-
netic fi elds in some stars such as ApBp stars, is called the fossil fi eld theory.  

  7.2.3    H  g  M  n  Stars 

 HgMn stars are nonmagnetic main - sequence stars in the effective temperature range 10 
000   K    <     T  eff     <    15 000   K. These stars exhibit very large Hg and Mn overabundances reach-
ing up to respectively, 10 6  and 10 4  their solar value. The rare - earth elements are also 
overabundant, while helium is generally underabundant. 

 This type of chemically peculiar star also shows isotopic anomalies. For example, in 
some HgMn stars the relative abundances of Hg and Pt isotopes are very different from 
their solar values. These isotopic anomalies are possibly due to a physical process called 
light - induced drift that will be discussed in Section  7.5 . 

 Since HgMn are relatively hot stars, no hydrogen convection zone should exist in these 
stars. In this context, their atmosphere should be stable enough for atomic diffusion to 
take place there.  

  7.2.4   He - Abnormal Stars 

 The hottest of the four groups of chemically peculiar stars is the one that contains main -
 sequence stars with abnormal helium abundance. These helium abnormal stars come in 
several varieties. 

 The He - weak stars are found in the effective temperature range 14 000   K    <     T  eff     <    
20   000   K. They show helium underabundances by factors of 2 to 15 in their atmosphere. 
They come in both magnetic and nonmagnetic form. The nonmagnetic versions are called 
P - Ga types (or sometimes phosphorous stars). They possess large overabundances of P 
(up to a factor of 100) and Ga (up to a factor of 10 5 ) as compared to their solar values. 
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 Another subclass of the He - weak group is called  3 He stars. These stars possess an 
abnormally high  3 He to  4 He ratio. 

 Finally, there also exist He - rich stars where helium is largely overabundant. The He to 
H ratio can reach up to a factor 10 in the atmosphere of these stars. Radiative acceleration 
(see advanced Sections  7.3  and  7.4 ) is not suffi ciently large to sustain such large over-
abundances of helium. Other mechanisms, such as mass loss are thought to play a role 
there.   

  7.3   Atomic Diffusion Theory    †  †   

 Atomic diffusion is the relative movement of atoms in a gas containing at least two species. 
The diffusion mechanism can be caused by several physical processes, some of which will 
be discussed here. The diffusion due to gravity, the electric fi eld and radiative acceleration 
will be presented. Diffusion may occur in stars where the medium is hydrodymanically 
stable (i.e. in the absence of convection or turbulence for instance). It is therefore not 
present in all type of stars. 

 To more readily understand the major factors intervening in atomic diffusion, a simple 
depiction of the diffusion theory is presented. The fi rst step to understanding diffusion is 
to study what can be thought of as natural diffusion. Natural diffusion occurs when, in the 
absence of other forces, a gradient of a given species exists. An example in everyday life 
is what occurs when a bottle of perfume is opened in the middle of a room. The molecules 
of the perfume that have evaporated in the atmosphere then naturally diffuse throughout 
the room because of the gradient of perfume molecules that initially exists surrounding 
the bottle. 2  The diffusion process ends if a state of equilibrium where a uniform density 
of perfume molecules is achieved in the room. 

 In the aim of quantifying the diffusion process caused by a gradient of the number 
density of a given species, a simple scenario will fi rst be studied here. A gas of constant 
pressure and temperature composed of two species (named 1 and 2) will be considered. 
In the scenario studied here, the existence of number density gradients for each species 
along an axis defi ned as  r  is assumed (see Figure  7.1 ). To conserve a constant pressure in 
the gas, the gradients of the two species are the opposite of each other

   d
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n

r
1 2= −     (7.2)     

 These gradients are shown in Figure  7.1  and induce the particles 1 to diffuse in the 
direction of increasing  r  ( r  increases from left to right in this fi gure) while the particles 2 
diffuse in the opposite direction. Species 1 diffuses outward because at a given depth, 
more particles arrive from deeper regions (or smaller values of  r ) as compared to those 
coming from shallower regions because the number density of this species increases with 
depth. 

   2   Here, it is assumed that the atmosphere in this room is completely stable since air currents or convective fl ows could dominate 
the diffusion phenomenon.  
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 The fl ux of particles 1 ( F  1 ) in the direction  r̂  at a given depth is equal to

   F n V1 1 1=     (7.3)  

where  n  1  and  V  1  are, respectively, the number density and diffusion velocity of particles 
1 at the depth under consideration. An expression for  V  1  will now be found for a simplifi ed 
model of a gas containing two species. In this model, it is assumed that the particles in 
the gas travel along one of the three perpendicular axis (including an axis parallel to  r̂ ) 
with a speed equal to the average thermal speed   V1 in the gas. In this scenario, there are 
three streams each containing one third of the particles. In the stream parallel to  r̂ , 1/6 of 
the total number of particles travels in the direction  r̂  and an equal amount travel in the 
opposite direction. 

 If the mean free path of these particles is equal to  l  1 , the number density of particles 
arriving at the depth under consideration from below and therefore going in the outgoing 
direction is approximately equal to 3 
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while the number density of those coming from above and travelling inward is
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     Figure 7.1     Illustration of a gas (at constant pressure and temperature) composed of two types of 
particles (1 and 2) with gradients along the direction  r  of opposite value. The variable  r  increases 
from left to right and the unitary vector   r̂   points in the outward direction. The directions of the dif-
fusion velocities are shown in the fi gure . 

   3   Here the linear approximation   n r r n r
n

r
r+( ) ≈ ( ) +Δ Δ

d

d
 was used to fi nd the number density of particles at a distance  Δ  r    =    ±  l  1  

from the depth under consideration. The fraction 1/6 found in Eq.  (7.4)  and  (7.5)  is related to the three stream approximation 
used.  
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 The fl ux of particles 1 at the depth under consideration is therefore equal to sum of the 
fl uxes of the two opposing streams of particles travelling along the  ±  r̂  axis, which leads 
to the following expression
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 The two streams perpendicular to  r̂  do not contribute to the fl ux in direction  r̂ . These 
streams are of no interest since for the scenario considered no gradients, and therefore no 
fl uxes, exist along their direction. 

 Similarly, the fl ux of the other type of particle (particles 2) in the gas is
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and since the gradients of the two types of particles are opposite of one another (Eq.  7.2 )
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 The average diffusion velocity (  V̄   ) of the particles in the gas can also be estimated by the 
following equation
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 The velocity of physical interest is the diffusion velocity of the species relative to the bulk 
of the medium (or relative to the average velocity of the particles in the gas). The fl ux of 
particles 1 ( n  1  V  1,diff ) relative to the average velocity, which defi nes the diffusion velocity 
 V  1,diff , is given by the expression
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 It can be shown (see Exercise  7.1 ) that by using the two equations above,  V  1,diff  can be written
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 By defi ning a physical quantity called the diffusion coeffi cient  D  12 
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the diffusion velocity of species 1 becomes
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 A similar equation is found for the species 2, namely
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 Since the gradients of the two types of particles are opposite to one another (Eq.  7.2 ), the 
diffusion velocity of one species is in the opposite direction to the other one. These last 
two equations therefore give the diffusion velocities of the two species relative to the bulk 
of the medium. 

 A case of great interest in stars is when one species is much less abundant than the 
other. For instance, if species 2 is much less abundant than species 1 (i.e.  n  2     <<     n  1 ), which 
is commonly called the trace - element approximation, the diffusion coeffi cient then 
becomes
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 The diffusion velocity of species 2 given above is the one relative to species 1. In stars, 
the diffusion of the metals can have an important impact on their structure and evolution. 
In this case, the metals are considered trace elements (species 2) as compared to the 
dominating species, namely hydrogen (or species 1), and the diffusion velocity of these 
metals are calculated relative to hydrogen. The hydrogen gas is sometimes called the buffer 
gas within which the metals diffuse. 

 In the simplifi ed model presented here, the diffusion coeffi cient depends on the mean 
free path, in the buffer gas, for the species under consideration. The diffusion coeffi cient 
therefore depends on the interaction of the species within the gas. A species that does not 
strongly interact with the buffer gas and that therefore has a large mean free path will 
possess a large diffusion coeffi cient. All else being equal, this species will diffuse faster 
in this buffer gas than other species that interact more strongly with it. For example, neutral 
ions have larger mean free paths than charged ones. Neutral ions are therefore more mobile 
and generally have larger diffusion velocities than charged ions. This can have an impor-
tant impact in stellar atmospheres where neutral ions can exist. 

 As seen above, the presence of an abundance gradient causes diffusion. Diffusion can 
also be caused by the presence of an external force on the atoms. A trace element (species 
2) found in a buffer gas is considered here and where a force that only applies to the trace 
element is present. When this force ( F  2 ), which is assumed to be directed inward (see 
Figure  7.2 ), is applied to species 2 in a gas initially of constant density, pressure, tempera-
ture and homogeneous composition, it creates a gradient of its number density leading to 
a growing number density of particles 2 in the direction of the force. This is similar to the 
density gradient created by gravity via the hydrostatic equilibrium equation (see Section 
 2.2 ). In such a scenario, a gradient of  n  2  will develop until (and if) a state of equilibrium 
is achieved.   

 Figure  7.2  shows an element of matter containing  N  2  atoms of species 2. Since the buffer 
gas is not affected by the force under consideration, the partial pressure of the dominant 
species will be assumed to remain constant. At equilibrium the following force equation 
ensues for the trace element
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   P r r P r A N2 2 2 0+( ) − ( )[ ] + =d d F2     (7.16)  

where  P  2  is the partial pressure due to particles of species 2 and d A  is the area of the mass 
element shown in Figure  7.2 . Here, the forces due to the pressure of the buffer gas on the 
top and bottom of the cylinder cancel out and need not be present in the equation given 
above. In the ideal - gas approximation, the partial pressure of species 2 is equal to

   P n kT2 2=     (7.17)  

and since
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the force equation at equilibrium may then be written
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 Therefore, this equation permits the calculation of the number density of the trace element 
at equilibrium for a given force, assuming this force does not affect the buffer gas. Of course, 
this state of equilibrium cannot be attained instantaneously since the migration of particles 
2 takes a certain amount of time. By analogy to the equation for the diffusion velocity found 
in Eq.  (7.14) , the diffusion velocity during the resettlement of the atoms of the trace element 
towards the equilibrium confi guration can be approximated by the following equation
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 If a state of equilibrium is achieved (i.e. when Eq.  7.19  is valid), the diffusion velocity 
becomes nil and species 2 stops migrating. 

dr

P2 (r + dr) dA

P2 (r) dA
r

N2F2

dA

     Figure 7.2     Illustration of the forces on the particles of species 2 found in a mass element with 
volume d A d r  found at a distance  r  from the centre of the star. Since the pressure due to species 1 
is assumed constant, only the partial pressure  P  2  of species 2 is shown here. The force on the particle 
2 inside the mass element is  N  2  F  2 , where  N  2  is the total number of particles 2 in the volume d A d r . 
It should be noted that the force  F  2  is arbitrarily chosen to be directed inwards.  
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 In stars, one of the forces present is evidently gravity. Since hydrogen is the most 
abundant element in stars, it will compose the buffer gas. Since it is the diffusion of a 
trace element relative to this buffer gas that is of interest, the force on species  i  is written 
relative to the gravity felt by hydrogen atoms

   Fi im g m g= − p     (7.21)  

where  m  p  and  m i   are the respective mass of the hydrogen atom and of the atoms of the 
metal under consideration. This force causes the settling of the elements heavier than 
hydrogen in stars towards its central region. However, other physical processes can hinder 
this process. First, when mixing (convection for example) is present, the metals will not 
settle gravitationally. Also, when atoms acquire momentum following absorption of photons 
contained in the radiative fl ux of the star, this leads to a force that can selectively push 
some elements outward in the star. This process may be expressed as a radiative accelera-
tion on the species under consideration (  g

i
rad, see Section  7.4  for more details). Radiative 

acceleration depends on the capability of the species under consideration to absorb photons 
(i.e. on their radiative opacity). Also, since a net fl ux of radiation fl owing in the outgoing 
direction exists in stars, radiative acceleration is directed outward and induces a positive 
diffusion velocity. The force felt by the metal under consideration relative to the protons 
while taking into account gravity and the radiative force therefore becomes

   Fi i
im g g m g= −( ) −rad p     (7.22)   

 Here it is assumed that the radiative force on the buffer gas (i.e. made up mostly of protons) 
is negligible. The diffusion velocity of species  i  relative to the buffer gas may then be 
written
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where  D i   p  is the diffusion coeffi cient of the trace element in a buffer gas composed of 
protons. Since  m i      ≈     Am  p , where  A  is the total number of protons and neutrons found in the 
nucleus of the atoms of the trace element, the diffusion velocity may be expressed as
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 Another force that can come into play and affect diffusion in stars is the electric force. In 
stellar plasma, the free electrons have a tendency to fl oat with respect to protons due to 
their relatively small mass, thereby causing a slight separation of the electric charge in the 
plasma. This process creates an electric fi eld  E . Since the electrons have a tendency to fl oat 
toward the surface of the star, the vector of this electric fi eld points in the outgoing direc-
tion. At equilibrium, hydrostatic equilibrium equations for both electrons and protons in 
completely ionised hydrogen stellar plasma may be written as follows (see Exercise  7.2 )
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where  P  e  and  P  p  are, respectively, the partial pressure due to electrons and protons. To 
conserve the electric neutrality of the plasma, the gradients of both the electron and proton 
number density must be equal. Therefore, the gradients of the partial pressure due to the 
free electrons and protons must also be equal
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 With the three equations above, it is trivial to show that the electric fi eld in completely 
ionised stellar plasma composed of pure hydrogen is
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 This electric fi eld points outward and the electric force on the atoms of species  i , again 
written relative to the protons (i.e. the buffer gas), assuming that they have a charge  q    =    Ze  
is the following

   Fi q e E Z
m g

= − −( ) = − −( )1
2
p     (7.29)   

 A negative sign is found in the equation above because in the development leading to Eq. 
 (7.24)  the force  F  2  is directed inward. 

 This force, when included in Eq.  (7.24)  along with gravity and radiative acceleration 
gives the diffusion velocity of a trace element found in a buffer gas composed of protons 
due to gravity, radiative force and the electric fi eld
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 This expression may be simplifi ed to the following equation
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 In the theoretical development elaborated above, a two - component gas composed of a 
trace element and another species, namely protons, was considered. In this case, the dif-
fusion coeffi cient depends on the interaction between the trace element and the protons. 
In the atmosphere of stars, hydrogen is not completely ionised and the interaction between 
the trace element and neutral hydrogen must also be considered. Moreover, since a large 
number of species are present in stars, they can interact with one another. However, the 
effect of this interaction on the diffusion of a given trace element is generally small and 
can be neglected. 

 Other physical processes not yet discussed here also come into play. For example, the 
presence of a stellar magnetic fi eld can affect the diffusion of the elements in stars (see 
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discussion in Section  7.4 ). Another factor that is relatively rarely important in stars is 
thermal diffusion. Thermal diffusion is due to the presence of a temperature gradient. The 
atoms coming up from deeper (and hotter) regions have on average higher thermal veloci-
ties than those coming down from cooler regions. This can lead to what is called thermal 
diffusion. Thermal diffusion depends on the importance of the temperature gradient. These 
mechanisms and others not mentioned here are outside the scope of this book. For a more 
comprehensive description of the theory of atomic diffusion, the reader is referred to 
Alecian, G. and Vauclair, S.,  Fundamentals of Cosmic Physics , 8, 369  (1983)  or Vauclair, 
S.,  SAAS - FEE Advanced Course 13, Astrophysical Processes in the Upper Main Sequence , 
p. 167  (1983) . 

 Detailed calculations show that diffusion timescales are much shorter than evolutionary 
ones. Therefore, the elements found in stars have suffi cient time to migrate within them 
during their evolution (providing that the stellar plasma is hydrodynamically stable). As 
mentioned previously, the accumulation or depreciation of certain elements at certain 
depths in stars during evolution has an effect on the structure of the star and therefore 
modifi es its evolution. An example of the effect of diffusion on the evolutionary track of 
the Sun will be shown in the next section.  

  7.4   Radiative Accelerations    †  †   

 Radiative acceleration is an important factor for the diffusion velocity (see Eq.  7.31 ). It 
therefore merits close attention since its value will greatly affect the diffusion velocity of 
a given species. The value of the radiative acceleration may also determine if that species 
is over -  or underabundant at a particular depth in a star. 

 The radiative acceleration on a mass element in a star was evaluated in (optional) 
Section  3.12 . This acceleration is the one felt due to the force exerted by the photons on 
the whole plasma. However, in reality, each species absorbs photons individually and they 
then each acquire momentum from the radiation fi eld. The value of their radiative accel-
eration depends on their capacity to absorb photons or in other words on their radiative 
opacity. The radiative acceleration of a given species  i  (i.e. a given ion of a certain element 
for example) at a given depth can be approximated by the following expression
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where  X i  ,   ki
ν  and  H  ν    are, respectively, the mass fraction and opacity of species  i  and the 

Eddington fl ux at the depth under consideration. 
 The radiative acceleration of species  i  not only depends on its opacity, but also on the 

opacity of all other species present in the stellar plasma via the radiative fl ux. Consequently, 
to evaluate the radiative acceleration for a given species, the proper atomic data for all 
species present must be known (i.e.  gf  values, ionisation cross sections, etc.). Generally, 
the radiative acceleration due to bound – bound transitions is much larger than the accelera-
tion due to bound – free transitions. Since both the opacity spectrum and the fl ux are domi-
nated by relatively narrow atomic lines, the frequency grid used to numerically integrate 
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the equation above must be relatively fi ne. Such calculations can require considerable 
computing time. Other less numerically onerous methods also exist to evaluate radiative 
accelerations (see the special topic below).   

 The fl ux depends on the total opacity (which of course includes the opacity of species 
 i ). Therefore, since the three quantities  X i  ,   ki

ν  and  H  ν    found in Eq.  (7.32)  depend on the 
abundance of the species under consideration, this leads to a complex relation between 
  grad

i  and the abundance of species  i . To understand this dependence, it is useful to examine 
Eq.  (7.32)  for stellar layers at large optical depths. As seen in Section  3.8 , the fl ux at large 
optical depths may be approximated by the following expression
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where  k  ν    and   ρ   are, respectively, the local total monochromatic opacity and mass density. 
The total opacity may be divided into two parts, the opacity due to the species under 
consideration (  ki

ν) and the opacity due to all other species that is often called the back-
ground opacity (  kν

back)

   k k ki
ν ν ν= + back     (7.34)   

 Therefore, at large optical depths the radiative acceleration on species  i , while only keeping 
the terms explicitly dependent on its abundance, is proportional to
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 For a very weak value for the abundance of species  i , the fl ux may be considered inde-
pendent of this abundance and since   ki

ν  is proportional to  X i  , the radiative acceleration 
becomes constant and attains its maximal value. If the abundance is increased,   gi

rad 
decreases since the photons available must be shared among a larger number of atoms of 
the species under consideration. At very large abundances of the species, the total opacity 
can become strongly dependant on this species. If the abundance of the species increases, 
so does the total opacity within its atomic lines. The monochromatic fl ux becomes smaller 
there and the radiative acceleration of the species decreases. 

 The dependence of the radiative acceleration on the abundance is nonlinear. An example 
is shown in Figure  7.3  for iron. Rather than the acceleration of a single ion, this fi gure 
shows the average radiative acceleration of the element (see Eq.  7.36  below). Two general 
tendencies can be seen in this fi gure. First, the radiative acceleration decreases as the 
abundance increases. Secondly, the radiative acceleration varies with depth mainly because 
different ionisation stages appear (and disappear) as temperature increases. Different ioni-
sation stages have different opacity spectrum, thereby leading to variations in the radiative 
acceleration of the element as a function of depth in stars. The radiative acceleration shows 
a dip at depths where the element is found in a noble gas confi guration because such ions 
have a weak opacity spectrum and therefore absorb less photons. Another factor that 
affects the variation of the radiative accelerations with respect to depth is that the radiation 
fi eld changes. 
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     Figure 7.3     Radiative acceleration of iron ( g  rad (Fe)) as a function of depth (shown in log  T  that 
increases with depth) inside a star with  T  eff    =   9800   K. The three curves shown here are for abundances 
for iron of 0.1, 1 and 10 times its solar value. The two dips in the radiative acceleration, due to the 
growing proportion of atoms found in the noble - gas confi guration, are indicated in this fi gure . 

 The average radiative acceleration of an element  A  is a weighted sum of the accelera-
tions of its ions. The accelerations of the ions are weighted by the product of their ionisa-
tion fraction ( f i  ) and their diffusion coeffi cient ( D i  )
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where   D̄   is the average diffusion coeffi cient for element  A  and  g  rad ( A ) is its radiative accel-
eration. The radiative accelerations of the ions are weighted by  f i D i   because the momentum 
transferred to ions due to radiation is proportional to the  D i   (see Eq.  (7.31)  for the diffu-
sion velocity). 

 A rough estimation of the quantity of a given species that can be supported by radiation 
can be obtained by using Eq.  (7.24) . By neglecting the term of the derivative of  n i  , the 
diffusion velocity (Eq.  7.24 ) tends toward nil when   g gi

rad ≈ . Under this approximation and 
assuming that the value of the abundance at which the radiative acceleration equals gravity 
is reached, that species will stop migrating at that point. The value for the abundance at 
which this happens (at a given depth) gives an estimation of the maximum amount of 
matter of the species under consideration that can be supported there by radiative 
acceleration. 

 The evaluation of precise radiative accelerations is more complex than that described 
up to now. The momentum acquired by a given ion following the absorption of a photon 
can be spent (the ions lose their excess of momentum following collisions with the other 
particles in the stellar plasma) while this ion stays in its ionisation state. But since ions 
can be ionised or can recombine, the momentum can in such cases be spent in a state of 
ionisation that has a different diffusion coeffi cient from that of the ion in which the photon 
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 Special Topic  –  Various Methods for Calculating Radiative Accelerations 

    There are several methods that are commonly used for evaluating radiative accel-
erations. The most direct, but the most numerically onerous, is the numerical 
integration of Eq.  (7.32)  on a suffi ciently fi ne frequency grid. This method requires 
the calculation of the opacity spectrum for each ion along with the radiative fi eld 
on the chosen frequency grid. This grid must be fi ne enough to properly sample 
the opacity spectrum for each species. This method is sometimes called the opacity 
sampling method. The number of frequencies of grids commonly used typically 
contain up to the approximately 10 5  points. Since the radiative fi eld must be evalu-
ated at each of these frequencies through the resolution of the radiative - transfer 
equation, this procedure requires a large amount of computing time. 

 In order to diminish the amount of computing time, radiative accelerations may 
be pretabulated on a given temperature - density grid. These quantities can then be 

was absorbed. This process is called the redistribution of momentum among the ions and 
it can strongly affect the value of the radiative acceleration. 

 The diffusion coeffi cient of charged ions is approximately proportional to   Zi
−2, where 

 Z i   is the charge of the ion. The diffusion coeffi cient of neutral ions is approximately two 
orders of magnitude larger than those of once - ionised ions. Therefore, if an ion that has 
just absorbed a photon is quickly thereafter ionised, the radiative acceleration is then in 
reality spent when the atom is in a higher charged state of ionisation that is less mobile. 
This effectively diminishes the radiative acceleration as compared to the case where the 
absorbing ion would have spent the acquired momentum in its initial state of ionisation. 
On the other hand, a recombination leads to an amplifi cation of the radiative acceleration. 
The precise determination of redistribution of the momentum among the various ions for 
a given element is very complex because it depends on the ionisation, recombination and 
collisional rates for each energy level of each ion at the stellar depth under consideration. 
Redistribution is most important in the outer regions of stars where neutral ions are present. 
This is due to the fact that neutral ions have a much higher mobility than charged ions. 

 Another example of the importance of the relative value of the diffusion coeffi cients of 
the various ions is the acceleration due to bound – free transitions. When an ion absorbs a 
photon that causes its ionisation, the momentum is spent in the newly formed ion. The 
radiative acceleration from photoionisation associated to the bound - free opacity of an ion 
with charge  Z  is therefore redistributed to the ion with charge  Z    +   1. 

 Another correction must also be brought to the acceleration due to photoionisation. The 
electron that is ejected during the photoionisation process possesses momentum. The 
effective momentum given to the newly formed ion must therefore be corrected to take 
into account the momentum of the ejected electron. Such corrections require complex 
quantum - mechanical calculations. To avoid such complications, this correction is some-
times estimated by using the correction term for a simple case such as for the fundamental 
energy level of the hydrogen atom (which has an analytical form) for all of the species 
considered. 
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 Another important factor that infl uences radiative accelerations and atomic diffusion in 
stars is the presence of a magnetic fi eld. Stellar magnetic fi elds affect atomic diffusion in 
two ways. First, and as discussed in Section  4.3.3 , Zeeman splitting caused by the presence 
of a magnetic fi eld widens the atomic lines. Wider lines can absorb photons from a larger 
portion of the spectrum and this diminishes the saturation of these lines. This amplifi es 
the radiative acceleration of the species under consideration. Secondly, the diffusing ions 
are evidently affected by the presence of a magnetic fi eld. Their trajectory is altered by 
the Lorentz force. Therefore, atomic diffusion in regions of a star where the magnetic fi eld 
is horizontal to the surface differs from the diffusion where the magnetic fi eld lines are 
perpendicular to it. This is believed to lead to the abundance patches observed on the 
surface of Ap stars. 

interpolated at a given depth in a stellar model. This method is employed by The 
Opacity Project that furnishes the radiative accelerations of the most abundant 
metals for use by the scientifi c community (see Seaton, M.J.,  Monthly Notices of 
the Royal Astronomical Society , 289, 700  (1997)  for more details). 

 A third method, called the parametric method, can also be used to quickly and 
easily calculate radiative accelerations. This method is based on approximate para-
metric formulae for radiative accelerations for both bound – bound and bound – free 
transitions. For example, it can be shown that the acceleration of an ion  i  due to 
bound – bound transitions, assuming that their lines have a Lorentz profi le (see 
Section  4.3.1 ), may be approximated by the following equation

   g g
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where  C i   is the number of ions of the species per hydrogen atom in the plasma. 
The parameter   gi

rad,0 represents the radiative acceleration for a very small abun-
dance (i.e. the maximum radiative acceleration for the species). It depends on the 
 gf  values of the transitions of the ion under consideration. The parameter   Ci

sat 
controls the saturation of the lines. Saturation effects depend on the width of the 
lines. All else being equal, wider lines are less saturated than narrower ones since 
they can absorb photons from a larger portion of the electromagnetic spectrum. 
These two parameters are calculated with appropriate weighted sums of the atomic 
data for the lines of the ion. 

 The parametric method is very numerically effi cient since no numerical integra-
tion is necessary. The parameters   g

i
rad,0 and   Ci

sat found in Eq.  (7.37)  may be pret-
abulated for a number of species by using the appropriate atomic data. These 
parameters can then be used in astrophysical applications such as stellar - evolution 
codes wishing to study atomic diffusion. The radiative accelerations can then be 
obtained without having to access the full array of atomic data normally necessary 
for radiative acceleration calculations. For more information about this method, 
the reader is referred to Alecian, G. and LeBlanc, F,  Monthly Notices of the Royal 
Astronomical Society , 332, 891  (2002) .  
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 As mentioned above, the diffusion of the elements in stars affects their structure and 
evolution. Since atomic diffusion is a time - dependent process, during the construction of 
an evolutionary model of a star, a large number of stellar models must be calculated. A 
stellar model must be calculated at each chosen time step because the abundances change 
due to diffusion. These time steps must be chosen in such a way as to be able to appro-
priately follow the diffusion of the elements. In other words, the time steps must be smaller 
that the typical diffusion timescales inside stars. Also, at each time step, the radiative 
accelerations must be evaluated in the new structural model using the values of the new 
abundances (of course this is done at each geometrical layer of the model because the 
abundances vary with depth). Such complex numerical modelling requires considerable 
computing time. 

 Figure  7.4  shows the effect of atomic diffusion on the evolution of the Sun. For the 
simulation shown with atomic diffusion, the abundances of 28 metals (this number includes 
some isotopes of certain elements) are modifi ed at each time step. These calculations were 
done with the Montr é al evolution code that can include atomic diffusion. For more infor-
mation about such calculations, the reader is referred to Turcotte, S., Richer, J., Michaud, 
G., Iglesias, C.A. and Rogers, F.J.,  The Astrophysical Journal , 504, 539  (1998) .    

  7.5   Other Transport Mechanisms    †  †   

 Several other physical mechanisms that are sometimes present in stars compete with 
atomic diffusion. As mentioned previously, in convection zones atomic diffusion can not 
take place. Anomalies formed at the bottom of convection zones by diffusion can, however, 
manifest themselves in these zones and above them because elements can be dredged - up 

     Figure 7.4     Evolutionary tracks for the Sun while including atomic diffusion (dashed line) and 
without it (solid line). The model with diffusion goes up to an age of 9.4   Gyr and the one without 
diffusion up to 11.4   Gyr. Also shown in the fi gure is the position of stars on the H – R diagram with 
a solar radius (dotted line). Data courtesy of Mathieu Vick, Jacques Richer and Georges Michaud 
obtained with the Montr é al evolution code . 
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by the mixing process. Other phenomena such as mass loss can also affect the migration 
of the elements in stars. Meridional circulation and turbulence are other physical processes 
that can also play a role. Meridional circulation is a large - scale movement of matter that 
is defi ned by currents that are parallel to the meridians of stars. The currents of matter 
penetrate deeply within stars. Meanwhile, the presence of turbulence can also affect the 
abundances observed at the surface of certain stars. 

 The discussion of all of these competing physical processes is outside the scope of this 
book. However, in order to give the reader some insight into the complexities that inter-
vene when trying to model chemically peculiar stars, two transport mechanisms that can 
be present inside such stars are described below. These two physical processes are light -
 induced drift and ambipolar diffusion of hydrogen. 

  7.5.1   Light - Induced Drift 

 In addition to abundance anomalies of the elements, certain stars show isotopic anomalies. 
In other words, the isotopic mix at the surface of these stars is different from, for instance, 
the isotopic ratios observed in the Sun. Some HgMn stars show isotopic anomalies of Hg 
or Pt. For instance, at the surface of the HgMn star  χ  Lupi approximately 99 % of mercury 
is in the form of  204 Hg, while this isotope accounts for only 7 % of the mercury observed 
in the Sun. A physical process possibly responsible for such isotopic anomalies is light -
 induced drift. This section is dedicated to describing this transport mechanism. 

 Light - induced drift occurs when there is a difference in the average diffusion coeffi cient 
of a given species between the atoms travelling in the outgoing and ingoing directions in 
a star. If it is assumed that atomic line broadening is dominated by the Doppler effect (see 
Section  4.3.2 ), atoms travelling in the ingoing and outgoing direction absorb photons at 
wavelengths on opposite sides of the natural wavelength of a given atomic line. In other 
words, the atoms  ‘ see ’  a wavelength in the radiation fi eld that depends on their thermal 
velocity. If a gradient (with respect to wavelength) exists in the radiative fl ux inside the 
Doppler width of the line, there are more atoms exited for one of these directions (see 
Figure  7.5 ). If the atoms are approximated by hard spheres, the exited atoms, having a 
larger radius, are less mobile (or have a shorter mean free path and thus a smaller diffusion 
coeffi cient) than atoms found in the initial energy level of the line under consideration. A 
drift of the species then ensues in the direction that has a lesser number of exited atoms. 
This phenomenon is called light - induced drift. As mentioned, it is caused by a directional 
asymmetry in the diffusion coeffi cient due to a fl ux gradient inside the atomic line widths.   

 In the scenario described above, for light - induced drift to be important, a signifi cant 
gradient of the fl ux within the atomic line widths must be present. The corresponding 
energy levels (and therefore the natural wavelengths of the bound – bound transitions) of 
isotopes are slightly shifted relative to one another. Therefore, for a given isotope of an 
element with at least two isotopes, the fl ux asymmetry needed for light - induced drift can 
be caused by the corresponding atomic line of its isotope or isotopes. In the simplest case 
where only two isotopes exist, each of their atomic lines may blend with the corresponding 
lines of the other isotope, thereby causing an asymmetry of the fl ux within their line widths. 
If this asymmetry is large enough, it leads to a non - negligible drift of the two species (in 
opposite directions). One of these isotopes can then accumulate at the surface of the star 
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while the other one can drift inward. This physical process can therefore cause isotopic 
anomalies at the stellar surface that can be detected by spectroscopy. Light - induced drift 
can, for example, accelerate the separation of  3 He and  4 He (which leads to the so - called 
 3 He stars) as compared to the separation caused by gravitational settling due to their dif-
ferent masses.  

  7.5.2   Ambipolar Diffusion of Hydrogen 

 In stars, hydrogen is progressively ionised as a function of geometrical depth due to the 
increasing temperature. A negative gradient in the number density of protons (as a function 
of  r ) therefore exists and this leads to a diffusion of the protons in the outward direction, 
while neutral hydrogen diffuses inward (see Figure  7.6 ). The diffusion velocities illustrated 
in this fi gure are important in the ionisation zone of hydrogen where the gradients of the 
respective number densities are large. This phenomenon is called the ambipolar diffusion 
of hydrogen.   

 Ambipolar diffusion of hydrogen can have two important effects in stars. First, since 
the protons are charged particles they can effectively  ‘ drag ’  other ions as they diffuse 
toward the surface. This can therefore alter the abundances of the metals found at the 
stellar surface. Secondly, in the presence of a magnetic fi eld, the fl ow of the protons is 
affected by the Lorentz force. It can be shown that this can cause a downward force on 
the medium, which amplifi es the effective gravity felt by the stellar medium. This process 
therefore modifi es the pressure stratifi cation and the physical structure of the star in the 
vicinity of the hydrogen - ionisation zone.   

     Figure 7.5     Illustration of the light - induced drift process. Shown in this fi gure is the line absorption 
profi le (  ϕ   λ   ) and the monochromatic fl ux ( F   λ  ). More photoexcitations will occur for atoms having a 
positive velocity (i.e. going outward in the star) than for those going inward ( V     <    0) because of the 
slope of the fl ux within the line width. For this case, it leads to a negative light - induced drift velocity 
because of the asymmetry caused in the diffusion coeffi cient. Also shown in this fi gure is the natural 
wavelength (  λ   0 ) of the atomic line . 
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  7.6   Summary 

 Types of CP stars: AmFm, HgMn, ApBp and He - abnormal stars.
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 7.7   Exercises    

   7.1   Show that Eq.  (7.9)  and  (7.10)  lead to
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   7.2   Show that when an electric fi eld  E  is present (pointing in the outgoing direction of 
the star), the equations relating the pressure of free electrons and protons in a completely 
ionised hydrogen plasma are

     Figure 7.6     Illustration the ionisation fractions of HI and HII inside a star. The variable r increases 
from left to right, therefore the surface of the star is found on the right end of this fi gure. The direc-
tions of the diffusion velocities are shown in the fi gure. The protons diffuse toward the surface while 
HI diffuses toward its centre. This physical process is called ambipolar diffusion of hydrogen . 
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   7.3   Explain why light - induced drift is less important for charged ions than for neutral 
ones.            

 
 



 Answers to Selected Exercises                 

An Introduction to Stellar Astrophysics Francis LeBlanc
© 2010 John Wiley & Sons, Ltd

       1.3    M    =   0.5,  d    =   205   ly 

 1.7   32 000   K 

 1.8   12.34   eV 

 1.9   0.446 

 1.10    n  tot    =   9.77    ×    10 14    cm  − 3  and   ρ     =   1.21    ×    10  − 9    gcm  − 3  

 1.12    n  e    =   1.46    ×    10 19    cm  − 3  and  T    =   51200   K 
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 3.7    z  0    =   12  ξ    2/3  

 4.5   The star is receding from the observer at 24.6   km/s. 

 4.8   4.8% 

 4.9   2.25    Å  

 4.13   Three ionisation stages 
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 Physical Constants          
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  Speed of light     c     2.99793458    ×    10 10    cm/s  
  Gravitational constant     G     6.67259    ×    10  − 8    cm 3 /g/ s 2   
  Planck constant     h     6.6260755    ×    10  − 27    erg   s  
  Boltzmann constant     k     1.380658    ×    10  − 16    erg/K  

  8.617385    ×    10  − 5    eV/K  
  Elementary charge     e     4.8032068    ×    10  − 10    esu  
  Atomic mass unit    u    1.660540    ×    10  − 24    g  

  931.5   MeV/ c  2   
  Mass of electron     m  e     9.1093897    ×    10  − 28    g  

  0.511   MeV/ c  2   
  Mass of proton     m  p     1.6726231    ×    10  − 24    g  

  938.3   MeV/ c  2   
  Mass of neutron     m  n     1.6749286    ×    10  − 24    g  

  939.6   MeV/ c  2   
  Mass of  1 H atom     m  H     1.6735344    ×    10  − 24    g  
  Stefan – Boltzmann constant      σ      5.67051    ×    10  − 5    erg/cm 2 /K/s  
  Thomson scattering constant      σ   T     6.6524    ×    10  − 25    cm 2   
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   Dimension     cgs unit     Conversion factor 
(cgs to SI)  

   SI unit  

  Time    s    1    s  
  Length    cm    10  − 2     m  
  Mass    g    10  − 3     kg  
  Energy    erg    10  − 7     J  
  Power    erg/s    10  − 7     W  
  Force    dyn    10  − 2     N  
  Pressure    dyn/cm 2     10  − 1     N/m 2   
  Magnetic fl ux density    G    10  − 4     T  

`
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  Solar mass     M   �      1.9891    ×    10 33    g  
  Solar radius     R   �      6.95508    ×    10 10    cm  
  Solar luminosity     L   �      3.8458    ×    10 33    erg/s  
  Solar effective temperature     T  eff  �      5777   K  
  Earth ’ s mass     M   �      5.9742    ×    10 27    g  
  Earth ’ s radius     R   �      6.378136    ×    10 8    cm  
  Astronomical unit    AU    1.4959787066    ×    10 13    cm  
  Light - year    ly    9.460730472    ×    10 17    cm  
  Parsec    pc    3.0856776    ×    10 18    cm  

  3.26167   ly  
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 Ionisation Energies (in  e  V ) for 
the First Five Stages of Ionisation 
for the Most Important Elements          
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        I     II     III     IV     V  

  H    13.598                  
  He    24.587    54.418              
  Li    5.392    75.640    122.454          
  Be    9.323    18.211    153.897    217.713      
  B    8.298    25.155    37.931    259.366    340.22  
  C    11.260    24.383    47.888    64.492    392.08  
  N    14.534    29.601    47.449    77.472    97.89  
  O    13.618    35.117    54.936    77.413    113.90  
  F    17.423    34.971    62.708    87.140    114.24  
  Ne    21.565    40.963    63.45    97.12    126.21  
  Na    5.139    47.286    71.620    98.91    138.40  
  Mg    7.646    15.035    80.144    109.265    141.27  
  Al    5.986    18.829    28.448    119.99    153.83  
  Si    8.152    16.346    33.493    45.142    166.77  
  P    10.487    19.769    30.203    51.444    65.03  
  S    10.360    23.338    34.79    47.222    72.59  
  Cl    12.968    23.814    39.61    53.465    67.8  
  Ar    15.760    27.630    40.74    59.81    75.02  
  K    4.341    31.63    45.806    60.91    82.66  
  Ca    6.113    11.871    50.913    67.27    84.50  
  Sc    6.561    12.800    24.757    73.489    91.65  
  Ti    6.828    13.576    27.492    43.267    99.3  
  V    6.746    14.66    29.311    46.71    65.28  
  Cr    6.767    16.486    30.96    49.16    69.46  
  Mn    7.434    15.640    33.668    51.2    72.4  
  Fe    7.902    16.188    30.652    54.8    75.0  
  Co    7.881    17.083    33.50    51.3    79.5  
  Ni    7.640    18.169    35.19    54.9    75.5  

 Appendix D 





 Solar Abundances for the Most 
Important Elements     
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   Element     Abundance  #        N  elem / N  tot   

  H    12.00    9.097    ×    10  − 1   
  He    10.99    8.890    ×    10  − 2   
  Li    1.16    1.315    ×    10  − 11   
  Be    1.15    1.285    ×    10  − 11   
  B    2.60    3.621    ×    10  − 10   
  C    8.56    3.303    ×    10  − 4   
  N    8.05    1.021    ×    10  − 4   
  O    8.93    7.742    ×    10  − 4   
  F    4.56    3.303    ×    10  − 8   
  Ne    8.09    1.119    ×    10  − 4   
  Na    6.33    1.945    ×    10  − 6   
  Mg    7.58    3.458    ×    10  − 5   
  Al    6.47    2.684    ×    10  − 6   
  Si    7.55    3.228    ×    10  − 5   
  P    5.45    2.564    ×    10  − 7   
  S    7.21    1.475    ×    10  − 5   

 Appendix E 
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   Element     Abundance  #        N  elem / N  tot   

  Cl    5.50    2.877    ×    10  − 7   
  Ar    6.56    3.303    ×    10  − 6   
  K    5.12    1.199    ×    10  − 7   
  Ca    6.36    2.084    ×    10  − 6   
  Sc    3.10    1.145    ×    10  − 9   
  Ti    4.99    8.890    ×    10  − 8   
  V    4.00    9.097    ×    10  − 9   
  Cr    5.67    4.255    ×    10  − 7   
  Mn    5.39    2.233    ×    10  − 7   
  Fe    7.54    3.154    ×    10  − 5   
  Co    4.92    7.566    ×    10  − 8   
  Ni    6.25    1.618    ×    10  − 6   
  Cu    4.21    1.475    ×    10  − 8   
  Zn    4.60    3.621    ×    10  − 8   

    #    The abundances in this column are written as a function of the number of hydrogen atoms  N  H  atoms, which is set at log 
( N  H )   =   12.00. This way of expressing the chemical abundances is very common in astrophysics.              

Table (continued)



 Atomic Masses          

An Introduction to Stellar Astrophysics Francis LeBlanc
© 2010 John Wiley & Sons, Ltd

   Species     Atomic mass (in units of u    #  )  

  e  −      5.4857990    ×    10  − 4   
  n    1.0086649  
  p    1.0072765  
   1 H    1.0078250  
   2 H    2.0141018  
   3 H    3.0160493  
   3 He    3.0160293  
   4 He    4.0026032  
   6 Li    6.0151223  
   7 Li    7.0160040  
   8 Be    8.0053051  
   9 Be    9.0121821  
   12 C    12.000000  
   13 C    13.003355  
   14 N    14.003074  
   15 N    15.000109  
   16 O    15.994915  
   17 O    16.999132  
   18 O    17.999161  
   20 Ne    19.992440  
   24 Mg    23.985042  
   28 Si    27.976927  
   32 S    31.972071  
   56 Fe    55.934942  

    #    u   =   atomic mass unit   =   1.661    ×    10  − 24    g   =   931.5   MeV/ c  2 .             
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   Spectral type      T  eff  (K)      M / M   �        L / L   �        R / R   �    

  O5    42   000    60    400   000    12  
  B0    30   000    17.5    40   000    7.4  
  B5    15   200    5.9    730    3.9  
  B8    11   400    3.8    140    3.0  
  A0    9790    2.9    48    2.4  
  A5    8180    2.0    12    1.7  
  F0    7300    1.6    5.7    1.5  
  F5    6650    1.4    3.0    1.3  
  G0    5940    1.05    1.4    1.1  
  G5    5560    0.92    0.73    0.92  
  K0    5150    0.79    0.46    0.85  
  K5    4410    0.67    0.18    0.72  
  M0    3840    0.51    0.070    0.60  
  M2    3520    0.40    0.034    0.50  
  M5    3170    0.21    0.0066    0.27  

 Appendix G 
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Periodic Table of the Elements

1

H

1s1

2

He

1s2

3

Li

[He]2s1

4

Be

[He]2s2

5

B

[He]2s21p1

6

C

[He]2s22p2

7

N

[He]2s22p3

8

O

[He]2s22p4

9

F

[He]2s22p5

10

Ne

[He]2s22p6

11

Na

[Ne]3s1

12

Mg

[Ne]3s2

13

Al

[Ne]3s23p1

14

Si

[Ne]3s23p2

15

P

[Ne]3s23p3

16

S

[Ne]3s23p4

17

Cl

[Ne]3s23p5

18

Ar

[Ne]3s23p6

19

K

[Ar]4s1

20

Ca

[Ar]4s2

21

Sc

[Ar]3d14s2

22

Ti

[Ar]3d24s2

23

V

[Ar]3d34s2

24

Cr

[Ar]3d54s1

25

Mn

[Ar]3d54s2

26

Fe

[Ar]3d64s2

27

Co

[Ar]3d74s2

28

Ni

[Ar]3d84s2

29

Cu

[Ar]3d104s1

30

Zn

[Ar]3d104s2

31

Ga

[Ar]3d104s24p1

32

Ge

[Ar]3d104s24p2

33

As

[Ar]3d104s24p3

34

Se

[Ar]3d104s24p4

35

Br

[Ar]3d104s24p5

36

Kr

[Ar]3d104s24p6

37

Rb

[Kr]5s1

38

Sr

[Kr]5s2

39

Y

[Kr]4d15s2

40

Zr

[Kr]4d25s2

41

Nb

[Kr]4d45s1

42

Mo

[Kr]4d55s1

43

Tc

[Kr]4d55s2

44

Ru

[Kr]4d75s1

45

Rh

[Kr]4d85s1

46

Pd

[Kr]4d105s0

47

Ag

[Kr]4d105s1

48

Cd

[Kr]4d105s2

49

In

[Kr]4d105s25p1

50

Sn

[Kr]4d105s25p2

51

Sb

[Kr]4d105s25p3

52

Te

[Kr]4d105s25p4

53

I

[Kr]4d105s25p5

54

Xe

[Kr]4d105s25p6

55

Cs

[Xe]6s1

56

Ba

[Xe]6s2

72

Hf

[Xe]4f145d16s2

73

Ta

[Xe]4f145d26s2

74

W

[Xe]4f145d36s2

75

Re

[Xe]4f145d56s2

76

Os

[Xe]4f145d66s2

77

Ir

[Xe]4f145d76s2

78

Pt

[Xe]4f145d86s1

79

Au

[Xe]4f145d106s1

80

Hg

[Xe]4f145d106s2

81

Tl

[Xe]4f145d106s26p1

82

Pb

[Xe]4f145d106s26p2

83

Bi

[Xe]4f145d106s26p3

84

Po

[Xe]4f145d106s26p4

85

At

[Xe]4f145d106s26p5

86

Rn

[Xe]4f145d106s26p6

87

Fr

[Rn]7s1

88

Ra

[Rn]7s2

57

La

[Xe]5d16s2

58

Ce

[Xe]4f25d06s2

59

Pr

[Xe]4f35d06s2

60

Nd

[Xe]4f45d06s2

61

Pm

[Xe]4f55d06s2

62

Sm

[Xe]4f65d06s2

63

Eu

[Xe]4f75d06s2

64

Gd

[Xe]4f75d16s2

65

Tb

[Xe]4f95d06s2

66

Dy

[Xe]4f105d06s2

67

Ho

[Xe]4f115d06s2

68

Er

[Xe]4f125d06s2

69

Tm

[Xe]4f135d06s2

70

Yb

[Xe]4f145d06s2

71

Lu

[Xe]4f145d16s2

89

Ac

[Rn]6d17s2

90

Th

[Rn]6d27s2

91

Pa

[Rn]5f36d17s2

92

U

[Rn]5f146d57s2

93

Np

[Rn]5f56d17s2

94

Pu

[Rn]5f66d07s2

95

Am

[Rn]5f76d07s2

96

Cm

[Rn]5f76d17s2

97

Bk

[Rn]5f96d07s1

98

Cf

[Rn]5f106d07s1

99

Es

[Rn]5f116d07s1

100

Fm

[Rn]5f126d07s1

101

Md

[Rn]5f136d07s1

102

No

[Rn]5f146d07s1

103

Lr

[Rn]5f146d17s1
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167–76
convection zones 182–3
coronagraphs 87–8
corona 86–9, 182
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CoRoT mission 200
cosmic rays 227
Coulomb repulsion forces 216–17
curve of growth 142–3

degenerate free electrons 166, 184, 
189–91, 243

Delta Scuti stars 193, 195
density profi les 44–5, 51–2
density stratifi cation 157–8, 160–1, 

169–70
detailed balancing 134
deuterium-burning phase 218–21
diffusion approximation 93–4
 see also atomic diffusion theory
distance modulus 10, 12
Doppler line broadening 122–9, 303
doubly magic elements 214
dredge-up phases 239
dwarfs see main-sequence stars; white 

dwarfs
dynamo theory 289

eclipsing binaries 191–2
Eddington fl ux
 chemically peculiar stars 297
 radiative transfer 75, 94, 98, 100
 stellar atmospheres 112, 114, 

117–19
 stellar interiors 159, 165, 166
effective temperature 9, 13, 27–30
 radiative transfer 90, 102
 stellar atmospheres 113, 144
Einstein coeffi cients 134–6
Einstein’s cross 264
Einstein’s mass–energy equation 207, 

210, 212
electromagnetic spectrum 3–5, 166
electron–atom collisions 62–4
electron capture 62–4
electronic number densities see number 

densities
electronic pressure 185–7
elementary particles 208–9
elliptical galaxies 249–50
emission lines 26, 56

emissivity of matter 77–9, 84, 99
energy conservation 155, 160–1, 

177
energy density 76
energy transport
 defi nition 2
 radiative transfer 61, 75, 90–1, 

95
 stellar atmospheres 145, 151
 stellar interiors 155, 159–60, 

163–77
equations of state 17, 146–7, 155–6, 161, 

176–7, 184–91
equations of stellar structure 94, 156–63, 

176–7
equipartition theorem 41, 64
equivalent width 137–9
eruptive variables 191–2
escape velocity 262–3
evolution of stars see stellar evolution
expansion velocity 196, 244
explosive nucleosynthesis 236, 247
explosive variables 191–2

fl ux see radiative fl ux
fl ux mean opacity 96
Fm stars 287, 288
formation of stars see stellar formation
fossil fi eld theory 289
fragmentation processes 48, 50
free electrons 18, 62–6
 degenerate 166, 184, 189–91, 243
free-fall times 52–4
free–free transitions 65, 134
frequency grids 148, 300

galaxies 248–51, 264–5, 270
GALLEX experiment 227
Gamma Doradus stars 193
Gamow peaks 279–80
general relativity theory 53, 262–5
giant stars 231–2
globular clusters 248, 250, 252–5
granules 88–9, 168
gravitational acceleration 36–40, 51
gravitational collapse see cloud collapse
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gravitational energy
 stellar evolution 205–6, 262–8
 stellar formation 40–5
gravitational redshift 263–5
greenhouse effect 8
grey atmosphere approximation
 limb darkening effect 116–17
 radiative fl ux 117–19
 stellar atmospheres 110–19, 146
 temperature profi les 110, 111–17

H–R see Hertzsprung–Russell
hard-sphere approximation 211–12
Harvard classifi cation 24–6
Hawking radiation 267–8
Hayashi tracks 54–5
heavy element nucleosynthesis 273–7
Heisenberg’s uncertainty principle 22, 

120–1, 189, 267
helium-abnormal stars 287, 289–90
helium-burning phase 230–2, 243
helium fl ashes 190, 239, 242–3
Herbig Ae/Be stars 56
Hertzsprung–Russell (H–R) diagrams 

27–30
 chemically peculiar stars 286
 stellar evolution 206, 218, 224, 230, 

236–48, 256
 stellar formation 54–5
 variable stars 192–3, 202
HgMn stars 287, 289, 303
HII regions 50
Hopf function 117
hydrodynamic theory 167–8, 290
hydrogen fusion 1–2, 208, 217, 220, 

226–7, 279–80
hydrostatic equilibrium
 equation 36–40, 101, 156
 stellar atmospheres 130–1, 144–6
 stellar formation 36–40, 52–4
 stellar interiors 155, 156, 173–4, 

184

ideal-gas approximation
 chemically peculiar stars 294
 defi nition 17

 stellar atmospheres 146
 stellar evolution 237
 stellar interiors 155–6, 184, 185–91
initial mass function (IMF) 48–50
integrated fl ux 9–10
 radiative transfer 74–5, 90
 stellar atmospheres 111, 114, 118, 

144–5, 148
 stellar interiors 159
interiors of stars see stellar interiors
interstellar reddening 66–7
ionic populations 13–21, 81–2, 297–300
ionisation energies 18–19, 24, 214, 

299–300, 304–5
ionisation fractions 18–20, 75, 123
iron-peak elements
 chemically peculiar stars 286
 stellar evolution 206–7, 235–6, 239, 

246
irregular galaxies 249
isotopic stability 215–16, 275–6, 285–6

Jeans criterion 46–52

K-integral 75, 92–3, 98, 103–4, 112
κ-mechanism 196
Kelvin–Helholtz time 205–6

lambda-iteration procedure 150–1
lambda operator 98
Lane–Emden equation 177–81
lasers 132–4
leptons 208–9, 223
light amplifi cation by stimulated 

emission of radiation (lasers) 
132–4

light curves 271–3
light-induced drift 303–4
limb darkening effect 116–17
line-broadening mechanisms 67–8, 

119–30
line profi les 121–2, 125–6
liquid-drop model 211–14
lithium-burning 219
local thermodynamic equilibrium (LTE) 

81–2, 133–5
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Lorentz profi les 121, 126, 130, 301
low-mass stars 240–1
LTE see local thermodynamic equilibrium
luminosity 8–9, 10, 27–30
 atmospheric modelling 143–4
 classes 29–30
 radiative transfer 75
 stellar evolution 205–6, 218, 224–5, 

231–3, 241–2, 245–7, 256–7, 
268–73

 stellar formation 55
 stellar interiors 159, 160–2, 164–5, 

192, 194–5, 198, 200–2
Lyman absorption lines 23, 136

magic numbers 214
magnetars 261–2
magnetic fi elds
 chemically peculiar stars 286, 

287–90, 301
 stellar evolution 258–62
 stellar formation 50, 52, 86–8
 stellar interiors 184
 Zeeman effect 132
magnetic line reconnections 86–7
magnetic pressure 88, 184
magnitude 9–13, 28
main-sequence burning 218–30, 233
main-sequence stars 2, 28–30, 287–90
masers 134
mass conservation 155, 156–8
mass–energy equation 207, 210, 212
mass fractions see solar abundances
massive stars 7, 28
 stellar evolution 219, 225, 236, 239, 

245–8, 253, 270
 stellar interiors 191
matter–radiation interactions 62–4
Maunder’s butterfl y diagrams 87–9
Maxwell distribution 22
 radiative transfer 81
 stellar atmospheres 122–4
 stellar evolution 278–9
 stellar interiors 189
Maxwell–Boltzmann statistics 184
meridional circulation 303

metallicity 3, 26
 chemically peculiar stars 287–90
 radiative transfer 96
 stellar evolution 248–9
 stellar formation 55
 stellar interiors 193, 196
 stellar populations 248–51
microwave amplifi cation by stimulated 

emission of radiation (masers) 134
Milne equation 98
mini-black holes 265–6
Mira variables 193–4, 197
mixing-length theory 155, 168, 172–6
moments (radiative) 75, 111
monochromatic fl ux 6, 12, 22
 chemically peculiar stars 298, 304
 radiative transfer 73–5, 93–4
 stellar atmospheres 109, 137–9, 145–8
 stellar interiors 164–6
MOST mission 199–200

natural line broadening 120–2
nebulae 244, 248
negative hydrogen 69
neon-burning phase 233–4
neutrinos
 massive stars 247
 proton–proton chains 220–1, 224, 281
 shell model 215
 solar neutrino problem 226–30
 stellar interiors 163–4
 supernovae 268
 thermonuclear fusion reactions 208–10, 

217
neutron capture 275, 285–6
neutron stars 3, 236, 239, 246–7, 259–61
non-LTE (NLTE) calculations 82
nonradial pulsation modes 198
nonresonant reactions 217
novae 192, 239, 268–73
nuclear ashes 232–3, 239
nuclear burning 206, 216–36
 advanced 232–6, 245–6, 274
 carbon-burning phase 233
 CNO cycles 218, 220–4
 helium-burning phase 230–2, 243
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nuclear burning (cont’d)
 lifetime of stars 224–6
 main-sequence burning 218–30, 233
 neon-burning phase 233–4
 oxygen-burning phase 234
 proton–proton chains 218, 220–1, 

223–4, 226
 silicon-burning phase 235–6, 246
 solar neutrino problem 226–30
nuclear fusion see thermonuclear fusion 

reactions
nucleosynthesis see stellar evolution
number densities 16–18, 21
 chemically peculiar stars 290–6
 stellar evolution 277–9
 stellar interiors 185–7, 189

opacity see radiative opacity
open clusters 248, 250–2
optical depth
 radiative transfer 79–81, 85–7, 91–4, 

103–4
 stellar atmospheres 112, 114–16, 118, 

141, 145, 149
oscillation frequencies 155, 199
oscillator strengths 119–20, 136
oxygen-burning phase 234

p process 276–7
pairing effects 211, 213, 215
parametric method 301
partition functions 14–16, 20–1
Paschen absorption lines 23
Pauli’s exclusion principle 184, 189–90, 

215, 247
period–luminosity relations 194–5, 200–2
phi operator 98
photodisintegration reactions 234–6, 247, 

276
photoexcitations 82, 286, 304
photoionisations 17, 24
 chemically peculiar stars 286, 300
 radiative transfer 64, 68, 82
 stellar atmospheres 144
photometric variability 56–7, 199–200

photonics 62
photons
 defi nition 3
 matter–radiation interactions 62–4
 radiative acceleration of matter 100–2
 radiative pressure 103–4
 stimulated emission 132–6
photonuclear reactions 234
photospheres see stellar atmospheres
Planck functions/distributions 5–6, 7, 12
 radiative transfer 78, 82, 85, 91, 93
 stellar atmospheres 111, 117–18, 135, 

140, 151
Planck mean opacity 96
plane-parallel approximation 72–3, 75, 

77, 144–6, 149
planetary nebulae 244
Poisson’s equation 177–8
polarized line transfer 132
polytropic models 176–82
positrons 208–9, 217, 220–1, 271, 277, 

281
pre-main-sequence evolution 54–7
pressure line broadening 130–2
pressure stratifi cation
 chemically peculiar stars 304
 stellar atmospheres 145–9
 stellar formation 35–40
 stellar interiors 156–8
primordial black holes 266
primordial nucleosynthesis 206, 223
proton–proton chains 218, 220–1, 

223–4, 226, 281
proton–proton reaction 208, 217, 220, 

226–7, 279–80
protostars 35, 53, 55
pulsars 247, 259–61

quantum theory/mechanics
 stellar atmospheres 119–21, 133, 136
 stellar evolution 214, 216–17
 stellar interiors 184, 189–91
quantum tunnelling 1, 216–17, 267, 279
quarks 208–9
quasars 264
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r process 236, 247, 273–6
radial pulsation modes 197–8
radiation, defi nition 2–5
radiative accelerations 40, 100–2
 chemically peculiar stars 290, 295, 

297–302
radiative damping constants 136
radiative energy density 76
radiative equilibrium 90–1
 stellar atmospheres 111, 150–1
 stellar interiors 160, 168, 170
radiative excitation 62–5, 134–6
radiative fl ux 9–10, 73–5
 radiative transfer 61, 73–5, 90, 92–5, 

97–9
 stellar atmospheres 109, 111–12, 

114, 117–19, 129, 137–42, 
144–8

 stellar interiors 159–60, 164–7, 168
 stellar rotation 127–9
radiative moments 75, 111
radiative opacity 13–14, 19
 chemically peculiar stars 286, 297–8
 matter–radiation interactions 62–4
 negative hydrogen 69
 optical depth 79–80
 radiative transfer 62–9, 80, 85, 94–7, 

99, 101–2
 Rosseland and other mean opacities 

94–7
 stellar atmospheres 110, 119–20, 131, 

139–42, 144–8
 stellar interiors 161–2, 165, 167–8, 

184, 196–7
 types 64–9
radiative pressure 103–4, 184, 190–1
radiative transfer 61–107
 chemically peculiar stars 286–7
 demonstration of equation 99–100
 emissivity of matter 77–9, 84, 99
 local thermodynamic equilibrium 81–2
 matter–radiation interactions 62–4
 negative hydrogen 69
 optical depth 79–81, 85–7, 91–4, 

103–4

 plane-parallel approximation 72–3, 75, 
77

 radiative acceleration of matter 100–2
 radiative energy density 76
 radiative equilibrium 90–1
 radiative opacity 62–9, 80, 85, 94–7, 

99, 101–2
 radiative pressure 103–4
 Rosseland and other mean opacities 

94–7
 Schwarzschild–Milne equations 97–9
 solar corona/cycle 86–9
 solution of equation 77–81, 82–6
 specifi c intensity 62, 65, 69–76, 79–81, 

83–6, 91–3, 99
 stellar atmospheres 110–11, 114–15, 

144–8
radiative zones 182–3
radio wave observatories 4
rapidly oscillating Ap stars 193, 199
Rayleigh scattering 65–7
recoil processes 198
recurrent novae 192
red giants 2, 27–8
 atomic lines 120
 stellar evolution 54, 230–1, 241–2
reddening, interstellar 66–7
redistribution of momentum 299–300
redshifted atomic lines 127–9
refraction processes 198
relativistic effects 184, 189–90, 263–5
residual intensity 138
resonance broadening 130
resonance scattering 63, 64
Rosseland mean opacities 94–7, 161–2, 

167
rotating variables 191–2
rotational velocities 127–9
RR Lyrae stars 193, 195, 202

s process 233–4, 236, 273–6
SAGE neutrino observatory 227
Saha equation 18–21, 22
 radiative transfer 64, 69, 82
 stellar atmospheres 146, 147–8
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Saltpeter’s power law 49–50
scattering processes
 radiative transfer 62–7, 77–9, 90–1, 

96, 100–2
 stellar atmospheres 113
 stellar evolution 227, 229, 237
Schrödinger equation 120–1
Schuster’s model 112
Schwarzschild criterion 168–74
Schwarzschild radius 263–6
Schwarzschild–Milne equations 97–9
semi-infi nite atmosphere assumption 

84–5
semiempirical mass formula 211–14
SGRs see soft gamma-ray repeaters
shell burning 230, 243, 245
shell model 214–16
silicon-burning phase 235–6, 245–6
singularities 263
SNO see Sudbury Neutrino Observatory
soft gamma-ray repeaters (SGRs) 261–2
solar and stellar abundances
 anomalies 15–16
 stellar atmospheres 115, 120, 138, 

141–4, 147–50
 stellar evolution 214–15, 223–4, 

230–5, 280–1
 stellar interiors 160, 162, 185–8
 see also chemically peculiar stars
solar corona 86–9, 182
solar cycle 87–9
solar interior model 182–3
solar neutrino problem 226–30
solar prominences 87
solid angles 69–73, 76, 90
source function 78, 81, 86, 98, 116–17
spacetime curvature 263–5
spallation 232
specifi c intensity 5
 radiative transfer 62, 65, 69–76, 

79–81, 83–6, 91–3, 99
 stellar atmospheres 112, 116
spectral classifi cation of stars 21–6, 

29–30
spectroscopic gravities 131
spiral galaxies 249–51

spontaneous de-excitation 134–6
spontaneous emission 63, 64
Stark effect 130–1
starquakes 262
starspots 191
Stefan–Boltzmann law 7
stellar atmospheres 2, 29, 109–53
 atmospheric modelling 143–51
 atomic lines 119–43
 Balmer lines and surface gravity 

130–1
 curve of growth 142–3
 defi nition and key concepts 109–10
 depth dependence 109, 110, 113
 Doppler line broadening 122–9
 Einstein coeffi cients 134–6
 equations of state 146–7
 equivalent width 137–9
 grey atmosphere approximation 

110–19, 146–7
 limb darkening effect 116–17
 natural line broadening 120–2
 pressure line broadening 130–2
 radiative fl ux 109, 111–12, 114, 

117–19, 129, 137–42, 144–8
 radiative opacity 110, 119–20, 131, 

139–42, 144–8
 radiative transfer 72–5, 90–1, 102
 Saha equations 146, 147–8
 solar corona/cycle 86–9
 stellar rotation 127–9
 stimulated emission 132–6
 temperature profi les 110, 111–17
 Zeeman effect 132
stellar clusters 248–57
 age 253–5
 distance to stars 255–7
 globular clusters 248, 250, 252–5
 open clusters 248, 250–2
 populations and galaxies 248–51, 270
stellar core 182–3, 230, 236–7, 246–7
 see also nuclear burning; stellar 

interiors
stellar evolution 2–3, 205–83
 advanced nuclear burning 232–6, 

245–6, 274
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 chemically peculiar stars 286, 297, 
302

 defi nitions and key concepts 205–6
 evolutionary tracks in the H–R diagram 

236–48
 heavy element nucleosynthesis 273–7
 helium-burning phase 230–2
 Hertzsprung–Russell diagrams 28–9, 

238, 242
 lifetime of stars 224–6
 liquid-drop model 211–14
 low-mass stars 240–1
 main-sequence burning 218–30, 233
 massive stars 219, 225, 236, 239, 

245–8, 253
 novae and supernovae 235–6, 239, 

247–8, 268–73
 nuclear burning 206, 216–36, 245–6, 

274
 shell model 214–16
 solar neutrino problem 226–30
 stellar clusters 248–57
 stellar remnants 245, 257–68
 the Sun 241–5
 thermonuclear energy production rates 

223–5, 238, 243, 277–81
 thermonuclear fusion reactions 206–10, 

216–24, 230–6, 274
stellar formation 35–59
 cloud collapse 2, 35, 42, 46–8, 50, 

52–4
 fragmentation processes 48, 50
 free-fall times 52–4
 Hertzsprung–Russell diagrams 54–5
 hydrostatic equilibrium 36–40, 52–4
 initial mass function 48–50
 Jeans criterion 46–52
 pre-main-sequence evolution 54–7
 triggering mechanisms 50
 virial theorem 40–52
stellar interiors 155–204
 asteroseismology 197–200
 boundary conditions 162–3
 conduction 166–7
 convection 155, 159, 164, 167–76
 convective equilibrium 168, 176

 defi nition and key concepts 155–6
 degenerate free electrons 166, 184, 

189–91, 243
 energy conservation 155, 160–1, 177
 energy transport 155, 159–60, 163–77
 equations of state 155–6, 161, 176–7, 

184–91
 equations of stellar structure 94, 

156–63, 176–7
 hydrostatic equilibrium 155, 156
 ideal gas approximation 155–6, 184, 

185–91
 mass conservation 155, 156–8
 mixing-length theory 155, 168, 172–6
 neutrinos 163–4
 period–luminosity relations 194, 

200–2
 polytropic models 176–82
 radiation pressure 184, 190–1
 radiative fl ux 159–60, 164–7, 168
 radiative transfer 72, 75, 90–1, 94
 Schwarzschild criterion 168–74
 structure of the Sun 182–3
 variable stars 191–202
stellar-mass distribution 48–50
stellar nurseries 48
stellar populations 26, 248–51, 270
stellar remnants see black holes; 

magnetars; neutron stars; pulsars; 
white dwarfs

stellar rotation 127–9, 162, 200
stimulated emission 132–6
subdwarfs 30
Sudbury Neutrino Observatory (SNO) 

228–30
sunspots 87–9
Super-Kamiokande neutrino detector 227, 

229
supergiants 28
 stellar atmospheres 131, 144
 stellar evolution 205, 231–2, 244
 stellar pulsations 200–2
supermassive black holes 264, 266
supernovae 3
 stellar evolution 235–6, 239, 247–8, 

268–73
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supernovae (cont’d)
 stellar formation 50
 variable stars 192
surface gravity 130–1, 144
synchrotron radiation 259–60

T Tauri stars 55–6
temperature correction procedure 

150–1
temperature gradients
 chemically peculiar stars 297
 stellar atmospheres 110, 111–17
 stellar interiors 159–60, 164, 166, 

168
temperature–density grids 95–6, 300–1
thermal energy density 40–2
thermonuclear energy production rates
 stellar evolution 223–5, 238, 243, 

277–81
 stellar interiors 162, 164, 184
thermonuclear fusion reactions 1–3
 stellar evolution 206–10, 216–24, 

230–6, 274
 stellar interiors 160–1
 see also nuclear burning
Thomson scattering 65–6
tidal forces 266–7
Tolman–Oppenheimer–Volkoff limit 247
trace-element approximation 293–4
transparency 11
triggering mechanisms 50
triple-α reaction 2, 231
two-stream (Schuster’s) model 112
Type-I Cepheids 193–5, 197, 200–2
Type-II Cepheids 193–5

ultraviolet radiation observatories 4
uncertainty principle 22, 120–1, 189, 267

Van der Waals process 130
variable stars
 asteroseismology 197–200
 period–luminosity relations 194–5, 

200–2
 radiative transfer 84
 stellar formation 56–7
 stellar interiors 191–202
 types and properties 191–7
virial theorem 40–52
visible radiation observatories 4
Voigt profi les 125–7

W bosons 228
wave–particle duality 3
white dwarfs 3, 27–8
 atomic lines 120, 122
 stellar evolution 239, 241, 244–5, 247, 

257–9, 268–71
 stellar interiors 155–6, 166, 177, 184, 

189, 193, 198
Wien’s law 7, 75, 230

X-ray observatories 4
X-ray pulsars 260–1

Z bosons 228
Z-bump 96, 196
Zeeman effect 132, 289
zero-age main-sequence (ZAMS) 236–8, 

256
ZZ Ceti 193, 198–9, 202, 258



Figure 2.3 Molecular clouds in the M16 nebula where star formation is present (NASA/courtesy 
of nasaimages.org).

Figure 3.12 The solar corona as seen during a total solar eclipse (NASA/courtesy of nasaimages.
org).



Figure 6.8 An artist’s conception of the Sudbury Neutrino Observatory (photo courtesy of SNO).

Figure 6.15 M57 (also called the Ring Nebula) is a well-known planetary nebula. The central 
white dwarf is the pinpoint body visible in the middle of the expanding shell of matter. This object 
has a diameter of approximately 2.4 ly and is situated 2300 ly from Earth. (NASA/courtesy of 
nasaimages.org).



Figure 6.17 The Crab nebula (M1), which is a supernova remnant. (See text for full caption.)

(a) (b)

(c)

(d)

Figure 6.18 Examples of the various types of normal galaxies. (See text for full caption.)



Figure 6.20 The open cluster M45 commonly called the Pleiades. It is found at a distance of 
approximately 440 ly from Earth. (NASA/courtesy of nasaimages.org).

Figure 6.21 The globular cluster M4. It is found in the Scorpio constellation at a distance of 
approximately 7200 ly from Earth. (NASA/courtesy of nasaimages.org).

Figure 6.30 An image of Einstein’s cross. This system is made up of a distant quasar that is found 
behind another galaxy that is seen in the centre of this image. This central galaxy serves as a 
gravitational lens that bends the light coming from the quasar and giving four distinct images of the 
distant quasar. (NASA/courtesy of nasaimages.org).
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